
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 2, FEBRUARY 2024 1

Temporal Coherence-Based Distributed Ray
Tracing of Massive Scenes

Xiang Xu, Lu Wang, Arsène Pérard-Gayot, Richard Membarth, Cuiyu Li, Chenglei Yang, and
Philipp Slusallek

Abstract—Distributed ray tracing algorithms are widely used when rendering massive scenes, where data utilization and load
balancing are the keys to improving performance. One essential observation is that rays are temporally coherent, which indicates that
temporal information can be used to improve computational efficiency. In this paper, we use temporal coherence to optimize the
performance of distributed ray tracing. First, we propose a temporal coherence-based scheduling algorithm to guide the task/data
assignment and scheduling. Then, we propose a virtual portal structure to predict the radiance of rays based on the previous frame,
and send the rays with low radiance to a precomputed simplified model for further tracing, which can dramatically reduce the traversal
complexity and the overhead of network data transmission. The approach was validated on scenes of sizes up to 355 GB. Our
algorithm can achieve a speedup of up to 81% compared to previous algorithms, with a very small mean squared error.

Index Terms—Computer graphics, ray tracing, distributed graphics

✦

This is a pre-print of an article accepted for publication in IEEE Transactions on Visualization and Computer Graphics (TVCG).
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

1 INTRODUCTION

MONTE Carlo ray tracing is the most commonly used
algorithm for rendering with global illumination.

With the increasing demand for high-quality rendering,
the geometric model’s complexity also increases, making
distributed and out-of-core rendering more important. A
typical solution to render massive scenes that cannot fit in
the main memory is dividing the scene into parts. Each part

• Xiang Xu is with the Shandong Key Laboratory of Blockchain Finance,
Shandong University of Finance and Economics, Jinan, Shandong 250101,
China. E-mail: xuxiang8420@outlook.com.

• Lu Wang and Chenglei Yang are with the School of Software, Shandong
University, Jinan, Shandong 250101, China. E-mail: {luwang hcivr,
chl yang}sdu.edu.cn.

• Arsène Pérard-Gayot is with Wētā Digital, PO Box 15208, Miramar
Wellington 6243, New Zealand. E-mail: aperardgayot@wetafx.co.nz.

• Richard Membarth is with the Technische Hochschule Ingolstadt (THI),
Research Institute AImotion Bavaria, 85049 Ingolstadt, Bayern and the
German Research Center for Artificial Intelligence (DFKI), Saarland
Informatics Campus, 66123 Saarbrücken, Saarland, Germany. E-mail:
richard.membarth@thi.de.

• Cuiyu Li was formerly with the Advanced Computing East China Sub-
center, Suzhou, JiangSu 215300, China. E-mail: lxyystn@126.com.

• Philipp Slusallek is with the German Research Center for Arti-
ficial Intelligence (DFKI) and Saarland University, Saarland In-
formatics Campus, 66123 Saarbrücken, Saarland, Germany. E-mail:
philipp.slusallek@dfki.de.

Manuscript received 24 February 2022; revised 27 October 2022; accepted 28
October 2022. Date of publication 7 November 2022.
This work has been partially supported by the National Key R&D Program
of China (2020YFB1709203), the National Natural Science Foundation of
China (62272275, 61872223, 62007021, 62202268, 62002200), the Shandong
Provincial Natural Science Foundation of China (ZR2020LZH016), the Shan-
dong Provincial Science and Technology Support Program of Youth Innovation
Team in Colleges (2021KJ069), as well as by the Federal Ministry of Education
and Research (BMBF) as part of the HorME and Metacca projects. The
calculation is supported by Advanced Computing East China Sub-center.
(Corresponding author: Lu Wang.)
Recommended for acceptance by K. Moreland.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TVCG.2022.3219982, provided by the authors.
Digital Object Identifier no. 10.1109/TVCG.2022.3219982

is called a domain containing an independent acceleration
structure (e.g., BVH), and a virtual portal is placed between
every two adjacent domains to record rays that may pass
through a domain to the other. For the ray that intersects
with the virtual portal and is ready to enter the next
domain, the computing node chooses to fetch the domain
data or pass the ray task according to different scheduling
algorithms.

For distributed ray tracing, some dynamic scheduling
algorithms [1], [2] perform ray transfer and domain fetching
according to the current state of each distributed node to
improve data utilization and balance the workload among
nodes. However, those algorithms incur additional synchro-
nization overhead and reduce parallelism. Other algorithms,
like the domain-space decomposition algorithm [3], which
does not synchronize information between nodes during
rendering and allows communication and computation to
execute asynchronously, does in fact improve computational
efficiency but cannot guarantee load balancing.

In this paper, considering rays with good temporal co-
herence between frames, we propose a temporal coherence-
based distributed ray tracing method that uses temporal co-
herence in ray tracing to improve the load balance and data
utilization of the domain-space decomposition algorithm.
Furthermore, we observe that multiple reflections of a ray
increase the amount of computation and communication in
distributed rendering but mainly add low-frequency radi-
ance contribution. We use a simplified model to trace those
rays with low radiance, which can not only decrease com-
putation, but also avoid ray transmission between nodes.
Our contributions are summarized as follows:

• An efficient temporal coherence-based scheduling
algorithm, including a domain assignment algorithm
and a runtime scheduling algorithm. Before render-
ing, our domain assignment algorithm assigns do-

https://doi.org/10.1109/TVCG.2022.3219982
https://doi.org/10.1109/TVCG.2022.3219982

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 2, FEBRUARY 2024

mains to all nodes according to the ray transmission
information among domains in the previous frame.
At runtime, we propose a scheduling algorithm that
estimates each domain’s pre-loading prior based on
the node’s current situation and information of the
previous frame.

• A new virtual portal structure to record the radiance
of rays passing through domains in the previous
frame. In the current frame, by the recorded radiance
in our virtual portal, we predict the radiance of the
ray intersects with the virtual portal and send the
low radiance rays to a pre-loaded simplified model
in the current node.

• An asynchronous distributed path tracing frame-
work, which can process domain loading, render-
ing, and communication asynchronously. This dis-
tributed ray tracing architecture can achieve a more
balanced workload and higher data utilization.

We tested our algorithms in scenes up to 355 Gbytes
(including BVH). Compared with the dynamic scheduling
algorithm [1] and the asynchronous domain-space decom-
position algorithm [3], our algorithm is faster thanks to the
temporal coherence-based scheduling strategy and thanks
to the use of a simplified model for ray tracing.

2 RELATED WORK

Out-of-core rendering and distributed rendering are the two
main methods for rendering massive scenes. The efficiency
of both of them is highly reliant on the task and data
assignment and scheduling algorithm.

2.1 Out-of-Core Ray Tracing
Fetching domain data from storage is costly, so some re-
search has focused on improving the data access efficiency
for out-of-core rendering. Pharr et al. [4] proposed an out-
of-core ray tracing method based on ray batching, which
improves ray coherence in domain loading. Budge et al. [5]
proposed a software system that enables hybrid CPU/GPU
out-of-core rendering based on priority-based heuristics.
Eisenacher et al. [6] reduced the loading costs by deferring
shading of all shading points.

Using simplified models to assist computation is an
important technique in massive scene rendering. Simplified
models have a low memory footprint and computational
overhead, but there is a significant loss of quality if they
are applied directly to rendering. Yoon et al. [7] proposed
a model following a LOD structure, which is implied in
the acceleration structure and bounds the errors by an error
metric. Moon et al. [8] obtain approximate shading points by
intersecting the simplified model, and using it as a measure
to reorder rays when rendering the original scene. Stoll et
al. [9] proposed a multiresolution method by interpolating
between discrete LODs for each ray. They compute their
LODs by choosing proper tessellation levels for subdivision
meshes.

2.2 Distributed Ray Tracing
Distributed ray tracing algorithms divide the rendering
tasks and scene data and assign them to distributed nodes.

The way to assign scene data and rendering tasks de-
termines the efficiency of distributed ray tracing. These
algorithms can be categorized into three classes: image-
space decomposition, domain decomposition, and dynamic
scheduling strategies.

Image-space decomposition strategies assign a portion of
image samples to each node, and each node fetches the
corresponding scene data from the network or local stor-
age [10], [11], [12], [13], [14], [15], [16], [17]. For instance,
Wald et al. [14], [15] divide the screen into multiple tiles
and assign them to different nodes. They copy the top-level
KD-tree to all nodes and store the bottom part in storage.
At runtime, each node performs ray tracing in the top-level
KD-tree and accordingly loads the corresponding subtree
for further rendering. DeMarle et al. [12] combine the image-
space decomposition strategy with distributed shared mem-
ory. However, their results rely on a preprocessing step to
distribute the initial data, which is costly for massive scenes.
Park et al. [17] introduced a speculative ray-scheduling
method, which trades the redundant computation for data
utilization to improve overall efficiency. Image-space de-
composition methods can easily achieve load balancing be-
tween nodes [11], [18], but require frequent domain loading,
leading to low data utilization.

Domain-space decomposition strategies are usually used
when sufficient hardware resources are available. With this
strategy, the rays are sent to the node containing the re-
quired domain data over network [3], [19], [20], [21], [22],
[23]. Kobayashi et al. [22] decompose the scene into regular
subspaces, and assign them to different processes. Kato et
al. [23] evenly allocate the scene geometries to different
nodes. Each node separately intersects all rays and gathers
the results in a master node to get the nearest intersection. In
this method, each node has the same amount of data and ray
task, which naturally leads to a good workload balance, but
the computation utilization is low. Abram et al. [3] proposed
an asynchronous architecture for domain decomposition to
execute ray transmission and render in parallel. Wald et
al. [24] and Zellmann et al. [25] proposed decomposition al-
gorithms for scenes with massive instances. They combined
the object space and spatial space decomposition strategies
to reduce the replication of proxy geometry between nodes
and balance the data and computation of each node. Com-
pared with image-space decomposition, the domain-space
decomposition strategy has good data utilization and hardly
requires data loading. Still, it is challenging to balance the
workload (except for Kato et al. [23]).

The dynamic scheduling method mixes the above two
methods and determines whether the process should per-
form image-space processing or domain scheduling based
on various pieces of information during rendering [1], [2],
[26], [27], [28]. Reinhard et al. [27] group coherent rays and
load the relevant data locally. They send incoherent rays
to other processors to find the required data. Navrátil et
al. [1], [28] proposed a variety of dynamic scheduling algo-
rithms suitable for different scenes. Son et al. [2] proposed a
timeline scheduling for CPU/GPU heterogeneous clusters
by a device connection graph and timing model. They
predict data transmission and processing time to improve
computation and bandwidth utilization.

XU et al.: TEMPORAL COHERENCE-BASED DISTRIBUTED RAY TRACING OF MASSIVE SCENES 3

Frame i-1

Temporal
coherence-

based Domain
Assignment

Frame i

Frame
i+1

Radiance Prediction

Ray data

Temporal
coherence-based

Domain
SchedulingRay tracing

Simplified
model

Transmission
information statistic

&
Radiance caching

Ray tracing

Fine model

Network

Transmission
information statistic

&
Radiance caching

Frame i-1 Frame i

Fig. 1. The framework of our temporal coherence-based distributed ray tracing.

2.3 Spatial Directional Radiance Caching

Ray transmission in scenes is complicated. A spatial direc-
tional radiance caching structure is widely used to record
the ray transmission. The precise radiance cache, also
known as the radiance field, can be used directly as a
rendering result, but it requires extensive precomputation
to refine the cache [29], [30], [31]. The coarser cache can
be constructed quickly and is commonly used to guide the
ray sampling [32], [33]. It can be constructed at runtime
and keep refining frame to frame. In this paper, we use
a Holodeck-like [29] radiance caching structure, placing
virtual radiance portals (or virtual radiance screens) around
the composited distributed domains. Instead of using the
cached radiance for rendering, we use it to judge whether
to intersect rays with a simplified or a fine model to reduce
the ray data transmission between distributed nodes.

3 DISTRIBUTED RAY TRACING FRAMEWORK

For our distributed ray tracing architecture, we used a hy-
brid ray tracing framework that combines the domain-space
decomposition and out-of-core rendering. Before rendering,
a group of domains is assigned to a node, and each node
uses a cost-benefit formula to choose a domain to load or a
cached domain to render at runtime.

For most scenes, the ray transmission in consecutive
frames is very similar. This property is typically referred
to as temporal coherence. We propose a temporal coherence-
based distributed algorithm, which uses the information
from the previous frame to optimize the rendering perfor-
mance of the current frame. The rendering pipeline is shown
in Fig. 1. Our algorithm has three main parts:

1) The ray transmission and radiance information is
recorded when rendering the previous frame and
further used as input data for the current frame
(Section 4).

2) A temporal coherence-based domain assignment
and a domain scheduling algorithm are proposed
for the current frame by using the ray transmission
data of the previous frame to improve the load
balance and resource utilization (Section 5).

3) The cached radiance information on the virtual por-
tal in the previous frame is used to predict the ra-
diance of the ray intersected with the virtual portal
in the current frame. A low memory-cost simplified
model is used to render the predicted low radiance
ray (Section 6).

Our method allows communication and computation
to execute asynchronously. We realize the asynchronous
execution by three kinds of thread:

• Management thread is responsible for communicat-
ing with other distributed nodes and managing other
threads.

• Domain preloading thread is used to preload the
uncached domain.

• Rendering thread process the exact rendering task.

Each node keeps ray queues for each domain to enable
asynchronous ray data transfer between the management
and rendering threads.

4 TEMPORAL INFORMATION COLLECTION

The temporal information we used between frames includes
the ray transmission information between domains and the
radiance of the rays passing through the domains. The ray
transmission information can be easily recorded in the form
of statistics, and, for radiance information, we propose a
cache made of a virtual portal structure. That information
will be recorded in each frame and further be used in the
next frame (see Section 5 and Section 6, respectively) to
improve the efficiency of distributed ray tracing.

4.1 Transmission Information Statistics for Domains
We measure statistics on ray transmission for each domain,
at runtime, and for each frame. We take the domain A in
Fig. 2 as an example. The recorded information includes:

• For domain A’s neighbors, domain B and domain
C , record the numbers of rays sent from domain A
to each of them as s(A,B) and s(A,C), respectively.

• The total number of rays sent from domain A to other
domains, recorded as s(A).

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 2, FEBRUARY 2024

B V H

Uniform spatial decomposition

Spatial grids Directional grids

Virtual portal

Domain A Domain B

Domain C Domain D

Fig. 2. Domain and virtual portal structure. A scene is uniformly divided
into many domains, each domain has an individual BVH for the geom-
etry inside the domain, and a 4D virtual portal in spatial and directional
space is used to record the radiance of rays passing through the portal.

• The total number of rays received by domain A from
other domains, recorded as r(A).

• The proportion of s(A) to r(A), recorded as R(A).
• The proportion of s(A,B) to r(A), recorded as

R(A,B).
• The data loading times of domain A.

4.2 Virtual Portal with Radiance Caching
Virtual Portal Structure. In our distributed ray tracing
algorithm, we place virtual portals on each of the six faces of
a domain’s bounding box to determine whether rays need
to be sent to other domains (see Fig. 2). Beyond that, we
propose a four-dimensional (4D) virtual portal structure to
record the radiance of rays that intersect with a virtual portal
and pass through a domain, which records spatial and
directional information (2D each, 4D total). We divide each
virtual portal into uniform 2D grids (32×32) in spatial space
to represent the position of the intersection between the ray
and virtual portal at the virtual portal’s local coordinate
system. Since we only need to record rays that start tracing
inside the domain for a virtual portal, the direction of a
ray intersecting the virtual portal is always from inside to
outside the domain, which means we can represent this
direction in the virtual portal’s coordinate system in a half-
sphere. In practice, for each spatial grid, we separate it into
eight angle areas, each representing a 2D direction. The
entire virtual portal only takes several MB of memory, and
the overhead time of using our 4D virtual portal structure is
also small.

Radiance Recording on Virtual Portal. We record the
ray’s radiance at the closest virtual portal it intersected with
(see Fig. 3). When a ray intersects a virtual portal for the first
time, we calculate its virtual portal coordinates and record
it onto the ray’s structure, and keep tracing the ray until it
intersects geometry in a domain. After finishing the light
source visibility test (shadow ray intersection) and shading,
we record the radiance of this ray path to the proper
coordinates on the virtual portal. Once the current frame

has been finished, the recorded virtual portal is gathered
and broadcast to each node and will be used to predict
the radiance of rays in the next frame. To resolve potential
conflicts, when recording radiance in our virtual portal, we
only keep the maximum radiance on the coordinate if there
is already a radiance value.

(Assigned domain B)(Assigned domain A)
Node1 Node2

Fig. 3. Radiance recording on virtual portal. Domain A and domain 2 are
assigned to node 1 and node 2, respectively. A ray is passing through the
virtual portal from domain 1 to domain 2. Then, its radiance is recorded
on the corresponding virtual portal’s coordinates.

4.3 Node Information
As the distances between each node and the respective net-
work storage system have wide variations, the data loading
speeds are different for each node. In the first frame, when
a node is loading a domain, we record the storage size and
loading time of the domain and further calculate their ratio
as the data loading speed SPROC of the node.

After one frame is completed, node 0 gathers all the
recorded information from other nodes and broadcasts the
results to all nodes.

5 TEMPORAL COHERENCE-BASED DOMAIN AS-
SIGNMENT AND SCHEDULING

We use a domain assignment algorithm to assign the do-
mains to each node, and a runtime domain scheduling
algorithm to select the next domain to pre-load during
rendering. By using the recorded temporal information in
the previous frame, our temporal coherence-based domain
assignment and scheduling algorithms can improve data
utilization and balance the workload between each node.

5.1 Domain Assignment
When rendering with n nodes, we divide the screen space
evenly into n tiles and group the domains into an equal
number of n domain groups. We pack a screen tile and a do-
main group as an AssignmentUnit structure (see Algorithm 1
lines 1–4). Each node will be assigned an AssignmentUnit,
in which the screen tile is the node’s ray generating task and
the domain group is its processing data. For a given node,
domains inside its domain group are called its local domains.
A node can only load its local domains for ray tracing at
runtime.

XU et al.: TEMPORAL COHERENCE-BASED DISTRIBUTED RAY TRACING OF MASSIVE SCENES 5

For massive scene ray tracing, transmitting rays between
nodes is faster than out-of-core domain loading. Hence, we
hope to minimize the ray transmission between domains
inside an AssignmentUnit, to reduce the domain loading
times of each node. Our assignment algorithm consists of
three steps (see Algorithm 1):

Step 1: Select initial domains for each AssignmentUnit
(lines 9–15). We assign the n screen tiles to the n Assignmen-
tUnits in turn (lines 9–10). To use the screen space coherence,
we project the bounding box of each domain to screen space
(lines 11–12). And for each tile, we select the domain with
the largest projection area with it, and set the domain as the
initial domain for this tile’s AssignmentUnit (lines 13–15).

If the viewpoint is inside a model, the domain containing
this model has the largest projection area for all tiles, which
will be set as initial domain for all AssignmentUnits. Further
more, for other domains, we sort them according to the
number of rays sending from them in previous frame (i.e.
s(A) for domain A), and choose the first n domains, and
assign them to n AssignmentUnits in turn.

Step 2: Group remaining domains (lines 18–21). We
add a remaining domain to the AssignmentUnit with the
fewest domain numbers in a loop until all domains have
been assigned. Each time, we choose an AssignmentUnit U
with the fewest domains, then find a remaining domain with
lowest ray transmission number with all existing domains in
U according to the information recorded in previous frame
and add the domain to the domain group for U (lines 18–21).

Step 3: Assign AssignmentUnits to nodes (lines 24–27).
We sort all AssignmentUnits by the data size of domains in
each AssignmentUnit, and sort all nodes by the data loading
speed (lines 24–25). Then we assign the AssignmentUnit
with a larger data volume to the node with the faster loading
speed (lines 26–27).

5.2 Domain Scheduling

At runtime, for each node, we use a temporal coherent-
based domain scheduling algorithm to choose a candidate
domain from the domain group (including multiple local
domains) assigned to it and pre-load the candidate domain
as the next active domain for further rendering.

More precisely, when a node is rendering an active
domain, its management thread will calculate the priority
of other local domains according to a cost-benefit function
and select the domain with the highest priority as the next
active domain. If the next active domain is not cached, the
domain pre-loading thread will load this domain when the
active domain is being rendered. Meanwhile, if the domain
cache is full, the domain with the lowest priority will be
selected to unload.

Our cost-benefit function calculates the domain’s prior-
ity by predicting its computation time and domain loading
time. For a node n and a candidate local domain d, we use
QPRED(d) to denote the predicted quantity of rays that
may be processed when domain d is loaded. SPROC(d)
denotes the ray processing speed of the domain d in the
previous frame, TLOAD(n, d) denotes the time of node n
to load domain d, and Dep

′
(d) denotes the normalized

distance between the viewpoint and domain d. The priority
of domain d, P (n, d), is calculated as follows:

Algorithm 1 Assign Domains
1: AssignmentUnit {
2: List⟨Domain⟩ domainGroups;
3: Tile tile;
4: };
5: AssignDomains:
6: AssignmentUnit units[n];
7:
8: #Step 1: Select initial domains.
9: for each Ti in all screenTiles;

10: units[i].tile = Ti;
11: for each Di in allDomains;
12: ProjectDomainToImageSpace (Di);
13: for each Ui in units;
14: D = MaxProjectedAreaDomain (Ui.tile);
15: Ui.domainGroups.insert (D);
16:
17: #Step 2: Group the remaining domains.
18: while hasUnAssignedDomain
19: U = FindLeastDomain(units);
20: D = LeastTransmission (U , UnAssignedDomain);
21: U .domainGroups.insert (D);
22:
23: #Step 3: Assign AssignmentUnits to nodes.
24: sort (nodes, maxLoadingSpeed);
25: sort (units, maxStorageUsed);
26: for each Ni in allNode;
27: Ni.initialisation (units[i]);

P (n, d) = (1−Dep
′
(d)) ·

(
QPRED(d)

SPROC(d)
− TLOAD(n, d)

)
(1)

The larger the difference of QPRED(d)/SPROC(d) and
TLOAD(n, d), means that domain d is more computationally
intensive, while its loading overhead is relatively small,
therefore this domain has a higher priority to be loaded.
When rays are transmitted in a scene, domains that are
closer to the viewpoint tend to be requested earlier, which
is why we use 1 − Dep

′
(d) as a term to schedule the

closer domain to viewpoint. The parameters TLOAD(n, d)
and QPRED(d) in Eq. 1 are calculated according to Eq. 2
and Eq. 3, respectively.

In Eq. 2, V (d) denotes the data size of domain d and
SLOAD(n) denotes the loading speed of node n. If the
domain is already cached, its loading cost will be zero.
Otherwise, we use V (d) and SLOAD(n) to calculate the
domain loading time.

TLOAD(n, d) =

 0 if domain loaded
V (d)

SLOAD(n)
otherwise (2)

Considering the next active domain is selected while the
active domain is being rendered, we cannot get the exact
quantity of rays that need to be rendered when a domain d is
loaded to be rendered: Because the active domain may gen-
erate additional rays for domain d, the other nodes may also
send rays to domain d when processing the active domain.

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 2, FEBRUARY 2024

Still, we can predict this quantity as QPRED(d) based on
the current ray transmission status and the ray transmission
information in the previous frame (see Section 4.1). For the
currently active domain act and the candidate domain d, the
QPRED(d) calculation is defined as follow:

QPRED(d) = QCUR(d)

+QCUR(act)R(act)R(act, d)

+QPOT (d)

(3)

The variables act and d represent the currently active
domains and the candidate domain, respectively. We divide
QPRED(d) into three parts, corresponding to the three terms
summed in Eq. 3. The first term QCUR(d) represents the cur-
rent ray quantity of domain d. For the second term, we use
QCUR(act)R(act)R(act, d), to approximate the ray quantity
generated from the active domain act for domain d after
domain act finishes rendering the current ray QCUR(act). In
this expression, the terms R(act) and R(act, d) are recorded
at the previous frame, see subsection 4.1. Finally, the third
term QPOT (d) represents the received ray quantity from
other nodes’ (non-local) domain when domain d is selected
as the active domain and being rendered, and is defined in
the following equation:

QPOT (d) =
QPRE(d)−QCUR RECV (d)

NPRE(d)−NCUR(d)
(4)

In this formula, QPRE(d) represents the rays sent to
domain d from the non-local domains in the previous frame,
and QCUR RECV (d) represents the number of rays that the
domain d has received from them in the current frame. We
use QPRE(d)−QCUR RECV (d) to approximate the remain-
ing rays that may be received from other nodes. NPRE(d)
is the total loading times of domain d in the previous frame,
and NCUR(d) counts the number of times the domain d has
been loaded in the current frame. We use this formula to
approximate the average rays received by domain d in each
of the remaining loading operations, and use it as the ray
quantity received from non-local domains if domain d is
rendered as the active domain.

6 TEMPORAL COHERENCE-BASED SIMPLIFIED
MODEL TRACING ALGORITHM

So far, we have finished our main scheduling algorithm
for distributed ray tracing. Furthermore, we proposed an
optimized ray tracing algorithm to reduce the overhead of
ray computation and transmission by using a simplified
model.

When tracing rays, an increased number of ray bounces
brings more computation overhead and makes rays less
coherent. Especially for the massive scene distributed ray
tracing, incoherent rays will lead to more ray transmission
between nodes and more domain loading times, which
may significantly reduce the rendering efficiency. Thus, we
store precomputed simplified models of the whole scene in
each node. For those unimportant rays (with low radiance)
passing through its neighboring domains, we prefer to trace
them with simplified models in the current node to reduce
the data transfer overhead.

6.1 Tracing with Simplified Models

The camera rays (depth of 0) contribute the most to the
radiance, so we use the original fine model to trace. For rays
with depths ≥ 2, which provide almost exclusively low-
frequency radiance contributions, we trace them all using
the simplified model. For rays at a depth of 1, we use our
virtual portal data structure to predict ray radiance and trace
those rays with low radiance with the simplified model.

As simplified models are resident in memory for all
nodes, we don’t need to transfer data for further tracing.
At the same time, tracing with a simplified model can also
simplify the intersection computation. Since there is little to
no energy loss when tracing perfect reflection and refraction
rays, we render all such rays with the original fine model.

6.2 Radiance Prediction

From the recorded radiance on our virtual portal in the pre-
vious frame (Section. 4.2), we can predict radiance of a ray
when it intersects with the virtual portal. Then, according to
the predicted radiance, we decide whether to send the ray
to the simplified model or not.

When a ray intersects the virtual portal, we get its
coordinates in our 4D virtual portal grid according to the
intersection position and the ray’s direction, thus getting the
recorded radiance at this coordinate in the previous frame
and using it as the predicted radiance of the current ray. If
the predicted radiance of the ray is greater than a threshold,
we trace it with the original fine model; otherwise, we
render it with the simplified model (Fig. 4). We derived the
threshold experimentally and found that a value of 0.5 was
optimal (see section 7.3.2).

The radiance distribution and the resolution of our vir-
tual portal impact the performance and accuracy of radiance
prediction, which we will analyze separately in subsec-
tion 7.3.3.

Domain B (fine model)Domain A (fine model)

Virtual Portal

Node 1

Low Radiance (R2)

Node 2

Whole scene (coarse model)Whole scene (coarse model)

R1

R1

R2

R2

H
ig

h
R

ad
ia

nc
e

(R
1)

Fig. 4. Radiance prediction. Node 1 and node 2 are assigned to domain
1 and domain 2, respectively, and a simplified scene model is always
kept in the memory of each node. For the predicted high radiance ray
(e.g., R1), we send it to Node 2 to intersect with the fine model of domain
2. While, for the ray R2 that was predicted as low radiance, we use the
local kept simplified model to render.

XU et al.: TEMPORAL COHERENCE-BASED DISTRIBUTED RAY TRACING OF MASSIVE SCENES 7

Reference Ours Diff (3.80e-5)

Reference Ours Diff (1.60e-4)

Reference Ours Diff (6.35e-4)

Reference Ours Diff (3.13e-5)

Reference Ours Diff (1.98e-4)

Rendering results Time Scalability

A
ge

nt
32

7

 F

or
es

t

R
ob

ot

C
ou

rty
ar

d

 C

os
m

ic
 w

eb

Fig. 5. Rendering results and performance of our five test scenes. The first column shows our rendering results and difference with reference. And
the second and third columns show the time and scalability comparison among ours, Navrátil et al. [1] and Abram et al. [3], for different nodes,
respectively.

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 2, FEBRUARY 2024

7 RESULTS

We test our algorithm on the Sugon advanced computing
cluster, each computing node has a 32-core 2.0 GHz x86 Hy-
gon Dhyana processor with 128 GB main memory, each dis-
tributed node and storage system is connected by 200 GB/s
HDR InfiniBand network. Our path tracing implementation
is based on the Rodent [34] path tracer with a BVH with
branching factors eight as the accelerated structure and
supports multiple importance sampling, area lights, next
event estimation (NEE) [35], and physically-based materials.
We use MPI [36] for message passing between nodes. Table 1
shows the statistics of our five test scenes. Fig. 5 shows
the rendering results and performance. For the Agent327
scene [37], we also provides the results with 1024 spp in
Fig. 9 and Fig. 10.

TABLE 1
Statistics for each test scene. Model memory includes the scene

information and the BVH. For each scene we use the same rendering
parameters, 1920×1080 resolution and the max ray path depth is eight.

Tris.
Original Simplified

SPPModel model
Mem. Mem/Rate.

Cosmic Web 1437M 354.5G 163M/0.05% 64
Courtyard 923M 209.3G 149M/0.07% 128
Robot 378M 86.5G 173M/0.19% 32
Forest 90M 18.6G 204M/1.05% 32
Agent327 56M 11.3G 161M/1.39% 128/1024

7.1 Performance Comparison
We measure the impact of our temporal coherence-based
scheduling, and our ray tracing algorithm based on a sim-
plified model, and compare it with the dynamic scheduling
algorithm proposed by Navrátil et al. [1] and the domain-
space decomposition algorithm proposed by Abram et
al. [3]. To be fair, we modified all the compared algorithms
so that each node only allows loading of the assigned
domains and use the current number of rays in the domain
as its priority at runtime for domain scheduling. For the
method of Navrátil et al. [1], we assign the spatially adjacent
domains to each node. We also use the same spatial-based
algorithm to distribute domain data for Abram et al. [3]. The
method of Abram et al. [3] is also used as the baseline for
our algorithm evaluation.

Rendering Time. We compared the rendering time of
these five methods, where each node caches four domains
(Fig. 5). We can see that Abram et al. [3] is about 2 to 3 times
faster than Navrátil et al. [1]. This is because, in Abram
et al. [3]’s asynchronous domain-space decomposition al-
gorithm, the ray transmission overhead can be hidden by
computation. However, Navrátil et al. [1] has to synchronize
nodes frequently, increasing ray data transmission and re-
ducing parallelism between nodes. Compared with Abram
et al. [3], our temporal coherence-based scheduling (w/o
simplified model in Fig. 5) can take the ray transmission
information into account in the domain assignment and
domain scheduling phase, and consequently achieves up to
39% (average 26%) speedup. Moreover, using a simplified
model for ray tracing (w/o temporal scheduling in Fig. 5)
greatly reduces the amount of communication and calcula-
tion caused by the rays’ multiple bounces, increasing the

speed by up to 38% (average 27%). When we use the two
together, the speedup can be up to 81% (average 56%).

Scalability. As shown in Fig. 5, Navrátil et al. [1] is lower
in parallel efficiency than other algorithms. The parallel
efficiency of our scheduling algorithm is similar to Abram et
al. [3]. With respect to communication between nodes, our
simplified model tracing algorithm is better than the others
because the simplified model is maintained in each node’s
memory, reducing the communication overhead caused by
adding more nodes. Additionally, the parallel efficiency is
highly affected by the task size. When using 16 nodes for the
Forest, each node only needs to cache four domains to load
the entire scene, and thus there will be no domain loading
overhead. With that setup, the rendering workload is also
insufficient, leading to a significant bottleneck. This point
also can be seen from Fig. 6.

Fig. 6 shows the average time of three parts of our
algorithm at each node count. When there are few nodes,
each node has enough work, the communication, data-
loading, and rendering can be better parallelized, and the
time of each node is close to the total time. However, when
the number of nodes increases, the total time does not
show the same reduction as the average time of each thread
because it becomes harder to balance the workload with the
insufficient work.

Domain Cache Rate. Different domain cache rates have
a great impact on rendering speed. A larger domain cache
rate means fewer domain scheduling operations, especially
when the cache size is 100%, domain scheduling is no longer
needed. Fig. 7 shows the results of the five algorithms with
different maximum domain cache sizes. As the domain
cache rate increases, the rendering time shows a similar
trend to Fig. 5. In this figure, Navrátil et al. [1] is still slower
than the others, and our algorithm is still faster than other
algorithms even at 100% cache rate.

7.2 Quality Evaluation
In terms of rendering quality, Abram et al. [3] and Navrátil
et al. [1] are both lossless, while the use of the simplified
model in our algorithm can cause some quality loss. We use
Abram et al. [3] as the reference for quality evaluation.

Static Scenes. The difference between our algorithm and
the reference for static scenes without animation is shown in
Fig. 5. The MSE in the darker area is larger because, in that
area, we use the simplified model at smaller ray depths.
There is a trade-off between quality loss and performance
when choosing to use the simplified model during ray
tracing, which we will discuss in subsection 7.3.2.

Dynamic Scenes. Fig. 8, Fig. 9, and Fig. 10 show our
rendering quality for moving viewpoint, dynamic geometry,
and dynamic light sources, respectively, where we only
record the radiance information in the first frame. We can
see that our algorithm can maintain a low MSE even in
dynamic scenes.

7.3 Analysis of Our Algorithm
Our algorithm contains two parts: temporal coherence-
based scheduling and ray tracing using a simplified model,
providing 26% and 27% speedups, respectively. This subsec-
tion will experiment and analyse these two parts separately,
and present some other important parameters.

XU et al.: TEMPORAL COHERENCE-BASED DISTRIBUTED RAY TRACING OF MASSIVE SCENES 9

T
im

e(
s)

T
im

e(
s)

T
im

e(
s)

(a) Cosmic web (b) Courtyard (c) Forest

Node count Node count Node count

Management thread

Domain preloading thread

Rendering thread

Total

Fig. 6. Execution time of the three parts and the total time of our algorithm when we use both temporal coherence-based scheduling and simplified
models for ray tracing (8 nodes). The X-axis is the number of nodes, and the Y-axis is the average time of one frame.

(a) Cosmic web (b) Courtyard (c) Forest

Domain cache rate Domain cache rate Domain cache rate

T
im

e(
s)

T
im

e(
s)

T
im

e(
s)

Fig. 7. Performance comparison with different domain cache rates (8 nodes). The X-axis is the domain cache size, and the Y-axis is the average
rendering time of one frame.

Ours (128 spp) Reference (128 spp) Difference

Fr
am

e
20

 F
ra

m
e

10

 F
ra

m
e

2

 9min30s

 9min37s

 6min26s

 6min41s

MSE: 9.26e-5

MSE: 9.37e-5

Fig. 8. Rendering results with moving viewpoint (8 nodes).

7.3.1 Temporal Coherence-Based Scheduling

Our temporal coherence-based scheduling algorithm in-
cludes domain assignment and runtime domain scheduling.
Table 2 shows the rendering time with different domain
assignment algorithms and different domain scheduling
cost-benefit formulas. We compare our domain assignment
algorithm with sequential and spatial-based assignment,
where sequential assignment has a more balanced load
while spatial-based assignment has less communication be-
tween nodes. As shown in Table 2, spatial-based assignment
is faster than sequential assignment for most scenes, except

Ours (1024 spp) Reference (1024 spp) Difference

Fr
am

e
20

 F
ra

m
e

10

 F
ra

m
e

2

34min35s23min16s

36min14s24min24s

MSE: 5.60e-5

MSE: 4.49e-5

Fig. 9. Rendering results with dynamic geometry (8 nodes).

the Courtyard and Robot, due to their highly unbalanced
distribution in spatial space. Our temporal coherence-based
domain assignment strategy is 7.9% faster than sequential
assignment and 6.4% faster than spatial assignment.

When we add domain scheduling to our domain assign-
ment algorithm, we also add domain pre-loading, which
improved the rendering speed by 9.2%. We use the strategy
that only considers the current ray quantity of a domain as
the baseline algorithm. Compared with the baseline, when
we take the current rays of the domain d and the rays
generated by domain act into account, the speed can be
improved by 5.9%. And, our complete algorithm can give

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 2, FEBRUARY 2024

TABLE 2
Statistics for temporal coherence-based scheduling (8 nodes, cache 4 domains). The meaning of symbols is explained in Section 5.2.

Cosmicweb Courtyard Robot Forest Agent327
Domain assignment
Sequential assignment 1143s 604s 456s 93s 262s
Spatial-based assignment 1091s 605s 466s 92s 254s
Temporal coherence-based assignment (ours) 951s 573s 443s 88s 248s
+ Domain Scheduling with different Cost-benefit formula
QCUR(d) 864s 548s 394s 82s 222s
Spray scheduling [17] 837s 528s 373s 80s 210s
QCUR(d) +QCUR(act)R(act)R(act, d) 833s 513s 375s 75s 212s
(1−Dep

′
(d)) ·

(
QPRED(d)
SPROC(d)

− TLOAD(n, d)
)

(ours) 802s 493s 361s 73s 206s

Ours (1024 spp) Reference (1024 spp) Difference

Fr
am

e
20

 F
ra

m
e

10

 F
ra

m
e

2

滚滚长江东逝水

Dynamic light
source

Dynamic light
source

33min14s21min48s

23min17s 34min25s

MSE: 5.55e-5

MSE: 5.83e-5

Fig. 10. Rendering results with dynamic light source (8 nodes).

a 9.6% speed up to the baseline algorithm. We also com-
pared Park et al. [17]’s scheduling strategy, which consists
in scoring domain priority by intersecting rays with the
domain bounding box. This strategy can evaluate the ray
transmission well in synchronous distributed architectures,
but in our asynchronous distributed architecture, the ray in
each node is constantly updated; moreover, the ray bound-
ing box intersection test will result in additional overhead.
Even if we ignore the additional overhead, our scheduling
algorithm is 5.8% faster than Park et al. [17].

7.3.2 Simplified Model and Ray Tracing Algorithm

The use of simplified models during ray tracing can sig-
nificantly improve the overall rendering speed, and only
incurs a small additional memory footprint. We use the
edge collapse method to simplify each object in a scene,
except for some objects with too few faces, like the Court-
yard architecture. The Forest scene has too many simple
objects that cannot be simplified, leaves and grasses, and
we simplify this scene by randomly removing some of them.
In our test, the simplification rate from 0.05% to 1.39% (as
shown in Table 1), the most drastically simplified scene,
Cosmic web, has the largest MSE, while the Forest has the
least MSE for its least simplified. However, many other
scene settings can also affect the MSE, like the viewpoint
and the light source distribution. Besides, in some scenes,
many un-simplified simple models occupied a large range
(architecture of Courtyard and Robot), resulting in their
small MSE.

Besides the simplification quality, the condition which
determines if we can use the simplified model is also a

crucial factor that affects the rendering speed and quality.
Table 3 shows the rendering time and MSE for different
conditions. This table shows that if we send all rays with a
depth greater than 0 to the simplified model, the rendering
speed will be greatly improved, but it will also bring a sig-
nificant MSE. If we only send the rays with a depth greater
than two to the simplified model, the MSE is smaller, but
the speed is slow. When we add the radiance contribution
condition and the ray depth condition, we achieve a smaller
MSE and maintain the speed increase. Therefore, we send
the rays whose depth is greater than 0 and radiance is less
than 0.5 and the rays with a depth greater than 1 to the
simplified model.

7.3.3 Virtual Portal Analysis

The radiance prediction efficiency of our virtual portal is
affected by its resolution and the radiance distribution of
scenes. In addition, since the virtual portals are placed
between domains, a different domain decomposition size
can also lead to different radiance prediction accuracy.

Radiance Distribution. In the radiance caching stage, we
only keep the highest value, so the distribution of radiance
of each scene will affect prediction accuracy, as shown in
Table 4. For scenes with low radiance and discrete high
radiance distribution, such as Courtyard, the radiance pre-
diction accuracy is 84.3%, and 85.7% of rays with a depth of
1 use the simplified model. In contrast, for scenes with high
radiance and a concentrated distribution, such as Agent327,
the prediction accuracy is higher (98.3%), but only 16.5% of
the rays are rendered using the simplified model.

Virtual Portal Resolution. A higher resolution of our 4D
virtual portal can record the radiance information in more
detail. When using a high resolution, high radiance rays can
be better identified, which leads to higher prediction accu-
racy and more rays rendered using the simplified model,
while still producing an image with lower MSE, as shown in
Table 4. Since high virtual portal resolutions consume more
memory and require more computing and communication
than smaller ones, we chose resolution 32×32 to balance
overheads and benefits.

7.3.4 Parameter Analysis

The temporal information update interval and the domain
decomposition size are two important parameters affecting
the rendering speed and quality.

Temporal Information Update Interval. When record-
ing radiance in our virtual portal, we need to trace all the

XU et al.: TEMPORAL COHERENCE-BASED DISTRIBUTED RAY TRACING OF MASSIVE SCENES 11

TABLE 3
The rendering time and image MSE when using the simplified model under different ray depths and radiance. D represents the ray depths of rays

sent to the simplified model, and R represents the radiance of rays sent to the simplified model.

Origin model D >2 D >1 D >0 & R <0.3 D >0 & R <0.5 D >0
Cosmicweb Time(s) 801 724 693 675 654 611

MSE 0 2.07e-4 5.94e-4 6.27e-4 6.35e-4 2.50e-3
Courtyard Time(s) 495s 447 416 397 393 354

MSE 0 2.55e-5 3.e-5 3.77e-5 3.80e-5 1.09e-4
Robot Time(s) 361 339 319 298 294 226

MSE 0 1.36e-4 1.87e-4 1.97e-4 1.99e-4 7.19e-4
Forest Time(s) 75 72 69 65 63 58

MSE 0 8.15e-6 2.43e-5 2.93e-5 3.13e-5 2.738e-4
Agent327 Time(s) 205 196 178 172 170 136

MSE 0 1.33e-4 1.55e-4 1.59e-4 1.60e-4 1.17e-3

Reference Interval 1 Interval 5 Interval 10 Interval 20

Fr
am

e
36

MSE: 1.678e-4
ACC: 98.63%
SimpleRay: 14.43%

MSE: 1.681e-4
ACC: 98.45%
SimpleRay: 14.74%

MSE: 1.684e-4
ACC: 98.41%
SimpleRay: 14.71%

MSE: 1.691e-4
ACC: 98.13%
SimpleRay: 15.27%

Fig. 11. Rendering results of frame 36 in different number of frame intervals for a dynamic scene (8 nodes), where interval 5 means the radiance
of frame 31 is cached. The SimpleRay denotes the ratio of rays rendered by simplified model to all rays transmitted between domains (depth of 1).

TABLE 4
Virtual portal resolution. Statistics at different 2D spatial space

resolutions, including rendering time, MSE, prediction accuracy, and
the ratio of rays predicted to be low to all rays transmitted between

domains (depth of 1).

8×8 16×16 32×32 64×64 128×128
Courtyard
T ime(s) 379 386 395 407 414
MSE 3.812e-5 3.808e-5 3.807e-5 3.796e-5 3.791e-5
ACC 81.7% 83.1% 84.3% 86.6% 86.9%
Simple/total 84.4% 84.9% 85.7% 86.5% 86.7%
Agent327
T ime(s) 162 166 170 182 192
MSE 1.615e-4 1.611e-4 1.604e-4 1.602e-4 1.597e-04
ACC 97.4% 97.7% 98.3% 98.5% 98.6%
Simple/total 16.0% 16.2% 16.5% 16.8% 17.1%

rays at depth 1 by the original model, which will reduce
the rendering speed. Thus, we update our virtual portal
every several frames. Fig. 11 shows the MSE of our algo-
rithm at different frame intervals in a dynamic scene. The
MSE is connected to both the accuracy and the number of
rays sent to the simplified model, where the ray size sent
to the simplified model is mainly related to the radiance
distribution of the cached frame and the current frame, and
the accuracy is determined by the similarity between the
two frames. We chose to update our virtual portal every ten
frames to balance the radiance recording overhead and the
rendering quality.

Domain Decomposition Size. Table 5 shows the effect of
domain decomposition size on our virtual portal. In our sim-
plified model ray tracing algorithm, we only judge the ray
to be sent to the simplified model when it passes through
the virtual portal. Large domain division will cache more
radiance information, leading to high accuracy. However, it

will make more rays pass through the virtual portal, making
rays more likely to send to the simplified model, resulting
in a high MSE. Moreover, the domain scheduling algorithm
works better when there are more domains, further improv-
ing the rendering speed. We chose to use more domain
decomposition to improve the efficiency of our algorithms.

TABLE 5
Domain decomposition. Statistics at different domain decomposition

size, including rendering time, MSE, prediction accuracy, and the ratio
of rays predicted to be low to all rays transmitted between domains

(depth of 1).

16 32 64 128
Courtyard
T ime(s) 426 413 404 395
MSE 3.61e-05 3.75e-5 3.78e-5 3.81e-05
ACC 77.8% 80.1% 81.7% 84.3%
Simple/total 77.5% 80.2% 82.4% 85.7%
Agent327
T ime(s) 201 192 186 170
MSE 1.51e-4 1.54e-4 1.58e-4 1.60e-4
ACC 95.6% 96.3% 96.8% 98.3%
Simple/total 14.5% 15.4% 15.8% 16.5%

8 LIMITATION

Our simplified model tracing method sends all perfectly re-
flected and refracted rays to the fine model to trace because
they have no energy loss, which makes our method ineffi-
cient for scenes with many perfectly reflected and refracted
rays. In the Sibenik scene (Fig. 12), many objects are mirror
or glass material, so we can only send very few rays to the
simplified model. In this scene, our simplified model tracing
method can provide a 5.3% speedup compared to Abram
et al. [3], while for the scenes in Fig. 5, it can provide an
average 27% speedup.

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 2, FEBRUARY 2024

Reference Ours Diff (1.37e-4)

Fig. 12. Sibenik scene rendering with 1920x1080 resolution, 512 SPP.
The scene is 8.4GB, and its simplified model is 76MB. The two Lucys in
front use mirror material, and the other two use glass material.

In addition, we use a uniform grid to divide the scene
into domains and assign domains for each node according to
the number of domains regardless of the different memory
footprints of each domain, resulting in an unbalanced data
distribution among nodes. In domain scheduling, consider-
ing only the number of domains also leads to low memory
usage.

9 CONCLUSIONS

We used the temporal coherence in ray tracing to accel-
erate the efficiency of domain-space decomposition dis-
tributed ray tracing. We proposed a temporal coherence-
based domain assignment and scheduling algorithm, that
uses the recorded ray transmission information in the pre-
vious frame to improve the computation utilization and
load balance. Moreover, we send some of the rays passing
through domains to a simplified model, according to the
radiance cached at our 4D virtual portal structure in the
previous frame, to reduce the computation and communi-
cation overhead. Finally, compared to the previous domain-
space decomposition algorithm, our temporal coherence-
based distributed ray tracing algorithm can achieve up to
81% speedup with a quality loss below e−4.

As mentioned in section 8, some limitations and issues
still require further research. We would like to propose
a new virtual portal structure to record the complex ray
transmission between domains and adapt to different do-
main decomposition methods. And combining some other
conditions (etc., frustum) with the ray’s radiance to guide
the simplified model usage is also worth studying.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable comments.

REFERENCES

[1] P. A. Navrátil, H. Childs, D. S. Fussell, and C. Lin, “Explor-
ing the spectrum of dynamic scheduling algorithms for scal-
able distributed-memory ray tracing,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 6, pp. 893–906,
2013.

[2] M. Son and S.-E. Yoon, “Timeline scheduling for out-of-core ray
batching,” in Proceedings of High-Performance Graphics, 2017,
pp. 11:1–11:10.

[3] G. Abram, P. Navrátil, P. Grossett, D. Rogers, and J. Ahrens,
“Galaxy: Asynchronous ray tracing for large high-fidelity visu-
alization,” in 2018 IEEE 8th Symposium on Large Data Analysis
and Visualization (LDAV). IEEE, 2018, pp. 72–76.

[4] M. Pharr, C. E. Kolb, R. Gershbein, and P. Hanrahan, “Ren-
dering complex scenes with memory-coherent ray tracing,”
in Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH). ACM, 1997,
pp. 101–108.

[5] B. Budge, T. Bernardin, J. A. Stuart, S. Sengupta, K. I. Joy, and J. D.
Owens, “Out-of-core data management for path tracing on hybrid
resources,” Computer Graphics Forum, vol. 28, no. 2, pp. 385–396,
2009.

[6] C. Eisenacher, G. Nichols, A. Selle, and B. Burley, “Sorted deferred
shading for production path tracing,” Computer Graphics Forum,
vol. 32, no. 4, pp. 125–132, 2013.

[7] S.-E. Yoon, C. Lauterbach, and D. Manocha, “R-LODs: Fast LOD-
based ray tracing of massive models,” The Visual Computer,
vol. 22, no. 9, pp. 772–784, 2006.

[8] B. Moon, Y. Byun, T.-J. Kim, P. Claudio, H.-S. Kim, Y.-J. Ban, S. W.
Nam, and S.-E. Yoon, “Cache-oblivious ray reordering,” ACM
Transactions on Graphics (TOG), vol. 29, no. 3, pp. 1–10, 2010.

[9] P. Djeu, W. Hunt, R. Wang, I. Elhassan, G. Stoll, and W. R. Mark,
“Razor: An architecture for dynamic multiresolution ray tracing,”
ACM Transactions on Graphics, vol. 30, no. 5, oct 2011.

[10] D. Badouel, K. Bouatouch, and T. Priol, “Distributing data and
control for ray tracing in parallel,” IEEE computer graphics and
applications, vol. 14, no. 4, pp. 69–77, 1994.

[11] T. Plachetka, “Tuning of algorithms for independent task place-
ment in the context of demand-driven parallel ray tracing,”
in Proceedings of the 5th Eurographics conference on Parallel
Graphics and Visualization, 2004, pp. 101–109.

[12] D. E. DeMarle, C. P. Gribble, S. Boulos, and S. G. Parker,
“Memory sharing for interactive ray tracing on clusters,” Parallel
Computing, vol. 31, no. 2, pp. 221–242, 2005.

[13] D. E. DeMarle, C. P. Gribble, and S. G. Parker, “Memory-savvy
distributed interactive ray tracing,” in Eurographics Workshop on
Parallel Graphics and Visualization, 2004, pp. 93–100.

[14] I. Wald, P. Slusallek, and C. Benthin, “Interactive distributed ray
tracing of highly complex models,” in Eurographics Workshop on
Rendering Techniques. Springer, 2001, pp. 277–288.

[15] D. E. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen,
“Distributed interactive ray tracing for large volume visu-
alization,” in IEEE Symposium on Parallel and Large-Data
Visualization and Graphics (PVG). IEEE, 2003, pp. 87–94.

[16] A. Keller, C. Wächter, M. Raab, D. Seibert, D. van Antwerpen,
J. Korndörfer, and L. Kettner, “The iray light transport simulation
and rendering system,” ACM SIGGRAPH 2017 Talks, pp. 1–2,
2017.

[17] H. Park, D. Fussell, and P. Navrátil, “SpRay: Speculative ray
scheduling for large data visualization,” in 8th Symposium on
Large Data Analysis and Visualization (LDAV). IEEE, 2018, pp.
77–86.

[18] T. Plachetka, “Event-driven message passing and parallel simula-
tion of global illumination,” 2003.

[19] M. Larsen, C. Harrison, J. Kress, D. Pugmire, J. S. Meredith,
and H. Childs, “Performance modeling of in situ rendering,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE, 2016,
pp. 276–287.

[20] M. Howison, E. Bethel, and H. Childs, “MPI-hybrid parallelism for
volume rendering on large, multi-core systems,” in Eurographics
Symposium on Parallel Graphics and Visualization (EGPGV),
2010, pp. 1–10.

[21] C. H. Howison M, Bethel EW, “Hybrid parallelism for volume ren-
dering on large, multi, and many-core systems,” IEEE Transactions
on Visualization and Computer Graphics, vol. 18, no. 1, pp. 17–29,
2011.

[22] H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura, and
Y. Shigei, “Load balancing strategies for a parallel ray-tracing
system based on constant subdivision,” The Visual Computer,
vol. 4, no. 4, pp. 197–209, 1988.

[23] T. Kato and J. Saito, “Kilauea–parallel global illumination ren-
derer,” in Eurographics Workshop on Parallel Graphics and
Visualization, 2002, pp. 7–17.

[24] I. Wald and S. G. Parker, “Data parallel path tracing in object
space,” ArXiv, vol. abs/2204.10170, 2022.

[25] S. Zellmann, N. Morrical, I. Wald, and V. Pascucci, “Finding Effi-
cient Spatial Distributions for Massively Instanced 3-d Models,” in
Eurographics Symposium on Parallel Graphics and Visualization,

XU et al.: TEMPORAL COHERENCE-BASED DISTRIBUTED RAY TRACING OF MASSIVE SCENES 13

S. Frey, J. Huang, and F. Sadlo, Eds. The Eurographics Associa-
tion, 2020.

[26] S. A. Green and D. J. Paddon, “A highly flexible multiprocessor
solution for ray tracing,” Visual Computer, vol. 6, no. 2, pp. 62–73,
1990.

[27] E. Reinhard, A. Chalmers, and F. W. Jansen, “Hybrid schedul-
ing for parallel rendering using coherent ray tasks,” in IEEE
Symposium on Parallel Visualization and Graphics. IEEE, 1999,
pp. 21–28.

[28] P. A. Navrátil, D. S. Fussell, C. Lin, and H. Childs, “Dynamic
scheduling for large-scale distributed-memory ray tracing,” in
Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV). The Eurographics Association, 2012, pp. 61–70.

[29] G. W. Larson, “The holodeck: A parallel ray-caching rendering
system,” 1998.

[30] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “Nerf: Representing scenes as neural
radiance fields for view synthesis,” in ECCV, 2020.

[31] J. Zhu, Y. Bai, Z. Xu, S. Bako, E. Velázquez-Armendáriz, L. Wang,
P. Sen, M. Hašan, and L.-Q. Yan, “Neural complex luminaires:
Representation and rendering,” ACM Transactions on Graphics,
vol. 40, no. 4, jul 2021.

[32] V. Gassenbauer, J. Křivánek, and K. Bouatouch, “Spatial di-
rectional radiance caching,” in Proceedings of the Twentieth
Eurographics Conference on Rendering, ser. EGSR’09. Euro-
graphics Association, 2009, p. 1189–1198.

[33] T. Müller, M. Gross, and J. Novák, “Practical Path Guiding for
Efficient Light-transport Simulation,” Computer Graphics Forum,
2017.

[34] A. Perard-Gayot, R. Membarth, R. Leissa, S. Hack, and P. Slusallek,
“Rodent: Generating renderers without writing a generator,” ACM
Transactions on Graphics, vol. 38, no. 4CD, pp. 40.1–40.12, 2019.

[35] P. Matt, J. Wenzel, and H. Greg, Physically Based Rendering, 3rd
ed. Morgan Kaufmann, 2016.

[36] W. D. Gropp, E. L. Lusk, and A. Skjellum, Using MPI - portable
parallel programming with the message-parsing interface. Using
MPI - portable parallel programming with the message-parsing
interface, 1994.

[37] B. Studio, “Agent 327—blender cloud,” https://cloud.blender.
org/films/agent-327, 2020.

Xiang Xu received the PhD degree in software
engineering from Shandong University, China, in
2021. He is a lecturer in Shandong Key Labora-
tory of Blockchain Finance, Shandong University
of Finance and Economics, China. His research
interests include photorealistic rendering, high-
performance computing and machine learning.

Lu Wang received the PhD degree in computer
science and technology at Shandong University,
China, in 2009. She is a professor in School of
Software, Shandong University, China. Her re-
search interests include photorealistic rendering,
real-time rendering, material appearance model-
ing, and high-performance rendering.

Arsène Pérard-Gayot is a rendering researcher
at Weta Digital, New Zealand. He holds a com-
puter science masters’ degree from Ensimag,
France, and a PhD in computer graphics from
Saarland University, Germany.

His research interests are centered around
compilation and programming language design,
computer graphics, parallel programming and
high-performance computing.

Richard Membarth is a professor for system
on a chip and AI for edge computing at the
Technische Hochschule Ingolstadt (THI), Ger-
many and affiliated professor at the German Re-
search Center for Artificial Intelligence (DFKI),
Germany. He holds a diploma degree and a
PhD in Computer Science from the Friedrich-
Alexander University Erlangen-Nürnberg, Ger-
many as well as a postgraduate diploma in Com-
puter and Information Sciences from the Auck-
land University of Technologies, New Zealand.

His research interests include parallel computer architectures and
programming models with a focus on automatic code generation for
a variety of architectures ranging from embedded systems to HPC
installations for applications from image processing, computer graphics,
scientific computing, and deep learning.

Cuiyu Li received the PhD degree in computa-
tional chemistry from East China Normal Uni-
versity, China, in 2020. She is now a Postdoc-
toral Fellow at the Zhijiang Laboratory, China.
Her research interest is parallel computing and
machine learning.

Chenglei Yang received the PhD degree in
computer software and theory from Shandong
University, China, in 2004. He is now a profes-
sor in School of Software, Shandong University,
China. His research interest is computational ge-
ometry, human-computer interaction and virtual
reality.

Philipp Slusallek is professor for computer
graphics at Saarland University, Germany and
scientific director and member of the executive
board at the German Research Center for Ar-
tificial Intelligence (DFKI), where he heads the
research area on Agents and Simulated Reality.
His research interest are centered around the
intersection of real-time and realistic graphics,
artificial intelligence, high-performance comput-
ing, and novel programming and compiler tech-
niques.

https://cloud.blender.org/films/agent-327
https://cloud.blender.org/films/agent-327

	Introduction
	Related Work
	Out-of-Core Ray Tracing
	Distributed Ray Tracing
	Spatial Directional Radiance Caching

	Distributed Ray Tracing Framework
	Temporal Information Collection
	Transmission Information Statistics for Domains
	Virtual Portal with Radiance Caching
	Node Information

	Temporal Coherence-based Domain Assignment and Scheduling
	Domain Assignment
	Domain Scheduling

	Temporal Coherence-based Simplified Model Tracing Algorithm
	Tracing with Simplified Models
	Radiance Prediction

	Results
	Performance Comparison
	Quality Evaluation
	Analysis of Our Algorithm
	Temporal Coherence-Based Scheduling
	Simplified Model and Ray Tracing Algorithm
	Virtual Portal Analysis
	Parameter Analysis

	Limitation
	Conclusions
	References
	Biographies
	Xiang Xu
	Lu Wang
	Arsène Pérard-Gayot
	Richard Membarth
	Cuiyu Li
	Chenglei Yang
	Philipp Slusallek

