
EARS: Efficiency-Aware Russian Roulette and Splitting
ALEXANDER RATH, Saarland University, Germany and German Research Center for Artificial Intelligence (DFKI), Germany
PASCAL GRITTMANN, Saarland University, Germany
SEBASTIAN HERHOLZ, Intel Corporation, Germany
PHILIPPE WEIER, Saarland University, Germany and German Research Center for Artificial Intelligence (DFKI), Germany
PHILIPP SLUSALLEK, Saarland University, Germany and German Research Center for Artificial Intelligence (DFKI),
Germany

ADRRSADRRS

EARS (Ours)EARS (Ours)

ADRRSADRRS

EARSEARS

ADRRSADRRS

EARSEARS

Average RR and S

at
2n

d
bo

un
ce

at
3r

d
bo

un
ce

20

1

0
20

1

0

Fig. 1. We derive a fixed-point iteration to compute the Russian roulette and splitting (RRS) factors that maximize the rendering efficiency. Here, we compare
the rendered images in equal-time (10 min) of our method and the state of the art, adjoint-driven Russian roulette and splitting (ADRRS) [Vorba and Křivánek
2016]. The false-color images on the right visualize the average RRS factors in each pixel at the second and third bounce. Red indicates that mostly roulette is
played; blue indicates that mostly splitting is done. By directly optimizing variance and cost, our method produces more efficient RRS decisions: splitting is
mostly performed at the bottom of the pool and on the diffuse surface behind the window, which dominate the image variance.

Russian roulette and splitting are widely used techniques to increase the
efficiency of Monte Carlo estimators. But, despite their popularity, there
is little work on how to best apply them. Most existing approaches rely
on simple heuristics based on, e.g., surface albedo and roughness. Their
efficiency often hinges on user-controlled parameters. We instead iteratively
learn optimal Russian roulette and splitting factors during rendering, using

Authors’ addresses: Alexander Rath, Saarland University, Saarland Informatics Cam-
pus, Saarbrücken, Germany and German Research Center for Artificial Intelligence
(DFKI), Saarland Informatics Campus, Saarbrücken, Germany, rath@cg.uni-saarland.de;
Pascal Grittmann, Saarland University, Saarland Informatics Campus, Saarbrücken,
Germany, grittmann@cg.uni-saarland.de; Sebastian Herholz, Intel Corporation, Karl-
sruhe, Germany, sebastian.herholz@intel.com; Philippe Weier, Saarland University,
Saarland Informatics Campus, Saarbrücken, Germany and German Research Center
for Artificial Intelligence (DFKI), Saarland Informatics Campus, Saarbrücken, Ger-
many, weier@cg.uni-saarland.de; Philipp Slusallek, Saarland University, Saarland
Informatics Campus, Saarbrücken, Germany and German Research Center for Ar-
tificial Intelligence (DFKI), Saarland Informatics Campus, Saarbrücken, Germany,
philipp.slusallek@dfki.de.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
0730-0301/2022/7-ART81
https://doi.org/10.1145/3528223.3530168

a simple and lightweight data structure. Given perfect estimates of variance
and cost, our fixed-point iteration provably converges to the optimal Russian
roulette and splitting factors that maximize the rendering efficiency. In
our application to unidirectional path tracing, we achieve consistent and
significant speed-ups over the state of the art.

CCS Concepts: • Computing methodologies→ Ray tracing.

Additional KeyWords and Phrases: global illumination, importance sampling,
path guiding

ACM Reference Format:
Alexander Rath, Pascal Grittmann, SebastianHerholz, PhilippeWeier, and Philipp
Slusallek. 2022. EARS: Efficiency-Aware Russian Roulette and Splitting. ACM
Trans. Graph. 41, 4, Article 81 (July 2022), 14 pages. https://doi.org/10.1145/
3528223.3530168

1 INTRODUCTION
In the past decades, advances to physically-based rendering have
been tremendous, allowing us to render increasingly large scenes
with complex illumination. Currently, most rendering algorithms
are based on unidirectional or bidirectional path tracing, which uses
random walks to explore the light transport in a scene.

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

HTTPS://ORCID.ORG/0000-0002-6084-2942
HTTPS://ORCID.ORG/0000-0002-5325-3744
HTTPS://ORCID.ORG/0000-0003-1731-2548
HTTPS://ORCID.ORG/0000-0003-4276-1804
HTTPS://ORCID.ORG/0000-0002-2189-2429
https://orcid.org/0000-0002-6084-2942
https://orcid.org/0000-0002-5325-3744
https://orcid.org/0000-0003-1731-2548
https://orcid.org/0000-0003-4276-1804
https://orcid.org/0000-0002-2189-2429
https://doi.org/10.1145/3528223.3530168
https://doi.org/10.1145/3528223.3530168
https://doi.org/10.1145/3528223.3530168

81:2 • Rath et al.

Much research has been done on increasing the efficiency of path
tracing methods, mostly focused on variance reduction through
importance sampling. Efficiency can also be increased by better
allocating the available computation budget. In most path tracing
methods, considerable computational power is wasted to trace long
paths that contribute little to the final image. This effect worsens as
more complex importance sampling methods are employed, since
these usually generate a high computational overhead.
Two ubiquitous methods to increase the efficiency of path trac-

ing algorithms are Russian roulette (RR) and splitting. On the one
hand, RR reduces costs by stochastically terminating paths that are
expected to have a low contribution to the image, which, if done
right, only leads to a slight increase in variance. On the other hand,
splitting reduces the variance of a local estimate by continuing a
prefix path with multiple suffix paths. If most of the variance is due
to that local sampling decision, splitting greatly reduces the variance
without incurring the cost of repeatedly sampling the prefix path.

Optimally performing Russian roulette and splitting (RRS) has re-
ceived little attention. A very promising approach is adjoint-driven
RRS [Vorba and Křivánek 2016], which bases the RRS decisions
on estimates of the expected image contribution. While producing
great results, the expected contribution does not consider variance
or cost of local estimators, let alone the global efficiency. We, instead,
derive RRS decisions that maximize efficiency and show how they
can numerically be solved using a fixed-point iteration based on esti-
mates of variance and cost stored in a simple 5D data structure. The
difference is shown in Fig. 1. Our method encourages splitting when
reaching the caustics at the bottom of the pool and behind the win-
dows as they have high variance and highly benefit from splitting.
On the other hand, by only considering the expected contribution
of the local estimator and not its variance, ADRRS only ensures the
survival of these paths but does not perform any splitting. This is
visible in the false-color images on the right, comparing the average
per-pixel RRS factors for both methods at different depths.

We derive a fixed-point iteration to numerically find the Russian
roulette and splitting (RRS) factors that maximize efficiency, and
prove that it converges (Section 4). The method is general and
applies to anyMonte Carlo method that can perform RRS. Applied to
rendering, we introduce an online learning scheme that iteratively
improves the RRS factors over time (Section 5). In practice, we
achieve consistent speed-ups over ADRRS of up to 4× (Section 6).

The Mitsuba [Jakob 2010] implementation of our method is pub-
licly available at https://github.com/iRath96/ears [Rath et al. 2022].

2 RELATED WORK
The predominant method to drive Russian roulette (RR) or splitting
decisions is to base them on heuristics based on approximations
of the expected path contribution. Typically, in conjunction with
user-controlled parameters such as a minimum path length.

Albedo-based. The typical RR approach in practice is to base the
survival probability on the surface albedo [Arvo and Kirk 1990] or
currently accumulated path throughput weight [Pharr et al. 2016].
Szécsi et al. [2003] take spectral properties of the albedo into ac-
count and show that variance can be reduced by returning reflected
radiance estimates upon path termination. Szirmay-Kalos [2005]

combines throughput weight, albedo, and surface roughness in a
heuristic that controls both RR and splitting. The underlying as-
sumption of these approaches is that paths that have scattered across
multiple dark surfaces are unlikely to yield a high image contribu-
tion. Unfortunately, this assumption is often violated in practice,
e.g., due to complex indirect illumination or bright light sources
illuminating dark surfaces. This can lead to premature termination
of important paths, which increases variance. A typical workaround
is to only use RR beyond a certain minimum path length (e.g., 5),
subject to manual control by the user.

Approximated contributions. An alternative is to base the survival
probability or splitting factor on an approximation of the full image
contribution. Efficiency-optimized RR [Veach 1997] randomly skips
shadow ray evaluations by comparing the unoccluded contribution
to a threshold. Taking the idea a step further, adjoint-driven Rus-
sian roulette and splitting (ADRRS) [Vorba and Křivánek 2016] uses
estimates of the expected incident radiance in a scene and com-
pares them to approximations of the pixel value. Thereby, ADRRS
resolves the problem of early path terminations faced by albedo
and throughput weight-based RR methods, providing significant
improvements, e.g., in scenes dominated by indirect illumination
via dark surfaces. The main shortcoming of ADRRS is that it only
considers the expected contributions, not the costs or variances.
As a result, ADRRS cannot directly reduce the variance due to a
poor sampling decision (e.g., inside a caustic). Paths are only split
after the poor decision has already been made, effectively bounding
the subsequent variance. Our method is conceptually very similar
to ADRRS, only we directly maximize the efficiency by including
information about local variances and costs. This allows us to di-
rectly split at the source of variance, resulting in up to 4× faster
renderings.

Efficiency analysis. Bolin and Meyer [1997] provide an analysis
of the efficiency when applying RR and splitting (RRS) to a path
tracer. They derive formulas that can be used to compute the optimal
RRS factor per pixel and path length. By operating in image space,
they forego the potential of controlling the RRS factor based on the
actual prefix path at hand. If a pixel receives contributions from an
unimportant and an important region at the same depth, the RRS
factor is shared for both, which is suboptimal. Our method is based
in part on their derivations, but modified such that the splitting
factors are optimized for each prefix path. Further, we make the
computations practical by employing a fixed-point iteration instead
of trying to compute the factors directly.

Adaptive sampling. Another common method to control render-
ing efficiency is via adaptive sampling in image space [Zwicker et al.
2015]. There is a plethora of such methods with very different goals
and approaches. What they have in common is that the number of
samples per pixel are controlled automatically, based on, e.g., vari-
ance estimates. Russian roulette and, in particular, splitting can be
seen as a path space extension of such adaptive sampling methods.

Fixed-point iterations in rendering. Our method uses a fixed-point
iteration to incrementally update the RRS factors. Fixed-point itera-
tions have been used in other rendering applications, most promi-
nently radiosity methods [Goral et al. 1984], that employ them to

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

https://github.com/iRath96/ears

EARS: Efficiency-Aware Russian Roulette and Splitting • 81:3

iteratively compute the light transport in a scene. Similarly, the re-
cent work of Deng et al. [2021] has employed fixed-point iterations
in a reconstruction method that propagates contributions across
paths. A key difference in our application is that the fixed-point
iteration is used solely to optimize sampling decisions, which does
not introduce bias in the result.

3 BACKGROUND
The rendering equation [Kajiya 1986] can be written as an integral
over all paths z̄ connecting the pixel px to a point on a light source,
which can be estimated via Monte Carlo integration:

𝐼px =

∫
𝑓px (z̄) dz̄, ⟨𝐼px⟩ =

𝑓px (z̄)
𝑝 (z̄) . (1)

Here, 𝑓px (z̄) is the contribution of the path z̄ to the pixel, and ⟨𝐼px⟩
is a single-sample Monte Carlo estimator using a random path z̄
with probability density 𝑝 (z̄) to form an unbiased estimate of the
integral.

Efficiency. The efficiency of an estimator is the inverse of the
product of its variance and its expected computational cost [Pharr
et al. 2016]. We extend this to multi-integral cases, such as rendering
an image with path tracing, by using the mean pixel variance and
expected pixel render time,

𝜖−1 =

(
1

𝑁px

∑︁
px
V

[
⟨𝐼px⟩

]) (
1

𝑁px

∑︁
px
E

[
𝑐
(
⟨𝐼px⟩

)])
, (2)

where 𝑁px is the number of pixels, and the pixel variance is the
difference between the expectation of the square and the squared
expectation of the estimator,

V
[
⟨𝐼px⟩

]
= E

[
⟨𝐼px⟩2] − 𝐼2

px . (3)
The pixel render time can be modelled as the expectation of a cost
function 𝑐 (⟨𝐼px⟩) measuring the cost of evaluating the Monte-Carlo
estimator ⟨𝐼px⟩ for a given pixel px. A simple heuristic to measure
this cost is to count the number of traced rays.

Prefix paths. For our discussion of Russian roulette and splitting,
we rewrite the pixel value as an integral over all prefix paths x̄𝑘 =

x0 . . . x𝑘 , summed over all path lengths 𝑘 ,

𝐼px =
∑︁
𝑘

∫
𝑡px (x̄𝑘) 𝐿r (x𝑘 , x𝑘−1) dx̄𝑘 , (4)

where 𝑡px (x̄𝑘) is the throughput, i.e., the product of sensor response,
pixel contribution, BSDFs, and geometry terms [Veach 1997]. 𝐿r is
the reflected radiance at point x𝑘 towards the previous point x𝑘−1,
which is itself a high-dimensional integral given by the rendering
equation.

Prefix weight. Forward path tracing operates by incrementally
constructing a path x̄, starting from x0 on the camera. At depth 𝑘 ,
we have a path prefix x̄𝑘 with corresponding prefix weight

𝑇 (x̄𝑘) =
𝑊px (x0, 𝜔i,0)
𝑝 (x0, 𝜔i,0)

𝑘−1∏
𝑗=1

𝜌 (x𝑗 , 𝜔i, 𝑗 , 𝜔o, 𝑗) |cos𝜃i, 𝑗 |
𝑝 (𝜔i, 𝑗 | x𝑗 , 𝜔o, 𝑗)

, (5)

where𝑊px is the sensor response, 𝜌 (x, 𝜔i, 𝜔o) denotes the BSDF,
and 𝑝 (𝜔i | x, 𝜔o) the probability density of the directions sampled

at each vertex x to continue the path. The prefix is then combined
with an estimate of the reflected radiance to form an MC estimator

⟨𝐼px⟩ = 𝑇 (x̄𝑘)⟨𝐿r (x𝑘 , x𝑘−1)⟩. (6)

Russian roulette (RR). RR instead randomly decides whether to
construct the nested estimate, or terminate the path and return zero

⟨𝐼px;𝑞⟩ =
{
𝑇 (x̄𝑘)

⟨𝐿r (x𝑘 ,x𝑘−1) ⟩
𝑞 (x̄𝑘) if survived

0 otherwise
(7)

where 𝑞(x̄𝑘) is the survival probability. If done right, RR increases
efficiency by terminating unimportant paths, allowing more compu-
tation time to be invested in important regions. But it also increases
the variance and thus has to be used carefully.

Splitting. Splitting reduces the variance by continuing the pre-
fix path x̄𝑘 with 𝑛(x̄𝑘) independent suffix samples for the nested
estimator,

⟨𝐼px;𝑛⟩ = 𝑇 (x̄𝑘)
𝑛 (x̄𝑘)∑︁ ⟨𝐿r (x𝑘 , x𝑘−1)⟩

𝑛(x̄𝑘)
. (8)

This reduces the variance due to the nested integral for 𝐿r by a factor
of 1/𝑛(x̄𝑘), while avoiding the cost of generating a new prefix x̄𝑘
for each such suffix sample. Splitting is effective if most of the
variance is due to the ⟨𝐿r⟩ estimate, or if an unlikely prefix found a
high-contribution region.

Russian roulette and splitting (RRS). The highest efficiency in-
crease can be achieved if both RR and splitting are combined into a
single framework, which also makes it easier to optimize [Vorba and
Křivánek 2016]. This can be achieved by computing a non-integer
splitting factor 𝑠 (x̄𝑘) ∈ R+ and using a stochastic rounding function
𝑟 to convert it to an integer value:

𝑟 (𝑠 (x̄𝑘)) =
{
⌊𝑠 (x̄𝑘)⌋ + 1 with probability 𝑠 (x̄𝑘) − ⌊𝑠 (x̄𝑘)⌋
⌊𝑠 (x̄𝑘)⌋ otherwise.

(9)

This leads to an RRS estimator:

⟨𝐼px; 𝑠⟩ = 𝑇 (x̄𝑘)
𝑟 (𝑠 (x̄𝑘))∑︁ ⟨𝐿r (x𝑘 , x𝑘−1)⟩

𝑠 (x̄𝑘)
, (10)

which is very similar to the pure splitting estimator (8), with the
key difference that the summation uses stochastic rounding while
the estimates are still divided by the real-valued RRS factor.

Nested RRS. The nested recursive 𝐿r estimator can, of course, also
perform RRS. We denote such an estimator as ⟨𝐿r (x𝑘 , x𝑘−1); 𝑠⟩ and
the pixel estimator with RRS at multiple depths as:

⟨𝐼px; 𝑠⟩ = 𝑇 (x̄𝑘)
𝑟 (𝑠 (x̄𝑘))∑︁ ⟨𝐿r (x𝑘 , x𝑘−1); 𝑠⟩

𝑠 (x̄𝑘)
. (11)

The definition of 𝑠 (x̄) determines if andwhere splitting happens. The
prefix weight of these subsequent RRS decisions then also contains
the previous RRS factors,

𝑇 (x̄𝑘) =
𝑊px (x0, 𝜔i,0)
𝑝 (x0, 𝜔i,0)

𝑘−1∏
𝑗=1

𝜌 (x𝑗 , 𝜔i, 𝑗 , 𝜔o, 𝑗) |cos𝜃i, 𝑗 |
𝑠 (x̄𝑗)𝑝 (𝜔i, 𝑗 | x𝑗 , 𝜔o, 𝑗)

. (12)

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

81:4 • Rath et al.

1

(a) Integrand (b) Variance (c) RRS factors (d) Samples

Fig. 2. Russian roulette and splitting in a simplified 2D example. (a) the
integrand 𝑓 (𝑥, 𝑦) is the product of two functions, 𝑔 (𝑥) and ℎ (𝑦) . (b) the
variance is highest in the high-contribution region on the left. (c) the optimal
RR, splitting, or combined RRS factor for each prefix 𝑥 , computed via our
fixed-point iteration. (d) when using the optimized RRS factors, samples in
the low-variance region are terminated (red crosses), while samples in the
high-variance region are split (one batch of samples per dashed lines).

Note that in our notation ⟨𝐿r (x𝑘 , x𝑘−1); 𝑠⟩ is itself still a primary
estimator, i.e., only using a single sample for the incident radiance at
x𝑘 . In our derivations, we will exclusively use nested RRS estimators.

4 EFFICIENCY-AWARE RRS
We determine the optimal RRS factors that, given a prefix path x̄𝑘
decide if and with how many samples to continue the path in order
to maximize rendering efficiency. To this end, we show how the
resulting equations can be efficiently solved using a fixed-point
iteration that converges to the optimal RRS factors. In the following,
we first introduce the method in a simplified setting, then show how
it can be applied in a rendering context.
Without loss of generality, we first consider a 2D integration

problem, illustrated in Fig. 2. The integrand is modelled after the
rendering equation and consists of the product of two functions,
the prefix 𝑔(𝑥) and suffix ℎ(𝑥,𝑦),

𝐼 =

∫
X
𝑔(𝑥)

∫
Y
ℎ(𝑥,𝑦) d𝑦 d𝑥 =:

∫
X
𝑔(𝑥)𝐻 (𝑥) d𝑥 . (13)

Given a prefix 𝑥 sampled with density 𝑝 (𝑥), the goal is to find
the optimal number of splits, or the optimal Russian roulette (RR)
probability, to continue the ‘path’ by sampling suffixes 𝑦𝑖 .

We start by deriving a fixed-point iteration to compute the optimal
splitting factors, and prove that it converges. Then, we show that
the same approach can be applied to RR, as well as a combined RRS.

4.1 Optimal splitting
A nested splitting estimator ⟨𝐼 ;𝑛⟩ for 𝐼 takes a single prefix sample
𝑥 ∈ X and combines it with 𝑛(𝑥) suffix samples 𝑦 𝑗 ∈ Y:

⟨𝐼 ;𝑛⟩ = 𝑔(𝑥)
𝑝 (𝑥)

𝑛 (𝑥)∑︁
𝑗=1

ℎ(𝑥,𝑦 𝑗)
𝑛(𝑥)𝑝 (𝑦 𝑗 | 𝑥)

. (14)

For optimal splitting at 𝑥 , we need the optimal splitting function
𝑛(𝑥) : X → N, which gives us a positive integer splitting count for
each prefix 𝑥 .

4.1.1 Objective. Efficiency is maximized when the product of vari-
ance and cost is minimized,

arg min
𝑛
V [⟨𝐼 ;𝑛⟩] E [𝑐 (⟨𝐼 ;𝑛⟩)] . (15)

Under the assumption that the suffix samples𝑦𝑖 are uncorrelated, we
can use the law of total variance to express the variance of Eq. (13)
as the sum of two components [Bolin and Meyer 1997],

V [⟨𝐼 ;𝑛⟩] = 𝑉X + E
[
𝑉Y (𝑥)
𝑛(𝑥)

]
, (16)

where
𝑉X := V

[
𝑔(𝑥)
𝑝 (𝑥)𝐻 (𝑥)

]
(17)

is the variance due to sampling the prefix 𝑥 , if given a ground truth
value 𝐻 (𝑥) for the nested integral, and

𝑉Y (𝑥) := V [⟨𝐼 ⟩ | 𝑥] =
(
𝑔(𝑥)
𝑝 (𝑥)

)2
V [⟨𝐻 (𝑥)⟩ | 𝑥] (18)

is the variance, without any splitting, due to sampling a single suffix
𝑦 when given a prefix 𝑥 .

The cost is modeled as the expectation of a cost function 𝑐 ,
E [𝑐 (⟨𝐼 ;𝑛⟩)] = E [𝑐 (𝑥) + 𝑛(𝑥)𝑐 (⟨𝐻 (𝑥)⟩)] , (19)

where we assume that the cost is linear in the number of samples,
i.e., it can be split into a sum of the cost 𝑐 (𝑥) due to sampling of the
prefix, and the cost 𝑐 (⟨𝐻 (𝑥)⟩) due to sampling the suffix.

4.1.2 Optimization. To solve Eq. (15), we introduce an approxima-
tion: We pretend that the splitting factors do not have to be integers.
That is, we allow 𝑛(𝑥) : X → R+. This allows us to compute deriva-
tives and perform convex optimization, but it also introduces a small
error, since the result has to be rounded to a positive integer, either
exactly or stochastically. The result then has a slightly different
variance than predicted during the optimization1.

For a real-valued splitting function, the efficiency is a convex
functional of 𝑛(𝑥), as it can be written as a sum of convex functions,
which is by definition also convex. Hence, it must have a unique
global minimum. The question is, how can we find it efficiently?

In principle, we can set the partial functional derivatives to zero,
dV [⟨𝐼 ;𝑛⟩] E [𝑐 (⟨𝐼 ;𝑛⟩)]

d𝑛(𝑥) = 0, (20)

and solve the resulting system of equations. The derivative is easy
enough to compute analytically, as shown in Appendix A, but ana-
lytically solving the system of equations is not practical, at least not
in a full rendering context. Asides from requiring some integrals
that are challenging to estimate, the problem is also a recursive one,
as splitting can happen at other points along the prefix and suffix.

4.1.3 Fixed-point iteration. Our solution is to numerically find the
solution to Eq. (20) via a fixed-point iteration. A primer on using
fixed-point iterations for root finding, and proving their conver-
gence, can be found in Appendix B. The key idea is that, instead of
solving (20) directly, we formulate a fixed-point iteration

𝑛𝑖 (𝑥) = 𝛾S (𝑛𝑖−1 (𝑥)) =

√︄
𝑉Y (𝑥)

V [⟨𝐼 ;𝑛𝑖−1⟩]
E [𝑐 (⟨𝐼 ;𝑛𝑖−1⟩)]
E [𝑐 (⟨𝐻 (𝑥)⟩) | 𝑥] , (21)

where the 𝑖th iteration computes the splitting factor 𝑛𝑖 (𝑥) based on
the variances and costs of the previous iteration’s configuration. In
Appendix C, we show that the unique fixed-point 𝛾S (𝑛(𝑥)) = 𝑛(𝑥)
1This approximation error is also present in the previous work of Bolin and Meyer
[1997].

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

EARS: Efficiency-Aware Russian Roulette and Splitting • 81:5

1 s(x) 1 s(x) 1 s(x)

Splitting Russian Roulette Russian-Roulette and Splitting

in
v.
effi

ci
en
cy

Fig. 3. Examples visualizing the shape of our objective function, here in
1D for a single point 𝑥 with corresponding 𝑠 (𝑥) . The splitting (blue) and
RR (orange) objectives are both convex and have a unique local minimum
(vertical lines). There are three possible cases, shown from left to right: RR
is optimal, doing neither is optimal, and splitting is optimal. By definition,
the RR objective and the splitting objective intersect at 𝑠 (𝑥) = 1. The RR
variance is greater than the splitting variance for 𝑠 (𝑥) < 1, and vice versa for
𝑠 (𝑥) > 1. Hence, the combined objective (dashed red curve) is also convex,
and both local minima always lie in the correct portion of the domain (i.e.,
below or above 1). Unless 1 is the minimum, then both lie in the opposite
region. These properties guarantee the convergence of the joint fixed-point
iteration.

is the optimal 𝑛(𝑥) and prove that iteratively applying 𝑛𝑖 (𝑥) =

𝛾 (𝑛𝑖−1 (𝑥)), starting with an arbitrary initial guess 𝑛0 (𝑥), converges
to the optimum.

4.2 Incorporating Russian roulette
A very similar fixed-point iteration can be derived to find the optimal
Russian roulette (RR) probability 𝑞(𝑥). The result can be combined
with the optimal splitting 𝑛(𝑥) into an optimal RRS decision 𝑟 (𝑥).

4.2.1 Optimal RR. First, consider the case where instead of split-
ting, only RR is allowed. Performing RR at a prefix 𝑥 increases the
variance [Bolin and Meyer 1997],

VRR [⟨𝐼 ;𝑞⟩] = 𝑉X + E
[
𝑀Y (𝑥)
𝑞(𝑥) −

(
𝑔(𝑥)
𝑝 (𝑥)𝐻 (𝑥)

)2]
, (22)

where the suffix moment

𝑀Y (𝑥) :=
(
𝑔(𝑥)
𝑝 (𝑥)

)2
E

[
⟨𝐻 (𝑥)⟩2 | 𝑥

]
(23)

is the expectation of the squared estimator value, given the prefix 𝑥 .
The effect on our fixed-point function (21) is rather minor. If we

re-compute the derivatives with the RR variance, the only change
is that the suffix variance 𝑉Y is replaced by the suffix moment𝑀Y ,

𝑞𝑖+1 (𝑥) = 𝛾RR (𝑞𝑖 (𝑥)) =

√︄
𝑀Y (𝑥)
V [⟨𝐼 ;𝑞𝑖 ⟩]

E [𝑐 (⟨𝐼 ;𝑞𝑖 ⟩)]
E [𝑐 (⟨𝐻 (𝑥)⟩) | 𝑥] , (24)

The objective is still convex, and the fixed-point iteration still con-
verges to the unique optimum, since, from a mathematical point of
view, we merely swapped one constant for another.

4.2.2 Optimal RRS. We can jointly optimize splitting and RR, by
first combining them into a piece-wise variance

VRRS [⟨𝐼 ; 𝑠⟩] = 𝑉X + E [𝑅(𝑠 (𝑥))] , (25)

MSE: 0.007MSE: 0.007
relMSE: 1.12relMSE: 1.12

MSE: 0.032MSE: 0.032
relMSE: 0.009relMSE: 0.009

M
SE

re
lM

SE

EV -6EV -6

EV -6EV -6

CostCost

CostCost

max

min
max

min

Fig. 4. Minimizing the mean-squared error (MSE) or relative MSE (relMSE)
in EARS. Using the relMSE performs significantly better in scenes with high
contrast. By decreasing the exposure (EV -6) of a crop we can see that using
the MSE oversamples very bright regions. Using the relMSE, on the other
hand, yields better convergence across the entire dynamic range of the
image, as we can see when looking at the average per-pixel cost, shown in
false-color. With the MSE, most computation time is invested in the bright
pixels. With the relMSE, computation time is spread more evenly.

where we define

𝑅(𝑠 (𝑥)) :=

𝑉Y (𝑥)
𝑠 (𝑥) if 𝑠 (𝑥) > 1
𝑀Y (𝑥)
𝑠 (𝑥) −

(
𝑔 (𝑥)
𝑝 (𝑥)𝐻 (𝑥)

)2
else.

(26)

The product of this piece-wise RRS variance and the cost (which
remains unchanged) is still a convex functional in 𝑠 (𝑥), as illustrated
in Fig. 3. The figure shows examples for the three possible configura-
tions of the joint objective. The minimum can be either the optimal
RR value, the optimal splitting value, or 𝑠 (𝑥) = 1.
The minimum can be found with a similar approach to the one

suggested by Bolin andMeyer [1997]. First, we compute the splitting
factor 𝑛(𝑥). If the result is greater than one, that is our optimum.
Otherwise, we compute the RR factor 𝑞(𝑥) and clamp it to one, to
handle the case where the optimal decision is exactly one (which is
a discontinuity in our objective function). This can be written as a
joint fixed-point function:

𝛾RRS (𝑠 (𝑥)) =
{
𝛾S (𝑠 (𝑥)) if 𝛾S (𝑠 (𝑥)) > 1
min{𝛾RR (𝑠 (𝑥)), 1} otherwise.

(27)

The convexity of the joint objective, in combination with the conver-
gence of the individual components, guarantees that the fixed-point
iteration converges.

4.3 Application to rendering
The theory discussed so far can be directly applied to rendering. In
the following, we discuss how to do so in the context of forward
path tracing. Compared to the simplified setting, there are twomajor
differences: (1) instead of a single integral, there is one per pixel,
and (2) RRS occurs multiple times along a path.

4.3.1 Objective. A rendered image consists of multiple integrals,
one for each pixel; the goal is to maximize the efficiency across all
these integrals, as defined in Eq. (2). That is, the goal is to obtain
local splitting factors that maximize the total efficiency over the

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

81:6 • Rath et al.

RR

V
ar

ia
nc

e

C
os

t

(a) Pool scene (b) Initial data / statistic pass (c) Fixed-point iteration 1 (d) Fixed-point iteration 2

Fig. 5. Illustration of the fixed-point update behavior for a set of nested estimators (blue, green, and orange) along a caustic path. (a) shows the scene setup,
which is similar to the Pool scene (Fig. 1). The yellow region marks the subset of paths that constitute the caustic. (b), (c), and (d) show the sampling behavior
(top) and the estimated variances and costs (bottom) of the nested estimators at different stages: the initial training iteration (b) as well as the first (c), and
second (d) fixed-point iteration.

entire image. Fortunately, this is still a convex objective (being a
sum of convex functions), and the derivatives have the exact same
form as the single integral case discussed so far.
There is, however, one more consideration to make. Using the

absolute variance will overfit on bright pixels. Instead, we minimize
the product of average relative variance and average per-pixel cost:

𝑉 (𝑛)𝐶 (𝑛) :=
(

1
𝑁px

𝑁∑︁
px

V
[
⟨𝐼px;𝑛⟩

]
𝐼2
px

) (
1

𝑁px

𝑁∑︁
px
E

[
𝑐 (⟨𝐼px;𝑛⟩)

])
.

(28)
Using the relative variance, i.e., dividing by the squared ground

truth 𝐼2
px, prevents an oversampling of bright regions. In other words,

instead of aiming for the lowest mean squared error (MSE), we
aim for the lowest relative mean squared error (relMSE). Fig. 4
compares the difference between the two objectives. The scene has
high variance everywhere, but the directly illuminated region on
the couch is very bright and completely dominates the MSE. Hence,
minimizing the MSE results in splitting factors that focus most of
the samples on that region. Minimizing the relMSE instead produces
a much more uniform distribution of sampling cost and hence a
more uniform noise.

A problem with this objective is that the ground truth pixel value
is unknown in practice. We will later show that a coarse approxi-
mation of the ground truth pixel value (e.g., using denoised inter-
mediate renders) is a sufficient surrogate of this value.

4.3.2 Fixed-point function. Following the same steps as the sim-
plified 2D example discussed before, we can formulate the RRS
fixed-point functions for the 𝑖th fixed-point iteration

𝛾 (𝑛𝑖 (x̄𝑘)) =
𝑇 (x̄𝑘)
𝐼px (x̄𝑘)︸ ︷︷ ︸
prefix

√︄
𝑅(⟨𝐿r (x𝑘 , x𝑘−1);𝑛𝑖 ⟩)
E [𝑐 (⟨𝐿r (x𝑘 , x𝑘−1);𝑛𝑖 ⟩)]︸ ︷︷ ︸

local

√︄
𝐶 (𝑛𝑖)
𝑉 (𝑛𝑖)︸ ︷︷ ︸
global

(29)

where

𝑅(⟨𝐿r (x𝑘 , x𝑘−1);𝑛𝑖 ⟩) =
{
V [⟨𝐿r (x𝑘 , x𝑘−1);𝑛𝑖 ⟩] if𝑛𝑖 (𝑥) > 1
E

[
⟨𝐿r (x𝑘 , x𝑘−1);𝑛𝑖 ⟩2] else

(30)

is the piece-wise moment or variance function, computing the pri-
mary, i.e., single sample, variance or second moment of the reflected
radiance estimator at point x𝑘 .
The fixed-point function consists of three components: the rel-

ative prefix weight 𝑇 (x̄𝑘)/𝐼px which is readily available, the local
ratio of nested variance and cost, which can be cached in a 5D data
structure, and the global variance and cost of the entire image.

The beauty of this approach is that we can perform a fixed-point
update of a continuous RRS function 𝑛(x̄𝑘) without actually storing
the full continuous representation of all exact values 𝑛(x̄𝑘) for all
possible prefixes x̄𝑘 , which would be prohibitive in practice. In-
stead, we store only the dependent quantities (i.e., variances and
costs) that are used by the next iteration. Each fixed-point iteration
stochastically updates some 𝑛(x̄𝑘) for a set of random x̄𝑘 . Since the
probability of each 𝑛(x̄𝑘) being updated is non-zero (otherwise x̄𝑘
is never sampled and hence irrelevant), this stochastic fixed-point
iteration converges.

Unlike previous works, which rely on reducing the dimensionality
of the problem to be computationally feasible (e.g., Bolin and Meyer
[1997] only use the length of a prefix path), our fixed-point scheme
does not suffer from the curse of dimensionality and hence enables
us to solve the splitting factors without dimensionality reduction.

4.3.3 Convergence with repeated RRS. In rendering practice, RRS is
performed at multiple points along a path. Fortunately, this has no
effect on the convergence of our fixed-point iteration. An RRS factor
𝑛(x̄𝑗) occurring at a point before or after x𝑘 has a similar effect
on the derivatives of the fixed-point function as the other splitting
factors of unrelated 𝑛(x̄′

𝑘
). The criteria used to prove convergence

in Appendix C are unaffected and convergence is still guaranteed
independent of path length.

4.3.4 Example. Fig. 5 illustrates how our fixed-point iteration be-
haves when applied to forward path tracing rendering a complex
caustic (a). The initial training iteration (b) uses classic albedo-based
RR and estimates the corresponding variance and cost of the nested
⟨𝐿r⟩ estimators at the positions blue (specular water), green (diffuse
floor), and orange (specular water). The cost in the initial pass is
given by the lengths of the suffix paths (e.g., blue = 3, green = 2,
and orange = 1), as no splitting is done. The variance propagates
backwards along the path, and is dominated by the diffuse surface

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

EARS: Efficiency-Aware Russian Roulette and Splitting • 81:7

at green, so blue and green have the same local variance estimates,
while orange, being a specular surface directly reflecting the sun,
has low variance.

In the first fixed-point iteration (c), the high variance at blue and
green results in splitting being done at both. Paths generated at
green that do not find the sun (i.e., outside the yellow region) are
terminated via RR. After the iteration, the variance estimate at blue
decreases, due to the splitting at green, and its cost increases. The
variance at green remains the same, while the cost is marginally
reduced by the RR done at orange.
In the second fixed-point iteration no splitting is performed at

blue, due to the now low variance and high cost. When the path
then arrives at green, which has a high variance and low cost, a
lot of splitting is done to reduce the overall variance of the pixel
estimator. Again, suffixes sampled at green that do not find the sun
are terminated by RR at orange.

5 IMPLEMENTATION
We implement our method in the Mitsuba renderer [Jakob 2010],
using a recursive path tracer as the basis. Our fixed-point iteration
requires an iterative rendering process, where each iteration creates
some number of samples per pixel and estimates the global and
local variances. Initially, we start with classic prefix weight-based
RR, and then apply our fixed-point iteration (29) to iteratively refine
the RRS factors. The required local estimates are stored in a simple
5D data structure. To alleviate the computational overhead of our
method, we increase the duration of each iteration over time, thereby
reducing the number of updates.
Because our RRS decisions improve over time, the rendered im-

ages of early iterations have much higher noise than later ones.
Thus, we weight each iteration’s rendered image with its inverse
variance, which, in theory, yields the optimal combination of im-
ages [Hammersley and Handscomb 1968]. However, the variance
estimates are based on the same samples as the images themselves,
which introduces bias [Kirk and Arvo 1991]. But that bias is typically
negligible, and it vanishes with growing iteration times.
The pseudocode in Alg. 1 provides an overview of the process.

The individual steps are explained in more detail in the following.

5.1 Adapting the theory
In the following, we summarize modifications to the theory that are
required for our implementation.

Next event estimation. The pixel estimator ⟨𝐼px;𝑛⟩ is given by a
recursive path tracer with Russian roulette and splitting, additionally
performing next event estimation at each intersection. Following
the approach of Vorba and Křivánek [2016], we consider next event
estimation and path continuation via BSDF sampling as an atomic
operation. That is, a splitting factor of 2 implies that 2 BSDF samples
are traced to continue the path, and 2 shadow rays are traced for
next event estimation. This integrates nicely into our theory: The
computed RRS factors are optimal under the constraint that exactly
as many shadow rays need to be traced as BSDF samples. Note
that in a more general context, this is not optimal. There can, e.g.,
be regions of high variance that only benefit from BSDF sampling.
Balancing the number of samples between multiple techniques in

an MIS combination [Veach and Guibas 1995b] is an orthogonal
problem [Sbert et al. 2019].

Handling colors. The derivations so far have glanced over the
fact that the (reflected) radiance is vector-valued (RGB triplets or
spectral samples). The best local RRS factor depends on spectral
contributions of the prefix and the local and global estimates. There
is, e.g., no point in splitting a ‘red’ prefix if the local reflected radi-
ance has no red contribution. We can extend our efficiency formula
Eq. (2) to a multichannel renderer by averaging the variances of
individual color channels 𝜆:

𝜖−1 =

(
1

𝑁px𝑁𝜆

∑︁
px

∑︁
𝜆

V
[
⟨𝐼px⟩𝜆

]) (
1

𝑁px

∑︁
px
E

[
𝑐
(
⟨𝐼px⟩

)])
. (31)

Using this as starting point, we find the splitting factors,

𝑛 =

√√√∑
𝜆 𝑇

2
𝜆
(x̄𝑘)𝐼−2

𝐼px,𝜆
𝑅𝜆 (⟨𝐿r;𝑛𝑖 ⟩)∑

𝜆 𝑉𝜆 (𝑛𝑖)

√︄
𝐶 (𝑛𝑖)

E [𝑐 (⟨𝐿r;𝑛𝑖 ⟩)]
, (32)

which differ from our monochromatic splitting factors (Eq. (29))
only in that the product of local variance estimate with the prefix
weight is now performed component-wise, and that we sum up the
variances over their color channels 𝜆. Similar derivations could
be carried out using other metrics as starting point, e.g., using
luminance or the maximum component of the variance spectrum if
desired.

Cost heuristic. To quantify the cost, we use the same simple heuris-
tic as previous work [Bolin and Meyer 1997; Szirmay-Kalos 2005],
i.e., we count the number of rays that are traced by the estimator.
For simplicity, we assume that shadow rays, primary rays from the
camera, and BSDF samples have the same cost.

Clamping. In practice, it is beneficial to limit the allowed range of
the RRS factors. On the one hand, the theoretically optimal splitting
factor can in principle be arbitrarily large. On the other hand, error
in our estimates, due to noise and approximations, can also produce
much too large or much too small RRS factors. Thus, we clamp each
RRS factor to the interval (0.05, 20) to avoid bias, which can happen
if 𝑛(x̄) = 0, and to prevent excessive splitting.

5.2 Global estimates
When a pixel estimate is completed, we record its cost

𝐶 =
1

𝑁spp

𝑁spp∑︁
𝑠=1

1
𝑁px

∑︁
px

𝑐 (⟨𝐼px⟩𝑠) (33)

and approximate the variance using a denoised image [Áfra 2019]
in lieu of the ground truth

𝑉 =
1

𝑁spp

𝑁spp∑︁
𝑠=1

1
𝑁px

∑︁
px

(
⟨𝐼px;𝑛⟩𝑠 − 𝐼px

𝐼px

)2

. (34)

It is important that ⟨𝐼px;𝑛⟩ is the estimator including splitting. That
is, every path tree generated per sample is considered as a whole.

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

81:8 • Rath et al.

Algorithm 1. Overview of our main rendering loop. The image is rendered
in iterations, each taking multiple samples per pixel. Each iteration updates
the global and local variance and cost estimates.

1: function Render
2: for 𝑖 ∈ 1..𝑛iterations do
3: 𝑉 (𝑖) ,𝐶 (𝑖) = 0 ← initialize global statistics to zero

4: 𝐶
(𝑖)
𝑏

, 𝐸
(𝑖)
𝑏

, 𝑀
(𝑖)
𝑏

, 𝑛𝐵 = 0 ← initialize all local statistics
5: while time budget of iteration not exhausted do
6: for px in image do ← render one sample per pixel
7: x̄1 = SampleCamera(px) ← start a path from the camera
8: 𝑐, ⟨𝐿r⟩ = LrEstimate(x̄1,𝐼px) ← Alg. 2

9: 𝐶 (𝑖) += 1 + 𝑐 ← update cost, Eq. (33)

10: 𝑉 (𝑖) +=
(
𝑇 (x̄1) · ⟨𝐿r⟩ − 𝐼px

)2
/𝐼2
px

11: ⟨𝐼px⟩ (𝑖) += 𝑇 (x̄1) · ⟨𝐿r⟩ ½ update relative variance (34)

12: 𝑁spp += 1

13: 𝐶 (𝑖) ,𝑉 (𝑖) /= 𝑁px · 𝑁spp ← normalize estimates, Eqs. (33) and (34)

14: ⟨𝐼 ⟩ = MergeFramesByVariance(⟨𝐼 ⟩, ⟨𝐼 ⟩ (𝑖) , 𝑉 (𝑖))
15: 𝐼 = Denoise(⟨𝐼 ⟩)
16: for 𝐵 ∈ SpatialCache do ← normalize local statistics

17: 𝐶
(𝑖)
𝑏

, 𝐸
(𝑖)
𝑏

, 𝑀
(𝑖)
𝑏

/= 𝑛𝐵 ← Eqs. (35), (36) and (38)

18: 𝑉
(𝑖)
𝑏

= 𝑀
(𝑖)
𝑏

−
(
𝐸
(𝑖)
𝑏

)2
← compute variance Eq. (37)

19: return ⟨𝐼 ⟩

Fig. 6. The data structure used by our implementation. The scene is divided
by an octree (left). Each cell of which stores variance estimates for the
reflected radiance estimator. The directional dependency on 𝜔o is handled
via a simple histogram (right).

Outlier removal. Even a single outlier in a single pixel can severely
distort the estimate of the average image variance.We apply a simple
workaround and ignore the 0.001% of all pixels that have the highest
variance when computing the average image variance required by
our method.

5.3 Local estimates
The local variance and cost estimates (see Section 4.3.2) are stored
in a 5D data structure, illustrated in Fig. 6. The scene is partitioned
by an octree, each cell of which contains a histogram over outgoing

directions of fixed 4 × 4 resolution. In our experiments, higher reso-
lutions showed only small improvements in the quality of splitting
factors, which were offset by the disadvantage of requiring more
training samples. We apply a similar approach to Müller et al. [2017],
subdividing leaves of the octree after more than 40,000 samples have
been accumulated.

Building the estimates. Each directional histogram bin 𝑏 stores
approximations of variance 𝑉𝑏 , second moment 𝑀𝑏 and cost 𝐶𝑏
of the reflected radiance estimator ⟨𝐿r⟩. The second moment is
approximated as the average second moment over all points and
directions in the bin 𝑏,

E
[
⟨𝐿r;𝑛𝑖 ⟩2] ≈ 𝑀𝑏 =

∑𝑛𝑏
𝑠=1⟨𝐿r⟩

2
𝑠

𝑛𝑏
, (35)

where 𝑛𝑏 is the number of samples within bin 𝐵. The variance 𝑉𝑏
is approximated by additionally computing the average reflected
radiance in the bin

𝐸𝑏 =

∑𝑛𝑏
𝑠 ⟨𝐿r⟩𝑠
𝑛𝑏

, (36)

which we can square and subtract from the second moment to
approximate the variance

V
[
⟨𝐿r;𝑛𝑖 ⟩2] ≤ 𝑉𝑏 = 𝑀𝑏 − 𝐸2

𝑏
. (37)

Note that this approximation replaces the integral of squared 𝐿r
terms by the square of the integral. Hence, if the reflected radiance
fluctuates strongly within 𝑏, the variance is overestimated and the
resulting RRS factors will be too large. We discuss this approxima-
tion in the next section. The expected cost E [𝑐 (⟨𝐿r;𝑛⟩)] within a
bin is approximated by averaging the cost of all samples from the
bin,

E [𝑐 (⟨𝐿r;𝑛⟩)] ≈ 𝐶𝑏 =

∑𝑛𝑏
𝑠 𝑐 (⟨𝐿r⟩𝑠)

𝑛𝑏
. (38)

Incremental learning. According to our fixed-point scheme (Sec-
tion 4.3.2), an iteration 𝑖 should use the variances and costs derived
from the splitting factors of the previous iteration 𝑖−1. For unbiased
estimation, each iteration should hence start computing new vari-
ance and cost estimates from scratch. Doing so would require very
long iterations for sufficiently converged estimates. To reduce the
noise, we include samples from earlier iterations in our estimates. In
practice, this slightly reduces the convergence speed of our iterative
scheme but yields much more reliable estimates which improves
the performance of our method.

6 EVALUATION
We compare our method and the adjoint-driven (ADRRS) approach
of Vorba and Křivánek [2016] for two cases: when applied solely to
Russian roulette (RR) andwhen applied to combined RR and splitting
(RRS). We omit results for applying only splitting, as neither method
performs well without RR, which is required to kill unimportant
paths that can be generated by splitting. As a baseline, we include
classic prefix weight-based RR (starting at the 5th bounce), of which
we also include an adaptive sampling variant. Unlike ADRRS and our
method, which learn their statistics on-line during rendering, the
adaptive sampler is provided with a ground truth relative variance
image that was computed in a pre-process not contained in the

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

EARS: Efficiency-Aware Russian Roulette and Splitting • 81:9

Modern Living Room

Classic RR Adaptive PT ADRR Ours (RR) ADRRS Ours (RRS) Reference

0.31 (1.00×) 0.19 (1.66×) 0.18 (1.74×) 0.17 (1.84×) 0.17 (1.77×) 0.17 (1.87×) relMSE 5 30 60 Time [s]

Er
ro
r
(r
el
M
SE

)

Bookshelf 110.73 (1.00×) 32.43 (3.41×) 16.25 (6.82×) 15.99 (6.92×) 2.50 (44.21×) 1.24 (89.26×) relMSE 5 30 60 Time [s]

Er
ro
r
(r
el
M
SE

)

Living Room 34.26 (1.00×) 22.72 (1.51×) 15.53 (2.21×) 13.10 (2.62×) 8.16 (4.20×) 4.22 (8.12×) relMSE 5 30 60 Time [s]

Er
ro
r
(r
el
M
SE

)

Pool 92.90 (1.00×) 23.32 (3.98×) 28.09 (3.31×) 24.99 (3.72×) 27.85 (3.34×) 12.87 (7.22×) relMSE 5 30 60 Time [s]

Er
ro
r
(r
el
M
SE

)

Kitchen 246.07 (1.00×) 238.04 (1.03×) 120.21 (2.05×) 123.31 (2.00×) 77.53 (3.17×) 18.07 (13.61×) relMSE 5 30 60 Time [s]

Er
ro
r
(r
el
M
SE

)

Glossy Bathroom 6.58 (1.00×) 2.57 (2.56×) 2.44 (2.69×) 2.21 (2.97×) 1.07 (6.12×) 1.18 (5.60×) relMSE 5 30 60 Time [s]

Er
ro
r
(r
el
M
SE

)

Fig. 7. We render five scenes with different Russian roulette and splitting strategies for 10 minutes each. The numbers below the crops are the relative
mean-squared error (relMSE, lower is better), with the speed-up compared to classic RR in parentheses (higher is better).

reported render time. All images were rendered for ten minutes
on an AMD Ryzen 3950X CPU with 16 cores. The maximum path
length is set to 40. The full results across all 19 scenes are in the
supplemental materials. Our method achieves an average speed-up
factor of 1.52× when compared to ADRRS and an average speed-
up factor of 5.87× when compared to classic RR, with the poorest
performing scene (Glossy Bathroom) being only 9% slower than
ADRRS.

Fig. 7 shows the results for some of our test scenes. The numbers
below each crop are the equal-time relative mean-squared error

(relMSE), lower is better, for which we discard 0.01% of the pix-
els with the highest error to increase robustness towards outliers.
Note that this is distinct from the outlier removal discussed in sec-
tion 5.2, which discards fewer outliers (0.001%) and uses denoised
intermediate renders (in lieu of a reference image) to estimate the
relative image variance required by our method. The numbers in
parentheses are the speed-up w.r.t. classic RR.

The Modern Living Room is mostly diffuse and illuminated by a
large spherical light, making it simple to render with forward path
tracing. Due to mostly short paths, RR has little impact here. While

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

81:10 • Rath et al.

Table 1. Performance statistics of all RR and RRS methods. The samples per pixel is the number of frames rendered at an equal time (i.e., 10 min). The average
path length values provide insights into the different termination behaviors of each method. For a better understanding of the splitting behavior of ADRRS
and Ours(RRS), additional information is provided: first, the average number of paths generated per primary ray using splitting, and second, the average
splitting factors at the first intersection of the primary ray.

Samples per pixel Avg. path length Avg. paths per sample Avg. primary splits

Scene Classic ADRR Ours(RR) ADRRS Ours(RRS) Classic ADRR Ours(RR) ADRRS Ours(RRS) ADRRS Ours(RRS) ADRRS Ours(RRS)

Modern Living Room 1800 1213 1469 1147 274 5.61 6.81 5.75 6.99 6.90 1.08 7.28 1 5.25
Bookshelf 2370 3099 3196 2699 208 4.59 3.11 3.12 3.45 3.88 1.28 26.50 1 10.62
Living Room 1805 2526 3255 2242 219 4.95 3.19 2.67 3.33 3.13 1.20 19.99 1 13.33
Pool 2814 2234 3042 2208 421 3.17 3.35 2.90 3.37 4.54 1.01 8.69 1 1.82
Kitchen 2400 2258 2438 1967 365 4.78 4.33 4.15 4.59 4.28 1.21 19.98 1 9.42
Glossy Bathroom 1522 834 1367 698 51 6.92 9.86 6.35 9.62 8.85 1.87 113.55 1 18.45

Algorithm 2. Pseudocode for the reflected radiance estimation, given a
prefix path x̄𝑘 originating in pixel px. First, we query the corresponding bin
in our data structure. Then, we apply our fixed-point function to update the
RRS factor. The sample weights and costs are logged in the data structure
for each sampled direction from BSDF or next event (the latter was omitted
for brevity). For simplicity, we assume monochromatic rendering, but the
algorithm can easily be extended to multichannel rendering as discussed in
section 5.1.

1: function LrEstimate(x̄𝑘 , 𝐼px)
2: 𝑏 = SpatialCacheBin(x̄𝑘) ← find responsible bin

3: 𝑛 =
𝑇 (x̄𝑘)
𝐼px

√︂
𝐶 (𝑖−1)

𝑉 (𝑖−1)

√︄
𝑉

(𝑖−1)
𝑏

𝐶
(𝑖−1)
𝑏

← splitting case (29)

4: if n < 1 then Æ compute Russian roulette objective

5: 𝑛 = min
(
1, 𝑇 (x̄𝑛)

𝐼px

√︂
𝐶 (𝑖−1)

𝑉 (𝑖−1)

√︄
𝑀

(𝑖−1)
𝑏

𝐶
(𝑖−1)
𝑏

)
6: 𝑛 = clamp(𝑛, 0.05, 20) ← clamp to a reasonable range
7: Σ𝑐, Σ𝑤 = 0, 0 ← initialize total cost and contribution
8: for 𝑖 = 1..StochasticRounding(𝑛) do
9: x̄𝑘+1 = SampleBsdf(x̄𝑘) ← (next event omitted for brevity)
10: 𝑐, ⟨𝐿r⟩ = LrEstimate(x̄𝑘+1, 𝐼px)
11: 𝑤 =

𝜌 (x𝑘 ,𝜔o,𝜔i)
𝑝 (𝜔i) ⟨𝐿r⟩ ← local weight times nested estimate

12: 𝐶
(𝑖)
𝑏

+= 𝑐 𝐸
(𝑖)
𝑏

+= 𝑤 ← Eqs. (36) and (38)

13: 𝑀
(𝑖)
𝑏

+= 𝑤2 𝑛𝑏 += 1 ← Eq. (35)
14: Σ𝑐 += 2 + 𝑐 Σ𝑤 += 𝑤 ← accumulate cost and contribution
15: return Σ𝑐, Σ𝑤

our method does not noticeably improve the mean error compared
to ADRRS, it still achieves a more uniform noise distribution across
the image as shown in Fig. 8. The figure shows false-color images
of the per-pixel error. Similar to adaptive sampling, our method
greatly reduces the error in the caustics of the glass vases, by slightly
increasing the error everywhere else. In such simple scenes, the
overhead of complex RRS methods like ADRRS and ours does not
pay off for very short renders. As can be seen in the error over
time plots, in some cases it takes at least 20 seconds to out-perform
classic RR.
The Bookshelf is an example of a scene with strong, difficult

diffuse indirect illumination. Due to many dark surfaces, classic
RR prematurely terminates paths. When applied only to RR, our
method achieves a 30% speed-up compared to ADRR, by heeding

Classic RR ADRRS Adaptive EARS
max

min

Fig. 8. Relative mean-squared error for Classic (prefix weight-based) Rus-
sian roulette (with and without adaptive sampling), EARS and ADRRS.While
both ADRRS and our method approximately achieve the same mean error
in this scene, EARS benefits from a more uniform noise distribution across
the entire image. Classic Russian roulette with adaptive sampling achieves
an even more uniform noise distribution, but higher mean error.

variance. Splitting can drastically increase the performance here:
if an unlikely path finds the directly illuminated regions, splitting
within the illuminated region increases the odds of forming a full
valid path to the light. This is an important advantage over adaptive
sampling, which can only split a pixel as a whole, thus wasting time
on paths that do not land in the illuminated region. For full RRS, our
method performs twice as fast as ADRRS. The Living Room scene
is another example with similar light transport and similar results.
The Pool is an example that shows more clearly the benefit of

basing splitting decisions on variance and cost (as done by our
method), rather than expected contributions (as done by ADRRS).
By directly considering variance, our method performs splitting on
the diffuse bottom of the pool, unlike ADRRS (see Fig. 1).
The Kitchen combines the effects from Bookshelf and Pool:

this scene features strong indirect illumination through a high-
variance caustic underneath the table. While both ADRR and our
method (RR) similarly increase performance by not killing paths
that land in the caustic, even stronger speed-ups can be gained
with splitting. By considering variance, our method (RRS) again
performs significantly more splitting than ADRRS on the caustic,
resulting in less noise in the indirect illumination and a 4.3× speed-
up over ADRRS. Similar to the Bookshelf scene, adaptive sampling
achieves little improvement in this scene, as noise is mostly caused
by indirect illumination from a small brightly lit area.

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

EARS: Efficiency-Aware Russian Roulette and Splitting • 81:11

Classic RR ADRRS EARS

V
ea

ch
 d

oo
r

sc
en

e

Va
ri

an
ce

Iteration0 40 800 40 80 Iteration

C
os

t

0 40 80 Iteration

Ef
fic

ie
nc

y

Fig. 9. Convergence of different Russian Roulette and splitting methods in
the Veach Door scene. For each iteration, we measure the average time it
takes to render one sample per pixel (cost) and the average relative variance
with one sample per pixel (variance). The efficiency is the inverse product of
the two. In all our scenes, our method converges to fixed-point for cost and
variance, and hence efficiency.

The Glossy Bathroom is a failure case of our method. The homo-
geneous illumination makes the scene relatively simple to render,
while the many glossy surfaces are problematic for our approach.
The over-approximation of the local variance results in excessive
splitting and hence in 9% worse performance than ADRRS in this
scene. Still, our result outperforms classic RR.

6.1 Sampling statistics
To better understand the actual sampling behavior, some additional
statistics are shown in Table 1: the samples per pixel (SPP), the
average path length, and, for the splitting methods, the average
number of generated paths per primary ray and the average splitting
factor at the first bounce.
Among the RR methods, ADRR and Ours (RR) tend to generate

more SPP than classic RR. This is because they generate shorter
paths, which is partly due to the fact that, in our setup, Classic
RR only activates after a path length of 5. But the better rendering
results are not only due to more SPP. The statistics of Modern
Living Room show that the termination decisions themselves are
also better. Here, all RR methods have an average path length of
around 5. Classic RR generates 200 − 400 more SPP, but still the
speed-up of ADRR and Ours (RR) is up to 1.8× (see Fig. 7).

With splitting, the number of SPP naturally decreases. Ourmethod
produces up to an order of magnitude fewer SPP than classic RR, but
yields vastly better rendering results. The lower number of samples
produced by the RRS methods directly relates to the average number
of paths generated for each primary ray, i.e., the number of leaves
in the generated ray tree. Here we can see that ADRRS, on average,
only generates a few additional paths per primary ray (up to 2),
while this number can be much higher for ours (up to 67). The high
numbers are largely due to the splitting at the primary hit point.
Our optimization objective is to maximize the full efficiency of

the rendering process (28). Hence, if the variance due to aliasing
and sampling the lens is low, as is the case in most of our scenes, our

Albedo RRAlbedo RR ADRRADRR EAREAR

ReferenceReference ADRRSADRRS EARSEARS

3.82 (1.00×) 2.91 (1.31×) 2.58 (1.48×)

relMSE (speed-up) 2.69 (1.42×) 1.78 (2.15×)

Fig. 10. Our method vs. previous work in a path guiding application. The
numbers below the crops are the error (relMSE) and, in parentheses, the
speed-up compared to the baseline, which is classic albedo-based RR.

method tends to perform a lot of splitting at the primary hit point.
Thereby, variance is reduced as if additional SPP were generated, but
without the cost of the primary ray. Dividing the number of paths
per sample by the number of primary splits, we see that our method
usually does not perform much more splitting than ADRRS at later
bounces. A notable exception is the Pool scene, where splitting
happens for specular paths that arrive at a caustic.

6.2 Overhead
To build and store the required estimates, both ADRRS and EARS
incur computational overhead. In our evaluation, we have limited
the memory footprint of the data structure to 24 MiB, limiting the
spatial partitioning to roughly 22,000 regions. In our experiments,
the benefits of higher resolution estimates were outweighed by
higher computational costs of updating and traversing the data
structure. In terms of computation time, the overhead of ADRRS
and EARS results in an average of 15% fewer rays being traced when
compared to classic RR. The primary causes of this overhead are the
traversal of the tree structure (8.7% of render time) and splatting
of the required statistics (5.2%). Denoising the pixel estimate and
adapting the data structure each amount to less than 1% of the
render time. Note that our method adds no noticeable overhead
over ADRRS: since the solution to our optimization problem is
found implicitly through a fixed-point scheme, only a few additional
arithmetic operations when splatting samples and computing the
splitting factor are carried out.

6.3 Convergence of our fixed-point scheme
While a nice theoretical foundation, the convergence we proved
for our fixed-point iteration in theory does not automatically imply
convergence in practice. Approximations aside, there is also always
noise in the estimates. We conducted an empirical verification of the
convergence in a separate rendering setting, without incremental
learning and with constant iteration times. Fig. 9 plots the variances
and sampling costs of the image rendered in each iteration, for the
Veach Door scene. Across all our scenes, the cost and variance
converged nicely to a fixed-point, when given enough iterations.

6.4 Path guiding
We have also evaluated our method in the context of path guiding,
specifically themethod ofMüller et al. [2017]. There, our method can
re-use the same data structures employed by the guiding distribution,

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

81:12 • Rath et al.

RenderRender

Splitting FactorsSplitting Factors

relMSErelMSE

Fig. 11. Artefacts due to discretized estimates at a low sample count. The
spatial caches used in the estimation of our splitting factors can create small
visual artefacts in case the caches have not received enough samples to
compute accurate variance estimates.

only storing a few extra values (the cost and variances) in each
spatial cell. We found that using the product of surface albedos,
instead of the more common throughput weight, yielded better
results for classic RR. The throughput weight can be very low if
guiding has a high sampling density for a path across dark surfaces
in which case classic RR can undo the benefits of guiding [Vorba
and Křivánek 2016]. The product of albedos does not exhibit that
problem. The results were similar to the path tracing application.
An example is shown in Fig. 10. In the Kitchen scene, our method
outperforms ADRR(S) both with and without splitting, achieving a
speed-up of 1.5× compared to ADRRS.

7 LIMITATIONS AND FUTURE WORK
In practice, our method is limited by the accuracy of the required es-
timates. Promising directions for future work include combinations
with image space adaptive sampling and bidirectional algorithms.

Estimation error. Noise in the local estimates can cause poor RRS
decisions. The worst case occurs if some spatial caches contain
much lower-quality estimates than their immediate neighbors. An
example is shown in Fig. 11 for a shorter rendering of the Pool scene.
The severe outliers yield poor variance estimates that differ strongly
between caches. As a consequence, islands of noise with hard edges
in-between are visible in the image. The problem vanishes with
longer renderings, due to the increasing iteration times and the fact
that we keep the variance estimates of the previous iterations. In
practice, this can be alleviated by spatial filtering, i.e., by sharing
estimates between caches. Similar problems are encountered in path
guiding methods [Müller et al. 2017; Vorba et al. 2014].

Combining with Adaptive Sampling. Our method performs Rus-
sian roulette at the primary hit point if some parts of the image
have a significantly higher variance than others. An example is
shown in Fig. 12. The figure shows a crop of the Pool scene and the
corresponding RRS factor at the primary hit used by our method.
The noise in this directly illuminated region is greatly increased by
our method, due to aggressive RR at the primary hit point. While
this increases the overall efficiency by focusing computation time
on the difficult pixels, i.e., the caustics, it also wastes primary rays

that could have been avoided altogether. Future work could com-
bine our method with adaptive sampling in image space [Zwicker
et al. 2015] to not sample such wasted primary rays in the first place.
Doing so requires a small modification to our optimization objective:
We should maximize the efficiency of each individual pixel rather
than the average across the whole image, to benefit the most from
adaptive sampling.

Bidirectional methods. We have shown that our method can suc-
cessfully increase efficiency in a unidirectional path tracer. A promis-
ing area of future work would be to apply our method to bidirec-
tional algorithms [Georgiev et al. 2012; Hachisuka et al. 2012; Lafor-
tune and Willems 1993; Veach and Guibas 1995a]. This is signifi-
cantly more complicated, because bidirectional algorithms are multi-
sample MIS combinations of different sampling techniques that each
construct full paths between the camera and the light sources. RRS
along these paths would become part of the MIS weights, hence the
splitting decisions on a camera sub-path affect the splitting decisions
on the light sub-paths. This produces a non-convex objective that is
much harder to optimize. Further, RRS in a bidirectional context is
problematic for MIS weighting, as the classic balance heuristic ig-
nores the covariance introduced by splitting [Grittmann et al. 2021;
Popov et al. 2015].

Participating media. We have limited our discussion and imple-
mentation to light transport on surfaces. Volumetric transport can
equally benefit from RRS [Herholz et al. 2019]. Our theory can be
easily extended to the volumetric case, only the practical implemen-
tation, in particular the data structure, has to be extended.

Correlated sampling. For splitting, we have assumed that vari-
ance decreases with O(𝑛−1). This is true for uncorrelated sampling,
but not for quasi-Monte Carlo (QMC) sampling. Most likely, not
all samplers will yield a necessary convex objective. However, we
expect the effect of this assumption to be less significant than other
sources of inaccuracies (in particular discretization and noise).

Dynamic scenes. In dynamic scenes, some learned statistics could
potentially be reused in later frames. Future work could look into
how many iterations of our fixed-point scheme are necessary after
a scene update and which parts of the data structure might need to
be discarded and retrained from scratch.

8 CONCLUSION
We present a fixed-point iteration to optimize the Russian roulette
and splitting (RRS) factors in a path tracing algorithm. In principle,
the theory can be applied to any random walk Monte Carlo method.
Assuming perfect knowledge of variances and expected costs, the
fixed-point iteration is proven to converge to the optimal RRS factors
that maximize the rendering efficiency. In our rendering application,
we iteratively improve the RRS factors used by a forward path tracer;
our implementation employs a simple 5D data structure to track
variances and costs throughout the scene. Despite the simplicity,
we achieve consistent speed-ups over the state of the art of 1.6× on
average. Especially scenes with challenging indirect illumination
benefit from the fact that our method, unlike previous work, directly
minimizes variance and cost.

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

EARS: Efficiency-Aware Russian Roulette and Splitting • 81:13

ReferenceReference

0.47 (1.00×)
27.85 (1.00×)

1.34 (0.35×)
12.87 (2.16×)

1.01 (0.46×)
23.32 (1.19×)

relMSE (crop)
relMSE (image)

ADRRS EARS (Ours) Adaptive PT Split. factors (EARS)
20

1

0
max

min

Fig. 12. A zoom-in of the Pool scene (see Figs. 1 and 7), comparing the
renderings of ADRRS and our method. The top-right false-color image
shows the splitting factors at the primary hit used by our method. Note
that aggressive RR is performed, i.e., many paths started from the camera
never sample any contribution. This manifests in much higher noise in
some regions of the image. The reason for this behavior is that our method
focuses computation time on the much more challenging caustic. Adaptive
sampling similarly suffers from increased noise, but less severely as it does
not need to resort to Russian roulette to artificially lower sample counts.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 956585 (https://prime-itn.
eu/). We thank the anonymous reviewers for their insightful re-
marks, as well as the artists of our test scenes: Benedikt Bitterli
[2016], Miika Aittala, Samuli Laine, and Jaakko Lehtinen (Veach
Door), Evermotion and Tiziano Portenier (Bookshelf, Glossy
Bathroom), Ondřej Karlík (Pool), Wig42 (Modern Living Room),
Jay-Artist (Kitchen), and Ludvík Koutný (Living Room).

REFERENCES
Attila T. Áfra. 2019. Intel® Open Image Denoise. https://www.openimagedenoise.org/.
James Arvo and David Kirk. 1990. Particle transport and image synthesis. SIGGRAPH

’90, 63–66.
Stefan Banach. 1922. Sur les opérations dans les ensembles abstraits et leur application

aux équations intégrales. Fund. math 3, 1 (1922), 133–181.
Vasile Berinde. 2007. Iterative approximation of fixed points. Vol. 1912. Springer.
Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/
Mark R Bolin and Gary W Meyer. 1997. An error metric for Monte Carlo ray tracing.

In Eurographics Workshop on Rendering Techniques. Springer, 57–68.
Xi Deng, Miloš Hašan, Nathan Carr, Zexiang Xu, and Steve Marschner. 2021. Path

graphs: iterative path space filtering. ACM Transactions on Graphics (TOG) 40, 6
(2021), 1–15.

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light
transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6
(2012), 192–1.

Cindy M Goral, Kenneth E Torrance, Donald P Greenberg, and Bennett Battaile. 1984.
Modeling the interaction of light between diffuse surfaces. ACM SIGGRAPH computer
graphics 18, 3 (1984), 213–222.

Pascal Grittmann, Iliyan Georgiev, and Philipp Slusallek. 2021. Correlation-Aware
Multiple Importance Sampling for Bidirectional Rendering Algorithms. Comput.
Graph. Forum (EG 2021) 40, 2 (2021).

Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space
extension for robust light transport simulation. ACM Trans. Graph. (TOG) 31, 6
(2012), 191.

J.M. Hammersley andD.C. Handscomb. 1968.Monte CarloMethods. Springer, Dordrecht.
Sebastian Herholz, Yangyang Zhao, Oskar Elek, Derek Nowrouzezahrai, Hendrik P. A.

Lensch, and Jaroslav Křivánek. 2019. Volume Path Guiding Based on Zero-Variance
Random Walk Theory. ACM Trans. Graph. 38, 3, Article 25 (June 2019), 19 pages.

Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (Aug.

1986), 143–150.
David Kirk and James Arvo. 1991. Unbiased Sampling Techniques for Image Synthesis.

ACM Trans. Graph. (SIGGRAPH ’91) 25, 4 (jul 1991), 153–156. https://doi.org/10.
1145/127719.122735

Eric P. Lafortune and Yves D. Willems. 1993. Bi-Directional Path Tracing. 93 (Dec.
1993), 145–153.

Thomas Müller, Markus H. Gross, and Jan Novák. 2017. Practical Path Guiding for
Efficient Light-Transport Simulation. Comput. Graph. Forum 36 (2017), 91–100.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From
theory to implementation. Morgan Kaufmann.

Stefan Popov, Ravi Ramamoorthi, Fredo Durand, and George Drettakis. 2015. Proba-
bilistic Connections for Bidirectional Path Tracing. Comput. Graph. Forum 34, 4 (jul
2015), 75–86.

Alexander Rath, Pascal Grittmann, Sebastian Herholz, Philippe Weier, and Philipp
Slusallek. 2022. Implementation of EARS: Efficiency-Aware Russian Roulette and
Splitting. https://doi.org/10.5281/zenodo.6514751

Mateu Sbert, Vlastimil Havran, and László Szirmay-Kalos. 2019. Optimal Deterministic
Mixture Sampling.. In Eurographics (Short Papers). 73–76.

László Szirmay-Kalos. 2005. Go with the winners strategy in path tracing. © Journal of
WSCG, 2005, vol. 13, núm. 1-3, p. 49-56 (2005).

László Szécsi, László Szirmay-Kalos, and Csaba Kelemen. 2003. Variance Reduction for
Russian-roulette.

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Stanford
University PhD thesis.

Eric Veach and Leonidas Guibas. 1995a. Bidirectional estimators for light transport. In
Photorealistic Rendering Techniques. Springer, 145–167.

Eric Veach and Leonidas J Guibas. 1995b. Optimally Combining Sampling Techniques
for Monte Carlo Rendering. In SIGGRAPH ’95. ACM, 419–428.

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.
On-line Learning of Parametric Mixture Models for Light Transport Simulation.
ACM Trans. Graph. (Proceedings of SIGGRAPH 2014) 33, 4 (2014).

Jiří Vorba and Jaroslav Křivánek. 2016. Adjoint-driven Russian Roulette and Splitting in
Light Transport Simulation. ACM Trans. Graph. 35, 4, Article 42 (July 2016), 11 pages.
https://doi.org/10.1145/2897824.2925912

Matthias Zwicker,Wojciech Jarosz, Jaakko Lehtinen, BochangMoon, Ravi Ramamoorthi,
Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. 2015. Recent advances
in adaptive sampling and reconstruction for Monte Carlo rendering. In Computer
graphics forum, Vol. 34. Wiley Online Library, 667–681.

A DERIVATIVES OF THE OBJECTIVE
The functional derivatives of variance and cost, respectively, are:

dV [⟨𝐼 ;𝑛⟩]
d𝑛(𝑥) = −𝑝 (𝑥)

𝑉Y (𝑥)
𝑛2 (𝑥)

(39)

dE [𝑐 (⟨𝐼 ;𝑛⟩)]
d𝑛(𝑥) = 𝑝 (𝑥)E [𝑐 (⟨𝐻 (𝑥)⟩) | 𝑥] . (40)

The derivative of their product (20) is obtained via the product rule,
dV [⟨𝐼 ;𝑛⟩] E [𝑐 (⟨𝐼 ;𝑛⟩)]

d𝑛(𝑥) = (41)

𝑝 (𝑥)
(
E [𝑐 (⟨𝐻 (𝑥)⟩) | 𝑥] V [⟨𝐼 ;𝑛⟩] −

𝑉Y (𝑥)
𝑛2 (𝑥)

E [𝑐 (⟨𝐼 ;𝑛⟩)]
)
.

From that, we can easily obtain our fixed-point function
dV [⟨𝐼 ;𝑛⟩] E [𝑐 (⟨𝐼 ;𝑛⟩)]

d𝑛(𝑥) = 0 (42a)

⇔ E [𝑐 (⟨𝐻 (𝑥)⟩) | 𝑥] V [⟨𝐼 ;𝑛⟩] =
𝑉Y (𝑥)
𝑛2 (𝑥)

E [𝑐 (⟨𝐼 ;𝑛⟩)] (42b)

⇔ 𝑛(𝑥) =

√︄
𝑉Y (𝑥)
V [⟨𝐼 ;𝑛⟩]

E [𝑐 (⟨𝐼 ;𝑛⟩)]
E [𝑐 (⟨𝐻 (𝑥)⟩) | 𝑥] , (42c)

where the last equivalence holds because variance, cost, and splitting
factor are always positive.

B FIXED-POINT ITERATIONS FOR ROOT FINDING
The following provides a very brief intro to fixed-point iteration
methods applied to root finding problems. A more complete discus-
sion can be found, e.g., in Berinde [2007], or in various textbooks
on numerical analysis.

Consider the simple example of computing the root of
𝑓 (𝑥) :=

√
𝑥 − 𝑥 = 0 (43)

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

https://prime-itn.eu/
https://prime-itn.eu/
https://benedikt-bitterli.me/resources/
https://doi.org/10.1145/127719.122735
https://doi.org/10.1145/127719.122735
https://doi.org/10.5281/zenodo.6514751
https://doi.org/10.1145/2897824.2925912

81:14 • Rath et al.

1

Fig. 13. The fixed-point function is strictly monotonically increasing (left)
and its derivatives have a convex hyperbolic shape (right). The fixed-point
𝑛𝑓 lies in a sub-domain where the first derivatives are always less than
one, i.e., below the orange line on the right. And, due to the monotonicity,
𝛾 (𝑛) > 𝑛 ∀𝑛 < 𝑛𝑓 . Together, these two properties ensure convergence.

(which, in fact, resembles our derivative). The analytical solution of
this is trivially given by 𝑥 = 1. It can also be computed numerically,
using a fixed-point iteration. For that, we rewrite the equation as

𝑓 (𝑥) = 0 ⇔ 𝑔(𝑥) − 𝑥 = 0 ⇔ 𝑔(𝑥) = 𝑥, (44)
where

𝑔(𝑥) :=
√
𝑥 (45)

is the equivalent fixed-point function. By construction, every fixed-
point of 𝑔, i.e., every 𝑥 for which 𝑔(𝑥) = 𝑥 , must be a root of 𝑓 (𝑥),
and vice versa. This equivalence provides a way to numerically
find the roots of 𝑓 (𝑥) via a fixed-point iteration, i.e., by repeatedly
updating

𝑥𝑖 = 𝑔(𝑥𝑖−1), (46)
starting with an initial guess 𝑥0.

The convergence of this simple example is a well-known property:
repeatedly applying the square root to any number will eventually
converge to 1. But how can it be proven? If the fixed-point function
𝑔 : 𝐷 → 𝐷 is a mapping from some domain 𝐷 onto itself, and if 𝑔
is a contraction, then Banach’s fixed-point theorem [Banach 1922]
guarantees that there is a unique fixed-point 𝑥 𝑓 ∈ 𝐷 and that the
fixed-point iteration above will converge to that fixed point, when
initialized with any 𝑥0 ∈ 𝐷 .
For 𝑔(𝑥) to be a contraction, its first derivatives need to be less

than 1 over the domain 𝐷 . In our example,
𝑔′(𝑥) = (2

√
𝑥)−1 < 1 ⇔ 𝑥 > 0.25, (47)

this holds for 𝐷 = (0.25,∞). The domain of 𝑔(𝑥), however, is the
set of all positive real numbers. So this is not a sufficient criterion
for convergence. To prove convergence, we have to prove two more
properties:

(1) 𝑔 is a mapping from 𝐷 onto itself, 𝑔(𝑥) ∈ 𝐷 ∀𝑥 ∈ 𝐷

(2) 𝑔 moves all points 𝑥 outside 𝐷 closer to it, 𝑔(𝑥) > 𝑥∀𝑥 ∉ 𝐷

The first property guarantees that points within the sub-domain
𝐷 will not leave it. Hence, 𝑔 is a contraction mapping over 𝐷 and
Banach’s theorem states that a unique fixed-point lies within 𝐷 and
our iteration will converge to it. The second property ensures that all
initial guesses outside𝐷 are updated such that they eventually enter
𝐷 . In our simple example here, both properties are trivially verified.
Thus, convergence is guaranteed for all initial guesses 𝑥0 ∈ R+.

C PROOF OF CONVERGENCE
The convergence of the fixed-point iterations Eqs. (21) and (24)
can be proven by following the exact same steps as for the simple
example in Appendix B. In the following, we provide the proof for
the case of a single splitting factor. This readily generalizes to the
multivariate / functional case, where the same conditions can be
proven along each dimension separately.

To prove convergence, we have to prove three properties: There
is a sub-domain (𝑡,∞) where the fixed-point function has bounded
derivatives,

∃𝑡 : 𝛾 ′(𝑛) < 1∀𝑛 > 𝑡, (48)
the points within that sub-domain are mapped to the same domain,

𝛾 (𝑛) > 𝑡 ∀𝑛 > 𝑡, (49)
and the points outside the domain move closer to it,

𝛾 (𝑛) > 𝑛 ∀𝑛 ≤ 𝑡 . (50)
All three conditions follow directly from a simple analysis of the

fixed-point function, as visualized in Fig. 13. The first derivative of
our fixed-point function (29) can be obtained easily with the chain-
and quotient rules; we skip the exact equation here for brevity. It is
positive everywhere and has a hyperbolic shape,

𝛾 ′(𝑛) > 0 𝛾 ′(𝑛) ∈ 𝑂 (1/√𝑛) (51)
Therefore, 𝛾 is concave and strictly monotonically increasing. Fur-
ther, we can trivially obtain the following limits:

lim
𝑛→∞

𝛾 ′(𝑛) = 0 lim
𝑛→0+

𝛾 ′(𝑛) = ∞ lim
𝑛→0+

𝛾 (𝑛) = 0 (52)

The existance of the threshold (48) then follows directly from these
limits and the hyperbolic shape of the first derivative.
The remaining two conditions can be proven by first asserting

that the unique fixed-point is above the threshold, 𝑛𝑓 > 𝑡 . This
can be done geometrically. By definition, the fixed-point 𝑛𝑓 is an
intersection of 𝛾 (𝑛) with the diagonal of the positive quadrant.
As 𝛾 (𝑛) is a concave function, there are either zero or two such
intersections. If there are two, basic geometry implies that the first
occurs at a point 𝑛𝑎 where 𝛾 approaches the diagonal from below,
𝛾 ′(𝑛𝑎) > 1, and the second at a point 𝑛𝑏 where 𝛾 approaches the
diagonal from above, 𝛾 (𝑛𝑏) < 1. The limit lim𝑛→0 𝛾 = 0 gives us the
first intersection with the diagonal: it would have been at 𝑛𝑎 = 0,
but that is outside our domain. We know that the derivative at zero
is unbounded, 𝛾 ′(0) = ∞, so there must be another intersection
where

𝛾 ′(𝑛𝑏 = 𝑛𝑓) < 1. (53)
This intersection is our unique fixed-point in the domain of positive
real numbers, and its derivative is always less than one. That, in
turn, implies that 𝑛𝑓 > 𝑡 , i.e., the fixed-point is above the threshold.

This immediatly implies (50), since all 𝑛 < 𝑛𝑓 must be mapped to
a value greater than 𝑛, because 𝛾 is above the diagonal between 0
and 𝑛𝑓 ,

𝛾 (𝑛) > 𝑛 ∀𝑛 < 𝑡 < 𝑛𝑓 . (54)
Hence, the threshold itself is also mapped to a value greater than
𝑡 , 𝛾 (𝑡) > 𝑡 , so every 𝑛 > 𝑡 must also satisfy (49), by definition of
monotonicity. □

ACM Trans. Graph., Vol. 41, No. 4, Article 81. Publication date: July 2022.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Efficiency-aware RRS
	4.1 Optimal splitting
	4.2 Incorporating Russian roulette
	4.3 Application to rendering

	5 Implementation
	5.1 Adapting the theory
	5.2 Global estimates
	5.3 Local estimates

	6 Evaluation
	6.1 Sampling statistics
	6.2 Overhead
	6.3 Convergence of our fixed-point scheme
	6.4 Path guiding

	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References
	A Derivatives of the objective
	B Fixed-point iterations for root finding
	C Proof of convergence

