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Figure 1: Focal points can emerge from various situations. Here we demonstrate the pinhole effect as part of a camera obscura,
in which a focal point is created as rays are forced to converge in a small region of space. A small hole in the wall causes the

brightly illuminated statue on the left to be projected onto the canvas on the right. This phenomenon is challenging even for

sophisticated algorithms, as the location in which rays converge is not generally known beforehand, hindering the systematic

exploration of such effects. Path guiding utilizes learning to react to unforeseen effects, but even state-of-the-art approaches

such as PAVMM [Ruppert et al. 2020] fail to reconstruct focal points reliably. We propose a novel form of guiding, based on

identifying and explicitly sampling focal points, which significantly accelerates convergence for various kinds of focal effects.

ABSTRACT

Focal points are fascinating effects that emerge from various con-
stellations, for example when light passes through narrow gaps
or when objects are seen through lenses or mirrors. These effects
can be challenging to render, as paths need to pass through small
regions that are not always known beforehand and can occur freely
in space. Specialized algorithms exist for some effects, but many
of them rely on Markov chain Monte Carlo integration, which is
known to suffer from uneven convergence undesirable in practice.
Path guiding methods are a promising alternative, but existing tech-
niques only handle a subset of focal effects. We propose a novel
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form of guiding that is specifically tailored to identify focal points
and sample them in accordance to their image contribution. Our
technique is the first to unify all focal effects in a single frame-
work and we demonstrate that it can render effects that previous
state-of-the-art techniques are unable to handle.
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1 INTRODUCTION

The desire to synthesize realistic images from virtual scenes is
ubiquitous—be it in the entertainment industry, medical visualiza-
tion, architecture or e-commerce. Despite decades of research, there
is still no single algorithm that robustly handles all intricate ways
in which light interacts with matter. A particularly challenging
class of phenomena is that of focal points. These occur whenever
light converges in small regions, for example when passing narrow
gaps—like a keyhole in a closed door—or when beams of light are
focused by lenses or reflectors. Even sophisticated methods struggle
with such effects, as the location and extent of such regions is not
always known beforehand.

A promising approach that can adapt to unforeseen light trans-
port is path guiding, which uses information from earlier samples
to learn from where to expect light. Once an important source of
light is identified, the following samples thoroughly explore it to
arrive at a noise-free render. While this approach has the poten-
tial to handle focal effects, we find that existing guiding methods
struggle to learn accurate representations of focal regions. This is
especially troublesome when focal points occur in free space, as
demonstrated in Figure 1.

We propose a novel form of guiding, which is specifically tai-
lored to handle focal effects. Instead of learning a directional or
path space distribution like previous work, our method learns a spa-
tial distribution that is not restricted to surfaces. Our method can
robustly identify and sample focal points, even those in free space.
We categorize focal effects into different classes, and show that our
method is the first to unify all of them in a single framework. For
many classes of focal points, our algorithm achieves substantial
improvements over the respective previous state-of-the-art.

In summary, we make the following contributions:
• We identify and classify common sources of focal points
and survey how they are handled by existing families of
algorithms (Section 3)

• We introduce an iterative scheme which identifies relevant
regions of focal light transport in a given scene (Section 4)

• Wepresent a novel guiding approach based on sampling focal
points and discuss how it can be implemented efficiently
(Section 5)

Our implementation of the proposed algorithm is available at
https://github.com/iRath96/focal-guiding.

2 BACKGROUND AND RELATEDWORK

Light transport. Simulating light has been a highly active area
of research for nearly 40 years. The common goal is to compute
the rendering equation [Kajiya 1986], which describes how light
propagates through virtual environments. The value of a pixel 𝐼px
is obtained by integrating the contribution function 𝑓px over the
space P of all light transport paths that connect the pixel to a light
source [Veach 1998],

𝐼px =

∫
P
𝑓px (𝑥) d𝑥 . (1)

This integral is challenging to compute as it is infinite-dimensional
and features many discontinuities, strong peaks, and singularities.
It is usually computed through Monte Carlo integration.

Monte Carlo light transport. The Monte Carlo estimator

⟨𝐼px (𝑥)⟩ = 1
𝑛spp

𝑛spp∑︁
𝑖=1

𝑓px (𝑥𝑖 )
𝑝 (𝑥𝑖 ) (2)

generates random path samples 𝑥 distributed with probability den-
sity 𝑝 (𝑥) and averages their contributions. This estimator converges
to the desired integral with increasing sample count 𝑛spp. The rate
of convergence can be greatly improved through a well-chosen
probability density function (PDF) 𝑝 (𝑥), which we strive to achieve
with our work.

Forward path tracing. Forward path tracing [Kajiya 1986] is the
go-to solution for most production renderers at the moment. Paths
are constructed through random walks initiated at the camera, and
are usually augmented by next event estimation, which attempts
direct connections to light sources at each intersection. Though
enhancements such as manifold next event estimation [Hanika et al.
2015; Zeltner et al. 2020] are possible to capture, e.g., caustics and
glints, it remains challenging to find all types of light transport
with a-priori fixed forward sampling alone.

Bidirectional methods. Bidirectional methods additionally extend
paths from the lights into the scene, either by connecting camera-
and light subpaths [Lafortune and Willems 1993; Veach and Guibas
1995a], merging them at nearby vertices [Shirley et al. 1995; Jensen
1996; Walter et al. 1997] or a combination of the two [Georgiev
et al. 2012; Hachisuka et al. 2012]. Thus, they can efficiently capture
focused indirect illumination and caustics in small scenes. Large
scenes, like outdoor settings, are problematic because many light
paths never find the visible region. Further, bidirectional sampling
can struggle when light has to pass through narrow gaps.

Path guiding. Path guiding methods construct adaptive sampling
distributions on-the-fly to progressively improve rendering perfor-
mance. They can operate with forward or bidirectional path tracing
and help finding effects that are difficult to sample. Most methods
focus on learning local directional distributions [Vorba et al. 2014;
Müller et al. 2017], which struggle to reliably sample focal points
as the parallax is left unaccounted for. Adjusting the directional
distributions for parallax, as done by Ruppert et al. [2020], requires
the distance to the focal point to be known beforehand, which is
generally only the case for a limited subset of focal effects.

Recently, path space distributions are gaining popularity [Rei-
bold et al. 2018; Schüßler et al. 2022; Li et al. 2022], which are
capable of learning the correlation between consecutive path ver-
tices. While this enables them to represent and sample arbitrary
focal effects, their inherent local nature hinders them from reliably
identifying focal points for all regions of the scene. Oftentimes,
individual regions will fail to find some focal effects, resulting in
renders that exhibit islands of high variance.

We present a novel path guiding approach that explicitly models
focal regions and shares information globally, enabling it to robustly
identify and sample focal effects.

MCMC. Markov chain Monte Carlo methods mutate paths such
that they eventually achieve a desired distribution [Metropolis et al.
1953; Veach and Guibas 1997; Kelemen et al. 2002]. They are typi-
cally based on bidirectional path tracing, as they require good initial

https://github.com/iRath96/focal-guiding
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Figure 2: We identify common causes of focal points. Surface-bound focal points include direct light sources (a) and indirect

sources like caustics or spots (b). Focal points also occur in free space, for example when light must pass narrow gaps (c) or

when lensing effects shift the apparent position of other focal points (d). Existing algorithms only handle subsets of such

effects, often relying on smoothness assumptions or specific types of geometry. Our method does not rely on such assumptions

and unifies all focal effects in a single framework.

samples to perform well. A main benefit of MCMC methods is that,
through carefully designed mutations and acceptance probabilities,
specialized solutions can be found that handle almost any problem.
For instance, caustics can be captured through manifold exploration
[Jakob and Marschner 2012], small gaps through geometry-aware
mutations [Otsu et al. 2018], and so on. Unfortunately, MCMCmeth-
ods exhibit uneven convergence and correlation artefacts, making
them less popular in practice.

3 FOCAL EFFECTS

In the following, we outline the importance of focal effects in light
transport and discuss how they are handled by existing techniques.
To this end, we group focal effects in different classes and introduce
terminology that we will use throughout the remainder of the paper.

Focal points arise where many light paths from different direc-
tions converge in a small region of space. Common causes for focal
points are illustrated in Figure 2. We classify focal effects in the
following three categories:

• Direct focal points are small light sources (light focal points)
or the camera itself (camera focal points)

• Indirect focal points are caused when objects interact with
light, either through diffuse reflection of brightly illumi-
nated spots (diffusing focal points) or by forcing light to pass
through narrow gaps (occlusion focal points)

• Virtual images are the apparent position of focal points seen
through (potentially multiple) reflection or refraction events

We refer to focal points as surface-bound when their position lies
on a surface (light, camera, and diffusing focal points) and as free
space when they occur away from surfaces (occlusion focal points
and virtual images).

Direct focal points. These focal effects are the simplest to handle.
Since their location is known beforehand, they lend themselves
well to explicit sampling, either by starting random walks in their
position or by trying to connect to them directly (e.g., through
next event estimation). A careful sampling of light sources may be

necessary if the scene contains many of them [Walter et al. 2005;
Cline et al. 2006; Vévoda et al. 2018; Guo et al. 2020a; Yuksel 2021].

Indirect focal points. More challenging are indirect sources of
focal points, the location of which is not known a-priori. Diffusing
focal points can be connected to, either by bidirectional methods
or by learning their location through path guiding. Occlusion focal
points cannot be connected to, as they do not occur at path vertices,
but rather at an unknown point on the path in free space. While
occlusion of direct light can be sampled explicitly through user
intervention [Bitterli et al. 2015; Ogaki 2020], complex visibility of
indirect light is still notoriously difficult and only explored well by
specialized MCMC mutations [Otsu et al. 2018].

Virtual images. The complexity of sampling virtual images de-
pends greatly on the type of the original focal point and the size
and smoothness of the surface producing the virtual image.

Direct virtual images. For virtual images of direct focal points,
random walks initiated at the focal point work well if the surface
causing the virtual image is large enough to be found by exploration
(e.g., a camera pointed at a mirror is handled well by forward path
tracing). Connections to virtual images of direct focal points are
possible through specialized sampling techniques [Hanika et al.
2015; Zeltner et al. 2020; Jakob and Marschner 2012] (e.g., connect-
ing to glass-enclosed light sources in forward path tracing), but
require that the surface producing the virtual image is sufficiently
large and smooth.

Indirect virtual images. Virtual images of indirect focal points
are more challenging: While diffusing focal points can be handled
by some specialized techniques [Li et al. 2022; Jakob and Marschner
2012], images of occlusion focal points remain extremely difficult
to find and can only be explored through MCMC methods. Apart
from virtual diffusing focal points [Li et al. 2022] and reflections
of surface-bound focal points in flat mirrors [Ruppert et al. 2020],
virtual images are currently not well explored by path guiding
methods, as they are unable to reconstruct the location of free
space focal points.
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(a) Directional distributions (b) Our spatial distribution

Figure 3: (a) Most guiding algorithms partition space and

learn directional distributions per region. Due to unac-

counted parallax effects, many rays miss the focal point.

Some regions never find the focal point during training and

cause artefacts. (b) Our method samples the spatial regions

themselves, inherently compensating for parallax and shar-

ing information globally.

4 FOCAL GUIDING

We propose a novel form of path guiding, which reliably samples
paths involving focal points that otherwise cause excessive variance
even for sophisticated algorithms. Like many previous approaches,
our guiding augments forward path tracing and iteratively refines
its importance sampling density during rendering. Instead of learn-
ing local directional distributions directly, our method learns a
global distribution over space and samples rays that pass through
focal regions (see Figure 3). This has the benefit that focal points
can be represented explicitly and shared globally. On the flipside,
smoother and locally varying illumination cannot be captured. In
the following, we detail the underlying model of our distribution
and how focal regions are identified.

Spatial densities. The goal of path guiding in forward path tracing
is to reconstruct a desired target density 𝑝𝑑 (𝜔𝑖 | 𝑥) from which a
new direction 𝜔𝑖 should be sampled at each intersection 𝑥 . Like
many previous works, we drop the dependency on the outgoing
direction 𝜔𝑜 , which eases training and reduces the computational
cost. Our directional distribution 𝑝𝑑 is implicitly defined through a
spatial density 𝑝𝑠 (𝑦), where the resulting direction 𝜔𝑖 points from
the current intersection 𝑥 towards 𝑦

𝜔𝑖 =
𝑦 − 𝑥

∥𝑦 − 𝑥 ∥ . (3)

The corresponding PDF can be found by integrating along all 𝑦 that
could have produced 𝜔𝑖

𝑝𝑑 (𝜔𝑖 | 𝑥) =
∫ ∞

0
𝑝𝑠 (𝑥 + 𝑡𝜔𝑖 )𝑡2 d𝑡, (4)

where the 𝑡2 results from the change of variables from 𝑦 to𝜔𝑖 . Note
that while 𝑦 lies on the sampled ray, the next vertex of the path is
still found through ray tracing and does not need to coincide with
𝑦, it can also lie before or behind 𝑦.

Discretization. To represent our spatial density, we use adaptive
trees inspired by Müller et al. [2017]. To this end, we use voxels ν
to partition the space of interest 𝑉 (e.g., the scene bounding box)
into disjunct regions 𝑉ν ⊂ 𝑉 . Each region is characterized by con-
stant density 𝑝𝑠 (𝑥) = 𝑝𝑠,ν∀𝑥 ∈ 𝑉ν, leaving us with a piece-wise

constant spatial density. All points outside the region of interest
have zero sampling density. To sample from this density, we first
sample a voxel ν with probability 𝛼ν and then sample a point uni-
formly within its volume 𝑝 (𝑦 | ν) = |𝑉ν |−1. The voxel sampling
probabilities are linked to the guiding density

𝛼ν = |𝑉ν | 𝑝𝑠,ν . (5)

Discretized directional density. Our resulting directional density
is found by summing the probabilities from all voxels

𝑝𝑑 (𝜔𝑖 | 𝑥) =
∑︁
ν

𝛼ν𝑝ν (𝜔𝑖 | 𝑥), (6)

where we analytically integrate Equation (4) within each voxel

𝑝ν (𝜔𝑖 | 𝑥) =
{
𝑡3

1 −𝑡3
0

3 |𝑉ν | if intersected
0 else.

(7)

Here, 𝑡0 and 𝑡1 denote the distances of entry and exit of the ray as
it intersects the region 𝑉ν of the voxel ν.

Our heuristic density. To find how the focal points are distributed,
we will make use of their definition: A continuum of paths that
participate in a focal effect must all meet in the same point to make
a contribution to the image. We say a path meets in a point if the
point lies on any of the lines that constitute the path, even if it
lies behind an intersection or before the ray origin. To characterize
focal points, we introduce the point-wise contribution integral

ℱ(𝑝) = 1
𝑛px

∑︁
px

∫
P(𝑝 )

𝑓px (𝑥) d𝑥, (8)

where P(𝑝) ⊆ P is the space of all paths that meet in 𝑝 . This
integral is viewpoint-aware by design—we sample focal points
proportional to their image contribution instead of their raw light
intensity. This prioritizes focal points that have a high impact on
the image and avoids those that are not visible at all. An example
of this integral is illustrated in Figure 4a. Since many paths meet
in focal points, they cause peaks in the integral ℱ(𝑝), making it a
good initial guess for our guiding density

𝛼ν ∝
∫
𝑉ν

ℱ(𝑝) d𝑝. (9)

Here, we set the selection probability of a voxel ν proportional to
the contribution of all paths that pass through the voxel.

Estimating our density. An estimate 𝛼 of our density can be ob-
tained simply by logging the contribution of paths as they are
traced:

𝛼ν ∝
𝑛px∑︁
px

𝑛spp∑︁
𝑖=1

𝑛 (𝑥𝑖 )∑︁
𝑗=2

{
(𝑡1 − 𝑡0) 𝑓px (𝑥𝑖 )

𝑝 (𝑥𝑖 ) if intersected
0 else,

(10)

where we collect the contribution from all path segments 𝑗 that
have been sampled. The values 𝑡0 and 𝑡1 denote the entry and exit
distances of the ray 𝑥 𝑗−1

𝑖
→ 𝑥

𝑗
𝑖
in voxel ν, and the multiplication

with 𝑡1 − 𝑡0 results from the integral over the region of the voxel.



Focal Path Guiding for Light Transport Simulation SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

(a) Point-wise contribution integral

Initial Guess Iteration 1 Iteration 5 Converged

(b) Our iterative narrowing scheme (c) Adaptive octrees

Figure 4: (a) We show the point-wise contribution integral of a diffuse surface (white line) illuminated by a large area light

(orange line) through a narrow gap (occluder in red). The camera- and occlusion focal points cause peaks in the integral, as

many paths meet in the same points. (b) Excluding segments that cannot be guided (e.g., camera segments), this serves as initial

guess for our guiding density, which is then iteratively refined to avoid sampling points that are only relevant to subsets of the

focal effect. (c) We represent the guiding density using adaptive octrees.

Spurious focal points. Focal effects are seldom singular points in
practice, but rather small regions of finite extent. Unfortunately, this
creates smearing in the point-wise contribution integral. Consider
Figure 4a: The region within the narrow gap is sufficient to explore
the full focal effect, as all paths need to cross it. But the points above
and below the narrow gap also have a high value, as subsets of the
paths pass them. We refer to these points as spurious focal points.
They are detrimental to the quality of our sampling as they only
benefit subsets of the focal effect, but take away probability mass
that could be invested in true focal points benefiting all paths.

Iterative narrowing. To narrow our distribution down to true
focal points, we introduce a scheme that we refer to as iterative
narrowing. Given a previous distribution estimate 𝛼 , we obtain a
narrowed distribution 𝛼𝑁 by weighting the contributions of paths:

𝛼𝑁ν ∝
𝑛px∑︁
px

𝑛spp∑︁
𝑖=1

𝑛 (𝑥𝑖 )∑︁
𝑗=2

𝑤ν (𝑥 𝑗−1
𝑖

, 𝑥
𝑗−1
𝑖

→ 𝑥
𝑗
𝑖
) 𝑓px (𝑥𝑖 )
𝑝 (𝑥𝑖 ) , (11)

where the weight𝑤ν is given by

𝑤ν (𝑥, 𝜔𝑖 ) = 𝛼ν𝑝ν (𝜔𝑖 | 𝑥)∑
ν′ 𝛼ν′𝑝ν′ (𝜔𝑖 | 𝑥) . (12)

Instead of equally contributing to all intersected voxels, iterative
narrowing weights the contribution to voxels by how likely the
voxel samples the path segment. Since spurious focal points only
capture subsets of focal effects, fewer paths contribute to them
than to the true focal point, leading to lower selection probabilities.
Iterative narrowing then further lowers their value by assigning
lower weights to the contribution from path segments. Applying
this repeatedly effectively eliminates spurious focal points (Fig. 4b).

Diverging focal points. So far, we have glanced over the fact
that focal points can also lie behind the surface we are currently
sampling from. Supporting this is straightforward. We introduce
additional voxels ν– that also partition the region of interest, but
produce directions that point away from the sampled point 𝑦–:

𝜔𝑖 = − 𝑦– − 𝑥

∥𝑦– − 𝑥 ∥ . (13)

These voxels are considered intersected (for logging contributions
or PDF computations) if they lie in negative ray direction.

5 IMPLEMENTATION

We implement our method as a guided forward path tracer in the
Mitsuba renderer [Jakob 2010]. Similar to previous guiding works,
our algorithm proceeds in iterations. Each iteration refines the den-
sity from the previous iteration. The last iteration then renders the
final image. In the following, we detail the exact iteration schedule,
data structure and parameters used by our approach.

Schedule. While it is possible to continue training throughout
the render, there is usually a point where the diminishing returns
of additional training no longer justify the overhead of logging con-
tributions and updating data structures. Determining the optimal
amount of training is still an open problem in path guiding, hence
we follow the compromise of Müller et al. [2017] and split the total
budget into 50% training and 50% final render. The training phase
is further subdivided into iterations, which each train an improved
density by sampling from the density learned in the previous itera-
tion. We find that iterations of equal length [Ruppert et al. 2020]
perform better than iterations of increasing duration [Müller et al.
2017], as they accelerate learning of rare effects and lend themselves
nicely to our iterative narrowing scheme. The training budget is
split equally into 𝑛iter iterations, for which we find a choice of
𝑛iter = 15 to work well across all tested scenes.

Burn-in period. Challenging focal effects can take several iter-
ations before they are discovered. Before enabling iterative nar-
rowing (Section 4), we need to be confident that all relevant focal
points have been identified. Otherwise, once a valid path is finally
discovered, its focal region might already be considered spurious
due to its previously low value. While iterative narrowing can even-
tually recover from such cases, it can take several iterations for a
low-scoring region to be considered focal again. To this end, we
only enable iterative narrowing in the last five training iterations,
which we find sufficient to dismiss most spurious focal points (see
Figure 4b). A more sophisticated remedy to handling rare events
could rely on Bayesian priors [Vévoda et al. 2018; Dodik et al. 2021],
which we leave as future work.

Data structure. We use an adaptive octree to represent our guid-
ing density (see Figure 4c). The region of the root node is set to the
bounding box of the scene. Inspired by Müller et al. [2017], a node
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is split when its selection probability 𝛼ν exceeds a given splitting
threshold 𝛾 . This threshold is the main parameter of our technique:
A lower value yields higher resolution, but requires more samples
to fit and increases the cost of PDF computations. We observe that
a value of 𝛾 = 10−3 works well across all our test scenes, and a
detailed analysis of this parameter is provided in Section 6.

Pruning. The increased resolution of splitting does not always
justify the penalty on traversal cost, in particular when there is little
variation within a node. To mitigate this, we use a simple pruning
heuristic (see Figure 6): We collapse each node where the highest
leaf density does not exceed twice the average density of the node.
We notice that a fine subdivision is still beneficial for learning, so
we prune only after the last training iteration is completed.

Sampling. We obtain spatial samples 𝑦 ∼ 𝑝𝑠 using hierarchical
sample warping [McCool and Harwood 1997]. The direction vector
𝜔𝑖 follows from Eq. (3). For the probability density (Eq. (6)), it
suffices to sum up the voxels intersected by the ray, since all other
voxels have zero probability density of producing the sample. For
this, we use the traversal algorithm by Revelles et al. [2000].

Multiple importance sampling. While our guiding density excels
at sampling focal effects, its performance on other light transport
can be poor. It is therefore advisable to combine it with other sam-
pling strategies using multiple importance sampling [Veach and
Guibas 1995b]. Like Müller et al. [2017], we perform mixture sam-
pling of BSDF and guiding at a fixed ratio of 𝜆𝐵 = 0.5. Similarly,
we also perform next event estimation. No guiding is performed
on specular surfaces, and accordingly we do not log segments that
cannot be guided.

MIS compensation. Path guiding works best when it learns to
augment rather than replace other sampling strategies. This is
known as MIS compensation [Karlík et al. 2019]: We want guiding
to only learn effects not handled well by other sampling strategies
in our MIS combination. To compensate for BSDF sampling, we
use the scheme proposed by Rath et al. [2020], which—similar to
our iterative narrowing scheme—iteratively weights the guiding
distribution by how likely it is to sample an effect. Applied to our
iterative narrowing scheme (Equation (11)), our weights become

𝑤ν (𝑥,𝜔𝑖 ) = (1 − 𝜆𝐵)𝛼ν𝑝ν (𝜔𝑖 | 𝑥)
𝜆𝐵𝑝𝐵 (𝜔𝑖 | 𝑥, 𝜔𝑜 ) + (1 − 𝜆𝐵)

∑
ν′ 𝛼ν′𝑝ν′ (𝜔𝑖 | 𝑥) , (14)

where 𝑝𝐵 is the density of BSDF sampling and 𝜆𝐵 its selection
probability. We additionally multiply the contribution by the next
event estimation MIS weight, as done by Ruppert et al. [2020].

6 EVALUATION

We compare the performance of our method for various focal effects
against the following methods (Figure 5):

• PT: Forward path tracing with next event estimation
[Kajiya 1986]

• MEMLT: Manifold-exploration MLT
[Jakob and Marschner 2012]

• MCVCM: Metropolised vertex connection and merging
[Šik et al. 2016]

• PAVMM: Parallax-aware mixtures for path guiding
[Ruppert et al. 2020]

All techniques are implemented in Mitsuba [Jakob 2010]. PAVMM
and our approach use half of the time budget for learning. Russian
roulette is an orthogonal problem in path guiding, as guided paths
often have low throughput until they reach a light source [Vorba
and Křivánek 2016; Rath et al. 2022], hence we disable Russian
roulette in all techniques for comparability. In addition to our
renders, we demonstrate the benefits of our approach over path
space guiding [Reibold et al. 2018] in a 2-D experiment.

All evaluations were run on a 16-core AMD Ryzen™ 9 3950X
processor with 64 GB of memory. All renders are rendered for
approximately three minutes. We provide the mean squared error
(MSE), for which we clamp outliers at the 99.9% percentile to arrive
at a stable value, and FLIP metric [Andersson et al. 2021].

Splitting threshold. We begin by analyzing the impact of the
main parameter of our approach: the splitting threshold 𝛾 , which
determines the resolution of our adaptive octree. We evaluate its
impact on computational overhead and memory usage, averaged
over three-minute renders of our five test scenes, in Figure 7. Finer
resolutions result in more accurate sampling, at the expense of
higher sample cost. The best efficiency across all scenes is achieved
at a value of 𝛾 = 10−3, but the performance of our algorithm is not
particularly sensitive to its exact value. At this threshold, samples
are roughly twice as expensive as unguided sampling, and the
memory overhead of our method amounts to a mere 76 KiB.

6.1 Camera Obscura

The Camera Obscura scene features an occlusion focal point in
form of a pinhole in the wall, which projects the strongly illumi-
nated statue on the left onto the canvas on the right. Path tracing
struggles with this scene, as uninformed sampling is unlikely to
find the pinhole. MEMLT fails to find a seed path that passes the
pinhole and hence completely misses the projection of the statue.
The metropolised light tracing of MCVCM fails for the same reason,
but as with PT, a few rare eye paths manage to pass through the
pinhole. PAVMM finds the pinhole, but only in small patches of
the scene. Parallax compensation is of little help here, as it aims
rays at surface points of the statue rather than the pinhole that is
causing the focal effect. As evident from our density visualization,
our approach identifies the pinhole as focal region and systemati-
cally constructs paths that pass through it, resulting in significantly
faster convergence than previous state-of-the-art algorithms.

6.2 Dining Room

The parabolic lampshades in our version of the Dining Room scene
create a virtual image of a tiny light source pointing upwards. Path
tracing struggles to find paths that pass the focal region. Based
on bidirectional path tracing, both MEMLT and MCVCM success-
fully construct light subpaths that pass through the virtual light
focal point. The specular jug on the table, however, introduces a
specular-diffuse-specular (SDS) path that prohibits the connection
of eye and light subpaths. MCVCM solves this issue through vertex
merging, introducing bias in the process. MEMLT can reliably ex-
plore SDS paths, but again fails to find a valid subpath to initiate
the exploration. Without light tracing (PT, PAVMM, and our ap-
proach), paths that pass through the virtual image need to be found
explicitly, which only our method can sample systematically.
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6.3 Funky Living Room

The Funky Living Room scene includes a glossy disco ball illumi-
nated by five spot lights. Path tracing struggles to find the correct
facet on the disco ball connecting the path to a spot light. MEMLT
produces noticeable artefacts due to uneven convergence, while
MCVCM exhibits density estimation artefacts. PAVMM learns to
guide towards the disco ball, but mispredicts the parallax distance
of the spotlights. Our approach learns that it is best to aim rays at
the interior of the disco ball, in which all spot lights converge.

6.4 Modern Hall

The Modern Hall scene is illuminated by four tiny area lights en-
closed in translucent boxes, which constitute diffusing focal points.
This effectively prevents next event estimation and makes the tech-
nique difficult for forward unidirectional techniques. For bidirec-
tional methods like MEMLT and MCVCM, however, this scene is
fairly simple to render. As far as unidirectional methods go, PAVMM
performs exceptionally well in this scene, as it can correctly com-
pensate the parallax to the light source given the surface-bound
nature of the focal point. While our method significantly improves
over PT, it falls short of the performance of PAVMMs as it cannot
account for occlusion or the falloff of light over distance.

6.5 Modern Living Room

The Modern Living Room is a failure case of our approach. This
scene is illuminated by a large light source just out of frame, which
is handled very well by next event estimation. The path tracer re-
mains unbeaten in this scene, as the overhead of more sophisticated
methods does not pay off in this simple scene. Our approach faces
an additional problem: Since it cannot represent smoothly varying
illumination, our guiding degrades the quality of sampling in this
scene. This is expected, as our guiding is specifically tailored to
handled focal effects, which are absent from this scene.

6.6 Comparison with Path Space Guiding

In Figure 8 we compare the behavior of path space guiding [Reibold
et al. 2018] and our approach in a simplified 2-D experiment. Paths
originating at a plane need to pass through an obstacle with three
narrow gaps to reach a large area light at the top. Both methods
were trained for 6 iterations with 4096 samples each.

In path space guiding (Fig. 8a), directions are sampled according
to statistics over earlier paths in the vicinity of the current vertex.
This makes the method inherently local, as individual focal points
must be re-discovered for each region of the floor, which is prone to
overlooking parts of focal effects due to the sparsity of constructing
valid focal paths through exploration. In our example, the right side
of the floor has not found sufficient guide paths to reliably sample
the center focal point, which manifests itself in residual outliers
and islands of high variance.

Our approach shares information globally (Fig. 8b), which allows
the entire floor to benefit from robust sampling once a focal region
has been identified. The price for this is that local effects are handled
poorly by our approach: Occlusion, light falloff over distance, and
anisotropic effects are handled much better by local methods, which
can learn different distributions for different regions of space.

7 DISCUSSION AND FUTUREWORK

We have shown a simple method to identify and sample focal points
in a forward path tracer. We believe that there are many promising
ways in which our work could be continued:

Augmenting other techniques. While our technique excels at focal
effects, its performance on general light transport is limited. We
believe its best use is to augment other techniques. For instance, it
could identify light portals [Bitterli et al. 2015; Ogaki 2020] or learn
distances for parallax compensation [Ruppert et al. 2020].

Region of interest. We currently assume that focal points lie
within the bounding box of the scene, which is not necessarily
true for virtual images. It could be interesting to automatically ex-
tend the region of interest when necessary. An alternative approach
could be to use a representation that covers all of space, potentially
with reduced precision for increasing distances.

Handling local effects. Our sampling scheme assumes that fo-
cal points contribute equally throughout the scene, ignoring both
visibility and the falloff of light intensity over distance. A promis-
ing remedy lending itself well to our approach is the voxel-based
learning of visibility by Guo et al. [2020b].

Alternative representations. Our implementation relies on adap-
tive trees [Müller et al. 2017] to represent the focal guiding density.
An interesting alternative would be to fit parametric mixture mod-
els [Vorba et al. 2014; Ruppert et al. 2020; Dodik et al. 2021] or
neural networks [Müller et al. 2019], which could enable product
sampling (to handle local effects) or reduce sample overhead.

Variance-aware target density. Crafting densities that explicitly
minimize image variance can greatly increase the rate of conver-
gence [Rath et al. 2020]. Our guiding scheme learns selection prob-
abilities of a mixture density, in which each voxel is a unique sam-
pling strategy. Unfortunately, finding variance-optimal selection
probabilities remains an unsolved problem [Lu et al. 2013; Sbert
et al. 2018]. Stochastic gradient descent could be a promising tool
to optimize our voxel selection probabilities [Müller et al. 2017].

8 CONCLUSION

Light interacts with our world in fascinating ways. While not all of
them can be simulated yet, this work takes us one step closer by
addressing a class of effects that has received little attention so far:
focal effects. We have classified common causes of focal effects and
surveyed how they are handled by existing families of algorithms.
To render them robustly, we introduced a novel form of guiding,
based on locating and sampling focal regions. Our technique unifies
all focal effects in a single framework and can render effects that
previous state-of-the-art techniques are unable to handle.
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Camera Obscura PT 3.04 min (287 spp)
2.23e-02 / 1.69e-01

MEMLT 3.04 min (690 mpp)
2.22e-02 / 1.74e-01

MCVCM 3.05 min (8 iter)
2.24e-02 / 2.23e-01

PAVMM 3.00 min (235 spp)
3.16e-02 / 1.66e-01

Ours 3.02 min (139 spp)
9.85e-03 / 1.08e-01

Reference Time
MSE / FLIP

Dining Room PT 3.06 min (308 spp)
3.77e-01 / 6.99e-01

MEMLT 3.02 min (682 mpp)
1.01e-01 / 2.60e-01

MCVCM 3.06 min (6 iter)
1.86e-02 / 1.99e-01

PAVMM 3.17 min (155 spp)
1.76e+00 / 6.96e-01

Ours 3.01 min (166 spp)
1.35e-01 / 3.13e-01

Reference Time
MSE / FLIP

Funky Living Room PT 2.99 min (123 spp)
9.80e+00 / 9.39e-01

MEMLT 3.03 min (142 mpp)
8.93e-02 / 5.60e-01

MCVCM 3.03 min (4 iter)
7.31e-02 / 5.57e-01

PAVMM 3.07 min (103 spp)
7.87e-01 / 8.10e-01

Ours 3.01 min (186 spp)
2.06e-01 / 6.02e-01

Reference Time
MSE / FLIP

Modern Hall PT 2.98 min (443 spp)
1.33e-01 / 3.86e-01

MEMLT 3.02 min (1497 mpp)
1.67e-04 / 1.29e-01

MCVCM 3.00 min (19 iter)
3.07e-04 / 1.36e-01

PAVMM 2.94 min (169 spp)
9.86e-04 / 1.88e-01

Ours 3.01 min (163 spp)
3.97e-03 / 2.49e-01

Reference Time
MSE / FLIP

Modern Living Room PT 3.01 min (299 spp)
2.57e-03 / 9.33e-02

MEMLT 3.02 min (880 mpp)
5.98e-03 / 1.36e-01

MCVCM 3.03 min (16 iter)
2.41e-02 / 2.25e-01

PAVMM 3.15 min (120 spp)
5.21e-03 / 1.21e-01

Ours 3.02 min (104 spp)
6.07e-02 / 2.56e-01

Reference Time
MSE / FLIP

Figure 5: We compare the performance of our approach against previous works on five challenging test scenes. Each method

renders for approximately three minutes. The first four scenes demonstrate various focal effects, while the last scene exhibits

primarily afocal light transport. A slice through our spatial guiding density is displayed on the right side, overlaid by the

corresponding slice of the scene geometry for orientation (white lines).
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(a) Before pruning (b) After pruning

Figure 6: After the last training iteration, we collapse oc-

tree nodes that have little variation. This reduces the cost

of the traversal required to compute probability densities.
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Figure 7: We evaluate our splitting threshold 𝛾 . Finer reso-
lutions (i.e., low values of𝛾 ) yieldmore accurate sampling,

but incur highermemory usage and sample overhead rela-

tive to an unguided path tracer. The efficiency (MSE error

of equal-time renders) peaks at 𝛾 = 10−3
.

(a) Sampling complete light paths [Reibold et al. 2018] (b) Sampling a global spatial density (our approach)

Figure 8: We compare the performance of local versus global sampling distributions in a simplified 2-D experiment. Paths

originating at the floor need to pass an obstacle with three pinholes to reach the light source at the top. The opacity of paths is

proportional to the value of its estimator, i.e., darker paths represent outliers which are sampled insufficiently. While both

approaches can reliably sample focal points once they are identified, local methods (a) are prone to overlooking parts of focal

effects, such as the contribution from the center focal point on the right side of the floor in this example. This results in uneven

sampling, which manifests itself as islands of high variance in the rendered image. Global distributions like ours (b) do not

suffer from this issue: Once focal points are identified, all regions directly exploit this information. This results in more even

sampling, eliminating residual outliers.
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