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Abstract—The evaluation of pairwise interactions is fundamen-
tal for the simulation of most molecular processes. Their efficient
computation is therefore crucial for the overall performance of
these simulations on modern computer architectures. We show
how code for the computation of pairwise interactions on parallel
and heterogeneous platforms can be generated from a unified
base through partial evaluation of higher-order functions. For
this purpose we introduce a complete implementation of the
neighbor list algorithm based on the AnyDSL framework, from
which we are able to generate executables for both CPU and GPU
through compile-time specialization. Furthermore, we discuss the
advantages and disadvantages of our approach and compare it
with the miniMD simulation package from the Mantevo project,
which is implemented in the C++ programming language and
uses a similar computational core as the widely used molecular
dynamics package LAMMPS. Finally, we assess the performance
of our implementation in a number of test cases on modern CPU
and GPU hardware.

I. INTRODUCTION

In 2004, Colella identified seven numerical methods of major
importance in science and engineering which became famous as
the seven dwarfs of HPC [1]. N-body methods which depend on
computing the interactions between a large number of discrete
points are one of these dwarfs. Many interesting phenomena can
not be described in the continuous domain and therefore need
to be modeled as a system of interacting bodies (particles),
from galaxies and stars to molecules and atoms. Here the
number of particles can readily reach the order of magnitude
of multiple millions or more. For example, every cubic meter
of gas contains approximately 2.69·1025 molecules (Loschmidt
constant) and our own galaxy, the milky way, alone consists
of 200 billion stars. The fundamental mathematical model
for the simulation of these systems is Newton’s second law
(Equation 1), which describes the dependence of a particle’s
acceleration from the force acting on it.

F = m · dv
dt

= m · a (1)

To simulate its development over time, this system of ordinary
differential equations needs to be approximated numerically.
After discretizing the time derivatives in a suitable way, this
is achieved by calculating the force acting on every single
particle as a result of their pairwise interactions. Naively this
requires the computation of O(N2) interactions during each

time step, where N is the number of particles. However, the
potential fields responsible for these interactions can be of
different range and thus, dependent on their characteristics, only
a limited number of particles influence each other. To permit
the simulation of large systems, the use of data structures which
enable a fast and memory efficient computation of particle-
particle interactions with different range is indispensable. The
implementation of these methods imposes significant challenges
on modern architectures. Each molecular dynamics implemen-
tation needs to be optimized with respect to the present force
fields and the compute environment the implementation is
supposed to be executed in. Both C/C++ and Fortran, the
predominant programming languages in high performance
computing, are based on an inherently static and sequential
model of computation. To deal with the increasing architectural
complexity of modern architectures, these languages have been
augmented with various extensions, most notably in form of
parallel programming libraries like OpenMP, MPI or CUDA.
Although they allow targeting new architectures, their power
and expressiveness is limited by these libraries and they are by
no means extensible. In order to overcome these limitations,
new programming models and tools which make software both
reusable and extensible, while also meeting the performance
requirements of large scale HPC systems, are necessary.

In molecular dynamics typically the majority of the compute
time is spent on the evaluation of pairwise non-bonded inter-
actions1 associated with intermolecular forces and electrostatic
charge [2]. Intermolecular forces, including Van der Waals
forces and dipole-dipole interactions, are even present in
case of the absence of charged particles and thus need to
be considered in most molecular dynamics simulations. The
underlying potentials are often modeled as pairwise interactions
of limited range that can be efficiently computed using neighbor
lists [3]. Porting the computation of pair-interactions to modern
multi-core CPU and GPU architectures has been subject to a
number of publications [4]–[6]. Widely used frameworks such
as GROMACS [7], LAMMPS [8], NAMD [9], AMBER [10],
ESPResSo [11], CHARMM [12] and DL_POLY [13] are
implemented in C/C++ or Fortran and employ distinct hand-

1Non-bonded interactions are present between atoms that are not linked by
covalent bounds.



optimized pair interaction kernels for the CPU or GPU to
achieve optimal performance on different architectures. In
contrast, the goal of this work is to develop a unified scheme for
the computation of pairwise interactions that can be specialized
at compile time to generate optimized kernels for modern multi-
core CPUs but also accelerators like GPUs. To perform this
specialization, we make use of partial evaluation, which means
that the original program is evaluated with respect to a static
fraction of its input, to generate a new residual program whose
input does no longer depend on this static fraction. In our
case this static fraction corresponds to an execution model
for the given platform. We express this model in form of a
higher-order function2, to which the kernel that performs the
actual computation can be passed in form of another function.
Partial evaluation of this higher-order function with respect to
a certain kernel generates a residual program that can be run
on each platform that supports the corresponding execution
model. For instance, to execute a pair interaction kernel on the
CPU a certain higher-order function can be employed, while a
different one is used to generate code for the GPU. Essentially,
the implementation of a platform-specific execution model
constitutes writing an interpreter for an embedded domain-
specific language (DSL) [14], where the DSL is defined as the
set of valid computation kernels that can be executed on the
corresponding platform.

AnyDSL is a framework that aims to enable the fast and easy
development of embedded domain specific libraries. It grants
the ability to create functional abstractions over multiple levels
of hierarchies while the overhead is completely removed by
utilizing partial evaluation. As frontend the programming lan-
guage Impala together with an integrated partial evaluator [15]
is offered. Impala is an imperative and functional programming
language whose syntax is inspired by Rust [16]. AnyDSL has
its own intermediate representation Thorin, that makes use of
continuation-passing style (CPS) with first-class support for
higher-order functions [17]. In general Impala code is first
translated to Thorin, where a number of transformations that
remove the overhead typically associated with the use of higher-
order function take place. By exploiting the correspondence
between CPS and the static single assignment (SSA) form [18],
Thorin can be converted to SSA. SSA finds widespread use as
a low-level intermediate representation, which facilitates the
integration of Thorin into many existing compilers. By default,
Thorin uses LLVM as a backend. So far AnyDSL has been used
to implement a number of applications, where it has been shown
that the generated code is able to achieve similar performance
to hand-optimized code written in low-level programming
languages or assembly. In [19] a platform-specific optimization
of stencil codes is represented. [20] extends this approach to the
generation of multigrid solvers while [21] targets the domain
of ray tracing. AnyDSL and its frontend-language Impala are
therefore suitable for the implementation of our approach for
the generation of platform-specific pair interaction kernels from

2A higher-order function is a function that takes one or more functions as
arguments

a unified base.

II. BACKGROUND

The goal of this section is to provide the prerequisites that
are required to understand the rest of the paper. First of all,
we provide a summary of the code generation capabilities
supported in AnyDSL’s runtime. A more detailed description
can be found on the AnyDSL website3. Note that the AnyDSL
framework is ongoing research and Impala’s syntax and the
presented interfaces will probably be subject to change in the
future. The section is concluded with a brief description of
the neighbor list algorithm upon which our implementation is
based.

A. Device Code Generation

AnyDSL’s runtime provides the required functionality to
execute code on different compute devices:

• allocation, release and copying;
• code generation and execution;
• intrinsics.

AnyDSL currently supports the following platforms, which are
detected when building the runtime:

• Host CPU (default, always present)
• CUDA
• OpenCL
• HSA

To generate code for a platform, the user can choose between
one or multiple backends. For instance, the CUDA platform can
be targeted with either CUDA or NVVM code. Each platform
that is provided will have devices associated at runtime, which
are enumerated starting with zero. For example, a properly
configured system with a NVIDIA GPU will result in the
following configuration:

• Platform 0: Host CPU
• Platform 1: CUDA

Device 0: GPU
• Platform 2: OpenCL

Device 0: GPU
• Platform 3: HSA

dummy platform, no device
Consequently, this configuration enables the generation of code
for the CPU (platform 0) and GPU with either CUDA (platform
1) or OpenCL (platform 2).

In Impala the allocation of memory on different platforms
and devices is managed with the Buffer structure (see Listing 1),
which tracks the platform and device on which the memory
is allocated in device. To allocate memory on different

struct Buffer {
data : &[i8],
size : i64,
device : i32

}

Listing 1: Buffer structure

3https://anydsl.github.io

https://anydsl.github.io


devices, a number of convenience functions are available that
automatically insert the correct platform into the returned
Buffer (Listing 2). After the required memory has been

fn alloc_cpu(size: i32) -> Buffer;
fn alloc_cuda(dev: i32, size: i32) -> Buffer;
fn alloc_opencl(dev: i32, size: i32) -> Buffer;
fn alloc_hsa(dev: i32, size: i32) -> Buffer;

fn release(buf: Buffer) -> ();

fn copy(src: Buffer, dst: Buffer) -> ();
fn copy_offset(src: Buffer, off_src: i32,

dst: Buffer, off_dst: i32,
size: i32) -> ();

Listing 2: Memory management functions

allocated and the relevant data has been transfered to the
respective devices, code generation for a specific platform
can be performed by calling the respective function for each
backend with the following syntax: backend(device, grid,
block, fun)

• device: The device of the corresponding platform
• grid and block: Partitioning of the problem into subdo-

mains
• fun: Function (or kernel) for which code will be generated

A typical example is shown in Listing 3. To abstract over

let grid = (1024, 1024, 1);
let block = (32, 1, 1);
let device = 0;
cuda(device, grid, block, || {
... out(idx) = in(idx);

});
synchronize_cuda(device);

Listing 3: CUDA code generation example

different platforms and devices, the accelerator structure can
be employed, which is illustrated in Listing 4.

let device = 0;
let acc = cuda_accelerator(device);
let grid = (1024, 1, 1);
let block = (32, 1, 1);
for tid, ..., gid in acc.exec(grid, block) {
let (gidx, _, _) = gid;
out(gidx()) = in(gidx());

}
acc.sync();

Listing 4: Example usage of the accelerator struct

B. The Neighbor List Algorithm

In principle there exist N2 mutual interactions in a system
of N particles and doubling their number results in a fourfold
increase of the number of operations. To reduce the overall
complexity, the range of pairwise interactions is usually
restricted to a certain radius, which can then be exploited
through the use of custom data structures that facilitate the
detection of all relevant interactions. For this purpose the

neighbor (or verlet) list [3] and the linked cell algorithm [22] are
commonly employed. The neighbor list algorithm keeps track
of the interactions of every single particle through repeated
construction of a list of all particles within range. By including
a certain buffer to this range, an update of this list can be
postponed for a certain number of time steps, but still requires
the evaluation of all pairwise interactions once. The linked cell
method subdivides the simulated domain into cells with a side
length greater than or equal to the interaction range. Therewith,
only particles in the same and neighboring cells need to be
considered. Typically both approaches are combined and the
neighbor list is constructed from a cell-based decomposition
to reduce its overall cost [23]. In [24] an adaption of this
algorithm to the requirements of modern SIMD and SIMT
architectures is described. This approach is implemented in
the GROMACS framework since version 4.6 [7] and it forms
the foundation for the implementation presented in this work.
In contrast to the classical neighbor list scheme, this algorithm
uses clusters of particles instead of individual ones as its
building block. Hence interactions are not computed between
individual particles but between clusters of nearby particles.
By choosing the size of a cluster according to the SIMD
width of a CPU or the number of threads per block on a
GPU, an implementation can be optimized to the performance
characteristics of these architectures. To efficiently organize
all particles into clusters a bucket sort algorithm is employed.
First of all, the domain is partitioned into a two dimensional
grid of cells. Particles are inserted into the cells according to
their location within the two-dimensional grid. The particles
in each cell are then sorted with respect to the remaining
dimension using a conventional sorting algorithm like insertion
sort. Assume the size of cluster is n, then the first n particles
form the first cluster, the next n particles the second cluster
and so on. Because the number of particles in each cell is
not necessarily a multiple of the cluster size, this implies the
introduction of additional dummy particles, which must later
be handled specially in the interaction computation. Finally,
each cluster constructs a list of all clusters that are potentially
in range for an interaction, again with an additional threshold
to avoid the necessity for repeated neighbor list updates.

III. IMPLEMENTATION

In the following we describe our implementation in
AnyDSL’s frontend language Impala and demonstrate how
we are able to generate code for three different backends.

A. Data Structures

The most fundamental decision that remains is the choice of
data structures. Ensuring a high degree of data locality is key to
optimize the performance on modern architectures. Additionally,
the data must be organized in a way that allows dependency-free
parallel computation on consecutive data elements to exploit
data level parallelism on modern SIMD and SIMT architectures.

Listing 6 shows a generalized pair interaction kernel in
Impala which computes the force a particle with position pos2
causes to a particle with position pos1. First of all, the squared



struct Vec3D {
x: f64,
y: f64,
z: f64

}

Listing 5: Basic data structure

fn compute_pairwise_force(pos1: Vec3D, pos2: Vec3D,
squared_cutoff_radius: f64) -> Vec3D {
let dx = pos2.x - pos1.x;
let dy = pos2.y - pos1.y;
let dz = pos2.z - pos1.z;
let squared_distance = dx*dx + dy*dy + dz*dz;
if squared_distance < squared_cutoff_radius {

let f = potential(squared_distance);
Vec3D{x: f*dx, y: f*dy, z: f*dz}

}
else {

Vec3D{x: 0.0, y: 0.0, z: 0.0}
}

}

Listing 6: General pair interaction kernel

distance between both particles is computed and compared with
the squared cutoff radius, i.e. the range of the potential. If the
particles are in range, the force is computed according the
present potential, which in turn is used to update the total
force of one or both particles. In case Newton’s third law
applies, in theory, only half of the interactions need to be
computed and both particles can be updated. On the downside,
in a parallel setting updating the same particle on different
threads induces race conditions that require the use of atomic
data updates and significantly reduce the overall performance.
Apart from that, the computation of the interaction itself does
not induce any data dependencies and can be computed for
all particle pairs in parallel. In the best case, the data of all
interacting particles is accessed in a consecutive way, which
allows the exploitation of data parallelism on multiple particles
and ensures spatial data locality. To enable consecutive accesses
on both the positions and forces of a particle, the data of all
particles can be stored in a single global structure of arrays
(SoA) containing individual arrays for the masses, positions
and velocities of all particles, as shown in Listing 7. Therewith,
there is a high probability that subtracting the positions of
two interacting particles corresponds to accessing consecutive
elements within the same array. The advantage of organizing
particles into clusters is that this can ensured by construction.
When the interaction between two clusters is computed, the
data elements of the individual particles are guaranteed to
be located at consecutive memory addresses. The remaining
challenge is to organize the data in a way that allows us to
perform all computation on clusters of consecutive particles. As
it has been mentioned in the last section, this can be achieved
through a bucket sort algorithm. In x and y direction the
simulation domain is partitioned into equidistant grid cells.
Each cell contains all particles located within the respective
subdomain. To efficiently transfer data between the cells and
the Particles structure, we again store all relevant data in a

structure of arrays. Because particles must be redistributed prior
to the sorting, it is necessary to manage dynamically growing
arrays within each cell. Though in our experience, in most
cases it is sufficient to initially allocate enough memory, such
that reallocations are only rarely necessary. After the clusters
have been identified, the bounding box is computed for each
cluster, which in turn is used within the distance computation
during the neighbor list creation. To assemble the neighbor
list of a cluster, only clusters in the same and neighboring
cells must be considered by computing the distance between
the respective bounding boxes. The number of unnecessary
computations within the interaction kernel can be reduced by
computing the pairwise distance between particles of clusters
whose bounding box distance is close to the cutoff radius.
Finally, after all particles are organized in clusters and the
neighbor list has been assembled for each cluster, the global
arrays can be constructed. In order to maintain the obtained
knowledge about each individual cluster and its neighbors,
three additional integer arrays are required (see Listing 7):

• the global indices of all neighbors (neighborlists),
• the number of neighbors per cluster

(neighbors_per_cluster),
• the offset of the first neighbor within the global arrays

containing the actual particle data (neighborlist_offsets).
Additionally, we want to omit all dummy particles within the
computation, which can be achieved by storing a bit value
for each individual particle that can later be used for masking
out individual particles. The resulting global data structure is
shown in Listing 7.

struct Particles {
number_of_particles: i32,
masses: &[f64],
positions: &[f64],
velocities: &[Vec3D],
forces: &[Vec3D],
number_of_clusters: i32,
neighborlists: &[i32],
neighborlist_offsets: &[i32],
neighbors_per_cluster: &[i32],
mask: &[bool]

}

Listing 7: Global particle arrays

B. Code Generation and Execution

The next step is to define a unified base in Impala from which
code for different platforms can be generated and executed.
Here we first describe our generalized code for the computation
of all pairwise interactions between a system of particles.
Assume there is a higher-order function execute that allows us
to generate and execute arbitrary code on different platforms
and to perform an update on all particles in parallel. All
details about the execution model of each platform are hidden
within the implementation of this function. As we perform all
computations on clusters of particles, the following information
is required to perform an update on a certain particle with
respect to the present interactions: The particle’s global index



pi within the arrays containing all particle data, the index
of its cluster ci and the size of a cluster, i.e. the number of
particles per cluster. Listing 8 shows the resulting interface
for the execute function. With the availability of a general

fn execute(particles: Particles,
fun: fn(i32, i32, i32) -> ()) -> ();

// example application
for pi, ci, cluster_size in execute(particles) {
// update particle pi in cluster ci
...

}

Listing 8: Interface for executing arbitrary particle updates

code generation and execution function, the computation of all
pairwise interactions can be implemented. This implementation
is shown in Listing 9. Impala provides the for construct as
syntactic sugar for calling a higher-order function with an
anonymous function as its last argument. Here we call the
execute function with an anonymous function that possesses
the three arguments pi, ci, cluster_size and executes the body
of the construct dependent on those arguments. We assume that
functions for accessing the individual data elements within the
global arrays described in Listing 7 are available. On which
platform the data is located can be abstracted using AnyDSL’s
Buffer structure as described in the last section. If the data
is allocated on a different device than the host CPU, it is
necessary to transfer it before the interaction computation.
To avoid unnecessary computations from the beginning, all
dummy particles are masked out. Then the interactions of the
particle pi with all particles in the same cluster are evaluated
and its force is updated accordingly. Both the computation of a
single interaction and the force update happen in the function
update_force. Here we leave open if the force of only one
particle is updated or of both. As it has been discussed in the
last section, the latter requires the use of atomic operations.
If the size of a cluster is statically known, the computation
can be unrolled using the unroll function, which is provided
by the AnyDSL runtime. Interactions with dummy particles
are again masked out. Next the interactions with all clusters
in the neighbor list are computed in a similar way. This can
be achieved through an iteration over the respective part of
the global array of all neighbors (neighborlists). For a simply
range-based iteration similar to a for-loop in C, AnyDSL
provides the range function.

The integration of the positions and velocities of all particles
can be implemented in a similar way, but because the overall
runtime of a molecular dynamics simulation is typically domi-
nated by the interaction computation, we omit their description
here. What now remains is the implementation of the execute
function for different platforms. As it has been described in
Section II, AnyDSL provides the Accelerator structure to
generate and execute code on platforms other than the host
CPU. Consequently, only two different implementations, one
for the CPU and one for different accelerator hardware, either
represented by a CUDA, OpenCL or HSA platform needs

fn compute_forces(particles: Particles,
r_cut_sqr: real_t,
potential: fn(real_t) -> real_t) -> () {

for pi, ci, cluster_size in execute(particles) {
if get_mask_value(pi, particles) {
let begin = ci * cluster_size;
for j in unroll(0, cluster_size) {
let pj = begin + j;
// Calculate interactions within cluster
if pi != pj && get_mask_value(pj, particles) {
update_force(particles, pi, pj,
r_cut_sqr, potential);

}
}
let number_of_neighbors =
get_number_of_neighbors(ci, particles);
let offset = get_offset(ci, particles);
let nls = get_neighborlists(particles);
// calculate interactions with all neighbors
for cj in range(0, number_of_neighbors) {
let begin_neighbor = nls(offset + cj);
for j in unroll(0, cluster_size) {
let pj = begin_neighbor + j;
if get_mask_value(pj, particles) {
update_force(particles, pi, pj,
r_cut_sqr, potential);

}
}

}
}

}
}

Listing 9: Interaction computation

to be provided. Listing 10 shows the implementation for the
CPU. To make use of the multithreading capabilities of modern
CPU hardware, AnyDSL provides the parallel function, that
automatically parallelizes the execution of functions on a certain
range, similar to the functionality provided by OpenMP. Each
call to parallel automatically divides the provided range by the
number of threads while each thread performs the execution
of the function on the respective fraction4. Within each thread,
the function body is then executed on all particles of the
respective clusters. The size of a cluster is globally fixed and
can be obtained with the function get_cluster_size. If the
cluster size is statically known, we make use of the unroll
function, to unroll the computation on the particles of a certain
cluster. We need to mention here that AnyDSL provides the
possibility to automatically vectorize code regions using RV,
a unified region vectorizer [25], which could be used as an
alternative to unrolling. But since so far we have not managed to
generate an efficient vectorization with this approach, we only
enforce unrolling within Impala, while relying on LLVM for the
vectorization. As a final step, we describe the implementation of
execute for the code generation and execution on accelerator
hardware, which is shown in Listing 11. To abstract over
different platforms that all target the same hardware, we

4Based on OpenMP, the same could be achieved in C or Fortran via annota-
tion with the compiler directive #pragma omp parallel for schedule(static)
while OMP_NUM_THREADS is set accordingly.



fn execute(particles: Particles,
body: fn(i32, i32, i32) -> ()) -> () {

for ci in parallel(get_number_of_threads(), 0,
particles.number_of_clusters) {

let cluster_size = get_cluster_size();
let begin = ci * cluster_size;
for i in unroll(0, cluster_size) {

let pi = begin + i;
body(pi, ci, cluster_size);

}
}

}

Listing 10: Execution function on the CPU

make use of AnyDSL’s Accelerator structure. Depending on
which platform one wants to target, we provide a different
implementation of the function get_accelerator. For example,
to generate code for a CUDA platform with device device_id
cuda_accelerator(device_id) is returned. Next a partitioning
of the particle data into subproblems must be defined. Because
our algorithm already provides a partitioning of particles into
clusters, we simply create a one dimensional grid with a size
equal to the number of particles, and then choose the block
size to be equal to the size of one cluster. Consequently, the x
component of the global grid index gidx corresponds to the
particle index pi, and the x component of the block index bidx
corresponds to the cluster index ci. With the implementation

fn execute(particles: Particles,
body: fn(i32, i32, i32) -> ()) -> () {

let acc = get_accelerator(device_id);
let size = particles.number_of_clusters;
let grid = (size * get_cluster_size(), 1, 1);
let block = (get_cluster_size(), 1, 1);
for bid, bdim, gid in acc.exec(grid, block) {
let (gidx, _, _) = gid;
let (bidx, _, _) = bid;
let (bdimx, _, _) = bdim;
body(gidx(), bidx(), bdimx());

}
acc.sync();

}

Listing 11: Execution function on accelerators

of an execute function that represents the execution model
of the given hardware, we are able to generate and execute
code on arbitrary platforms without adapting our kernel for
the computation of pairwise interactions. The only adaption
required is the choice of an appropriate cluster size. On the
CPU it makes sense to choose a cluster size equal to the width
of the SIMD units for vectorization. On the GPU the cluster
size directly maps to the size of a block, and therefore should
be chosen as a multiple of the warp size. In the next section
we demonstrate how we are able to generate and execute
code on different CPU and GPU hardware. As baseline for
an evaluation of the performance of our implementation we
compare it with miniMD, a molecular dynamics miniapplication
from the Mantevo project [26], that uses the same computational
core as the popular molecular dynamics package LAMMPS [8].

IV. EXPERIMENTS

The miniMD simulation package is based on an imple-
mentation of the classical verlet list scheme that works with
individual particles instead of clusters. Therefore, to allow
a fair comparison we set the size of a cluster within our
implementation to one. Because updating both particles for
every computed interaction requires the use of atomics, which
impedes an efficient thread-based parallelization, we use a full
neighbor computation scheme in both implementations, where
only one particle is updated per interaction and all interactions
are computed twice. The following settings are used within all
test runs:

• Particles are placed on an equidistant grid and initialized
with a small random velocity.

• Number of simulated time steps: 100
• Time step size: dt = 0.001
• Lennard-Jones Potential with ε = 1, σ = 1, rcut = 2.5.
• Verlet buffer: 0.3
• Neighbor list update after 20 time steps.
• Particle sorting in each cell after 20 time steps.
• Full neighbor interaction scheme.
• All floating point operations are performed in double

precision.
• AnyDSL: LLVM version 5.0.1
• 5 runs per benchmark. The average runtime is measured.
• Compiler flags: -O3, -march=native

A. Single-Core Performance

To evaluate the single-core performance of our implemen-
tation compared to miniMD, we measure the performance on
three recent Intel CPU generation in a simulation of 50 000
particles with LIKWID [27]. To ensure reliable measurements
the frequency of each CPU is fixed. The number of floating
point operations per cycle serves as the performance metric,
which means that all floating point operations are counted,
including those required for non-interacting particles within
the neighbor lists. MiniMD is compiled using the Intel C
compiler version 17.0.5, whereas the Impala code is first
translated to LLVM IR using the recent version of Impala
and Thorin and then compiled using Clang 5.0.1. Since our
implementation so far does not produce efficient AVX code,
we use two different vectorized versions of miniMD for the
comparisons, once without and once with AVX instructions.
The results are summarized in Table I. On all three architectures
LLVM was only able to partially vectorize the generated IR
code with SSE instructions. According to LIKWID, 25–27 %
of the generated instructions are SSE instructions and no AVX
instructions are generated at all. Still, on the recent Intel CPU
generations Skylake and Broadwell we are able to achieve
similar performance to miniMD without AVX. Although as
the miniMD AVX version shows, the lack of generated AVX
instructions limits the performance of our implementation on
the CPU.



Table I: Single-Core Performance in FLOPS/cycle

Processor AnyDSL (SSE) miniMD (SSE) miniMD (AVX)
Skylake ESP 0.73 0.76 0.94
Broadwell EP 0.79 0.81 1.00
Ivy Bridge EP 0.52 0.81 1.02

B. Parallel Efficiency

Next we evaluate the parallel efficiency of our implementa-
tion in a strong and weak scaling setup on a Socket with four
physical cores (Intel Xeon CPU E3-1275 v5 with 3.60 GHz).
For strong scaling the particle number is fixed to 100 000 while
the number of threads is increased. For weak scaling the number
of particles per thread is set to 50 000. The resulting parallel
efficiency is shown in Figure 1a and Figure 1b, respectively. In
both settings our implementation achieves a parallel efficiency
of 96 % on two cores, which is similar to miniMD, though
its efficiency drops to about 80 % when four cores are used,
which is slightly worse than that of miniMD.

C. GPU Acceleration

Finally, we evaluate how much acceleration our implemen-
tation achieves on recent GPU hardware. As test platform an
NVIDIA GTX 1080 is used, whereas the code is generated
with AnyDSL’s CUDA backend. For comparison we again
employ an Intel Xeon Skylake with four cores and measure the
runtime of both implementations (AnyDSL and miniMD with
AVX) with different particle numbers using four threads. The
generated CUDA code is then run with the same settings on
the NVIDIA GTX 1080. Within our GPU implementation we
set the size of a cluster to 32, which has consistently shown to
lead to the best performance. The results of this comparison are
shown in Table II. Even for relatively small particle numbers
we are able to achieve a speedup of 3.2 or more on the GPU and
are at least 2.7 times faster than miniMD with AVX, whereas
the overhead for moving the particle data to the GPU is only
about 1 % of the total runtime.

Table II: Average runtime on the CPU and GPU

Particles miniMD (AVX) AnyDSL (SSE) AnyDSL (GPU)
100 000 1.464 s 1.791 s 0.546 s
500 000 7.641 s 9.347 s 2.838 s

1 000 000 14.81 s 19.39 s 4.923 s
2 000 000 32.77 s 39.06 s 11.60 s

V. CONCLUSION AND FUTURE WORK

Within this paper we have presented a general approach
to generate code for parallel pair interaction computations on
different platforms based on a unified base. This means we
do not have to use different languages like a combination of
C++ and CUDA in order to make use of the GPU. In contrast
to code generation based on external DSLs, such as [28], that
require the implementation of a dedicated code generator, our
approach can in principle be implemented as embedded DSL in
any programming language that enables the partial evaluation
of higher-order functions, which we have demonstrated with

the presented implementation in AnyDSL. However, currently
AnyDSL is the only framework that supports the partial
evaluation of higher-order functions.

From a performance perspective, although we already achieve
similar performance to the miniMD simulation package without
AVX, we perform no architecture-specific optimizations so far
and we were not able to generate fully vectorized code based
on our implementation. Thus we will next strive to achieve a
complete vectorization based on the use of AnyDSL’s integrated
vectorization capabilities. Moreover, this work only presents a
node-level parallelization and we plan to extend our approach
to a cluster-level parallelization based on MPI in order to target
multi-node systems.
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