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Fig. 1. Our physically-based prefiltering technique can accurately represent details at various scales, both for unstructured (a) and correlated (structured)
geometry (b). We demonstrate this by rendering two assets at various levels of detail (LoD) with our neural approach. The highest resolution is rendered at
512 x 512 pixels, while insets correspond to lower resolution LoDs rendered at the appropriate resolution, the storage includes the cost of LoD 0-6. Our neural
pipeline approximates the full intra-voxel light transport to achieve high compression rates and enable predictable rendering of a wide range of assets without
any prior assumptions on materials or geometry.

We introduce a practical general-purpose neural appearance filtering pipeline
for physically-based rendering. We tackle the previously difficult challenge
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of aggregating visibility across many levels of detail from local informa-
tion only, without relying on learning visibility for the entire scene. The
high adaptivity of neural representations allows us to retain geometric cor-
relations along rays and thus avoid light leaks. Common approaches to
prefiltering decompose the appearance of a scene into volumetric represen-
tations with physically-motivated parameters, where the inflexibility of the
fitted models limits rendering accuracy. We avoid assumptions on particular
types of geometry or materials, bypassing any special-case decompositions.
Instead, we directly learn a compressed representation of the intra-voxel
light transport. For such high-dimensional functions, neural networks have
proven to be useful representations. To satisfy the opposing constraints of
prefiltered appearance and correlation-preserving point-to-point visibility,
we use two small independent networks on a sparse multi-level voxel grid.
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Each network requires 10–20 minutes of training to learn the appearance of
an asset across levels of detail. Our method achieves 70–95% compression
ratios and around 25% of quality improvements over previous work. We
reach interactive to real-time framerates, depending on the level of detail.

CCS Concepts: • Computing methodologies→ Ray tracing.

Additional KeyWords and Phrases: levels of detail, prefiltering, precomputed
light transport, neural representations, physically-based rendering
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1 INTRODUCTION
Recent advances in physically based rendering enabled a growing
base of users to create realistic lifelike images and animations, result-
ing in an increasing demand for the efficient handling of complex
virtual scenes in the rendering of highly detailed, physically based
appearance. Rendering with uniform convergence remains the main
challenge, where it is desired to avoid unnecessary sampling in
pixels with simple content, yet avoid excessive latency for com-
plex pixels containing, e.g., vegetation or hair that requires more
extensive light transport simulation. A holy grail of rendering is
a method with constant rendering cost per pixel, regardless of the
underlying scene complexity. Moreover, while graphics processing
units (GPUs) have allowed for acceleration and efficiency improve-
ments in many parts of rendering algorithms, their limited amount
of onboard memory limit practical rendering of complex scenes,
making compression increasingly important.

The family of level of detail (LoD) techniques offloads parts of the
complexity handling in rendering to preprocessing. In part, this can
happen by identifying and pruning any detail with negligible im-
pact on the final image. However, such simplification techniques are
prone to noticeable changes in the frequency content of resulting
images, causing an undesirably flat or artificial appearance. Ad-
vanced prefiltering techniques tackle this problem by preresolving
or fitting parts of the appearance, e.g., resulting from fine geometric
details aggregating within a pixel. Thus, the detailed appearance of
complex assets can often be preserved, while reducing the amount
of data to be stored and processed at render time.

In physically based rendering, preaggregation of appearance prop-
erties not only reduces the computational effort of shading samples,
but also translates to faster rendering convergence in final pixels.
However, prefiltering often creates noticeable new problems, par-
ticularly when combining the appearance of many prefiltered com-
ponents in larger scenes. A common limitation of previous work is
the loss of accurate visibility for rays crossing separately prefiltered
regions. Combining the appearance of multiple prefiltered regions is
often ambiguous when tracking long-range visibility with geometric
structure spread across multiple regions.
One robust solution to this problem relies on retaining visibil-

ity correlations in the distribution of prefiltered geometry. So far,
such solutions either require hand-crafted heuristics, or rely on
expensive non-local analysis of global scene structure. We pro-
pose a correlation-preserving method that aggregates only local

intra-regional visibility. We leverage the high adaptability of recent
multiscale neural representations to minimise the loss of spatial
localisation for visibility tracking.
Visibility is an important aspect of prefiltering, where our ap-

proach provides improvements by using recent advances in neural
representations. Moreover, we also employ neural representations to
fit the high-dimensional function of appearance. Thus, we manage
to achieve unprecedented scene compression rates (up to 96% space
savings for the most complex assets), while controlling the computa-
tional cost with compact, fixed-size neural building blocks without
sacrificing image quality (see Fig. 1). Moreover, our pipeline achieves
interactive framerates even at high image resolutions. Concretely,
our main contributions are:
● A modular prefiltering technique that is compatible with
existing rendering systems and pipelines, with a scalable
appearance decomposition based only on prefiltering local
information within a single voxel (Section 3),
● A compact fixed-size neural representation for accurate pre-
filtered appearance within individual voxels, without prior
assumptions about the underlying materials (Section 4.2),
● Avisibility classifier that scaleswell fromuncorrelated volume-
like unstructured geometry to correlated surface-like geome-
try with strict structure and space separation (Section 4.3),
● Amethod for increasing the capacity of binary neural fields by
way of computing per-voxel optimal classification thresholds
(Section 4.4).

The source code of our implementation is publicly available at
https://github.com/WeiPhil/neural_lod.

2 RELATED WORK
Our technique draws on insights from many long-studied fields of
computer graphics, as well as recent advances in neural graphics.

Geometric Level of Detail. Modern production rendering systems
employ many mesh simplification algorithms. Silhouette and shape-
preserving decimation techniques [Garland and Heckbert 1997;
Kobbelt et al. 1998; Puppo and Scopigno 1997] are widely used,
often with artist supervision, as is stochastic decimation [Cook et al.
2007], where remaining triangles are re-scaled and re-shaded to
preserve the appearance at different scales. Such algorithms, while
approximate, lead to fast and practical solutions suitable for large-
scale production scenes. To reduce loss of faithful appearance and
necessary artist supervision, solutions with automated quality eval-
uation in the loop include an automatic neural mesh simplification
pipeline [Potamias et al. 2022] and a differentiable mesh simplifica-
tion pipeline [Hasselgren et al. 2021]. While the latter pipeline needs
an initial guess for the simplified geometry, it can jointly optimise
for the shape and material parameters using an image-based loss
function.

Macroscopic Aggregation of Details. Approximate macroscopic ag-
gregate appearance implicitly occurs in many rendering techniques.
Efficient real-time global illumination methods [Crassin et al. 2011;
Ritschel et al. 2012] employ approximation on coarse sample sets
or proxy representations of a virtual scene. For high-quality ap-
pearance of directly visible aggregate high-frequency detail, Heitz
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et al. [2012] divide scene surfaces at multiple scales into a sparse
voxel octree with local geometry and aggregate distribution infor-
mation. Improved distributions for matching the resulting shading
with the appearance of initially aggregated details, such as the
SSGX microflake normal [Heitz et al. 2015] and shadowing [Loubet
and Neyret 2018] distributions, have enabled efficient appearance-
preserving downsampling for many complex aggregate phenomena
such as foliage and hair-like fibres. However, these methods moti-
vated by volumetric representations are limited in representing the
aggregation of simpler opaque structures such as angled connec-
tions of walls or crossings of beams, where the structural correlation
of visibility is not tracked across multiple regions, resulting in a loss
of spatially correlated appearance characteristics that are apparent
by their view-dependent visibility or occlusion.

In order to improve on the preservation of macroscopic structured
geometry, Loubet et al. [2017] classify the geometry into macro- and
micro-surfaces. While this separation allows them to apply the ap-
propriate simplification techniques separately, they rely on a binary
distinction between volume and mesh that may be inaccurate in
practice, where a continuous mixture of the two in the same region
is common across scales. Vicini et al. [2021] cover this spectrum by
introducing a non-exponential transmittance model with a continu-
ous parameter defining the degree of uncorrelated volumetric-like
vs correlated surface-like behavior in a region. One drawback of
fitting this model is the requirement of a costly non-local optimi-
sation to account for correlated behavior across larger stretches of
connected voxels for many directions. Similarly to previous work,
their shading model relies on fitting SGGX distributions, limiting
generalisation to a wider range of materials.

Precomputed Light Transport. Preprocessing of a scene to capture
the local light transport operator, which distributes any incident
light to the reflected radiance resulting from many-bounce indi-
rect light scattering, is a popular way [Lehtinen 2007; Sloan et al.
2002] of allowing fast shading evaluation for changing light condi-
tions at the time of rendering. Many variations of such techniques
have been developed, some with a focus on composability (tabu-
lated diffuse scattering [Blumer et al. 2016], density-informed neural
predictions [Kallweit et al. 2017]). Neural representations have gen-
erally proven a good fit for capturing high-dimensional transport
functions of entire scenes [Rainer et al. 2022; Ren et al. 2013], around
objects [Lyu et al. 2022] or even spatially varying BRDFs including
strong parallax effects [Kuznetsov et al. 2021, 2022]. We expand
on their modularity by decomposing the transport around a pre-
filtered asset into chained neural functions at various scales, to
arrive at a compressible implicit neural representation of multiscale
appearance.

Appearance Prefiltering. Pre-resolving the appearance of micro-
geometry andmaterials for fast run-time evaluation has been subject
to extensive study. Bruneton and Neyret [2011] survey suitable ap-
proaches for many common phenomena ranging from smoothed
reflections due to bumpy surfaces, on to colour shifts due to micro-
surface occlusions, to robust high-frequency shadowing, and finally
to generic tools for decomposition into (classic) filterable representa-
tions. Applying a specially-crafted combination of many such classic

representations for far-field appearance of macro-scale geometry, re-
alistic vegetation coverage with robust transitions from closeups to
planetary-scale overviews has been presented [Bruneton and Neyret
2012]. Preresolved glinty highlights due to easily missed meso-scale
geometry as represented in high-resolution normal maps [Yan et al.
2014] and compression thereof [Deng et al. 2022] using tailored
decompositions has been effective using classic approaches. Neural
building blocks proved effective for less narrowly scoped problems
such as the aggregate appearance of fur [Zhu et al. 2022], multi-
layer surfaces [Wang et al. 2022a], and many-frequency shading
phenomena [Xu et al. 2022].

Implicit Neural Representations. Neural Radiance Fields (NeRF)
[Mildenhall et al. 2020] and recent adaptations to interactive and
real-time graphics [Müller et al. 2022] are related appearance captur-
ing methods using implicit neural representations forming neural
fields [Xie et al. 2022] for novel view synthesis, where the high
adaptability of neural representations paired with sparse [Chan
et al. 2021; Müller et al. 2022] and compressed [Takikawa et al. 2022]
coordinate encodings has proven effective for the efficient storage of
high-dimensional functions, representing high-frequency content in
the spatial and angular domain. We base our neural representations
on the hash-grid encoding and fusedMLP implementation presented
by Müller et al. [2022]. We complement previous multi-scale neural
representations designed for grid-free encodings [Barron et al. 2021,
2022], by leveraging implicit encoding of scale when accounting for
the voxel geometry of parametric grid encodings. Neural reflectance
fields for texturing [Baatz et al. 2021] capture lower-dimensional
volume-like appearance similarly to previously discussed classic rep-
resentations [Heitz et al. 2015; Loubet and Neyret 2018].We similarly
employ neural fields to represent visibility and reflectance informa-
tion, but retain long-range correlated visibility even at coarse levels
of detail. Furthermore, we capture appearance directly from individ-
ual light transport path samples rather than indirectly learning from
pre-generated image data sets. Since these indirections in training
are unnecessary for our work, we limit this section and refer an
interested reader to a recent survey [Tewari et al. 2022] discussing
such decompositions of NeRF-like representations for the purpose
of re-lighting or altering real-world captured appearance.

Neural Level of Details. Recently, Bako et al. [2023] proposed a
deep appearance prefiltering method that, similarly to our method,
handles both surfaces and volumes, while accounting for surface
correlations. Their approach relies on the training of albedo, phase
function, phase slice, and visibility mask for a total of four encoder-
decoder networks. Their representation is then encoded into a per-
voxel latent vector to be decoded within a volumetric beam-tracer at
render time. For accurate reconstructions, they store 256 scalars per
voxel (∼1KB) and report a training time of 0.5–2 days on a cluster
of 256 NVIDIA V100 GPUs. In contrast, our approach only requires
around seven scalars per voxel to be stored on average and training
our representation with two MLPs and resp. feature grids for each
requires 10–20 minutes on a single consumer GPU.
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Fig. 2. Our generalised voxel path space is defined on a manifoldℳ′

where only voxel boundaries and non-voxelised geometry exist as scattering
surfaces in light transport. We indicate the aggregated transport on the
original manifoldℳ replaced byℳ′ and illustrate a path of length 4
where three vertices are voxel scattering events, i.e. 𝒄 𝑗 = 1, and one interior
vertex 𝒙3 is a null-scattering event, i.e. 𝒄3 = 0.

3 VOXEL-BASED TRANSPORT DECOMPOSITION
To preresolve and compress light transport within regions of vary-
ing detail and scale, we subdivide the space around prefiltered assets
with a voxel grid (Section 3.1). We split up the path integral as in-
troduced by Veach [1997] accordingly, such that all light transport
on subpaths contained by individual voxels can be integrated sep-
arately. This leads to a clear distinction between the intra-voxel
transport, representing light transported inside a single voxel, and
the inter-voxel transport, representing the light transport inbetween
voxels and interactions with other non-voxelised parts of the scene
(Section 3.2). For appearance prefiltering techniques, analysing the
decomposed transport allows us to understand the approximations
introduced by a typical far-field assumption (Section 3.3). Our anal-
ysis leads to a natural separation of the rendering process into an
appearance and a visibility component, which we approximate with
corresponding neural representations (Section 4).

3.1 Generalised Voxel Path Space
The path space𝒫 contains all transport paths p̄ = (𝒑0, ...,𝒑𝑘−1) ∈ 𝒫
connecting light sources at points 𝒑𝑘−1 to a camera at 𝒑0 via any
number of interactions at inner vertices 𝒑 𝑗 [Veach 1997]. Given
a path throughput function 𝑇 (p̄), a camera sensitivity𝑊 (p̄) and
the light emission function 𝐿(p̄) the path integral computing pixel
values 𝐼 𝑗 is defined as:

𝐼 𝑗 = ∫
𝒫
𝑊 (p̄)𝑇 (p̄)𝐿(p̄)𝑑𝜇(p̄), 𝒫 =

∞

⋃
𝑘=2
ℳ𝑘

,

𝜇(𝑃) =
∞

∑
𝑘=2

𝜇
(𝑘)(𝑃 ∩ℳ𝑘) , 𝑑𝜇

(𝑘)(p̄) =
𝑘−1
∏
𝑗=0

𝑑𝐴(𝒑 𝑗).

whereℳ𝑘 denotes the set of scene surfaces concatenated 𝑘 times
for paths of length𝑘 and the product measure 𝜇(𝑘)(𝑃)multiplies the
standard area measure 𝐴 onℳ to measure subsets of paths 𝑃 ⊆ 𝒫 .

In order to split light transport into clearly separated regions, we
subdivide the space around prefiltered assets into a grid of𝑚 disjoint

voxels, where each voxel 𝒱 represents a virtual volume with bound-
ary 𝜕𝒱 . We then extend the path space 𝒫 to include inter-voxel
interactions that lie on the voxel boundary 𝜕𝒱 , by way of adding
null-scattering interactions, as typically used when modelling inter-
volume transitions [Woodcock 1965] (illustrated in Fig. 2). This
extension ofℳ and thus 𝒫 does not alter the value of the path
integral computing pixel values 𝐼 𝑗 . In summary, intra-voxel ver-
tices belong to the original scene manifoldℳ while inter-voxel
connections that cross voxel boundaries lie on 𝜕𝒱 .
In order to describe the full light transport based on the pre-

aggregated transport within voxels, we define the manifoldℳ′ that
replaces voxelised geometry with the voxel grid, given by the union
of all the surfaces inside voxels defined asℳ

𝒱
= ⋃𝑚𝑖=1 (ℳ ∩ 𝒱𝑖)

and the union of all boundaries 𝜕𝒱 = ⋃𝑚𝑖=1 𝜕𝒱𝑖 , respectively:

ℳ′ = (ℳ ∖ℳ
𝒱
) ∪ 𝜕𝒱 .

In order to define a path space on this manifold, it is easiest to keep
track of the correct light directions along a path directly, rather
than by the relative location of successive path vertices (which
coincide on inner voxel boundaries). Therefore, we construct our
generalised voxel path space 𝒳 on an angular path parameterisa-
tion. However, when replacing any intra-voxel scattering onℳ

𝒱
by voxel boundary scattering events, we need to account for an
added degree of freedom arising from the fact that scattering may
change not only the direction but also the position of light passage
at voxel boundaries. For such scattering, we extend a respective
vertex 𝒙 𝑗 ∈ 𝒳 to comprise both an incident light direction 𝝎 𝑗 and a
position of pre-scattering incidence 𝒑′𝑗 ∈ 𝜕𝒱 . Adapting ideas from
Jakob [2013], we separate the possible types of scattering events us-
ing a configuration indicator variable 𝒄 , that is, 𝒙 𝑗 = 𝝎 𝑗 if 𝒄 𝑗 = 0 (on
external geometry (ℳ ∖ℳ

𝒱
), or on passing voxels without scat-

tering) and 𝒙 𝑗 = (𝒑′𝑗 ,𝝎 𝑗) if 𝒄 𝑗 = 1 (for aggregate voxel scattering
events). Consequently, each path 𝒙 = (𝒙0, ...,𝒙𝑙−1) ∈ 𝒳 comes with
a corresponding configuration vector 𝒄 = (𝒄0, ..., 𝒄𝑙−1) ∈ {0, 1}𝑙 . A
rigorous definition of the path space 𝒳 and its corresponding mea-
sures can be found in the App. A. It is important to note that despite
the angular path parameterisation, the locations 𝒑 𝑗 of vertices 𝒙 𝑗

on the manifoldℳ′ are easily recovered, by recursive raytracing
againstℳ′ in directions −𝝎 𝑗 , starting from the respective preced-
ing points 𝒑 𝑗−1 and 𝒑′𝑗−1. Fig. 2 illustrates the recovered vertex
locations 𝒑 𝑗 as well as a complete path from the camera to a light
source in our generalised path space.

3.2 Splitting Intra- and Inter-Voxel Transport
Equipped with a generalised voxel path space 𝒳 , we define the
associated voxel-based throughput function𝑇 ′(𝒙) and path integral:

𝑇
′(𝒙) =

𝑙−2
∏
𝑗=1

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑇𝒱(𝒑 𝑗 ,𝝎 𝑗−1;𝒑′𝑗 ,−𝝎 𝑗) ⋂︀𝝎 𝑗 ⋅ n′𝑗 ⋂︀ if 𝒄 j = 1,
𝑓 (𝝎 𝑗−1,𝒑 𝑗 ,−𝝎 𝑗) ⋂︀𝝎 𝑗 ⋅ n𝑗 ⋂︀𝑉ℳ(𝒑 𝑗 ,𝒑 𝑗+1) otherwise.

𝐼 𝑗 = ∫
𝒳
𝑊 (𝒙)𝑇 ′(𝒙)𝐿(𝒙)𝑑𝜇′(𝒙). (1)
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(a)

(b)

Fig. 3. Two configurations are possible in our generalised voxel path space.
(a) If 𝒄 𝑗 = 0 the subsequent interaction is entirely defined by a single
direction. (b) If 𝒄 𝑗 = 1, an additional positional offset 𝒑′𝑗 of pre-scattering
incidence is tracked. Subsequent vertex positions 𝒑 𝑗+1 fall either onto the
next voxel boundary or onto any non-voxelised geometry in (ℳ ∖ℳ𝒱).

The throughput 𝑇 ′(𝒙) is composed of two terms central to our
derivation: the point-to-point visibility function 𝑉ℳ and the intra-
voxel transport function 𝑇𝒱 . Fig. 3 illustrate the two possible config-
urations in our generalised path space.
The intra-voxel transport for voxel boundary points 𝒑𝑖 and 𝒑𝑜

with light entering from direction 𝝎𝑖 at 𝒑𝑖 and exiting at 𝒑𝑜 into
direction 𝝎𝑜 is measured by:

𝑇𝒱(𝒑𝑜 ,𝝎𝑜 ;𝒑𝑖 ,𝝎𝑖) ∶=∫
𝒫𝒱

𝑇𝝎𝑖 ,𝒑𝑖→𝒑𝑜 ,𝝎𝑜 (v̄)𝑑𝜇(v̄), (2)

𝒫𝒱 ∶=
∞

⋃
𝑛=1

(ℳ ∩ 𝒱)𝑛 ,

where v̄ denotes an intra-voxel path. We add the boundary ver-
tices v0 = 𝒑𝑜 and v𝑛+1 = 𝒑𝑖 on 𝜕𝒱 to conveniently define the intra-
voxel throughput function 𝑇𝝎𝑖 ,𝒑𝑖→𝒑𝑜 ,𝝎𝑜 (v̄), which contains the
standard terms of the path-space measurement contribution func-
tion inbetween the voxel entry and exit events:

𝑇𝝎𝑖 ,𝒑𝑖→𝒑𝑜 ,𝝎𝑜 (v̄)= 𝑓 (𝝎𝑜 ,𝒑𝑜 ,−𝝎0)
𝑛+1
∏
𝑗=1

𝐺(v𝑗−1, v𝑗)𝑓 (𝝎 𝑗−1, v𝑗 ,−𝝎 𝑗),

where𝐺 and 𝑓 correspond to the geometric term and the reflectance
distribution function, respectively. Note that for the voxel boundary
points v𝑛+1=𝒑𝑖 , v0=𝒑𝑜 ∈ 𝜕𝒱 , the null-scattering distributions are
delta functions that result in the marginalisation with respect to
both endpoint positions and directions.

We observe in Eq. (1) that our generalised voxel path space leads
to a natural decomposition of the full light transport. The point-
to-point visibility function fully describes the geometric content
of any voxel and preserves internal correlations. This property is
especially important in preventing light leaks on long-range free
flight paths that are a typical problem of previous LoD geometry
aggregation methods. Our visibility network, which we introduce
in Sec. 4.3, learns an implicit neural representation for 𝑉ℳ(𝒑𝑜 ,𝒑𝑖).
We also learn a neural representation of the intra-voxel through-
put 𝑇𝒱(𝒑𝑜 ,𝝎𝑜 ;𝒑𝑖 ,𝝎𝑖) in a dedicated appearance network intro-
duced in Sec. 4.2.

3.3 Far-field light transport simplifications
In practice, learning the fully globally correlation-preserving intra-
voxel transport 𝑇𝒱(𝒑𝑜 ,𝝎𝑜 ;𝒑𝑖 ,𝝎𝑖) is too complex for large voxels,
since it does not reduce the spatial resolution of the learned signal
for voxels with increasing sizes across LoDs, while the capacity for
voxels remains fixed. This reduces the capacity remaining for learn-
ing a high-quality angular reflectance representation. Therefore, we
rely on the typical far-field approach of reducing the scattering on
voxel boundary points to position-invariant voxel transport func-
tions with only directional dependencies. Note that, while this ap-
proach removes positional inter-voxel correlations of multi-bounce
indirect scattering paths, our separately learnt intra-voxel visibil-
ity function 𝑉ℳ(𝒑 𝑗 ,𝒑 𝑗+1) stays fully correlation-preserving. For
voxel boundary points 𝒑𝑖 ,𝒑𝑜 ∈ 𝜕𝒱 with incident and exitant direc-
tions 𝝎𝑖 and 𝝎𝑜 , the average throughput 𝜑𝒱(𝝎𝑜 ,𝝎𝑖) of (projected)
scattering surfacesℳ ∩ 𝒱 captured by 𝒱 is:

𝜑𝒱(𝝎𝑜 ,𝝎𝑖) ∶=
∬

𝜕𝒱
𝑇𝒱(𝒑𝑜 ,𝝎𝑜 ;𝒑𝑖 ,𝝎𝑖)⋃︀𝝎𝑜 ⋅n𝑜 ⋃︀⋃︀𝝎𝑖 ⋅n𝑖 ⋃︀𝑑𝐴(𝒑𝑖 ,𝒑𝑜)

∫
𝜕𝒱
(1−𝑉ℳ(𝒑𝑜 ,ℛ𝜕𝒱(𝒑𝑜 ,−𝝎𝑜)))⋃︀𝝎𝑜 ⋅n𝑜 ⋃︀𝑑𝐴(𝒑𝑜)

. (3)

Here, the raytracing operatorℛ𝜕𝒱(𝒑𝑜 ,𝝎𝑜) finds the next boundary
point along a ray from 𝒑𝑜 in direction −𝝎𝑜 .
The position-free average intra-voxel throughput then behaves

much like any bidirectional scattering distribution function (BSDF),
which reduces our practical throughput function back to one case:

𝑇 (𝒙) =
𝑙−2
∏
𝑗=1

(𝜑𝒱𝑗
(𝝎 𝑗−1,−𝝎 𝑗) (1 −𝑉ℳ(𝒑 𝑗 ,𝒑 𝑗+1))

+ 𝑓 (𝝎 𝑗−1,𝒑 𝑗 ,−𝝎 𝑗) ⋂︀𝝎 𝑗 ⋅ n𝑗 ⋂︀𝑉ℳ(𝒑 𝑗 ,𝒑 𝑗+1))1𝒄 𝑗=0,

𝐼 𝑗 = ∫
𝒳
𝑊 (𝒙)𝑇 (𝒙)𝐿(𝒙)𝑑𝜇′(𝒙). (4)

In conclusion, under a far-field assumption, we only need our ap-
pearance network to learn the average throughput 𝜑𝒱(𝝎𝑜 ,𝝎𝑖). As
we will see in Sec. 5.2, generating training samples for the network
reduces to generating Monte Carlo estimates of Eq. (3).

4 CORRELATION-AWARE NEURAL PREFILTERING
Building on the theory from the previous section, we now introduce
our neural solution to prefilter a scene at various scales.

4.1 Pipeline Overview
Our pipeline comprises multiple stages, including the voxelisation
of the scene, and the training of both our appearance and visibility
networks, with the latter being fine-tuned through optimised clas-
sification thresholds as a preprocess. Finally, the rendering of the
prefiltered scene. An overview of our pipeline is illustrated in Fig. 4.

Representation. The first step of our pipeline involves a voxeli-
sation process, where the scene is spatially partitioned into a grid
of disjoint voxels. For a given voxel scale, we then store the binary
occupancy of each voxel in a sparse grid. We define the smallest
level of detail, LoD 0, to correspond to the highest voxel resolu-
tion and set it to 5123. The subsequent LoDs define a geometrically
decreasing sequence stopping at the resolution of 83 voxels. For
all the voxels and the underlying scene geometry, we train two
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Fig. 4. Our neural asset prefiltering pipeline consists of a preprocessing part running local ray and path sampling on input assets to train our neural LoD
representations for visibility and appearance, and a runtime evaluation part integrated with rendering.

networks each for a different component of the voxel-based global
light transport defined in Sec. 3. The appearance network learns a
filtered representation of the intra-voxel light transport 𝜑𝒱(𝝎𝑜 ,𝝎𝑖)
defined in Eq. (3), while the visibility network is responsible for
learning the unbiased visibility function 𝑉ℳ(𝒑𝑜 ,𝒑𝑖). The architec-
ture of each network is described in Sec. 4.2 and Sec. 4.3, respectively.
Both networks use a multi-resolution hash grid encoding, which
has shown remarkable performance [Müller et al. 2022]. However,
it can also introduce undesired artefacts due to potential hash colli-
sions. In Sec. 4.4, we show that these collisions can be identified and
addressed by applying a set of optimised thresholds to our visibility
classifier.

Training. To benefit from themulti-scale aspect of the method, we
train each network on every voxel and level of detail simultaneously,
i.e., a single network can query the function for any voxel at any
scale. In Sec. 5, we describe our strategy for sampling voxels at a
particular scale and how the inputs of our networks are sampled to
compute reference values.

Rendering. Once our appearance and visibility networks are trained,
we estimate Eq. (4) through Monte Carlo integration as follows:

(1) For each camera ray with direction −𝝎𝑜 , we query the sparse
voxel grid for the next non-empty voxel 𝒱 .

(2) For this non-empty voxel, we obtain the associated entry and
exit points 𝒑𝑜 and 𝒑𝑖 and query the visibility network to
evaluate the visibility segment 𝑉ℳ(𝒑𝑜 ,𝒑𝑖).

(3) If the segment is occluded, we sample a direction 𝝎𝑖 , query
the appearance network to evaluate 𝜑𝒱(𝝎𝑜 ,𝝎𝑖) and update
the path throughput. Otherwise, we go to step (2) to continue
the grid traversal.

(4) We then recursively trace a ray starting from 𝒑𝑜 until even-
tually, the ray either escapes the scene or hits a light source
and the ray’s contribution is added to the final image.

Note that setting the ray origin to 𝒑𝑜 in step (4) directly follows
from our theory as it corresponds to the vertex recovered through
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Fig. 5. Our appearance network architecture, where𝑐(𝒱) denotes the centre
of the voxel 𝒱 .

raytracing against the scene manifoldℳ′ on which our generalised
voxel path space is defined.

4.2 Appearance Learning
Wenowdescribe our network structure and how the average through-
put function 𝜑𝒱(𝝎𝑜 ,𝝎𝑖) is learned for every voxel and scale.

Network Architecture. The input of the appearance network in-
cludes the outgoing light direction towards the sensor 𝝎𝑜 , the inci-
dent light direction𝝎𝑖 and the centre position of its associated voxel
𝒱 . The latter implicitly encodes the level of detail since voxel centres
across different levels form a geometric sequence of 3D positions
that never overlap. The output corresponds to the pre-integrated
throughput 𝜑𝒱(𝝎𝑜 ,𝝎𝑖). On the other hand, the network is a dense
multilayer perceptron of 4 hidden layers with rectified linear unit
(ReLU) activation, each containing 128 neurons without any output
activation function. The full architecture is illustrated in Fig. 5.
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Fig. 6. On the left, we compare the reference to the highest resolution of
our neural prefiltering pipeline. The insets visualize the learned through-
put functions 𝜑𝒱(𝝎𝑜 ,𝝎𝑖). We flatten discretised 2D spherical coordinates
(𝜃,𝜙) onto a 1D axis. Different values of 𝜙 are consecutive, 𝜙𝑜 varies hori-
zontally, 𝜙𝑖 varies vertically. The first inset shows a voxel on the diffuse grey
wall, and the orange inset represents a glossy material on the chair. The last
inset shows a voxel where multiple scattering between a diffuse-brown and
glossy-red material was aggregated.

Input Encodings. The two directions are encoded using spherical
harmonics coefficients up to degree 8. Spherical harmonics have the
advantage of beings fast to compute and evaluate [Sloan 2008]. On
the other hand, the voxel position is encoded using a multiresolution
hash grid [Müller et al. 2022]. We set the number of grid levels to
match the number of levels of detail, and the base resolution of
the hash grid to the lowest resolution processed. We also set the
per-level scaling to 2. To control the trade-off between performance
and quality, we adjust the number of learned features per level to 2,
4, or 8. In our experiments, we found that using a hash table size
𝑆 = 219 consistently performs well, although the hash table size can
also be used to fine-tune the trade-off.

Loss function. While our goal is to learn an average throughput
function that only depends on 𝝎𝑜 and 𝝎𝑖 , generating reference
samples for our network still involves the computation of the full
intra-voxel throughput. As shown in Sec. 3, this includes an inte-
gration over all surfaces contained in a voxel. We can estimate this
integral using a path tracer and obtain Monte Carlo samples that
can directly be used by our network for training. We construct the
estimator for Eq. (3) in Sec. 5.2. We use the noise-to-noise relative
𝐿2 loss introduced by Lehtinen et al. [2018], to correctly learn the
expected value even when the computed throughput estimates are
noisy. As shown in Fig. 6, our network is able to learn a variety
of different materials and their combinations appearing in a single
voxel.

4.3 Visibility Learning
In the following section, we will delve into the specifics of the
visibility network architecture and introduce our novel recurrent
composite encoding, which allows us to cut the number of trainable
feature parameters in half. In Sec. 4.4, we discuss how we compute
optimal thresholds for our binary visibility classifier and show how
they significantly improve the stability of the reconstruction.

Network Architecture. Our goal is to learn, for every voxel 𝒱 , a
neural representation of the visibility term 𝑉ℳ(𝒑𝑜 ,𝒑𝑖). Therefore,
the network’s input only consists of the two vertices on the bound-
ary of the voxel. As we will see shortly, the visibility network does
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Fig. 7. Our visibility network architecture. Our recurrent composite encod-
ing enables a single hash grid to be used by both inputs.

not need to explicitly store the level of detail or the voxel posi-
tion information. The network structure is similar to that of the
appearance network, consisting of 4 fully connected layers with
128 neurons each and ReLU activations. The only difference is that
the output layer uses a sigmoid activation function, which con-
strains the output values between 0 and 1. We interpret the output
as the probability that the points 𝒑𝑜 and 𝒑𝑖 are mutually visible,
i.e. the segment 𝒑𝑜 ,𝒑𝑖 is unoccluded. The visibility network’s final
architecture is depicted in Fig. 7.

Recurrent Composite Encoding. In order to encode the two po-
sitions into a data structure with trainable feature parameters, a
natural approach is to use two separate encodings. In most applica-
tions, inputs do not have a precise mapping between them. However,
in our case, if two separate encodings are learned for each input, it
is possible to swap 𝒑𝑜 and 𝒑𝑖 at inference without any consequence
on the inferred visibility. We leverage this simple observation to
learn a single hash-grid encoding for both inputs, effectively halving
the footprint of the learned weights. To do so, we implement a novel
recurrent composite encoding where multiple inputs share a single
learnable representation, such as a multiresolution hash grid. This
implies that during training, gradients for repeated inputs are back-
propagated through the shared representation, and, at inference,
the same data structure is queried by the recurrent inputs. Note
that this is only possible because of the specific parameterisation
we chose for the inputs. The same approach could not be used if
we parameterise visibility as a point on the voxel boundary and an
associated direction, for example.

Object Space vs. Local Voxel Space Encoding. While the input direc-
tions for the appearance network are naturally defined in local voxel
space, both local and object space encoding are valid candidates for
the visibility network. We experimented with both approaches and
found that object space encoding for boundary positions provides
better results. This removes any explicit dependency on the level
of detail for which visibility is queried, as the incident and exitant
locations on the boundary fully encode all relevant information.
However, opportunities for exploiting shared visibility information
across detail levels arise, as illustrated in Fig. 8.
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Fig. 8. Three different cases of shared visibility information when boundary
points are encoded in object space. If a queried visibility segment between
two boundary points is shared between two levels, the exact same informa-
tion is learned by the network (a). On the other hand, if the segment only
exists at the higher resolution level of detail, no information is shared (b).
Finally, when a segment spans multiple higher-resolution voxels, different
scenarios are possible (c). If a segment in a higher-resolution segment is
occluded, the lower-resolution segment is always occluded. And similarly, if
the lower-resolution is not occluded, the two higher-resolution segments
cannot be occluded either.

Loss function. Getting reference data for the visibility network
consists of generating two points on the voxel boundary and check-
ing the visibility for a ray traced from 𝒑𝑜 to 𝒑𝑖 . We do this jointly
with appearance training as detailed in Sec. 5.2. Since our visibility
network is a classifier, we use the binary cross-entropy (BCE) loss
which Simard et al. [2003] showed to have faster convergence and
better generalisation than a default 𝐿2 loss.

4.4 Optimal Thresholding for Correlation-Aware Visibility
To retain spatial localisation of occlusion events such that it allows
correlation-preserving visibility tracking, we train the visibility net-
work as a classifier that predicts binary point-to-point visibility. In
order to arrive at a binary prediction, finding an optimal threshold
can significantly improve a classifier’s performance [Manning et al.
2008]. A weighted F-Measure [Harbecke et al. 2022] quantifies the
performance of a model given imbalanced training samples. We
maximize it per voxel to find the optimal threshold given the respec-
tive distributions of occlusions and visibility. Once a threshold is
fixed, the predictions either belong to the positive or the negative
class [Bishop 2006]. We can compute the rate of true positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN)
for a test set, i.e., a set of samples with associated reference val-
ues. The precision and recall [Manning et al. 2008] are TP

TP+FP and
TP

TP+FN , respectively. The harmonic mean of these metrics leads to
the (unweighted) F-Measure:

𝐹𝛽 = (1 + 𝛽
2) ⋅ precision ⋅ recall

(𝛽2 ⋅ precision) + recall , (5)

where 0 ≤ 𝛽 < 1 puts more weight on precision (avoiding FP) and
𝛽 > 1 puts more weight on recall (avoiding FN). Typical values for
𝛽 are 1, 0.5 or 2.0. Since this F-Measure depends on which class was
labelled as positive, maximising it for imbalanced data sets such as
ours can lead to severe bias [Branco et al. 2016]. A common solution
is to compute the F-Measure with alternating classification labels
and maximise a weighted sum of each result based on the frequency
of corresponding positive training samples. Different weighting
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Fig. 9. Our optimal thresholds automatically handle correlated artefacts
due to collisions in the hash grid and significantly improve the stability of
the visibility reconstruction across detail levels. Visualising the computed
thresholds also reveals the correlation across LoDs, indicating that the net-
work successfully leverages joint multi-resolution learning. In this example,
we used a hash table size of 𝑆 = 219 and 2 features per grid level. As seen
in the last column rendered at LoD 0, increasing 𝑆 to 225 reduces collision
artefacts but does not contribute further to the reconstruction quality.

strategies lead to different trade-offs [Harbecke et al. 2022]. In our
application, avoiding light leaks in structured opaque geometry is
essential. Therefore, we adapt the weighted F-Measure such that the
contained F-Measure for positive labelling of occlusion puts more
weight on recall:

𝐹weighted =
𝐹
occ
2 ⋅ 𝑛occ + 𝐹vis1 ⋅ 𝑛vis

𝑛occ + 𝑛vis
, (6)

where the measures of each class are computed as in Eq. (5), and
𝑛occ and 𝑛vis represent the number of occluded and visible segments
in the sampled references, respectively. In practice, a grid search
over 100 equally-spaced thresholds in the interval (︀0, 1⌋︀ with 1000
visibility samples per voxel proved sufficient to find optimal thresh-
olds per voxel. The combined optimisation time for all LoDs lies
between 20–120 seconds depending on the scene’s sparsity. Fig. 9
illustrates the learned visibility for different levels of detail using
the computed thresholds. The optimal thresholds significantly im-
prove the reconstruction quality. In particular, it effectively resolves
correlated compression artefacts, which we attribute to visible hash
collisions in the hash grid encoding. Otherwise, increasing the hash
table size reduces these occurrences at the cost of a higher memory
footprint. In either case, Fig. 10 shows that light leaks are effectively
reduced by the threshold optimization.

4.5 Efficient Ray Traversal
In order to make the rendering process described in Sec. 4 practical,
we apply two essential optimisations in our pipeline.

Correlation-preserving Stochastic Traversal. Compared to a sto-
chastic approach that generates collisions with a certain probability
at every traversed voxel boundary, our correlation-preserving bi-
nary thresholding naturally requires more traversal steps for long
unoccluded light paths. Reintroducing a small stochastic compo-
nent in an occlusion-preserving way can drastically improve render
time. To achieve this, we apply a variation of the traditional Russian
Roulette method based on the continuous visibilities inferred during
grid traversal: We use the inferred probability of non-collision in
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Fig. 10. We demonstrate the difference between rendering with a global
fixed visibility threshold at 0.5 and applying optimal thresholds per voxel.
Rendering LoD 0 at a higher pixel resolution with a strong constant [6,4,2]
RGB illumination reveals multiple correlated light leaks for the fixed thresh-
old variant, while our computed thresholds successfully address the problem.

Arcade LoD 2 no stochastic
traversal

stochastic
traversal

83.5 ms / frame 41.2 ms / frame

Fig. 11. Our stochastic traversal trades variance for efficiency. We compare
to our approach without stochastic traversal at LoD 2. Each method is
rendered for 10 seconds at a higher pixel resolution to better show the noise
difference. Our approach consistently achieves lower variance in the same
time budget.

each voxel as a lower bound for the survival probability of a ray
traversing that voxel. When the network infers a low probability
of occlusion for a queried segment, the survival probability is high
and the path should never be terminated in that voxel. To limit the
amount of variance introduced by this approach, we use very low
survival probabilities overall. We compute an upper bound, such
that, at most 0.001% of the rays traversing all voxels along the di-
agonal are terminated at the highest grid resolution. This results
in a survival probably around 99.25% for a 5123 resolution, and
leads to a good balance between variance and speed increase. Fig. 11
illustrates the benefit of the described stochastic traversal strategy.

Compaction. In our framework, reaching the next scattering event
requires the traversal of multiple non-empty voxels, and several
visibility inferences might be required until a queried segment is
occluded. In a wavefront approach, this is problematic as a single ray
can become a bottleneck. Therefore, to balance the workload on the
GPU, we apply compaction after each batch of visibility inferences.
We also apply compaction after each scattering event, as done in

(a) Uniform Point Density (b) Uniform Segment Density

Fig. 12. We compare the resulting densities when sampling two points
uniformly on the boundary (while avoiding pairs that land on the same side)
(a) and our approach (b). In each subfigure, the left inset shows the resulting
density of segments inside the voxel while the right inset represents the
density of points 𝒑𝑜 and 𝒑𝑖 on the boundary.

a typical wavefront path tracer. Interested readers can find more
information on parallel stream compaction in Billeter et al. [2009].

5 TRAINING THE REPRESENTATIONS
In this section, we describe our strategy for selecting a voxel at a
particular level of detail and how we sample the appearance and
visibility network inputs to generate the required training data.

5.1 Training Distribution
Our training data is generated on the fly by sampling the full domain
for all levels of detail and generating MC estimates for all training
inputs. To avoid the expensive generation of converged ground truth
reference data, we rely on noise-to-noise training [Lehtinen et al.
2018]. Sampling the training inputs is comprised of two steps, a dis-
crete sampling of LoD and voxel index; and a continuous sampling
of the selected voxel domain.

Voxel and LoD Sampling. In order to select a voxel for learning,
we sample a sparse voxel from the highest resolution and a level
of detail uniformly. If the LoD does not correspond to the highest
resolution, we determine the corresponding voxel at the lower reso-
lution instead. This approach automatically allocates more samples
to lower-resolution voxels that contain more active voxels from
the higher resolution. We found this sampling method to improve
convergence compared to uniformly sampling a voxel across all
levels of detail. We also experimented with approaches that distrib-
ute samples non-uniformly across levels of detail, but performance
significantly varies among different scenes, and we found the above-
described approach to generalise better.

Sampling the Integration Domain. Learning either the visibility
or the appearance of a selected voxel requires us to sample vertices
on the voxel boundary. The only requirement when generating ref-
erence samples for a network is to cover the input domain entirely.
However, their density determines their weight in the minimisa-
tion of the loss function. A naive approach might sample the two
points uniformly on the boundary while discarding samples with
two points on the same face. Fig. 12a shows that this does not, how-
ever, lead to a uniform sampling of the geometry within the voxel.
Therefore, we optimise the density of the segments formed between
𝒑𝑜 and 𝒑𝑖 . As shown in Fig. 12b, this density becomes uniform
when sampling voxel boundaries according to their projected areas
as seen from uniformly sampled directions 𝝎𝑜 on the unit sphere.
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Fig. 13. Our sampling domain regularisation addresses floating point errors
that can arise when surfaces are close to the original voxel boundary.

To sample the projected area for each voxel face, given a random
direction 𝝎𝑜 , we compute the dot product of each face normal n
with 𝝎𝑜 and discard faces with negative results. We then sample
from the remaining faces proportionally to their dot product. Finally,
we sample a point 𝒑𝑜 on the face uniformly at random. The opposite
point of incidence 𝒑𝑖 is given by the intersection between the voxel
boundary and a ray originating at 𝒑𝑜 traced in direction −𝝎𝑜 .

Learning Domain Regularisation. For certain assets, the original
geometry might land precisely on the voxel boundary. In that case,
due to floating point precision issues, the networks might learn
incorrect visibility. To avoid this problem without introducing bias,
we learn a slightly larger domain by extruding the voxel boundary
outwards, see Fig. 13. For the sampling procedures described earlier,
this only amounts to an additional uniform sampling of the outward
voxel extent range. In practice, we found that extending the domain
by 0.5% of the original voxel extent fixes the issue. Note that dur-
ing inference, we still query the original voxel boundary, only the
learned domain is extended.

5.2 Constructing the Appearance Estimator
We use noise-to-noise training [Lehtinen et al. 2018] with unbi-
ased MC estimates to train the average voxel throughput func-
tion 𝜑𝒱(𝝎𝑜 ,𝝎𝑖) in Eq. (3), which involves path integration. We
sample trained incident and exitant directions 𝝎𝑜 and 𝝎𝑖 uniformly
for each voxel. The visible geometric area of geometry contained
by a voxel 𝒱 as given in the denominator of Eq. (3) is sampled
by rejection sampling: As described in the previous section, we
uniformly generate a point 𝒑𝑜 on the projected voxel boundary
as seen along rays with direction 𝝎𝑜 with a proposal distribu-
tion 𝑝𝝎𝑜 (𝒑𝑜)∝ ⋃︀𝝎𝑜 ⋅ n𝑜 ⋃︀. Ray tracing against the geometry within
the voxel tests, if the sampled point lies within the visible geometric
area and should be accepted. Note that all sampled 𝒑𝑜 , accepted
and rejected, can still be used for visibility training, as the rejection
criterion directly determines the reference visibility for any sampled
positions. Point samples without ray intersections are rejected for
appearance training, resulting in the training distribution 𝑝

Φ
𝝎𝑜
(𝒑𝑜)

for accepted samples:

𝑝
Φ
𝝎𝑜
(𝒑𝑜) ∶=

𝑝𝝎𝑜 (𝒑𝑜)
∫𝜕𝒱 (1 −𝑉ℳ(𝒑𝑜 ,ℛ𝜕𝒱(𝒑𝑜 ,−𝝎𝑜)))𝑝𝝎𝑜 (𝒑𝑜)𝑑𝐴(𝒑𝑜)

.

Thus, we can sample the point of exitance 𝒑𝑜 and replace the outer
integral in Eq. (3) by an MC estimation using 𝑝Φ𝝎𝑜

(𝒑𝑜) to arrive at

Fig. 14. To obtain reference samples for the appearance network, we can, in
a single pass, aggregate multiple throughput samples for different exitant
position 𝒑𝑖 . A red cross indicates a failed shadow test, while an orange cross
indicates path termination at the voxel boundary.

a simplified equation:

𝜑𝒱(𝝎𝑜 ,𝝎𝑖) = E ]︀∫
𝜕𝒱

𝑇𝒱(𝒑𝑜 ,𝝎𝑜 ;𝒑𝑖 ,𝝎𝑖) ⋃︀𝝎𝑖 ⋅ n𝑖 ⋃︀𝑑𝐴(𝒑𝑖){︀ .

Note that the point of incidence 𝒑𝑖 is fully determined by the light
interactions within the voxel and the fixed incident direction 𝝎𝑖

due to the null-scattering distribution 𝑓 (𝝎𝑛,𝒑𝑖 ,𝝎𝑖) = 𝛿(𝝎𝑛 −
𝝎𝑖)⇑⋃︀n𝑖 ⋅ 𝝎𝑛 ⋃︀ on the voxel boundary contained in the through-
put 𝑇𝒱(𝒑𝑜 ,𝝎𝑜 ;𝒑𝑖 ,𝝎𝑖). The first interaction in the path integral
of 𝑇𝒱(𝒑𝑜 ,𝝎𝑜 ;𝒑𝑖 ,𝝎𝑖) is equally fixed by the constraint of the sam-
pled 𝒑𝑜 and 𝝎𝑜 as represented by the null-scattering interaction
on the exitant path vertex. To estimate the remaining nested inte-
grals, we then apply standard path tracing from the exitant direction
and sample inner directions of incidence with corresponding BSDF
importance sampling densities 𝑝(𝝎 𝑗 ⋃︀𝝎 𝑗−1, v𝑗). We transform all
directional distributions to the area measure, cancelling correspond-
ing Jacobian determinants with respective parts of the geometry
terms, in order to arrive at the final MC estimation:

𝜑𝒱(𝝎𝑜 ,𝝎𝑖) = E
⎨⎝⎝⎝⎝⎪

∞

∑
𝑛=1

∏𝑛
𝑗=1 𝑓 (𝝎 𝑗−1, v𝑗 ,𝝎 𝑗) ⋂︀𝝎 𝑗 ⋅ n𝑗 ⋂︀
∏𝑛−1

𝑗=1 𝑝(𝝎 𝑗 ⋃︀𝝎 𝑗−1, v𝑗)
𝑉ℳ(v𝑛,𝒑𝑖)

⎬⎠⎠⎠⎠⎮
.

Note that in practice the sum does not have an infinite number of
terms, since paths will cross the voxel boundary after a number of
interactions, reducing all subsequent terms to zero. As illustrated
in Fig. 14, the derived estimator is realised by recursive ray tracing,
starting from a sampled point 𝒑𝑜 in direction 𝝎𝑜 , accumulating the
throughput for any light incident from direction 𝝎𝑖 if it is unshad-
owed by other geometry within the voxel, and importance sampling
a new direction for ray tracing proportional to the scattering distri-
bution at the hit point. This procedure is repeated until a sampled
ray crosses the boundary of the currently trained voxel. Shadow
testing is done by tracing an additional shadow ray from each en-
countered interaction within the voxel to the voxel boundary in
direction𝝎𝑖 to detect any other blocker geometry contained therein.

6 RESULTS
We present results of applying our neural prefiltering pipeline to
scenes of different structure and complexity.We analyze thememory
footprint and performance of our method, as well as the perceptual
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Fig. 15. Top, the average path length at LoD 4 compared against a brute-force path tracing, demonstrating the effectiveness of our approach to compress the
light transport. Bottom row compares performance across levels of detail and path traced references for fixed 10242 images. The plots report mean render time
for 128 samples/pixel and different maximum path lengths with the dashed line indicating the time for the highest LoD at a max depth of 103. We achieve
interactive to real-time performance across resolutions.

FLIP error [Andersson et al. 2020], which approximates the differ-
ence perceived by humans when alternating between one rendered
image and one corresponding ground truth. In addition to the re-
sults presented here, we provide in our supplemental material a
more detailed set of comparisons and a video demonstrating the
temporal stability of our method. We implemented our method in a
GPU wavefront path tracer, using nanovdb [Museth 2021] to repre-
sent a sparse grid storing one visibility threshold per voxel, and the
tiny-cuda-nn library [Müller 2021] with scalars set to half-precision
floats for optimised network training and inference, to which we
added the binary cross entropy loss and our recurrent grid encoding.
We use a single NVIDIA RTX 3080 for all our experiments.

Training Times. To train our representations using the losses
described in Sec. 4.2 and 4.3, we use the Adam optimiser [Kingma
and Ba 2014] with a learning rate of 𝜂 = 0.005 for both networks
with their respective grid encodings. Computation time for a single
optimisation step varies depending on scene complexity, where most
effort is spent tracing rays and transport paths within voxels. For
path tracing efficiency in appearance training, we apply standard
albedo-based Russian Roulette to bound the theoretically infinite
number of scatter events in an unbiased way.

Table 1 reports training times for all our test scenes as displayed
in Fig. 16. Visibility training is generally slower to converge due to
using a higher number of encoding parameters. Both visibility and
appearance representations can be trained in the order of minutes,
moving preprocessing to neural representations closer to practical-
ity for real-world asset pipelines, compared to previous work that
required hours to days of training [Bako et al. 2023; Vicini et al.
2021]. Note that our appearance decomposition into two represen-
tations allows partial re-train when only materials are changed. For
fast, lower-quality previews reduced parameter counts may be used.

LoD Efficiency. By design, our method achieves high compression
ratios when applied to large quantities of geometric primitives or

Table 1. Mean and total training time for all our scenes after 100 steps.
Depending on the scene complexity, 8000–12000 steps are needed for con-
vergence. In the Fractal scene, in contrast to others, paths sampled during
training are stuck within the geometry for longer, resulting in prolonged
training times for the appearance network.

Visibility Net. Appearance Net. Total
Scene 100 steps / total 100 steps / total
Arcade 2.52s / 5.04m 1.08s/ 2.16m 7m12s
Bay Cedar 5.48s / 10.96m 4.93s/ 9.86m 20m49s
Rover 3.12s / 6.24m 1.66s/ 3.32m 9m33s
Pandanus 6.13s / 12.26 m 4.41s/ 8.82m 21m4s
Fractal 8.11s / 16.22m 12.03s / 24.06m 40m16s

to materials with high-resolution microdetail. We measure storage
savings between 80% and 90% for assets with high-frequency geo-
metric details, as listed in Table 2. However, compressed storage is
not our primary objective. While in principle, all sufficiently tessel-
lated scenes could be compressed this way, efficient representation
by our method mainly targets high-frequency appearance involv-
ing many-bounce indirect scattering (such as, e.g. light scattering
between leaves). Fig. 15 demonstrates that our method effectively
collapses many-bounce shading evaluations to a lower number of
voxel appearance evaluations representing the full, aggregated light
transport. We thus reach higher uniformity of path lengths across
pixels, with lower remaining differences, where long-range correla-
tions cannot yet be preresolved at the respective LoD scales.

To evaluate the runtime efficiency, we rendered all levels of detail
as displayed in Fig. 15 at a fixed resolution and plotted the average
render times as a function ofmaximumpath length.While we cannot
claim perfectly exponential scaling with reduced detail levels in our
current prototype implementation, we already do see speedups up
to 5× between the highest and the lowest levels of detail. Within our
prototype, we cannot yet compete with raw real-time path tracing
performance.
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Table 2. Memory footprint of each network and the total size of the sparse voxel grid associated with each LoD. The original scene size is measured as binary file size containing both textures
and geometry.

Visibility Network (𝑆 = 219) Appearance Network (𝑆 = 219) Voxel Grid Total Memory Footprint
Scene Feat./Lvl Train. Params Feat./Lvl Train. Params Sparsity (LoD 0 / 6) Total Size LoDs Original Scene Space Saving
Arcade 2 3.81M (7.63MB) 2 3.80M (7.60MB) 99.43% / 71.48% 4.08MB 19.31 MB 68.28MB 71.72%
Bay Cedar 8 15.04M (30.09MB) 4 7.56M (15.12MB) 98.71% / 78.71% 8.93MB 54.14 MB 752.92MB 92.81%
Rover 4 7.54M (15.10MB) 4 7.56M (15.12MB) 98.62% / 72.07% 9.45MB 39.67 MB 187.41MB 78.83%
Pandanus 8 15.04M (30.09MB) 4 7.56M (15.12MB) 98.91% / 54.69% 8.60 MB 53.81 MB 1.40 GB 96.16%
Fractal 8 15.04M (30.09MB) 4 7.56M (15.12MB) 87.74% / 29.69% 86.23 MB 131.44MB 1.92 GB 93.15%

Ref LoD / 71s 0.0687 Ref LoD / 96s 0.1520 Ref LoD / 50s 0.1894 Ref LoD / 74s 0.1899 Ref LoD / 57s 0.0903

Ref LoD / 52s 0.0618 Ref LoD / 84s 0.1022 Ref LoD / 36s 0.1556 Ref LoD / 71s 0.1843 Ref LoD / 49s 0.0857

Ref LoD / 40s 0.0559 Ref LoD / 72s 0.0826 Ref LoD / 26s 0.1517 Ref LoD / 70s 0.2055 Ref LoD / 37s 0.1168

Ref LoD / 26s 0.0480 Ref LoD / 52s 0.1152 Ref LoD / 18s 0.1307 Ref LoD / 65s 0.0987 Ref LoD / 24s 0.0973

Ref LoD / 17s 0.0387 Ref LoD / 32s 0.0982 Ref LoD / 15s 0.1071 Ref LoD / 43s 0.1706 Ref LoD / 15s 0.0708

Ref LoD / 11s 0.0341 Ref LoD / 18s 0.0815 Ref LoD / 12s 0.0490 Ref LoD / 28s 0.0908 Ref LoD / 12s 0.0557

Ref LoD / 8s 0.0407 Ref LoD / 11s 0.0438 Ref LoD / 9s 0.0426 Ref LoD / 18s 0.0447 Ref LoD / 11s 0.0388
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Fig. 16. Comparison of our method for a set of scenes with varying materials and geometric correlation. To compare to a standard path tracer at the same resolution, each scene is rendered at
a different level of detail such that a voxel is roughly pixel-sized. The mean value of FLIP error excludes empty background pixels. Reported timings correspond to fixed 5122 images rendered
at 1024 samples per pixel to ensure converged results.
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Fig. 17. Our approach does not apply any importance sampling and there-
fore has high per-pixel variance at higher detail levels. However, variance of
our method is reduced as detail is reduced, while path tracing complexity
stays constant due to tracing the same light paths. Our stochastic traversal
incurs a minor addition of variance.

We expect this balance to change in the future by means of both
more acceleration for neural representations and better sampling
techniques. A preliminary analysis of variance reduction capabilities
is provided later in this section.

Reconstruction Quality. We evaluate the quality of our approach
on scenes of various complexity and discuss the individual chal-
lenges represented by each scene as displayed in Fig. 16. Thememory
footprint of each scene is shown in Table 2. All the scenes compared
are rendered for an unlimited path depth, i.e., paths are only killed
via Russian Roulette. This is the only viable comparison against
a reference since our prefiltering technique compresses the light
transport and the number of bounces in our generalised voxel path
space does not correspond to the usual path depth of a path tracer.
The Arcade in Fig. 16 has relatively simple geometry, but fea-

tures large flat surface areas with multiple high-resolution textures
including varying roughness parameters. Our method reconstructs
the geometry with high accuracy, without any special handling for
large-scale surface-like geometry. The poster on the wall is challeng-
ing to prefilter because of the rapidly changing reflectance across
different voxels. Due to the high sparsity of the scene (99.43 % of the
voxels at the highest resolution are empty), we can still obtain good
results across all scales with relatively small networks (see Table 2).

The Bay Cedar is a prominent example of a mixture of structured
and unstructured geometry. The trunk, the middle branches, and the
upper leaves all result in different kinds of correlation. Our method
accurately captures this continuum, even for thin branches with low
fractional voxel coverage at low resolutions. At high resolutions,
these features are naturally captured by the sparse encoding.

The Rover features a more complex mix of surface-like structures
and exhibits a variety of multi-scale details, such as a thin antenna
on top of the car and many small details with a mix of glossy and
diffuse materials. This makes it a particularly challenging scene
for the appearance network, particularly visible at LoD 0. As the
resolution decreases, high-frequency components in the filtered
appearance diminish, and we observe reduced reconstruction errors.

The Pandanus the most challenging scenes for our method. The
leaves correspond to a multitude of thin hair-like structures that

lead to high-frequency appearance changes across voxels. In some
of the detail levels, we see difficulty in robustly learning visibility
and appearance such that the overall transported energy is fully
conserved. Accuracy fluctuates across multiple training reruns, and
we observe these difficulties to affect different levels of detail every
time, while the error for other levels is then well reduced. This hints
at an interesting problem for follow-up investigations on optimal
training strategies that balance energy loss across all levels of detail.

The Fractal contains numerous intricate details that result in an
extremely dense geometry, as can be seen by the reported sparsity
for LoD 0 and LoD 6 in Table 2. Our method can nonetheless achieve
high-quality reconstructions for all levels of detail. Note that while
the scene uses a single diffuse material, all the shading is due to
multiple scattering, masked by high-frequency occlusions that need
to be learnt by the appearance network at lower resolutions.

Variance Analysis. Compared to unfiltered path tracing where
variance increases as pixels cover an increasing amount of details
aggregating as viewing distance increases, the prefiltered appear-
ance representation in our method reduces variance as expected
from such approaches. Fig. 17 compares variance of detail levels for
multiple scenes, rendered at resolutions matching voxels to pixel
footprints. Our prefiltering technique manages to reduce the vari-
ance even for assets with complex visibility.

Comparisons to Previous Work. We first compare our neural pre-
filtering approach to the state-of-the-art Hybrid LoD technique
from Loubet et. al [2017] for the Oak Tree and the Bare Tree
in Fig. 18. Our method noticeably reduces the error compared to
their method, particularly as more details are aggregated and thus
transition from correlated to uncorrelated geometry. At the highest
resolution, their Oak Tree reconstruction still closely matches the
reference, except for slight edge blur. However, as the resolution
decreases, their blurring becomes a clear defect in the FLIP error,
with noticeable undesired brightening. Even for the leaves where
the assumption of uncorrelated geometry can be adequate, we no-
tice a loss of accuracy in the high-frequency details that should
remain at lower resolutions. For the Bare Tree, which is composed
only of a trunk and branches with a simple surface-like structure,
their segmentation process turns to volume approximations too
quickly. Thus the branches suffer typical overblurring of volumet-
ric representations. Our approach retains low error across scales
and geometric configurations in comparison. In terms of memory
footprint, our neural approach improves compression rates by 27%
over their method. Hybrid LoD stores the Oak Tree with 3.72MB of
combined textures and mesh and an additional 79.22MB of sparse
volumetric data, totalling 82.94MB. In comparison, our approach
stores 22.64MB for the voxel grid and 37.72MB for the two networks,
totalling 60.36MB.

We also compare our approach to the deep appearance prefiltering
method introduced by Bako et al. [2023] in Fig. 19. Their current
implementation supports direct lighting only which we emulate by
limiting the path depth to two during appearance training. They
also require an expensive 0.5-2 days of training on a cluster while
our entire pipeline can be trained in under one hour on a single
GPU at better reconstruction quality overall.
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Fig. 18. Our neural prefiltering pipeline compared to the state-of-the-art
Hybrid LoD technique for a low, medium, and high-resolution level of detail
for two different scenes. For the Oak Tree, our visibility and appearance
networks were trained using 8 and 4 features per level, respectively. For the
second asset, both networks only use 4 features per level.

Correlated Visibility. In Sec. 4.4, we proposed amethod to optimise
per-voxel thresholds for increased accuracy in visibility.We compare
our approach of optimal thresholding for binary correlation-aware
visibility tracking with simple stochastic visibility, as shown for two
different hash table sizes in Fig. 20. In the stochastic alternative, the
output of the visibility network is directly interpreted as a proba-
bility. For volume-like details, it can sometimes outperform binary
classification, while eliminating the need for any thresholding. Note
that, even if the point-to-point visibility becomes stochastic some
learned correlation is still preserved. The stochastic approach is
effective if the hash table size can be sufficiently increased and the
scene has strong volume-like properties. For general scenes, how-
ever, such a simplified stochastic approach is susceptible to light
leaks, and we find the fully correlation-preserving thresholds to be
more robust overall.

0.0645 0.0836

Ref Ours FLIP Bako [2023] FLIP
1

0

Fig. 19. Our method evaluated against Bako et al. [2023] at LoD 1. Due to
the glossy tree material, the scene illuminated by a directional light source
reveals many challenging specular highlights. Our two networks use eight
features per level for the hash grid to account for this.

Limitations and Future Work. We showed that in some remaining
challenging cases, further investigation into optimised appearance
learning strategies that deterministically control error across all
levels of detail is needed, particularly with a priority on robust
energy conservation where accuracy has to be traded for compres-
sion. Regarding general capacity for complex appearance, the use
of spherical harmonics-based directional encodings, while efficient,
may not fully capture complex high-frequency appearances. Where
filtered appearance has to retain sharp glossy highlights, directional
adaptations of all-frequency (potentially parametric) encodings are
likely needed (e.g. an optimised hash grid, tri-planar, or octahe-
dral maps). Furthermore, tailored importance sampling for robust
training of such phenomena will then be required to capture all
relevant angular configurations reliably. Automatically adapting
training distributions in the spirit of active exploration [Diolatzis
et al. 2022] could be a promising avenue for future work. As dis-
cussed in our variance analysis, developing effective importance
sampling strategies for sampling complex aggregate distributions
at runtime is an important next step to further improve the prac-
tical efficiency of neural representations in rendering applications.
Effective compression of dynamic content is actively researched for
neural representations [Park et al. 2021; Pumarola et al. 2021; Wang
et al. 2022b], with interesting recent research avenues [Song et al.
2023] for the type of parametric encodings we use. As to perfor-
mance, optimising the traversal logic in a way that fuses visibility
inferences and voxel stepping in one kernel is a good opportunity as
the software ecosystem of neural components in graphics matures.

7 CONCLUSION
As photorealistic rendering approaches real-time efficiency, partic-
ularly on GPUs with limited storage capacity, level of detail tech-
niques preserving complex appearance are more relevant than ever.
We demonstrated that neural representations for local appearance
are promising building blocks, achieving more uniform rendering
convergence and high compression rates, while attaining high ac-
curacy. Our method is designed to integrate well with existing
physically-based renderers. It efficiently decomposes the problem
into visibility and appearance representations. We showed the mer-
its of representing visibility with classifying neural fields, handling
visibility correlations from opaque to aggregate surfaces. We also
demonstrated the effectiveness of increasing their efficiency by use
of optimal classifier theory, allowing direct control over light leaks.
For high-dimensional appearance, we showed the effectiveness of
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Fig. 20. Our optimal thresholds compared to an alternative approach of stochastic thresholding. Increasing the hash table size of the visibility network to
𝑆 = 221 improves the stochastic thresholding for volumetric features at the cost of increased error for surface-like features and potential light leaks.

implicit neural representations for storing the corresponding high-
dimensional neural fields. With our method, we cover the essential
aspects of prefiltering with improvements over previous work for a
variety of assets. Further development of robust multi-scale learning
strategies and effective importance sampling strategies for complex
aggregate distributions are noteworthy examples of many new re-
search directions for neural representations in graphics.
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A GENERALISED VOXEL PATH SPACE MEASURES
In Section 3.1, we introduced our generalised voxel path space 𝒳 ,
here we show how it can be constructed using the configuration
vector 𝒄 = (𝒄0, ..., 𝒄𝑙−1) ∈ {0, 1}𝑙 . We recall that 𝒙 𝑗 = 𝝎 𝑗 if 𝒄 𝑗 = 0
and 𝒙 𝑗 = (𝒑′𝑗 ,𝝎 𝑗) if 𝒄 𝑗 = 1. Therefore, our generalised voxel path
space is defined as:

𝒳 =
∞

⋃
𝑙=1

⋃
𝒄∈{0,1}𝑙

𝒳 (𝑙)𝒄 , 𝒳 (𝑙)𝒄 = ×𝑙−1𝑖=0

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

ℳ′ × Ω if 𝒄𝑖 = 1,
Ω otherwise.

,

with corresponding measure definitions

𝜇
′(𝑋) =

∞

∑
𝑙=1

∑
𝒄∈{0,1}𝑙

𝜇
′(𝑙)(𝑋 ∩𝒳 (𝑙)𝒄 ) .

𝑑𝜇
′
(𝑙)(𝒙) =

𝑙−1
∏
𝑗=0

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑑𝐴(𝒑′𝑗)𝑑𝑆(𝝎 𝑗) if 𝒄 j = 1,
𝑑𝑆(𝝎 𝑗) otherwise.
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