
Jonas Schmitt1 Harald Köstler1 Jan Eitzinger2 Richard Membarth3 Arsène Pérard-Gayot3

1Chair for System Simulation (LSS) and 2Regional Computing Center Erlangen (RRZE), Universität Erlangen-Nürnberg

3German Research Center for Artificial Intelligence (DFKI), Universität des Saarlandes

Unified Code Generation for the Parallel Computation of Pairwise
Interactions using Partial Evaluation

AnyDSL - A Framework for Rapid Development of
Domain-Specific Libraries

Computer
Vision DSL Bio DSL Raytracing

DSL
... ...

...

OpenCL CUDA

NVVM Native AMDGPU

Parallel Runtime DSL More layered DSLs...

Impala programming language

AnyDSL Intermediate Representation (Thorin)

LLVM with Region Vectorizer

The AnyDSL Approach to Code Generation
I Uniform syntax for the static and dynamic parts of a program
I Code generation is triggered through Partial Evaluation
I Typesafe template metaprogramming without additional syntax

Template Metaprogramming in C++

template <int N> struct Factorial {
enum{

value = N*Factorial<N-1>::value
};

};
template <> struct Factorial<0> {

enum {value = 1};
};

Partial Evaluation in Impala

// by supplying the @-annotation
// the compiler will evaluate this function
// at every call-side where n is available
fn factorial(@n: i32) -> i32 {

if n == 0 {1}
else {n * factorial(n - 1)}

}

Molecular Dynamics

I Simulation of the trajectories of a large number of particles based on their interactions
I The computation of short-range interactions is an important use case in many

simulations
I Most implementations employ a combination of cell decomposition and neighbor

lists

Computing Pairwise Interactions Efficiently on Modern
Architectures

I In 2013 Páll and Hess presented an adaption
of the neighbor list scheme to modern SIMD
and GPU architectures

I Particles are not treated individually but as a
cluster of N particles

I Interactions are computed between clusters
I Choosing N according to the SIMD/SIMT width

enables data parallel computation

Kernel Generation through Partial Evaluation

I The execution of a certain computation on a system of particles can be expressed as
the following higher-order function:
fn execute(particles: Particles, kernel: fn(i32, i32, i32) -> ()) -> ();

I By partially evaluating execute with respect to its second argument, code generation
is triggered

I All details about the target platform are hidden within its implementation
I To generate code for different platforms, different implementations must be provided

Kernel Generation on the CPU
I The AnyDSL runtime library provides functionality for automatic parallelization and

vectorization on the CPU
fn execute(particles: Particles, @kernel: fn(i32, i32, i32) -> ()) -> () {

// Thread-parallel execution
parallel(get_number_of_threads(), i, 0, particles.number_of_clusters, |ci| {

let cluster_size = get_cluster_size();
let begin = ci * cluster_size;
// Vectorization using RV
vectorize(cluster_size, get_alignment(), 0, cluster_size, |i| {

let pi = begin + i;
kernel(pi, ci, cluster_size);

});
});

}

Kernel Generation on the GPU
I For execution on GPU hardware, the accelerator struct can be employed, which

supports CUDA, NVVM and OpenCL as backend
fn execute(particles: Particles, @kernel: fn(i32, i32, i32) -> ()) -> () {

let acc = get_accelerator(device_id);
let grid = (particles.number_of_clusters * get_cluster_size(), 1, 1);
let block = (get_cluster_size(), 1, 1);
acc.exec(grid, block, |bid, bdim, gid| {

let (gidx, _, _) = gid;
let (bidx, _, _) = bid;
let (bdimx, _, _) = bdim;
kernel(gidx(), bidx(), bdimx());

});
acc.sync();

}

Single-Core Performance in FLOPS/cycle

I AnyDSL: LLVM version 5.0.1 with RV for vectorization, -O3, -march=native
I MiniMD: Intel C compiler version 18 with -O3, -xHost, -qopt-zmm-usage=high (SKL)

Processor AnyDSL MiniMD
Skylake 5.816 (AVX512) 3.618 (AVX512)

Broadwell 2.928 (AVX2) 1.695 (AVX2)
Ivy Bridge 2.103 (AVX) 1.034 (AVX)

Acceleration on the GPU
I CPU test platform: Intel Xeon E3-1275 v5 with four cores
I GPU test platform: NVIDIA GTX 1080, AnyDSL Backend: NVVM, Cluster size: 32
I Double-precision floating-point computations
I The generated GPU code runs around 5 times faster

Particles AnyDSL (AVX2) AnyDSL (GPU)
100 000 1044.39 ms 194.101 ms
500 000 4300.2 ms 826.627 ms

1 000 000 7652.97 ms 1684.18 ms
2 000 000 15014.7 ms 3294.85 ms

https://www10.cs.fau.de jonas.schmitt@fau.de

