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Fig. 1. The guiding approach of Müller et al. [2017] benefits greatly from our target densities, e.g., for caustics on glossy surfaces, as shown here. Our method

consists of a trivial modification applicable to a variety of path guiding algorithms without additional parameters or computational overhead.

Path guiding is a promising tool to improve the performance of path tracing

algorithms. However, not much research has investigated what target densi-

ties a guiding method should strive to learn for optimal performance. Instead,

most previous work pursues the zero-variance goal: The local decisions are

guided under the assumption that all other decisions along the random walk

will be sampled perfectly. In practice, however, many decisions are poorly

guided, or not guided at all. Furthermore, learned distributions are often

marginalized, e.g., by neglecting the BSDF. We present a generic procedure

to derive theoretically optimal target densities for local path guiding. These

densities account for variance in nested estimators, and marginalize provably

well over, e.g., the BSDF. We apply our theory in two state-of-the-art ren-

dering applications: a path guiding solution for unidirectional path tracing

[Müller et al. 2017] and a guiding method for light source selection for the

many lights problem [Vévoda et al. 2018]. In both cases, we observe signifi-

cant improvements, especially on glossy surfaces. The implementations for

both applications consist of trivial modifications to the original code base,

without introducing any additional overhead.
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1 INTRODUCTION

The majority of rendering systems today rely on unidirectional

path tracers [Burley et al. 2018; Fascione et al. 2018; Georgiev et al.

2018; Keller et al. 2015]. The simplicity, flexibility, and extensibility

of the algorithm is what makes it so appealing. The performance,

however, depends heavily on the employed importance sampling

strategy. Ideally, paths should be sampled proportionally to their

pixel contribution. Unfortunately, computing that ideal distribution

is a harder problem than rendering the image, because it would

require knowledge of the full light transport in the scene. Hence,

many implementations construct paths by locally sampling from

coarse approximations, like BSDF importance sampling.

Path guiding methods learn better importance sampling densities,

either locally or for full paths, based on information gathered from

previous rendering iterations [Vorba et al. 2019]. The learned densi-

ties are then used to importance sample paths in future iterations.

Learning the optimal sampling density for a complete path is

often infeasible, due to the high dimensionality [Müller et al. 2018;

Zheng and Zwicker 2019]. Alternatively, it is theoretically possible

to construct an optimal path with only local decisions. To achieve
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that goal, however, every single local decision needs to be guided

perfectly. The optimal local decision for zero-variance sampling is

proportional to the product of the BSDF and the incident radiance.

Hence, this high-dimensional distribution would need to be either

learned, which is expensive, or computed on-the-fly at every in-

tersection point, which is also expensive. In practice, that usually

means that zero-variance sampling cannot be achieved.

In this work, we show how to derive optimal target densities when

zero-variance sampling cannot be achieved. Our target densitiesmin-

imize the image error due to the local sampling decisions. In effect,

more samples are invested towards directions that cause high vari-

ance, to adaptively reduce that variance. Furthermore, our method

can learn lower-dimensional densities that marginalize provably

well. Thus, the BSDF is accounted for in a provably good manner,

without full product sampling, rather than ignoring it completely

as is common in previous work.

From a practical perspective, ourmethod achieves visible improve-

ments with trivial changes to the implementation. An example is

shown in Fig. 1. Here, our target density greatly improves the caus-

tic on the glossy surface by marginalizing over the BSDF and, at

the same time, investing more samples towards the directions that

cause most variance in the estimate.

2 PREVIOUS WORK

Path tracing. The path tracing algorithm computes light transport

via Monte Carlo integration [Kajiya 1986]. In its simplest and most

common form, paths are traced backwards from the sensor through

the scene, until they reach an emitter. At each intersection with

the scene, a local sampling decision is made to decide in which

direction to continue the path. This decision is usually based on

importance sampling the BSDF and cosine term [Pharr et al. 2016].

Additionally, next-event estimation is often performed to connect

the path vertices directly to points on the light sources.

Bidirectional methods. Complex effects, like strong indirect il-

lumination, are sometimes better handled by also tracing paths

starting at the emitters [Veach 1997]. These bidirectional methods

either connect the resulting paths via shadow rays [Lafortune and

Willems 1993; Veach and Guibas 1995a] or perform density estima-

tion [Georgiev et al. 2012a; Hachisuka et al. 2008, 2012; Jensen 1996].

While bidirectional methods perform well for some hard cases, they

tend to be less efficient overall, especially for large scenes with

many light sources. It is possible to reduce the overhead by limiting

the bidirectional techniques to those effects that benefit from them

the most, like caustics [Grittmann et al. 2018]. Still, the additional

implementation complexity and strict requirement of physically

accurate models often makes bidirectional methods less appealing

in practice [Fascione et al. 2018; Georgiev et al. 2018].

Local path guiding. The efficiency of the path tracing algorithm,

whether it is bi- or unidirectional, hinges on the local importance

sampling of directions to continue the path. Unfortunately, the sim-

ple approach of importance sampling only the BSDF and cosine

term performs poorly in most realistic scenes (e.g., due to complex

visibility). The goal of local path guiding methods is to build better

distributions that take an approximation of the incident radiance

into account. Existing methods mostly differ in terms of data struc-

tures and what samples they use for training. A simple approach is

to build histograms based on a photon map [Jensen 1995]. Others

use tree structures [Bus and Boubekeur 2017; Lafortune andWillems

1995; Müller et al. 2017; Pegoraro et al. 2008], particle footprints

[Hey and Purgathofer 2002], parametric mixture models [Vorba et al.

2014], or even neural networks [Bako et al. 2019; Müller et al. 2017].

Some of these approaches only approximate the incident radiance.

Others compute the product with the BSDF on-the-fly, which is

expensive if done accurately [Bashford-Rogers et al. 2012; Herholz

et al. 2018, 2016; Hey and Purgathofer 2002; Jensen 1995; Lafortune

and Willems 1995]. Local guiding methods can also be extended

to participating media, where even more random decisions have

to be guided [Herholz et al. 2019]. Zero variance sampling can be

achieved if every local decision is perfect. Unfortunately, this would

require perfect representations, full product sampling, and sampling

conditionally on many terms (e.g., position, outgoing direction, and

wavelength), which is not always possible due to practical limita-

tions. In this work, we show how to design local target densities

that compensate for such practical limitations.

Light selection. Practical scenes often feature a large number of

light sources. While the direct illumination from those lights can be

learned as a hemispherical distribution, as local path guiding meth-

ods would do, it is often more efficient to explicitly sample the lights.

Guiding can also be employed for light source selection [Georgiev

et al. 2012b; Pantaleoni 2019; Vévoda et al. 2018]. Conceptually,

these methods differ from local path guiding only in that they learn

discrete distributions and limit themselves to direct illumination.

Hence, we also apply our theory in that context.

Global path guiding. An alternative to guiding the local decisions

is to learn distributions that sample full paths. This can be achieved,

for instance, by sampling paths similar to a set of previously se-

lected guiding paths [Reibold et al. 2018], or by guiding in primary

sample space [Guo et al. 2018; Müller et al. 2018; Zheng and Zwicker

2019]. Unfortunately, such global guiding suffers from the curse of

dimensionality and is often only practical for relatively short paths.

Metropolis light transport. Global path guiding methods are some-

what similar to Markov chain Monte Carlo (MCMC) methods [Šik

and Křivánek 2018; Veach and Guibas 1997]. MCMC methods also

attempt to sample full paths according to some target distribution.

The difference is that rather than learning a distribution, theymutate

the previously sampled paths. Hence, a major problem of MCMC

methods is that the paths are highly correlated and the chain can

get stuck in local extrema, resulting in visible artefacts and poor

temporal coherence. Nevertheless, MCMC methods have been suc-

cessfully applied in a bidirectional setting, where the correlation

artefacts can be avoided by sampling the camera paths with regular

Monte Carlo [Šik and Křivánek 2019; Šik et al. 2016].

Target densities. Many successful MCMC methods do not use

chains that converge to the integrand. Instead, the chains are of-

ten made to converge to a different function: the target function.

These functions are usually designed to be easier to explore by the

Markov chain [Hachisuka and Jensen 2011], to adaptively sample

regions of high error [Gruson et al. 2017], or to perform better in
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combination with a regular path tracer [Šik et al. 2016]. The idea

of learning anything but (a portion of) the rendering equation in-

tegrand has received little attention in existing local path guiding

methods. Vévoda et al. [2018] learn how to importance sample light

clusters for next event estimation, while accounting for the variance

of the unguided sampling within the chosen cluster. We show how

to derive provably optimal target densities for applications where

zero-variance sampling cannot be achieved. The result of Vévoda

et al. can be re-derived as a discrete special case of our theory, with-

out incorporating the BSDF. Pantaleoni and Heitz [2017] show how

a given target density can be optimally approximated, an orthogonal

improvement that can be trivially applied to our target densities.

3 BACKGROUND

Rendering equation. Light transport is described by the rendering

equation [Kajiya 1986]:

Lo(ωo, x) = Le(ωo, x) +

∫
Ω
Li(ωi, x)B(ωo, x,ωi)|cosθi | dωi, (1)

where Lo is the outgoing radiance from point x in direction ωo,

which is given by the emission Le and the reflected radiance. The

reflected radiance is computed by integrating over all directions ωi

and computing the incident radiance Li recursively, as the outgoing
radiance from visible points. The BSDF B models how the surface

reflects light from ωi to ωo.

Monte Carlo integration. The integral in the rendering equation

can be estimated by evaluating the integrand for one direction ωi,

sampled at random [Pharr et al. 2016; Veach 1997]:

Lo ≈ ⟨Lo⟩ = Le +
⟨Li⟩B |cosθi |

p(ωi | x,ωo)
, (2)

where we dropped the arguments for brevity. Dividing by the prob-

ability density function (PDF) of the random direction ωi ensures

that the expected value of the estimator is the desired integral:

E [⟨Lo⟩] = Lo. Usually, the Li term in the integrand needs to be esti-

mated recursively; resulting in a random walk through the scene,

sampling one direction ωi at a time – the path tracing algorithm.

Estimation error. The error in MC integration is governed by the

estimator’s variance, the deviation of the second moment from the

squared ground truth [Veach 1997]:

V [⟨Lo⟩] = E
[
⟨Lo⟩

2
]
− L2

o
. (3)

Since the ground truth is constant, we can limit our analysis on

the second moment E
[
⟨Lo⟩

2
]
. The variance is zero if the PDF is

exactly proportional to the integrand, hence the ‘zero-variance’ goal

of previous guiding methods is to approximate that PDF as closely

as possible. This, however, can only succeed if the recursive ⟨Li⟩ is
also sampled perfectly, as we will discuss in the next section.

4 TARGET DENSITIES FOR LOCAL PATH GUIDING

In this section, we present a generic approach to derive optimal

target densities. At first, we assume that only a single decision

along the random walk can be guided. We start with optimal target

densities to guide that one local decision at an exact surface point

x . We show how to account for variance in nested estimators and

marginalization over the outgoing direction in that setting. Then,

10

0
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0.2

0.1

0 3 6 0 3 6
(a) Integrand with variance (b) Sampling densities

proportional

optimal (ours)integrand

x x

f(x) p(x)

Fig. 2. (a) An integrand (black line) and the variance of its nested estimator

(shaded region) for a hypothetical integration problem

∫
⟨f (x )⟩ dx . (b)

Instead of importance sampling the ground truth shape of the integrand

f (x ), our method invests more samples where the variance of the nested

⟨f (x )⟩ is high, resulting in provably better performance.

we derive the local target density that minimizes the average error

in the rendered image. Lastly, we show how to extend the results to

the typical case where densities are learned for regions of space S ,
rather than exact points x .

4.1 Adaptive densities: The irradiance integral

A common quantity in rendering is the irradiance E(x) at a point x
(e.g., to evaluate diffuse reflection at that point).

E(x) =

∫
Ω
Li(ωi, x)|cosθi | dωi. (4)

The corresponding estimator typically is:

⟨E(x)⟩ =
⟨Li(ωi, x)⟩|cosθi |

p(ωi | x)
. (5)

Here, for brevity, we assume that only a single sample forωi is taken.

The incident radiance is computed via a nested MC estimator ⟨Li⟩.
Previous work usually sets the target function to the ground truth

value of incoming radiance:

p(ωi | x) ∝ Li(ωi, x)|cosθi | = E [⟨Li(ωi, x)⟩] |cosθi |. (6)

This, however, neglects variance in the nested ⟨Li⟩ estimation. Con-

sider the illustrated example in Fig. 2. The shaded region around

the black line visualizes the variance of the nested estimator. In

the extreme case plotted here, the variance is highest where the

integrand is lowest. Hence, sampling proportionally to the ground

truth value performs poorly: The region of highest variance would

receive the fewest samples.

We can find a better suited target density by minimizing the

variance of the irradiance estimator,

V [⟨E(x)⟩] = E
[
⟨E(x)⟩2

]
− E2(x). (7)

The free variable is the PDF p(ωi | x): For path guiding, we would

like to find the best such PDF and approximate it based on train-

ing samples. Looking at (7), we can see that only the first term,

E
[
⟨E(x)⟩2

]
, the second moment, depends on the PDF. The squared

ground truth value E2(x) is constant. The secondmoment is a convex

functional in the PDF, so the minimizer can be found via Lagrange

multipliers:

pE (ωi | x) = arg min

p(ωi |x )
E
[
⟨E(x)⟩2

]
+ λ

(∫
p(ω ′

i
| x) dω ′

i
− 1

)
, (8)
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sun

(a) Cross-section (b) Diffuse / Glass (c) Glossy / Glass (d) Glossy / Mirror

Glass /
Mirror

Diffuse / 
Glossy

reflected sun

Fig. 3. We evaluate the theory on simple test scenes: two perpendicular

quads illuminated by a strong sun and uniform sky. The materials are varied

for the three different stages of our theory (b-d).

(a) Radiance-based (c) Our target function(b) Densities

Reflection of the sun

Fig. 4. Previous work (a) samples the reflection of the sun proportional to its

radiance. Our method (c) compensates for the unguided ‘reflect vs refract’

decision on the glass with a higher density towards the reflected sun (b).

where λ is the Lagrange multiplier and ensures that p(ωi | x) inte-
grates to one, i.e., is a valid PDF. The full derivation can be found in

the supplemental document. The resulting target density is:

pE (ωi | x) ∝
√
E
[
⟨Li(ωi, x)⟩2

]
|cosθi |. (9)

That is, sampling should be proportional to the square root of the

second moment of the nested radiance estimator, multiplied by the

cosine term. If the nested estimator has no variance, the second

moment is equal to the squared ground truth: E
[
⟨Li⟩

2
]
= L2

i
. Then,

our target function is equal to the one used in previous work (6).

Otherwise, the nested estimator’s variance is accounted for.

To test our target density, we apply it to a simple rendering

problem: We guide the irradiance estimation on a perfectly diffuse,

planar surface. The scene layout is illustrated in Fig. 3. In all cases,

two perpendicular quads are illuminated by an environment map

with a small, strong sun and a uniform sky. Since the direction of

the direct illumination is invariant with the position, we build a

single, high resolution histogram with a large number of samples,

to closely approximate our target density. Then, a small number of

samples is taken from the approximated target density.

In the first example, depicted in Fig. 4, the floor is diffuse, the

wall made of perfectly smooth glass. Hence, the light on the diffuse

surface comes mostly from two directions: directly from the sun,

and from the sun’s reflection in the glass. The latter requires an addi-

tional sampling decision of whether to reflect or refract on the glass.

In practice, guiding on Dirac delta surfaces (e.g., glass or mirrors) is

usually infeasible, since it requires an exact representation of the

local, potentially high-frequent 4D light field. Therefore, the deci-

sion on the glass is not guided, relying on Fresnel term importance

sampling instead. Unfortunately, that results in a large number of

rays being refracted through the glass, never finding the bright sun.

(a) Radiance-based (c) Our target function(b) Densities

Fig. 5. A glossy floor is illuminated by the sun and the sun’s reflection

in a glass pane. Rather than ignoring the BSDF, we use a provably good

marginalized distribution.

Our method invests more samples towards the sun’s reflection in

the glass, compensating for the nested variance.

4.2 Marginalized product sampling

The reflected light off a glossy surface is given by the rendering

equation integral (1). For that case, the zero-variance distribution

would be proportional to the product of incident radiance, BSDF,

and cosine. Such a product distribution can be computed on-the-fly,

given a distribution proportional to the BSDF and one for irradiance,

represented in a suitable model (e.g., parametric mixtures) [Herholz

et al. 2016]. Then, we would only need to learn our irradiance target

function (9). Unfortunately, computing suitable representations for

all types of BSDF models and their variations is not always feasible

[Herholz et al. 2018, 2016].

We could still try to learn the zero-variance density p(ωi | x,ωo).

That, however, would be a 7D density, possibly containing high

frequencies. The accuracy of the fit, the required number of samples,

and the overhead of the implementation can be greatly reduced

by simplifying to a 5D density, conditional only on the position x
and marginalized over the outgoing direction: p(ωi | x). Previous
work has performed that simplification by ignoring the BSDF term

[Vorba et al. 2019]. We, instead, derive an optimal marginalized

target density.

The goal is to guide an estimator for the reflected radiance, with

a PDF independent of the outgoing direction ωo:

⟨Lo(x,ωo)⟩ =
B(ωi, x,ωo)⟨Li(ωi, x)⟩|cosθi |

p(ωi | x)
. (10)

To find a suitable target distribution, we first need to define our

optimization goal. One option is to minimize the expected error

under a given distribution of outgoing directions ωo:

pLo (ωi | x) = arg min

p(ωi |x )
Eωo

[
E
[
⟨Lo(x,ωo)⟩

2
] ]
+ λ (. . . ) . (11)

Following the same steps as before, we arrive at the target density:

pLo (ωi | x) ∝
√
E
[
B2(ωi, x,ωo)⟨Li(ωi, x)⟩2

]
|cosθi |. (12)

The key differences to the irradiance target density (9) are that we

average over all outgoing directions and include the squared BSDF.

Figure 5 shows the same simple scene as before, with the floor

made glossy. Ignoring the BSDF, as done by previous work results

in the exact same density as if the floor was diffuse. Our density

(12), instead, allocates a significant amount of samples to the glossy

reflection of the sky. Note, however, that the error in the reflection
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increases. To reduce the overall error, our density trades a slight

increase of noise in the glass for a significant improvement on the

glossy surface.

While this target density is optimal regarding our chosen opti-

mization goal (11), it is not optimal in a global sense. On the one

hand, some glossy effects will still be better handled by BSDF impor-

tance sampling, e.g., almost specular reflections. On the other hand,

the target density above optimizes for the most frequent directions
ωo, which might not be the most important ones. In Section 5 we

discuss how to adapt the target density in an MIS combination, to

avoid oversampling glossy effects that are better handled by BSDF

importance sampling. But first, the next section will derive a density

that accounts for the importance of different outgoing directions.

4.3 Minimizing the image error

In our discussion so far, we have neglected the image contribution

of the local estimator. The target densities should, ideally, minimize

the variance of every pixel. In the following, we first derive the

optimal local target density if we were able to learn one density per

pixel. Then, we show how to extend the derivation to arrive at a

marginalized density, shared for all pixels.

Pixel contribution. To form our optimal local target densities, we

need to consider the contribution of a point x to some pixel px. To

compute that contribution, one has to consider every path x̄ that

leads from the pixel to the point x . The contribution is then the

outgoing radiance at x multiplied by the throughput of the path x̄ ,
integrated over all such paths:

Cpx(x) =

∫
Px

fpx(x̄)⟨Lo(x)⟩ dx̄ . (13)

Here, x̄ is a path starting in the pixel and eventually arriving at the

pointx . We denote the space of all such paths as Px . The contribution
of the path to the pixel, fpx(x̄), is the product of the sensor response
and the path throughput. This notation allows us to minimize the

image error by minimizing the error due to each individual point x .

Minimizing the pixel error. Our goal is to minimize the pixel vari-

ance due to local random sampling at the point x in the scene.

Consider a pixel estimator that starts by sampling a path x̄ , starting
in a pixel px and eventually arriving at point x (13). The second

moment of that estimator is:

E
[
⟨Cpx(x)⟩

2
]
=

∫
Px

f 2

px
(x̄)

p(x̄)
dx̄︸           ︷︷           ︸

pixel contribution

∫
Ω

B2
cos

2 θi
p(ωi | x)

E
[
⟨Li⟩

2
]

dωi︸                              ︷︷                              ︸
local estimator

, (14)

where p(x̄) is the joint probability of the random walk that leads to

the point x . Minimizing this second moment yields:

ppx(ωi | x, px) ∝

√∫
Px

f 2

px
(x̄)

p(x̄)
B2

cos
2 θi E

[
⟨Li⟩2

]
dx̄ . (15)

Note the dependency on the pixel: To use this target density, we

would have to learn one density for every pixel in the image. Next,

we show how to marginalize over the pixels instead.

(a) Ours (BSDF only) (b) Ours (MSE) (c) Ours (relMSE)

EV+6

EV+2

EV+6

EV+2

EV+6

EV+2

(1
) R

en
de

ri
ng

s
(2

) D
en

si
ti

es

Fig. 6. Reflection of a glossy quad in a dark mirror (c.f., Fig. 3). The exposure

value (EV) is unevenly adjusted over the image. (a) Considering only the

frequency ofωo assigns equal weight to both glossy lobes. (b)Minimizing the

MSE favors the (originally) brighter pixels, i.e., the directly visible portion. (c)

Minimizing the relMSE balances the noise between bright and dark regions,

which is usually more desirable.

Minimizing the MSE of the image. It is usually infeasible to learn

one density per pixel. One alternative is to minimize the mean

variance over all pixels of the image. That is, instead of minimizing

(14) for an individual pixel, we minimize the average over all pixels.

Hence, the resulting local target density, derived as before, also

contains the summation over all pixels:

pMSE(ωi | x) ∝

√√√∑
px

∫
Px

f 2

px
(x̄)

p(x̄)
B2

cos
2 θi E

[
⟨Li⟩2

]
dx̄ . (16)

The result is an estimator that renders images with the lowest possi-

ble mean-squared error (MSE). However, the MSE is not always the

best error metric for an image, because it scales quadratically with

the pixel luminance. The target density would neglect darker pixels

in favor of brighter ones, as the comparison in Fig. 6 shows. When

replacing the glass pane in our simple example by a dark mirror,

the glossy floor is visible from two sets of pixels: the ones that see

it directly and the ones that see the dark reflection. Minimizing the

MSE over the complete image focuses on the brighter pixels and

neglects the reflection almost completely.

Minimizing the relMSE of the image. Instead of minimizing the

MSE, we propose to minimize the relative MSE (relMSE): the MSE

divided by the squared ground truth value of the pixel. The relMSE

is independent of the pixel luminance, hence minimizing it achieves

a more balanced level of noise. The only modification to our op-

timization is a division by a constant, the ground truth value Ipx,
which propagates into the target density, yielding:

p
relMSE

(ωi | x) ∝

√√√∑
px

∫
Px

f 2

px
(x̄)

Ĩ2

px
p(x̄)

B2
cos

2 θi E
[
⟨Li⟩2

]
dx̄ . (17)

The ground truth is, of course, unknown. It can, however, be ap-

proximated by denoising or aggressively filtering the image from

previous training iterations, as done by Vorba and Křivánek [2016].

We denote the approximated pixel value as Ĩpx, which also includes

a small offset ϵ to avoid division by zero: Ĩpx ≈ Ipx + ϵ .
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4.4 Spatial caches

In practice, guiding distributions are learned not for a specific point

x but for a spatial cache cell S (e.g., from a grid or tree structure

[Vorba et al. 2019]). Typically, the learned densities are averaged over

all points x ∈ S . This averaging, however, results in low densities

for directions that matter only to a small number of points.

A simple example is depicted in Fig. 7. A density p(ωi | S) is
learned for each of four spatial cells S . There is no variance in

the nested incident radiance estimate, and the target density is

approximated with a high resolution histogram. Still, the rendering

with previous work shows outliers along the boundaries of S .
The set of points x to which a direction ωi contributes vanishes

at the boundaries. In the limiting case, for a point on the boundary

itself, there is a direction ωi that needs to be sampled for that point,

but for no other x ∈ S . When averaging across the whole spatial

cell, the resulting density for such an ωi is almost zero.

A better distribution can be found by minimizing the average

error due to all points x ∈ S . For our simplest target density, the op-

timal one for the irradiance estimator, we change the minimization

objective from (8) to:

pS (ωi | x ∈ S) = arg min

p(ωi |x ∈S )
Ex ∈S

[
E
[
⟨E(x)⟩2

] ]
+ λ (. . . ) . (18)

This is analogous to the marginalization over ωo in (11). The result-

ing target density is:

pS (ωi | x ∈ S) ∝
√
Ex ∈S

[
E
[
⟨Li(ωi, x)⟩2

]
cos

2 θi
]
. (19)

Note that the square root operation is now done after averaging over
S . Intuitively, this square root ‘steepens’ the fall-off for directions

that contribute only to the boundary, preventing vanishing densities.

The derivation for the other two target densities is analogous, the

resulting target density for the simple BSDF marginalization is:

p
simple

(ωi | x ∈ S)

∝

√
Eωo,x ∈S

[
B2(ωi, x,ωo)E

[
⟨Li(ωi, x)⟩2

]
cos

2 θi
]
.

(20)

We refer to this as our ‘simple’ target density in the following sec-

tions. The target density to minimize the relative error is:

p
full

(ωi | x ∈ S) ∝√√√∑
px

Ex ∈S

[∫
Px

f 2

px
(x̄)

Ĩ2

px
p(x̄)

B2
cos

2 θi E
[
⟨Li⟩2

]
dx̄

]
.

(21)

We refer to this one as our ‘full’ target density in the following.

5 MULTIPLE IMPORTANCE SAMPLING

So far, we have discussed the variance of an estimator that uses

only the learned sampling strategy. That, however, is insufficient

in practice. Relying solely on learned densities can cause excessive

variance, or bias [Owen and Zhou 2000]. The reasons include sim-

plification of the integrand (e.g., no BSDF product), marginalization

over important terms (e.g., outgoing direction or surface normal),

and fitting a possibly inappropriate representation to noisy data.

Therefore, it is common practice to combine the learned density

with a conservative one, like BSDF importance sampling [Hey and

Purgathofer 2002; Vorba et al. 2014].

(b) Rendering errors

Previous work Ours

#points PDF

average
our

(a) Frequency of 
directions

(c) Target density
(w/o cosine)

light

spatial cache S

Fig. 7. Four directional distributions are learned on a diffuse plane illu-

minated by a small light source. (a) The points x ∈ S see the light from

different directions. We plot the number of points x ∈ S (i.e., the surface

area) to which each direction contributes. Directions at the boundaries of S
are only relevant to a vanishingly small set of points. (b) Visualization of the

rendering error, showing outliers at the boundaries. (c) Comparison of the

PDFs when averaging (as in previous work) to our result. Our distribution

steepens the fall-off at the boundary and eliminates the outliers.

The combination is usually done via one-sample MIS with the

balance heuristic [Veach andGuibas 1995b], resulting in an estimator

of the following form:

⟨Lo⟩MIS =
⟨Li⟩B |cosθi |

(1 − α)pg(ωi) + αpB (ωi)
. (22)

Here, pд and pB are the guiding and BSDF importance sampling

distributions, respectively. First, one of the PDFs is chosen at random,

where α is the probability of choosing BSDF importance sampling.

Then, a direction ωi is sampled according to the chosen PDF. In the

more general case, if we allow not just the balance heuristic but

arbitrary MIS weightswд andwB , the estimator is:

⟨Lo⟩MIS =


wB(ωi,x ,ωo)⟨Li ⟩B |cos θi |

pB(ωi |x ,ωo)α (x ,ωo)
, with prob. α(x,ωo)

wg(ωi,x ,ωo)⟨Li ⟩B |cos θi |
pg(ωi |x )(1−α (x ,ωo))

, else.

(23)

As shown here, the optimal selection probability α(x,ωo) generally

depends on the position and outgoing direction.

In the following sections, we first show how to tune our guiding

density to perform best in an MIS combination. Then, we revisit

previous work on optimizing the selection probability α and demon-

strate how insights from our theory can benefit that problem, too.

5.1 MIS compensation

Our target densities from Section 4 attempt to capture the full inte-

grand. When combined with BSDF importance sampling via MIS,

that is not always the best approach. Consider a case where a guid-

ing cache spans a glossy and a diffuse surface, as shown in Fig. 8.

Here, our target density (21) strikes a trade-off that minimizes the

average error across both, increasing the noise on the diffuse surface

to avoid outliers on the glossy one. In this example, however, the

glossy reflection of the almost uniform sky is well handled by BSDF

importance sampling. Hence, there is no need for our distribution

to also cover that portion of the domain.

Instead of a target density that minimizes the error when used

alone, we ideally want to learn the density that minimizes the error

within an MIS combination. Finding the best such density has been

recently proposed under the name ofMIS compensation [Karlík et al.

2019]. The approach of Karlík et al. is to subtract a constant from
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(b) Traditional MIS(a) Only guiding (c) Karlík et al. (d) Ours

glossy diffuse

glossy diffuse

0.22

0.49 0.49 0.15

0.1751.4

1.05

(1)

(2)

(1)

(2)
(1) Our target density
(2) Radiance-based

glossy reflection
of the sky

relMSE:

relMSE:

Fig. 8. A single density is learned for a half glossy, half diffuse quad, illu-

minated by an environment map. The top rows compare the densities, the

bottom rows the rendered images. (a) uses only guiding, (b) uses one-sample

MIS with BSDF importance sampling, (c) additionally applies the method

of Karlík et al. [2019], and (d) uses our MIS compensation. Here, BSDF

importance sampling handles the reflection of the sky in the glossy surface

well. Our method successfully removes the corresponding directions from

the target density, resulting in a lower error than the other approaches.

a tabulated PDF, which effectively enhances contrast. While this

works well for the radiance-based target density, it does not always

perform well when the BSDF is included. In the example from Fig. 8,

their method cannot remove the strong glossy reflection of the sky.

We propose an alternative approximation: to pretend that the MIS

weights were independent of the PDFs. Then, instead of learning to

sample the full integral, we only need to learn how to sample the

MIS weighted portion of the guided technique:

Lo =

∫
Ω
wд ⟨Li⟩B |cosθi | dωi︸                       ︷︷                       ︸
guided portion

+

∫
Ω
wB ⟨Li⟩B |cosθi | dωi. (24)

The corresponding target density would simply contain the MIS

weight as well. For our target density marginalized over the BDSF

(12), for example, that would yield:

p(ωi | x) ∝

√
Eωo

[
w2

g
(ωi, x,ωo)B2 E

[
⟨Li⟩2

] ]
|cosθi |. (25)

The balance heuristic, of course, is not constant with respect to

the PDF. In an iterative learning scheme, however, the densities, and

hence the balance heuristic weight, tend to change smoothly be-

tween iterations. Therefore, we multiply the current balance heuris-

tic weight on the sample weights, starting with the first guided

training iteration. In our simple example (see Fig. 8), our approach

successfully eliminates the glossy reflection of the sky, which is

already captured well by BSDF importance sampling.

5.2 Selection probability

Sometimes, the best guiding decision might be not to learn anything

and rely solely on BSDF importance sampling. One example could be

almost specular surfaces, where the incident radiance is insignificant

compared to the BSDF. Using guiding on such surfaces, even in

(a) Müller
relMSE: 0.37 (0.4x)

(b) Constant 0.5
relMSE: 0.16 (baseline)

(c) Ours
relMSE: 0.13 (1.3x)

Fig. 9. A variant of the Cornell box with a glossy ceiling, rendered with

different BSDF selection probabilities. The method proposed by Müller (a)

performs worse than the uniform selection baseline (b). Our modification

(c) increases both robustness and efficiency.

G
uiding

B
SD

F

mostly seen
indirectly

(b) Ours(a) Müller (c) Visibility

Fig. 10. Comparison of the learned selection probabilities (a-b) in the mod-

ified Cornell box. The gray-scale image (c) shows the ratio of primary to

secondary rays in each guiding cache. White cells are only seen directly by

the camera, black ones contribute strongly to indirect illumination. Guiding

on the ceiling is only beneficial for indirect illumination, so it should only

occur if the ratio (c) is close to zero, as is the case for our method.

an MIS combination, can increase variance unless the selection

probability α is chosen carefully. Some care has to be taken, however,

since a poorly chosen α can be far worse than a uniform probability.
1

Finding the optimal α has been investigated in previous work

[Havran and Sbert 2014; Sbert et al. 2016]. A solution in the path

guiding context was proposed by Müller [Vorba et al. 2019]. Their

motivation is that, ideally, the effective density should correspond

to the zero-variance density. Thus, they propose to minimize the

divergence between the effective density p
eff
= (1−α)pg +αpB and

the zero-variance density pzv, using stochastic gradient descent.

Unfortunately, the optimal selection probability is a function

of the outgoing direction: α(ωo, x). In practice, however, only a

single value per cache cell S is learned, i.e., α(x ∈ S). Therefore, the
outcome of the gradient descent will not be the optimal α . Instead,
the expected divergence over all ωo is minimized:

α(x ∈ S) = arg min

α
Eωo

[D(p
eff

| | pzv)] . (26)

Here, D denotes some divergence function, e.g., Kullback-Leibler.

Minimizing the expected divergence over a given distribution of

ωo is certainly a reasonable approach. However, it is not optimal.

When comparing this to our target density (12), the potential prob-

lem becomes apparent: Only the distribution of ωo is considered,

not the contributions of the different directions.

1
A safer alternative to optimizing the selection probability is the use of control variates

[Kondapaneni et al. 2019; Owen and Zhou 2000].
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An extreme case scenario is shown in Fig. 9. A small light is turned

towards a glossy ceiling, indirectly illuminating a box. The scene is

rendered with the original guiding approach of Müller et al. [2017].

Whether guiding is beneficial on the ceiling greatly depends on ωo:

For directly visible points, BSDF importance sampling is far superior

and guiding performs poorly. For the indirect illumination on the

walls, however, the light is at a grazing angle of the glossy lobe,

hence guiding is the better choice there. Unfortunately, as visualized

in Fig. 10, the majority of outgoing directions on the ceiling are due

to the indirect reflection. Hence, the optimization for α neglects the

directly visible component, producing a severe variance artefact.

To correct this issue, we apply a similar approach as with our

target densities: Instead of minimizing the expected divergence, we

minimize the expected divergence weighted by the contribution:

α(x ∈ S) = arg min

α

∑
px

Ex̄

[
D(p

eff
| | pzv)

fpx(x̄)

Ĩpx

]
, (27)

where x̄ is a camera path leading to the point x , fpx(x̄) is the pixel

contribution, and Ĩpx is the approximated ground truth value of the

pixel. The resulting α does not produce the artefact in the extreme

case discussed here, and performs better or equal throughout all

our test scenes.

It is important to guarantee robustness when optimizing the

selection probability. The guiding distribution can cause bias or un-

bounded variance due to estimation errors. Therefore, it is generally

a good idea to, at the very least, enforce α ≥ 0.1 [Owen and Zhou

2000]. Furthermore, the stochastic gradient descent optimiziation

proposed by Müller [Vorba et al. 2019] can behave unpredictably for

severe outliers. Finding more robust estimation schemes is a very

important but orthogonal problem, beyond the scope of this work.

6 APPLICATION I: PATH GUIDING

In this section, we discuss our primary application: designing target

densities for a guided unidirectional path tracer.We apply our theory

on top of the approach by Müller et al. [2017]. In the following, we

first outline the mathematical formulation. Then, we present pseudo-

code with the necessary changes to the implementation. Lastly, we

evaluate our method on various test scenes. The source code and

rendered images can be found in the supplemental materials.

6.1 Estimating the target density

A nested tree structure is used to represent the guiding distribution.

The scene is partitioned into independent guiding caches S by a

binary tree, each approximating a directional density p(ωi | x ∈ S),
using a quad-tree. We have derived an optimal target density for

that case, (21). Note that our derivations locally optimize densities

assuming that all other decisions are fixed. In the path guiding

setting, decisions along the random walk of the nested estimator

are also guided. Because we are training in iterations, this is not a

problem: each iteration learns a density for the current variance of

the nested estimator, which typically is close to the actual variance

in the next iteration.

The remaining question is how to optimally approximate our

PDF using a piecewise constant quad-tree. Each leaf node k in the

quad-tree stores a weight γk , which determines the probability

 1 function Render(): 
 2  for i in iterations: 
 3   RenderImage() 
 4    
 5 +   for Leaf in NextCache: 
 6 +    Leaf.Value := Sqrt( 
 7 +     Leaf.Value * Leaf.Area 
 8 +    ) 
 9 
10   NextCache.Normalize() 
11   CurrentCache := NextCache 
12   NextCache.Reset() 
13   
14 function Lo(x, ωo, 
15 +      RelThroughput): 

16  // One sample MIS 
17  if Random() > α: 
18   ωi := CurrentCache(x).Sample() 
19  else: 
20   ωi := BSDF(x, ωo).Sample() 

21  // MIS computations 
22  MisPDF := (1-α) * CurrentCache(x).PDF(ωi)  
23          +  α * BSDF(x, ωo).PDF(ωi) 
24 +  MisWeight := CurrentCache(x).PDF(ωi) / MisPDF 

25  // Compute recursive estimate 
26  BsdfCos := BSDF(x, ωo).Eval(ωi) * Cos(θi) 
27  Li := Lo(RayTrace(x, ωi), -ωi, 
28 +        RelThroughput * BsdfCos / MisPDF) 

29  // Update guiding cache 
30  NextCache.Leaf(x, ωi) += (1 / MisPDF) * 
31 -   Li 
32 +   (BsdfCos * Li * MisWeight * RelThroughput)^2 

33  // Update BSDF sampling fraction loss 
34  MISLoss(x).Update( 
35   BsdfCos * Li 
36 +   * RelThroughput 
37  ) 

38  // Compute rendering equation estimate 
39  return Le(x, ωo) + BsdfCos * Li / MisPDF

Fig. 11. Pseudo-code with the required changes to compute our full density

with the algorithm byMüller et al. [2017]. Lines starting with “-”, highlighted

in red, denote parts that are replaced by our approach. Those starting with

“+”, in green, compute our proposed target density.

of choosing the corresponding set of directions Dk for piecewise

uniform sampling. The optimal value for γk can be computed using

the approach of Pantaleoni and Heitz [2017]. For our full target

density (21) the result is:

γk ∝

√
|Dk |

∫
ωi∈Dk

p2

full
(ωi | x ∈ S) dωi

=

√√√
|Dk |

∫
ωi∈Dk

E

[
f 2

px
(x̄)

Ĩ2

px
p2(x̄)

B2⟨Li⟩2
cos

2 θi

]
dωi,

(28)

where |Dk | is the size of the kth leaf, measured in solid angle. We

can easily estimate the leaf node weights γk by accumulating the

squared sampleweights, multiplying once by the leaf size, and taking

a square root prior to normalization.
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Fig. 12. Equal-time comparisons for two test scenes. The dashed lines in the plots mark the end of the last training iteration of the guiding methods. The

rendering time of the comparison images is highlighted (60s for Veach Door and 90s for Glossy Kitchen).

6.2 Implementation

We have applied our theory in the Mitsuba [Jakob 2010] imple-

mentation provided by Müller et al. [2017]. The pseudo-code in

Fig. 11 highlights the required changes. We have implemented our

full target density (21) with the MIS compensation and selection

optimiziations discussed in Section 5.

Müller et al. render the image in iterations (see the function

Render in lines 1–3). Thus, the guiding cache learned in the previous
iteration, CurrentCache, can be used for importance samplingwhile

learning a new cache for the next iteration, NextCache. After each
iteration is finished, we multiply the leaf values by the leaf sizes,

take the square roots, and normalize (lines 5–12).

The Lo function (line 14) is called by RenderImage to recur-

sively estimate the rendering equation. Note that our full distri-

bution requires us to keep track of the relative pixel contribution

fpx(x̄)/(p(x̄)Ĩpx), see (21), which we do here using the parameter

RelThroughput. When called directly from RenderImage, this pa-
rameter is set to the sensor response divided by the pixel estimate,

i.e.,Wpx/Ĩpx. We update RelThroughput for the recursive evalua-

tion of Lo in lines 27–28.

Irrespective of which techniquewas chosen for one-sampleMIS in

lines 16–23, we always need to compute the MisWeight for the guid-
ing strategy (line 24) for our MIS compensation (25). Furthermore,

in line 32, we accumulate the squared sample weights, multiplied by

the MIS weight, to estimate our target densities. Lastly, we apply our

modified selection probability optimizer in line 36, again weighting

by the relative contribution.

6.3 Results

We evaluated our method on a corpus of 22 scenes, all of which are

rendered at a resolution of around 640×360 on an AMD Ryzen™

9 3950X (16 cores / 32 threads @4.0 GHz) workstation with 64 GB

of memory. No Russian roulette is performed to aid comparability.

We compare our approach to radiance-based guiding, the target

density used by previous work. Both guiding approaches make use

of next event estimation. In addition, we compare to an unguided

path tracer with next event estimation, and a VCMmethod that uses

Markov chains to distribute photons [Šik et al. 2016]. For the latter,

we used the authors’ publicly available Mitsuba implementation.

In the following, we discuss the differences in equal time ren-

derings on four representative examples. The full results, including

convergence tests with long training times, can be found in the

supplemental material.

The Veach Door scene (Fig. 12, first row) shows how our method

reduces spatial caching artefacts. Both the wall and the door are very

challenging, as the surfaces on both sides end up in the same spatial

cache. Even though the backside is more strongly illuminated than

the side seen from the camera, its contribution to the image is less

important. Our density mitigates this problem by assigning lower

weight to the samples from the backside illumination, resulting in

lower levels of noise overall.

The Glossy Kitchen scene (Fig. 12, second row) features many

glossy surfaces. By incorporating the BSDF into our density (see

Section 4.2), we are able to improve performance in regions where

both radiance-based guiding and BSDF sampling perform poorly.

The Pool scene (Fig. 13, first row) features caustics which are

challenging to render. The caustics in the pool feature a similar

light transport to Fig. 4: sunlight is seen directly through the water

surface as well as reflected by the window on the right, causing

outliers on the pool floor in radiance-based approaches. Our density

eliminates these outliers by taking the variance due to the unguided

decision on the glass into account.

The Bookshelf scene (Fig. 13, second row) features strong indi-

rect illumination and is thus among the most challenging scenes

for our guiding density. Since our density contains the full pixel
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Fig. 13. Equal-time comparisons for two test scenes. The dashed lines in the plots mark the end of the last training iteration of the guiding methods. The

rendering time of the comparison images is highlighted (60s for Pool and 120s for Bookshelf).

integral, opposed to just the radiance, its estimate can be noisier

for longer paths. Nevertheless, our method still achieves the same

performance as the original method, at least for longer renderings.

This scene also shows quite well how unidirectional path guiding is

still sometimes outperformed by bidirectional methods like VCM,

especially for short renderings.

Our target density only consistently outperforms the baseline

with sufficient training. To measure the training cost, we computed

the error (relMSE) in a 512spp rendering after different training

times. The ratio of that error between our method and the approach

taken by previous work is shown in Fig. 14, averaged across all

scenes. After 1.5 seconds of training, our target density outper-

formed the previous one on average, after 10 seconds we outper-

form it in every single scene. Hence, interactive renderings will

not benefit from our results, as the training data is too scarce to

accurately learn the density. Longer running renderings of more

than ten minutes, however, receive consistent improvements and

converge 50% faster on average.

In conclusion, our target density offers visible improvements

across all scenes, at essentially no cost. While it is not suited for

interactive preview renders, it is a robust alternative to radiance-

based guiding for long running renders, where it can noticeably

accelerate convergence.

7 APPLICATION II: LIGHT SELECTION

We tested our theory in a different context and code base, by apply-

ing it to a light source selection method [Vévoda et al. 2018]. Vévoda

et al. apply a Bayesian approach, where they start with a coarse,

analytic approximation as a prior distribution. During rendering,

they gradually learn a better posterior distribution. Their distri-

bution already compensates for the variance of nested estimators.

That is, they effectively implemented the discrete analogy of our

1s 10s 100s

Training budget

0.5x

1.0x

1.5x

2.0x
Sp

ee
du

p 
in

 r
el

M
SE

Average over 22 scenes

Müller et al.
Ours

Fig. 14. Comparison of training cost. We plot the ratio of the relMSE after

equal time (the ‘speedup’), averaged over 22 scenes, using the geometric

mean. The shaded region visualizes howmuch that ratio varies across scenes.

The error is that of a 512spp rendering after different training times.

target distribution for irradiance (9). We modified their method to

additionally marginalize over the BSDF, i.e., compute our simplified

target distribution (20).

7.1 Implementation

We implemented the original approach and our changes in a custom

renderer. Computing our target distribution is also trivial in this

case. In principle, only one change is required: we remove the upper

bound of the cosine term that was originally used, and instead

multiply the BSDF and cosine on the weight of each sample. To that

end, we modify their equation (6) to now read:

ê = B(ωo, x → y)
Le(y → x)V (y ↔ x)G(y ↔ x)

P(l | c)p(y | l)
= êx . (29)

Here, y is a point on light source l in cluster c and x is the shading

point. V is the visibility term and G the full geometry term, now
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(a) Vévoda et al. (b) Ours (c) Reference
0.0070 (baseline)

1.2 (baseline)
0.0066 (1.1x)
0.33 (3.5x)

relMSE whole image:
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Fig. 15. Results from our light selection application. The Hall scene fea-

tures many small lights and a glossy surface. Here, even BSDF importance

sampling performs poorly. Our method achieves visible noise reduction by

marginalizing over the BSDF. The images were rendered with equal sample

count, which is also equal time, since our modifications caused no overhead.

including both cosines. P(l | c) and p(y | l) are the probabilities

of selecting light source l in cluster c and point y on that light,

respectively. The sample weights ê and êx , which are now equal for

our target distribution, are used to learn the posterior distribution.

We also performed another change that is not strictly required

but improved the learning rate. The prior distribution for the origi-

nal method was built with the original target distribution in mind,

which does not contain the BSDF or cosine terms. Multiplying by

the BSDF and cosine yields smaller weights, which we crudely ap-

proximated by dividing equation (10) in the original paper by a

factor of eight, a number we found to perform well empirically over

all our tests. Finding the optimal prior distribution is an orthogonal

and application specific improvement left for future work.

7.2 Results

We tested our modified algorithm across a variety of test scenes. In

this application, the difference was less significant than with the

local path guiding method, since the nested estimator’s variance

was already accounted for previously. For most scenes, our result

was only slightly better than the original version. We also did not

find a single scene where our target distribution performed worse.

One specific type of scene can benefit greatly from our target

distributions: Scenes with glossy surfaces and small light sources.

Glossy surfaces were neglected by the previous distribution and left

for the BSDF importance sampling strategy to resolve. However, if

the light sources are small, BSDF importance sampling can often

perform poorly, even on glossy surfaces. An example is shown in

Fig. 15. In this modified version of the Hall scene, we reduced the

size of the light sources. Neither the original target distribution nor

the BSDF importance sampling strategy can resolve all of the glossy

highlights. By marginalizing over the BSDF, our target distribution

achieves visible improvements in the highlights, while producing

identical results everywhere else.

In conclusion, while the benefit of our target distribution is less

significant in this application, we still achieved robust improvements

with trivial changes and no additional overhead.

8 LIMITATIONS AND FUTURE WORK

Isolated optimization. We have optimized local decisions in isola-

tion. The individual optimizations (target density, selection proba-

bility, and MIS compensation) are aware of each other only through

the observed changes in the sample weights of future iterations. In

our empirical tests, adding another isolated optimization resulted

in consistent improvements. There is, however, no strict proof that

the isolated decisions will converge to an optimal joint distribution.

Further investigation in that direction is an interesting avenue for

future work.

Short renderings. Target densities that are theoretically optimal

can still result in poor rendering performance when estimated with

few training samples, i.e., for short preview renderings. In Section 6,

we have observed this effect, where our full density sometimes

only outperforms the baseline after sufficient training. Estimating a

higher dimensional integral, namely the image contribution of the

guiding cache, results in higher levels of noise. There are multiple

possibilities to improve performance for these cases. One option is

to apply reconstruction or denoising methods to the guiding caches.

Another option is to design prior distributions and utilize a Bayesian

approach [Vévoda et al. 2018].

Other target densities. We have focused on target densities that

would be optimal if they were estimated exactly. A different ap-

proach, that could also improve performance for short render times,

would be to design target functions that are easier to learn. To that

end, regularization could be employed [Kaplanyan and Dachsbacher

2013] or a binary distribution could be learned, similar to MCMC

target functions that only include visibility [Hachisuka and Jensen

2011]. Exploring such target densities is an interesting avenue for

future work. It could also be interesting to find target densities that

minimize different error metrics, like perceptually-based ones.

Bidirectional guiding. The applications presented in this paper can
easily estimate the variance due to nested estimators, as the training

samples are generated from a distribution similar to the one that will

be used during rendering. If that is not the case, e.g., because guiding

is done bidirectionally [Jensen 1995; Vorba et al. 2014], computing

the target densities is more involved, but still possible. Computing

PDFs in a bidirectional setting can be tedious, a main reason why

these methods are less appealing in practice. A workaround to ease

implementation effort could be to only use the bidirectional sam-

ples to initialize a simpler, coarse guiding distribution. Successive

iterations can then learn unidirectionally (possibly from both sides)

and easily estimate our target densities.

9 CONCLUSION

Existing guiding approaches pursue the dream of zero-variance

sampling: If only we could make every local sampling decision

perfect, the whole estimator would have zero variance. In reality,

numerous limitations currently prevent this dream from becoming a

reality. Some decisions cannot be made perfect, for example, because

guiding them requires too long training times. We present a general

approach on how to deal with these constraints and design target

densities for path guiding that are optimal if zero-variance sampling

is not feasible. We apply our theory to state of the art path guiding

methods. The trivial modifications necessary to compute our target

densities yield significant gains in efficiency and robustness.
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