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The AnyDSL Approach to Code Generation
I Uniform syntax for the static and dynamic parts of a program
I Code generation is triggered through Partial Evaluation
I Typesafe template metaprogramming without additional syntax

Template Metaprogramming in C++

template <int N> struct Factorial {
enum{

value = N*Factorial<N-1>::value
};

};
template <> struct Factorial<0> {

enum {value = 1};
};

Partial Evaluation in Impala

// by supplying the @-annotation
// the compiler will evaluate this function
// at every call-side where n is available
fn factorial(@n: i32) -> i32 {

if n == 0 {1}
else {n * factorial(n - 1)}

}

Molecular Dynamics

I Simulation of the trajectories of a large number of particles based on their interactions
I The computation of short-range interactions is an important use case in many

simulations
I Most implementations employ a combination of cell decomposition and neighbor

lists

Computing Pairwise Interactions Efficiently on Modern
Architectures

I In 2013 Páll and Hess presented an adaption
of the neighbor list scheme to modern SIMD
and GPU architectures

I Particles are not treated individually but as a
cluster of N particles

I Interactions are computed between clusters
I Choosing N according to the SIMD/SIMT width

enables data parallel computation

Kernel Generation through Partial Evaluation

I The execution of a certain computation on a system of particles can be expressed as
the following higher-order function:
fn execute(particles: Particles, kernel: fn(i32, i32, i32) -> ()) -> ();

I By partially evaluating execute with respect to its second argument, code generation
is triggered

I All details about the target platform are hidden within its implementation
I To generate code for different platforms, different implementations must be provided

Kernel Generation on the CPU
I The AnyDSL runtime library provides functionality for automatic parallelization and

vectorization on the CPU
fn execute(particles: Particles, @kernel: fn(i32, i32, i32) -> ()) -> () {

// Thread-parallel execution
parallel(get_number_of_threads(), i, 0, particles.number_of_clusters, |ci| {

let cluster_size = get_cluster_size();
let begin = ci * cluster_size;
// Vectorization using RV
vectorize(cluster_size, get_alignment(), 0, cluster_size, |i| {

let pi = begin + i;
kernel(pi, ci, cluster_size);

});
});

}

Kernel Generation on the GPU
I For execution on GPU hardware, the accelerator struct can be employed, which

supports CUDA, NVVM and OpenCL as backend
fn execute(particles: Particles, @kernel: fn(i32, i32, i32) -> ()) -> () {

let acc = get_accelerator(device_id);
let grid = (particles.number_of_clusters * get_cluster_size(), 1, 1);
let block = (get_cluster_size(), 1, 1);
acc.exec(grid, block, |bid, bdim, gid| {

let (gidx, _, _) = gid;
let (bidx, _, _) = bid;
let (bdimx, _, _) = bdim;
kernel(gidx(), bidx(), bdimx());

});
acc.sync();

}

Single-Core Performance in FLOPS/cycle

I AnyDSL: LLVM version 5.0.1 with RV for vectorization, -O3, -march=native
I MiniMD: Intel C compiler version 18 with -O3, -xHost, -qopt-zmm-usage=high (SKL)

Processor AnyDSL MiniMD
Skylake 5.816 (AVX512) 3.618 (AVX512)

Broadwell 2.928 (AVX2) 1.695 (AVX2)
Ivy Bridge 2.103 (AVX) 1.034 (AVX)

Acceleration on the GPU
I CPU test platform: Intel Xeon E3-1275 v5 with four cores
I GPU test platform: NVIDIA GTX 1080, AnyDSL Backend: NVVM, Cluster size: 32
I Double-precision floating-point computations
I The generated GPU code runs around 5 times faster

Particles AnyDSL (AVX2) AnyDSL (GPU)
100 000 1044.39 ms 194.101 ms
500 000 4300.2 ms 826.627 ms

1 000 000 7652.97 ms 1684.18 ms
2 000 000 15014.7 ms 3294.85 ms
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