
RaTrace: Simple and Efficient Abstractions for BVH
Ray Traversal Algorithms

Arsène Pérard-Gayot
Computer Graphics Lab
Saarland University

Saarbrücken, Germany
perard@cg.uni-saarland.de

Martin Weier
Institute of Visual Computing
Bonn-Rhein-Sieg University
Sankt Augustin, Germany
martin.weier@h-brs.de

Richard Membarth
Agents and Simulated Reality

DFKI
Saarbrücken, Germany

richard.membarth@dfki.de

Philipp Slusallek
Agents and Simulated Reality

DFKI
Saarbrücken, Germany

philipp.slusallek@dfki.de

Roland Leißa
Compiler Design Lab
Saarland University

Saarbrücken, Germany
leissa@cs.uni-saarland.de

Sebastian Hack
Compiler Design Lab
Saarland University

Saarbrücken, Germany
hack@cs.uni-saarland.de

Abstract
In order to achieve the highest possible performance, the
ray traversal and intersection routines at the core of every
high-performance ray tracer are usually hand-coded, heavily
optimized, and implemented separately for each hardware
platform—even though they share most of their algorithmic
core. The results are implementations that heavily mix algo-
rithmic aspects with hardware and implementation details,
making the code non-portable and difficult to change and
maintain.
In this paper, we present a new approach that offers the

ability to define in a functional language a set of conceptual,
high-level language abstractions that are optimized away by
a special compiler in order to maximize performance. Using
this abstraction mechanism we separate a generic ray tra-
versal and intersection algorithm from its low-level aspects
that are specific to the target hardware. We demonstrate that
our code is not only significantly more flexible, simpler to
write, and more concise but also that the compiled results
perform as well as state-of-the-art implementations on any
of the tested CPU and GPU platforms.

CCS Concepts • Computing methodologies → Com-
puter Graphics; Ray Tracing; • Software and its engi-
neering→ Domain-Specific Languages;

Keywords Computer Graphics, Ray Tracing, Functional
Programming, Domain-Specific Languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5524-7/17/10. . . $15.00
https://doi.org/10.1145/3136040.3136044

ACM Reference Format:
Arsène Pérard-Gayot, Martin Weier, Richard Membarth, Philipp
Slusallek, Roland Leißa, and Sebastian Hack. 2017. RaTrace: Simple
and Efficient Abstractions for BVH Ray Traversal Algorithms. In
Proceedings of 16th ACMSIGPLAN International Conference onGener-
ative Programming: Concepts and Experiences (GPCE’17). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3136040.3136044

1 Introduction
Image synthesis algorithms determine visibility by tracing
millions of rays per frame and finding intersections with the
geometric primitives in the scene. Spatial index or accelera-
tion structures are used to speed up this process by quickly
eliminating many unnecessary intersection tests. They orga-
nize the scene geometry into a tree or a grid by subdividing
it into smaller subsets. The task of a traversal algorithm then
is to traverse this data structure and perform any necessary
intersection tests as fast as possible.

Therefore, a lot of research has focused on optimizing this
core algorithm, specifically by taking advantage of modern
hardware architectures that provide parallelism on multi-
ple levels. A typical CPU has multiple cores, each of them
supporting vector instructions that operate on multiple data
elements in parallel (SIMD). Modern GPUs are equipped
with hundreds of parallel execution units allowing a single
instruction to be executed in parallel with multiple threads
(SIMT). These architectural differences have led to various
implementations of ray traversal algorithms that are closely
tied to a specific hardware and execution model.
For example, on the CPU, Bounding Volume Hierarchy

(BVH) traversal algorithms benefit from SIMD instructions
by using packet tracing [42] or single-ray tracing and wide
BVHs [41]. On GPUs, these approaches are not so attractive:
Single-ray tracing with standard BVHs turns out to be more
efficient [1].

Conceptually, the traversal algorithms for CPUs and GPUs
are identical. Hence, it would be desirable to implement
the algorithm once in an abstract way and later refine only
the hardware-specific parts for a new architecture in order

https://doi.org/10.1145/3136040.3136044
https://doi.org/10.1145/3136040.3136044

GPCE’17, October 23–24, 2017, Vancouver, Canada Pérard-Gayot, Weier, Membarth, Slusallek, Leißa, and Hack

to save effort. In software that is not performance-critical,
abstraction is usually achieved by procedural abstraction,
object-orientation, and in particular dynamic method dis-
patch. However, some of these techniques incur a significant
runtime overhead that even modern compilers are often un-
able to remove reliably. As a result, this optimization process
today is usually performed manually by experts that under-
stand both the algorithmic as well as the hardware-specific
aspects. As a consequence, the resulting code is no longer
abstract: It uses concrete instead of abstract data types and is
polluted by the idiosyncrasies of the target hardware. Conse-
quently, it is not portable (at least not performance portable),
hard to maintain, debug, and extend.
Consider Figure 1: It shows three different implementa-

tions of the part of BVH traversal that is responsible for
the intersection of the child nodes. The ray-box intersection
routine has been highlighted in blue.

The examples on the left and middle are taken from state-
of-the-art implementations for CPUs and GPUs [1, 43], and
the right code snippet contains our high-level description
of that code. In Figure 1a and Figure 1b, there is no clean
separation between the code that intersects the bounding
boxes and the one that updates the stack.
In contrast, our generic description captures the essence

of the algorithm and isolates the three following concepts:
first, the iteration over the set of child nodes, whose size
may be greater than two, depending on the acceleration
structure; second, the intersection of the ray, or packet of
rays with each box; and third, the process of pushing any of
the corresponding nodes onto the stack, in sorted order. This
is achieved using a higher-order function, hit, highlighted
in red in Figure 1c, that is provided by the implementation
of the iteration abstraction iterate_children and performs
the stack operations. The implementation of hit depends on
the concrete acceleration structure and has to be carefully
tuned for the respective target hardware.

Hence, when mapping the generic code to a specific archi-
tecture the programmer instantiates the traversal algorithm
to a respective target platform by supplying implementations
for this and the other target-specific abstractions. To be as
efficient as hand-tuned code it is mandatory that all “calls”
to these abstractions are reliably removed and function ar-
guments are propagated at compile time. Standard compiler
optimizations generally do not guarantee this for various
reasons. In our setting, we use a programming language that
supports partial evaluation—the symbolic evaluation of a
part of the program before its actual execution—to reliably
remove all overhead of our abstractions. The result of the
partially evaluated kernel is code that looks and performs as
if it had been manually refined and optimized to each partic-
ular hardware architecture—simply by recompiling with the
specific “library” of hardware-specific refinements.

In this paper, we apply these recent results of research on
meta-programming to the implementation of high-performance
traversal algorithms. We show that higher-order functions
combined with partial evaluation are sufficient to generate

high-performance implementations from a generic traversal
algorithm. We demonstrate that this algorithm can be eas-
ily modified to support common variants such as early ray
termination or transparency.

Contributions
In summary, this paper makes the following contributions:

• We show how to use higher-order functions to abstract
ray traversal (Section 3). We separate the traversal into
two parts: The high-level description of the traversal
loop and its associated mapping to different hardware
architectures. The former is written in textbook-like
style while the latter contains the architecture-specific
details.

• We give examples of possible mappings for GPUs and
CPUs that exploit low-level features of the underly-
ing hardware (Section 4). These mappings particularly
target CUDA and CPUs with SIMD instruction sets.

• We demonstrate that our approach is competitive in
terms of performance: It is on a par or even outper-
forms state-of-the-art, highly-optimized, and hand-
tuned implementations for GPUs as well as CPUs (Sec-
tion 6.1).

• Using objective software complexity measures we also
show that this approach is significantly more flexible,
simpler, and easier to implement (Section 6.2).

2 Related Work
Ray Tracing Early ray tracers traced a single ray for each
CPU or node in a cluster [12, 22, 30]. Wald et al. [42] demon-
strated how to leverage SIMD hardware by vectorized in-
tersection routines that operate on packets of rays. Packet
traversal was later further improved with frustum culling [6,
34] and other techniques that increase SIMD coherence [7,
13, 41]. Another category of traversal algorithms work on
streams of rays [5, 39]. These algorithms extract coherence
by filtering a group of rays during traversal in order to take
best advantage of the SIMD units.

GPUs have become more and more programmable and are
now suitable for general purpose computations. The parallel
nature of ray tracing has led to many attempts to make it
run efficiently on GPUs [e.g. 15]. Early ray tracing systems
for BVHs on the GPU used packetized traversal [17, 20],
while current state-of-the-art approaches trace single rays
by maintaining a traversal stack for each ray, as in the work
of Aila and Laine [1]. The latter work and its extension [2]
also outline the importance of the traversal loop shape, the
scheduling, and the optimization of memory accesses.
As implementing efficient ray tracing routines demands

much expertise and machine knowledge, several frameworks
have been developed. One of the first attempts was OpenRT
[40]: It contains a simple OpenGL-like API abstracting over
a set of optimized SSE routines. Only its core functionality
is vectorized, and shading is done in single-ray fashion. The

RaTrace GPCE’17, October 23–24, 2017, Vancouver, Canada

for (unsigned i = 0; i < 4; i++) {

const NodeRef child = node ->children[i];

if (unlikely(child == BVH4:: emptyNode))

break;

avxf lnearP;

const avxb lhit = node ->intersect8(i,

org , rdir , org_rdir ,

ray_tnear , ray_tfar , lnearP);

if (likely(any(lhit))) {

const avxf childDist =

select(lhit , lnearP , inf);

sptr_node ++;

sptr_near ++;

if (any(childDist < curDist)) {

*(sptr_node -1) = cur;

*(sptr_near -1) = curDist;

curDist = childDist;

cur = child;

} else {

*(sptr_node -1) = child;

*(sptr_near -1) = childDist;

}

}

}

(a) Sample from a CPU implementation

const float c0min = spanBegin(c0lox , c0hix ,

c0loy , c0hiy , c0loz , c0hiz , tmin);

const float c0max = spanEnd(c0lox , c0hix ,

c0loy , c0hiy , c0loz , c0hiz , hitT);

const float c1min = spanBegin(c1lox , c1hix ,

c1loy , c1hiy , c1loz , c1hiz , tmin);

const float c1max = spanEnd(c1lox , c1hix ,

c1loy , c1hiy , c1loz , c1hiz , hitT);

bool swp = (c1min < c0min);

bool traverseChild0 = (c0max >= c0min);

bool traverseChild1 = (c1max >= c1min);

if (! traverseChild0 && !traverseChild1) {

nodeAddr = *(int*) stackPtr;
stackPtr -= 4;

} else {

nodeAddr = (traverseChild0) ?

cnodes.x : cnodes.y;

if (traverseChild0 && traverseChild1) {

if (swp) swap(nodeAddr , cnodes.y);

stackPtr += 4;

(int) stackPtr = cnodes.y;

}

}

if (nodeAddr < 0 && leafAddr >= 0) {

leafAddr = nodeAddr;

nodeAddr = *(int*) stackPtr;
stackPtr -= 4;

}

(b) Sample from a GPU implementation

for min , max , hit in
iterate_children(node , stack) {

intersect_ray_box(org , idir ,

tmin , t,

min , max , hit);

}

(c) Sample from our traversal

Figure 1. Sample implementations of the part of BVH traversal responsible for intersecting the children of the current node and
pushing the next nodes on the stack. The left and center snippets have been extracted from state-of-the-art implementations.

rendering API RTfact [16] later tried to overcome this is-
sue by using template meta-programming in C++. In RTfact,
templated classes for traversal and shading provide a frame-
work on top of which renderers are instantiated. However,
templates are hard to use, maintain, and extend. They clutter
code with uncountable template annotations and often gen-
erate unfathomable error messages when used improperly.
In addition, a lot of specialized and complicated code must
be written to support a wide variety of SIMD widths and
hardware architectures. The current state-of-the-art CPU ray
tracing system Embree [43] supports different BVH struc-
tures and packet sizes. The core ray tracing kernels of Embree
are written and optimized by hand with vector intrinsics for
performance reasons. The Embree example renderer uses
ispc [32], a compiler for a C-like programming language
that hides the complexity of vector intrinsics and data types.
However, ispc cannot be used to build complex abstractions,
since it lacks support for more advanced language features
like polymorphism or higher-order functions. OptiX [31] is
built on top of CUDA. It follows a single-ray approach and
internally uses the kernels from Aila et al. [2]. A specific
compiler merges the kernels written with OptiX and creates
a megakernel out of them. The resulting program can only
run on NVIDIA GPUs or on CPUs via a PTX to x86 compiler.
However, the CPU backend does not perform nearly as well
as Embree. Radeon-Rays1 (previously FireRays) is another
GPU ray tracing framework based on OpenCL which offers

1http://gpuopen.com/gaming-product/radeon-rays

a simple API for scene management, acceleration structure
construction, and ray traversal. Unfortunately, their algo-
rithm is not as optimized as the traversal from Aila et al. [2]
and is consequently slower. As we see, the trend is towards
incorporating compiler technology in high-performance ray
tracing. In this context, compilers have two major uses: Per-
form transformations that would otherwise be manual, and
explore different variants [36].
Andersen [4] uses C-Mix [3]—a partial evaluator for C—

in order to specialize a ray tracer with respect to objects
and light sources in the scene. Depending on the specialized
scene, the achieved speed up is between 1.5x-3.x. However,
the evaluated scenes only consist of a few objects. So this
approach does not scale with complex scenes containing tens
of thousands of triangles.

Domain-specific Languages In other areas like computer
vision or high-performance computing, domain-specific lan-
guages (DSLs) have been successfully used in order to gain
performance from a straightforward implementation. DSLs
can be either implemented from scratch like Diderot [11]
or embedded into a host language like C++ or Scala. When
embedding DSLs one can reuse the lexer, parser, and type
system of the host language. Carette et al. [9] and Hudak [21]
lay the foundation of embedding a typed language by or-
dinary functions instead of object terms. Hofer et al. [19]
picked up this idea and carried it to the Scala world while
emphasizing modularity and the ability to abstract over and
compose semantic aspects. Rompf and Odersky [35] coined

http://gpuopen.com/gaming-product/radeon-rays

GPCE’17, October 23–24, 2017, Vancouver, Canada Pérard-Gayot, Weier, Membarth, Slusallek, Leißa, and Hack

the term Lightweight Modular Staging (LMS) and paved the
way for performance-oriented embedded DSLs [10] like Op-
tiML [38] or Liszt [14]. LMS does not rely on explicit staging
capabilities of the host language Scala. Instead, executing the
host program constructs a second domain-specific program
representation like Delite [8]. For this reason, this kind of
embedding is called deep embedding. Examples include Spiral
in Scala [29] that implements a generator for DSP algorithms
in LMS, or Array Building Blocks [27] and Halide [33] that
leverage a similar staging mechanism to construct the actual
program representation with C++ as host language for vector
programming and image processing respectively.HIPAcc [25]
and SYCL2 on the other hand, are shallowly embedded DSLs
in C++. In contrast to deeply embedded DSLs, HIPAcc and
SYCL programs can be compiled with an unmodified C++
compiler. However, a modified C++ compiler, that directly
manipulates the program representation, is needed in order
to achieve performance. Our work uses shallow embedding.
But instead of extending the compiler of the host language,
we use partial evaluation in order to eliminate higher-order
functions at compile-time [23, 24].

3 Abstractions for Ray Traversal
RaTrace, our high-performance traversal implementation, is
written in Impala [23], an imperative and functional language
that borrows from the language Rust. In contrast to Rust,
Impala integrates a partial evaluator that allows us to remove
abstractions at compile time.

3.1 Zero-cost Abstractions
Most of the Impala code should be self explanatory but we
give a brief overview of non-standard features below.
Impala supports SIMD vectors. A vector of four floats is

denoted by the type simd[float * 4].
A for loop in Impala is merely syntactic sugar to call a

higher-order function. The construct
for var1 , var2 in iter_func(arg1 , arg2) { /* ... */ }

translates to
iter_func(arg1 , arg2 , |var1 , var2| { /* ... */ });

The body of the for loop and the iteration variables consti-
tute an anonymous function |var1, var2| { /* ... */ }

that is passed to iter_func as the last argument. It can then
be called from within the function iter_func.

This can nicely be used to separate the high-level descrip-
tion of an algorithm from its hardware-specific mapping,
which often also determines the schedule of how to best ap-
ply operations on some data structure. For example, consider
the following high-level image processing abstraction that
scales each pixel of an image:
for x, y in iterate(img) {

img(x, y) = img(x, y) * 0.5f;
}

2https://www.khronos.org/sycl

A simple mapping for the iterate function onto the CPU
then applies this operation sequentially over all pixels of the
image.
fn iterate(img: Image , body: fn(int , int) ->()) -> () {

for y in range(0, img.height) {
for x in range(0, img.width) {

body(x, y);
}

}
}

More optimized CPU mappings (e.g. ones that use vector-
ization or loop blocking) can be implemented accordingly.
A GPU implementation of iterate would use SIMT paral-
lelism to process vectors of pixels. Impala offers built-in
higher-order functions to express that a piece of code (given
as a closure) is to be executed on a GPU. For example, the
following implementation of iterate leverages the built-in
function cuda to execute the kernel on the GPU via CUDA:
fn iterate(img: Image , body: fn(int , int) ->()) -> () {

let grid = (img.width , img.height);
let block = (32, 4);
cuda(grid , block , || {

let x = tid_x() + bid_x()*bdim_x ();
let y = tid_y() + bid_y()*bdim_y ();
body(x, y);

});
}

Usually, calling a function that binds variables from its envi-
ronment requires to build a closure. By default, the Impala
compiler partially evaluates all calls to higher-order func-
tions, which removes closures for non-recursive calls. Using
a novel optimization called lambda mangling [24], the evalu-
ator also eliminates closures for tail-recursive calls.
This allows the programmer to cleanly separate the code

between the high-level, generic algorithm and low-level,
hardware-specific mappings using higher-order functions.
Impala’s partial evaluator combines these code parts by re-
moving the overhead of closure allocation and function calls
entirely.
In the case of RaTrace, all higher-order calls are either

non-recursive or tail-recursive. Hence, the default partial
evaluation removes all closures. Additionally, the program-
mer can force partial evaluation by annotating a call with
@f(/*...*/) [23]. RaTrace uses these additional explicit par-
tial evaluation annotations to unroll loops, force the inlining
of functions, or specialize code.

3.2 Traversal Algorithm
A BVH is an acceleration structure for ray tracing, which
consists of a n-ary tree (n is usually 2 or 4) in which every
node is associated to a bounding volume (a box, typically)
and every leaf contains a list of primitives. An example of
such a BVH is given in Figure 2.
Given a ray, a traversal algorithm traverses this tree to

find the closest intersection by recursively intersecting the
ray with the bounding box of each node. The two children
of the node are processed only if there is an intersection,
which eliminates many ray-primitive tests compared to a

https://www.khronos.org/sycl

RaTrace GPCE’17, October 23–24, 2017, Vancouver, Canada

Figure 2.A scenemade of 4 primitives (left) and one possible
BVH (right). A ray and its traversal path are drawn in red.

brute-force method. Different variants of this basic algorithm
have been proposed to increase performance on different
architectures, but the core idea behind them remains the
same, as will be shown in the next section.

3.3 Traversal Abstractions
Our traversal implementation RaTrace builds on a careful
study of the algorithms used by Embree and Aila et al. [2, 43].
Both implementations share several common aspects:

• The outermost loop, which iterates over the set of rays.
In Embree, this iteration over rays is implicit: Vector-
ization can be seen as an iteration over N rays (N
being the SIMD width).

• The initialization, in which the stack and traversal
variables are allocated.

• The traversal loop, which terminates when the stack is
empty.

• The innermost loop, which either iterates over internal
nodes in the case of Embree or leaves for Aila’s code.
Since our experiments have shown that the GPU is
more sensitive to control flow instructions, it is accept-
able to iterate over leaves for both the CPU and GPU
implementations.

• The intersection routines that can use precomputed
data to increase performance.

But they also differ considerably in several aspects:
• The acceleration structure: Embree uses a 4-wide BVH;
Aila et al. use a standard binary BVH.

• The vectorization: Embree traces packets of 8 rays; Aila
et al. use single rays.

• The data layout: Rays, nodes, and triangles are loaded
and stored in a way that maximizes performance for
each architecture.

This analysis suggests that our traversal algorithm must
support BVHs of different arity and that only the accelera-
tion structure, vectorization, and data layout should be kept
separate for each implementation.
A version of our generic and high-level traversal code is

given in Listing 1. For the sake of presentation, small parts of
the code that are not relevant for our discussion are omitted.
Within the iteration over all rays the algorithm proceeds as
follows: First, a stack is allocated and the traversal variables
are initialized. Next, the root node is pushed onto the top of

the stack and the traversal starts. We assume that the root of
the BVH is not a leaf, hence we begin by iterating over the
children of the current node in Step 1. Any children that are
intersected by the current ray are pushed onto the stack. The
order in which they are pushed is defined by an architecture-
specific heuristic provided in the mapping. The top of the
stack now contains the next node to intersect: If it is a leaf,
we iterate over its triangles and record any intersection in
Step 2, otherwise we return to Step 1.

for tmin , tmax , org , dir , record_hit in
iterate_rays(ray_list , hit_list , ray_count) {

// The ray is defined as org + t * dir
// with t in between tmin and tmax

// Allocate a stack for the traversal
let stack = allocate_stack ();

// Initialize traversal variables
let idir = 1.0f / dir;
let mut t = tmax;
let mut u = 0.0f;
let mut v = 0.0f;
let mut tri_id = -1;

stack.push_top(root , tmin);

// Traversal loop
while !stack.is_empty () {

// Step 1: Intersect children and update the stack
for min , max in iterate_children(t, stack) {

intersect_ray_box(org , idir , tmin , t, min , max)
}

// Step 2: Intersect the leaves
while is_leaf(stack.top()) {

let leaf = stack.top();

for id, tri in iterate_triangles(leaf , tris) {
let (mask , t0, u0, v0) =

intersect_ray_tri(org , dir , tmin , t, tri);

t = select(mask , t0, t);
u = select(mask , u0, u);
v = select(mask , v0, v);
tri_id = select(mask , id, tri_id);

}

stack.pop();
}

}

record_hit(tri_id , t, u, v);
}

Listing 1. Our generic traversal loop.

The intersection routines, highlighted in red, can easily be
changed without impacting the core traversal algorithm. The
types of their arguments are generic, so they can operate on
single rays or packets of rays using SIMD units. Their return
value is the result of the intersection: The entry and exit
distance in the case of a ray-box intersection, or a Boolean
flag—set if a triangle is hit—along with the hit distance and
barycentric coordinates in the case of a ray-triangle inter-
section. The triangle intersection routine additionally uses
an abstract data structure for the input primitive, which al-
lows us to use the original triangle data or use precomputed
data [44].
In Step 1, the result of the ray-box intersections are di-

rectly forwarded to iterate_children. Thus, it can push or

GPCE’17, October 23–24, 2017, Vancouver, Canada Pérard-Gayot, Weier, Membarth, Slusallek, Leißa, and Hack

pop nodes depending on their relative intersection distances
and specific mappings can make different decisions for the
child traversal order.

In our implementation, both the CPU and the GPU version
share the same intersection routines.We use the slab test [22]
to compute ray-box intersections and the Möller-Trumbore
intersection algorithm [26] to compute the ray-triangle in-
tersections.
The traversal stack stores the node identifiers as well as

the corresponding entry distance along the ray (the exit
distance is discarded). These distances are used to cull nodes
when an intersection with a triangle has been found.

Note that Listing 1 corresponds to a textbook-like algo-
rithmic description of ray traversal. Still, the chosen abstrac-
tions allow us to map this generic code to highly optimized,
hardware-specific code, as shown below.

4 Mappings to Different Architectures
The mapping of the traversal algorithm to each architecture
requires a different implementation of our three hardware-
specific abstractions: iterate_rays, iterate_ children, and
iterate_triangles. These functions take care of all the low-
level details and ensure that the traversal routine takes ad-
vantage of every available hardware feature.

4.1 CPU Mapping
Our CPUmapping uses 4-wide BVHs. For each node, we store
the bounding boxes of the four children in a structure-of-
arrays layout and their index in the array of nodes (Listing 2).
A special value of zero for the child index corresponds to an
empty node; negative values represent leaves and point to the
triangle array. Instead of storing the number of primitives in
the node structure, sentinels are stored in the triangle array
to indicate the end of a leaf, which minimizes the size of the
node structure.

struct Node {
min_x: [float * 4],
min_y: [float * 4],
min_z: [float * 4],
max_x: [float * 4],
max_y: [float * 4],
max_z: [float * 4],
children: [int * 4]

}

Listing 2. Structure of a BVH node on the CPU.

The CPU mapping for the traversal loop uses packets of
8 rays for best use of the AVX2 SIMD instruction set. This
means that in the generic code the type of org, dir, tmin, tmax
as returned by iterate_rays, and all the traversal variables
containing per-ray data are actually inferred by the compiler
to be SIMD vectors. For instance, the compiler will infer that
the type of tmin in Listing 1 is simd[float * 8].
The core part of the mapping is the iterate_children

function (Listing 3): This is where the nodes are loaded and
the decision is made to continue the traversal with one or
more children.

fn iterate_children(t: simd[float * 4],
stack: Stack ,
body: IntersectionFn) -> () {

let (node , tmin) = stack.top();
stack.pop();

// If the current distance for all the rays in the
// packet is smaller than the entry distance of this
// node , then discard it
if all(t < tmin) { return () }

// Iterate over the children of this node
for i in unroll(0, 4) {

// Are this child and the following empty ?
if node.children(i) == 0 { break () }

// Get the bounding box for this child
let min = vec3(node.min_x(i),

node.min_y(i),
node.min_z(i));

let max = vec3(node.max_x(i),
node.max_y(i),
node.max_z(i));

// Call the intersection function (the loop body)
// This returns the entry and exit distance
let (tentry , texit) = body(min , max);

let t = select(texit >=tentry ,tentry ,flt_max);
// Is the intersection valid ?
if any(texit >= tentry) {

// Yes , then push the nodes so that the
// closest one is intersected first
if any(stack.tmin() > t) {

stack.push_top(node.children(i), t)
} else {

stack.push(node.children(i), t)
}

}
}

}

Listing 3. CPU mapping of the iterate_children function.

In iterate_children, we first pop a node from the stack
and test if its associated intersection distance is less than any
recorded distance along the packet of rays using the function
any that will return true if the condition holds for any lane
when SIMD types are used. If this is the case, we iterate over
the children of the node (this mapping uses a BVH4 with
four children per node) and for each of them we intersect the
associated bounding box with the packet. The intersection
is computed by calling the function body that is passed to
iterate_children. Thanks to the special for loop syntax of
Impala, this integrates nicely with the generic traversal code:
The function body is actually the body of the for loop in Step
1 of the traversal (Listing 1).

The remaining part of the CPU mapping is straightfor-
ward: iterate_rays loads a set of 8 rays and returns them in
SIMD variables, while iterate_triangles loads the triangles
from possibly hardware-specific layouts and performs the
intersection computation provided in the loop body.

4.2 GPU Mapping
The GPU mapping traverses a standard BVH in single-ray
fashion and thus uses a different memory layout. A BVH
node contains the bounding box of the two children along
with their indices in the array of nodes (Listing 4). The same
idea as in the CPU mapping is used here: Negative values

RaTrace GPCE’17, October 23–24, 2017, Vancouver, Canada

are interpreted as leaves and give the index into the triangle
array.

struct BBox {
lo_x: float ,
hi_x: float ,
lo_y: float ,
hi_y: float ,
lo_z: float ,
hi_z: float

}

struct Node {
left_bb: BBox ,
right_bb: BBox ,
left_child: int ,
right_child: int ,
padding: [int * 2] // 16-byte alignment

}

Listing 4. Structure of a BVH node on the GPU.

In order to improve GPU performance, we use 128-bit
vector loads when loading sets of rays, triangles, and BVH
nodes from global memory. We also exploit the caches in
recent GPU architectures by using read-only memory loads,
using the hardware-specific intrinsic ldg, exposed by the
compiler. This gives a small speedup of a few percent in our
test scenarios.

TheGPU implementation of iterate_children is presented
in Listing 5. Step 1 first loads the BVH node using vector
loads and Step 2 shuffles the values in those vectors to build
a bounding box. Finally, we call the intersection function for
both child bounding boxes, sort the nodes by their distance
along the ray, and push them onto the stack. The intersection
function is called body because it contains the body of the
for loop in Step 1 of Listing 1.
The traversal variables (e.g., org, dir, etc.) are not vec-

tors in the GPU mapping: The compiler infers that they are
of type float from the GPU mapping of the iterate_rays

function.
In this version of iterate_children, we do not immedi-

ately pop a node from the stack. This is because the top of
the stack is stored as a separate variable: If we intersect only
a single child, it is more efficient to simply replace the con-
tents of that variable (this is what the set_top function does).
This seemingly small optimization has an important impact
on performance, mainly because it replaces a few reads and
writes to memory by reads and writes to registers.

The same key ideas are applied in iterate_rays and iter

ate_triangles: We use vector loads and ldg to get the data
into registers. Their implementation is otherwise very straight-
forward.
For testing purposes, we evaluated the use of persistent

threads and node postponing and concluded that they no
longer considerably improved the efficiency of the code on
current hardware. Consequently, we do not include those
techniques in the final version of our traversal code.

fn iterate_children(t: float ,
stack: Stack ,
body: IntersectionFn) -> () {

// No culling , ignore the entry distance
let (node , _) = stack.top();

// Step 1: Load nodes in vector form
let node_ptr = node as &[float];
let tmp0 = ldg(& node_ptr (0) as &simd[float * 4]);
let tmp1 = ldg(& node_ptr (4) as &simd[float * 4]);
let tmp2 = ldg(& node_ptr (8) as &simd[float * 4]);
let child = ldg(& node_ptr (12) as &simd[int * 4]);

// Step 2: Assemble bounding boxes
let min1 = vec3(tmp0 (0), tmp0 (2), tmp1 (0));
let max1 = vec3(tmp0 (1), tmp0 (3), tmp1 (1));

let min2 = vec3(tmp1 (2), tmp2 (0), tmp2 (2));
let max2 = vec3(tmp1 (3), tmp2 (1), tmp2 (3));

// Intersect the two children
let (tentry1 , texit1) = body(min1 , max1);
let (tentry2 , texit2) = body(min2 , max2);

let hit1 = tentry1 <= texit1;
let hit2 = tentry2 <= texit2;
if !hit1 && !hit2 {

// No intersection was found
stack.pop();

} else {
// An intersection was found
if hit1 && hit2 {

// Both children were intersected:
// sort the intersections
if tentry1 < tentry2 {

let tmp = child (0);
child (0) = child (1);
child (1) = tmp;

}
stack.push(child (0), 0.0f);
stack.set_top(child (1), 0.0f);

} else {
// Only one child was intersected
let next = select(hit1 , child (0), child (1));
stack.set_top(next , 0.0f)

}
}

}

Listing 5. GPU mapping of the iterate_children function.

5 Variants of the Traversal
Our high-level description of the BVH traversal algorithm
can be adapted for different purposes. Apart from vectoriza-
tion width—which can be changed by simply instanciating
the traversal code with a different SIMD type—we might
want to add other features such as transparency or early ray
termination for shadow rays. These features can be added
without touching the low-level mappings, as shown in List-
ing 6.

The is_terminated function simply returns true if the ray
has hit a triangle. The user provides the
transparency function which returns a transparency mask
for a given point on a triangle. They also provide the early_

exit variable which controls whether or not the early exit
optimization will be applied. Because of partial evaluation
(triggered by the @ sign), the compiler will remove the early
exit test if early_exit == false.

Since Impala is a functional language, break is just a func-
tion that can be captured just like any other function. This
gives us the opportunity to exit the main traversal loop di-
rectly from the deeply nested triangle intersection.

GPCE’17, October 23–24, 2017, Vancouver, Canada Pérard-Gayot, Weier, Membarth, Slusallek, Leißa, and Hack

while !stack.is_empty () {
// Capture this loop 's exit continuation
let terminate = break;

let node = stack.top();

// Intersect children and update stack
for min , max in iterate_children(t, stack) {

intersect_ray_box(org , idir , tmin , t, min , max ,
hit_child);

}

// Intersect leaves
while is_leaf(stack.top()) {

let leaf = stack.top();

for id, tri in iterate_triangles(leaf , tris) @{
let (mut mask , t0, u0, v0) =

intersect_ray_tri(org , dir , tmin , t, tri);

mask = transparency(mask , id, u0, v0);

t = select(mask , t0, t);
u = select(mask , u0, u);
v = select(mask , v0, v);
tri = select(mask , id, tri);

if early_exit && is_terminated(tri) {
terminate ()

}
}

// Pop node from the stack
stack.pop();

}
}

Listing 6. Modifications of the high-level traversal loop for
early ray termination and transparency. The changes are
highlighted in blue.

6 Results
6.1 Benchmarks
We compare our code against hand-tuned, state-of-the-art
implementations on both the CPU and a discrete GPU. For
all tests, we disabled early ray termination and transparency.
On the CPU, we use the packetized AVX2 traversal rou-

tine from Embree 2.4.0 as our reference. This variant is one
of the fastest traversal routines made available by Embree,
although it may not be the best choice for very incoherent
ray distributions. Both Embree’s traversal routine and ours
use the same acceleration structure (a BVH4 generated by
Embree). Even though Impala supports parallelism using
TBB, we ran the benchmarks on a single core since Embree
2.4.0 does not provide a multithreaded version of its kernels.
Since the Impala compiler framework is built on top of

LLVM 3.4.2, we compiled Embree with the same LLVM ver-
sion using the LLVM-based C++ compiler clang. In this set-
ting, Embree is subject to the same low-level optimizations
and code generation techniques as RaTrace. For reference,
we also give the performance numbers for Embree when
compiled with the Intel C/C++ compiler icc 16.0.0.

On the GPU, our traversal is benchmarked against a mod-
ified version of the Aila’s GPU traversal code in which the
triangle intersection routine has been replaced. We use the
same Möller-Trumbore [26] algorithm as in Embree, instead
of a faster intersection routine with precomputed triangle

data [44]. All our implementations use this intersection test,
which we believe makes comparisons fairer. In this case the
acceleration structure for both traversal implementations is
an offline-built SBVH [37].

The scenes used for testing all these implementations are
presented in Figure 3. We test the pure traversal and inter-
section routines in different scenarios without performing
any shading or other rendering operations:

• Primary rays are fired from a pinhole camera and
the closest intersection is found.

• Shadow rays are shot towards a point light whose
position is fixed within the scene and chosen so that
the light can reach a good proportion of the overall
geometry. The origins of these rays are determined by
intersecting the primary rays with the scene.

• Random rays are built by taking two random points
within the scene bounding box and connecting them
with a ray finding the closest intersection.

The results are shown in Table 1. We verified that, for each
platform, all corresponding benchmarks operate on the same
data structure and the same set of rays.
On the CPU, our traversal routine is always faster than

the Embree code compiled with clang—which uses LLVM to
generate code, as our compiler does—by at least 4%. It is also
obvious that the code generated by LLVM, which we have to
use, is generally not yet as good as that produced by the Intel
compiler. Still, our code performs only slightly slower (within
5%) than Embree compiled with Intel’s compiler. On the
GPU, our traversal routine performs better than the modified
version of Aila’s code in every test case, even though the
results vary depending on the scene and the ray distribution
used.

There are several reasons for this: On the CPU, the control
flow and the shape of the loop have a minor influence on the
execution time. Performance mainly depends on the number
of nodes traversed and the intersection algorithm used. We
have consequently designed our abstractions so that the
heuristics that decides which children to traverse are almost
the same as those used by Embree.
Looking at the machine code generated by both Intel’s

compiler and Impala/LLVM, we see that our intersection
routines contain more AVX register spills; some of them
being emitted in critical parts of the loop like the ray-box
intersection. Since LLVM is used for register allocation in
Impala, it is highly likely that it is responsible for the non-
optimal code quality. Using a newer version of LLVM could
improve that aspect.

On the GPU, Aila’s implementation introduced persistent
threads, but this creates some overhead due to the use of
a global pool of rays. Since improvements in modern GPU
hardware [28] make persistent threads much less effective,
our traversal routine performs consistently faster, even for
incoherent workloads. Interestingly, we found that adding
read-only memory loads gives a speedup (up to 4% in some
scenes) at almost no cost in code readability.

RaTrace GPCE’17, October 23–24, 2017, Vancouver, Canada

(a) Sibenik (b) Sponza (c) Conference (d) San Miguel (e) Power Plant

Figure 3. Scenes used for benchmarking different traversal implementations, rendered with ambient occlusion at a resolution
of 1024 × 1024 pixels.

Table 1. Performance of the traversal implementations in Mrays/s on an Intel Core i7-4790 CPU with 3.60GHz and 16GB of
RAM, and a GeForce GTX 970. The images were rendered at the resolution of 1024 × 1024. The values are computed from the
median of 100 executions in order to discard outliers. The percentages are speed-ups w.r.t. Embree compiled with icc, Embree
compiled with clang, and the work of Aila et al., depending on the platform. The CPU benchmarks are run on a single thread
on a single core. The best and worst case of each comparison are highlighted in green and red, respectively.

CPU GPU

Scene Ray Type Embree (icc) Embree (clang) RaTrace Aila et al. RaTrace

Sibenik
75K tris.
Figure 3a

Primary 18.17 15.06 17.80 (-2.04%, +18.19%) 336.47 405.01 (+20.37%)

Shadow 23.93 19.54 23.48 (-1.88%, +20.16%) 459.04 560.44 (+22.09%)

Random 2.48 2.29 2.39 (-3.63%, +4.37%) 154.83 177.48 (+14.63%)

Sponza
262K tris.
Figure 3b

Primary 7.77 6.60 7.46 (-3.99%, +13.03%) 189.45 223.34 (+17.89%)

Shadow 10.13 8.13 9.82 (-3.06%, +20.79%) 304.17 359.47 (+18.18%)

Random 2.62 2.41 2.52 (-3.82%, +4.56%) 121.46 141.20 (+16.25%)

Conference
331K tris.
Figure 3c

Primary 27.43 23.24 26.80 (-2.30%, +15.32%) 427.96 514.26 (+20.17%)

Shadow 20.00 16.98 19.86 (-0.70% , +16.96%) 358.66 433.65 (+20.91%)

Random 5.01 4.61 4.82 (-3.79%, +4.56%) 169.07 181.16 (+7.15%)

San Miguel
7.88M tris.
Figure 3d

Primary 4.90 4.31 4.81 (-1.84%, +11.60%) 114.75 132.48 (+15.45%)

Shadow 4.35 3.90 4.17 (-4.14%, +6.92%) 101.30 122.54 (+20.97%)

Random 1.52 1.38 1.49 (-1.97%, +7.97%) 90.63 105.27 (+16.15%)

PowerPlant
12.8M tris.
Figure 3e

Primary 8.53 7.65 8.43 (-1.17%, +10.20%) 261.13 301.57 (+15.49%)

Shadow 8.22 7.41 7.77 (-5.47% , +4.86%) 301.02 339.34 (+12.73%)

Random 4.49 4.22 4.40 (-2.00%, +4.27%) 193.34 242.22 (+25.28%)

6.2 Code Complexity
To demonstrate that our code is simpler and easier to de-
velop, we compare the code complexity of the benchmark
implementations. A widely used metric for this purpose is
Halstead’s complexity metric [18]: It measures the effort

required to implement a piece of software. We list three mea-
sures in Table 2: Halstead’s effort, the estimated number of
hours needed to develop each implementation, and the num-
ber of lines of code (LoC). The estimated number of hours
is computed based on Halstead’s measure. We also give the

GPCE’17, October 23–24, 2017, Vancouver, Canada Pérard-Gayot, Weier, Membarth, Slusallek, Leißa, and Hack

Table 2. Code complexity of the benchmark implementa-
tions. The effort and programming time are based on Hal-
stead’s code complexity metric [18]. Halstead’s measure
gives an estimation of the time taken to implement a piece
of software from scratch.

Effort Coding time LoC

Embree 24.914 · 106 384h 852

RaTrace (CPU) 2.530 · 106 39h 259

Aila et al. 2.103 · 106 32h 284

RaTrace (GPU) 1.986 · 106 31h 274

RaTrace (Common part) 0.658 · 106 10h 158

RaTrace (CPU mapping) 0.783 · 106 12h 101

RaTrace (GPU mapping) 0.473 · 106 7h 116

effort required to implement the common part of the traver-
sal and each mapping individually, since this measure is not
additive.

For the sake of fairness, we only selected the meaningful
and necessary parts of each implementation. In our imple-
mentation, we included the complete traversal code with
the intersection routines. In the case of Aila’s code, we mea-
sured the dynamic fetch CUDA kernel, and for Embree, the
wrappers for AVX instructions along with the BVH traversal
and triangle intersection routines. Removing the wrappers
for AVX instructions in Embree would require to adapt the
traversal routine to use the intrinsics directly. This would
in turn create more complex expressions and hence increase
the Halstead measure of the code.

The numbers in Table 2 show that the complexity of Em-
bree is significantly higher than that of our CPU implemen-
tation. Embree’s code is verbose mainly because it relies
heavily on AVX intrinsics: There is currently no other way
to develop vectorized high-performance software for CPUs
in C++. The advantage of our approach is clear: Based on
these numbers our implementation is about ten times faster
to implement.
According to the same numbers, Aila’s implementation

has a complexity comparable to ours. Nevertheless, this does
not take into account the modularity of the implementation:
With our approach it is easy to modify any part of the traver-
sal algorithm independently. Since Aila et al. do not use any
abstractions, changing parts of their code without impacting
the whole traversal kernel is considerably more challenging.

An important aspect is also that the common part is writ-
ten only once and is reused across all different mappings
without modification. As we port our code to more hardware
architectures (or variants thereof) we avoid rewriting a sig-
nificant part of it. The same does not hold for either Aila’s
code or Embree: They do not have the notion of a common

part. Adding support of different acceleration structures, dif-
ferent triangle layouts, or implementing other modifications
would be rather simple in our code base: We just need to
modify one of the existing mappings and maybe add some
additional abstractions (see Section 5 for an example). The
same operations for Embree or Aila’s code would be more
involved or even require a complete reimplementation.

7 Conclusion and Future Work
We have presented a new approach that allows us to formu-
late the ray traversal algorithm at a very high level while
still achieving excellent performance. Using a language that
supports functional programming and a compiler that per-
forms partial evaluation, our approach elegantly separates
two major concepts: The unique high-level algorithm—that
is implemented only once and in a generic way—and the
hardware-specific details. Those details are provided sepa-
rately for each hardware architecture and are typically im-
plemented by a hardware expert.

Any “overhead” incurred by these conceptual abstractions
and language constructs is eliminated with the use of a re-
cently introduced compiler technology. Our results show
that our code is much easier to write and at the same time
as fast and efficient as current state-of-the-art, heavily hand-
optimized implementations.

As futureworkwewould like to apply the same techniques
to other parts of a renderer: They could be abstracted as well
and run efficiently on both CPUs and GPUs. The abstraction
of the shading system will be particularly interesting since it
requires just-in-time compilation. Also, we could use partial
evaluation to specialize the ray traversal kernels presented
here: We would then optimize our code for a specific use-
case such as coherent or incoherent ray tracing with little to
no overhead.
The full implementation of the traversal and its different

mappings are distributed under the LGPL v3 and are available
at https://github.com/AnyDSL/traversal.

Acknowledgments
This work is supported by the Federal Ministry of Education
and Research (BMBF) as part of the Metacca and ProThOS
projects as well as by the Intel Visual Computing Institute
Saarbrücken. It is also co-funded by the European Union
(EU), as part of the Dreamspace project.

References
[1] Timo Aila and Samuli Laine. 2009. Understanding the Efficiency of

Ray Traversal on GPUs. In Proceedings of the Conference on High-
Performance Graphics (HPG). ACM, 145–149. https://doi.org/10.1145/
1572769.1572792

[2] Timo Aila, Samuli Laine, and Tero Karras. 2012. Understanding the
Efficiency of Ray Traversal on GPUs - Kepler and Fermi Addendum.
Technical Report NVR-2012-002. NVIDIA Technical Report.

[3] L.O Andersen. 1994. Program Analysis and Specialization for the C
Programming Language. Ph.D. Dissertation. Københavns Universitet.
Datalogisk Institut.

https://github.com/AnyDSL/traversal
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792

RaTrace GPCE’17, October 23–24, 2017, Vancouver, Canada

[4] P.H. Andersen. 1995. Partial Evaluation Applied to Ray Tracing. DIKU
Research Report 95/2.

[5] Rasmus Barringer and Tomas Akenine-Möller. 2014. Dynamic Ray
Stream Traversal. ACM Trans. Graph. 33, 4, Article 151 (2014), 9 pages.
https://doi.org/10.1145/2601097.2601222

[6] Carsten Benthin and Ingo Wald. 2009. Efficient Ray Traced Soft
Shadows using Multi-Frusta Tracing. In High-Performance Graphics.
https://doi.org/10.1145/1572769.1572791

[7] Carsten Benthin, IngoWald, SvenWoop, Manfred Ernst, andWilliam R.
Mark. 2012. Combining Single and Packet-Ray Tracing for Arbitrary
Ray Distributions on the Intel MIC Architecture. IEEE Transactions on
Visualization and Computer Graphics 18, 9 (2012), 1438–1448. https:
//doi.org/10.1109/TVCG.2011.277

[8] Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2011. A Het-
erogeneous Parallel Framework for Domain-Specific Languages. In
12th International Conference on Parallel Architectures and Compilation
Techniques (PACT). 89–100. https://doi.org/10.1109/PACT.2011.15

[9] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. J. Funct. Program. 19, 5 (2009), 509–543. https:
//doi.org/10.1017/S0956796809007205

[10] Hassan Chafi, Zach DeVito, AdriaanMoors, Tiark Rompf, Arvind K. Su-
jeeth, Pat Hanrahan, Martin Odersky, and Kunle Olukotun. 2010. Lan-
guage virtualization for heterogeneous parallel computing. In Proceed-
ings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). 835–
847. https://doi.org/10.1145/1869459.1869527

[11] Charisee Chiw, Gordon Kindlmann, John Reppy, Lamont Samuels, and
Nick Seltzer. 2012. Diderot: A Parallel DSL for Image Analysis and
Visualization. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). ACM,
111–120. https://doi.org/10.1145/2254064.2254079

[12] Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed
Ray Tracing. SIGGRAPH Comput. Graph. 18, 3 (1984), 137–145. https:
//doi.org/10.1145/964965.808590

[13] Holger Dammertz, Johannes Hanika, and Alexander Keller. 2008. Shal-
low Bounding Volume Hierarchies for Fast SIMD Ray Tracing of In-
coherent Rays. In Proceedings of the Nineteenth Eurographics Con-
ference on Rendering. Eurographics Association, 1225–1233. https:
//doi.org/10.1111/j.1467-8659.2008.01261.x

[14] Zach DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley,
Montserrat Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex
Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso, and Pat Hanra-
han. 2011. Liszt: a domain specific language for building portable
mesh-based PDE solvers. In Conference on High Performance Comput-
ing Networking, Storage and Analysis (SC). 9:1–9:12. https://doi.org/10.
1145/2063384.2063396

[15] Tim Foley and Jeremy Sugerman. 2005. KD-tree Acceleration Struc-
tures for a GPU Raytracer. In Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS Conference on Graphics Hardware. ACM, 15–22. https:
//doi.org/10.1145/1071866.1071869

[16] Iliyan Georgiev and Philipp Slusallek. 2008. RTfact: Generic Concepts
for Flexible and High Performance Ray Tracing. In IEEE Symposium
on Interactive Ray Tracing (RT). 115–122. https://doi.org/10.1109/RT.
2008.4634631

[17] Johannes Gunther, Stefan Popov, Hans-Peter Seidel, and Philipp
Slusallek. 2007. Realtime Ray Tracing on GPU with BVH-based Packet
Traversal. In Proceedings of the 2007 IEEE Symposium on Interactive
Ray Tracing. 113–118. https://doi.org/10.1109/RT.2007.4342598

[18] Maurice H. Halstead. 1977. Elements of Software Science (Operating
and Programming Systems Series). Elsevier Science Inc.

[19] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan
Moors. 2008. Polymorphic embedding of DSLs. In Proceedings of the 7th
International Conference on Generative Programming and Component
Engineering (GPCE). 137–148. https://doi.org/10.1145/1449913.1449935

[20] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat Han-
rahan. 2007. Interactive K-d Tree GPU Raytracing. In Proceedings of
the Symposium on Interactive 3D Graphics and Games. ACM, 167–174.
https://doi.org/10.1145/1230100.1230129

[21] P. Hudak. 1998. Modular Domain Specific Languages and Tools.
In Proceedings of the 5th International Conference on Software Reuse
(ICSR). IEEE Computer Society, 134–. http://dl.acm.org/citation.cfm?
id=551789.853532

[22] Timothy L. Kay and James T. Kajiya. 1986. Ray Tracing Complex
Scenes. SIGGRAPH Comput. Graph. 20, 4 (1986), 269–278. https://doi.
org/10.1145/15886.15916

[23] Roland Leißa, Klaas Boesche, Sebastian Hack, Richard Membarth, and
Philipp Slusallek. 2015. Shallow Embedding of DSLs via Online Par-
tial Evaluation. In Proceedings of the 14th International Conference on
Generative Programming: Concepts & Experiences (GPCE). ACM, 11–20.
https://doi.org/10.1145/2814204.2814208

[24] Roland Leißa, Marcel Köster, and Sebastian Hack. 2015. A Graph-
Based Higher-Order Intermediate Representation. In International
Symposium on Code Generation and Optimization (CGO). IEEE, 202–212.
https://doi.org/10.1109/CGO.2015.7054200

[25] Richard Membarth, Oliver Reiche, Frank Hannig, Jürgen Teich, Mario
Körner, and Wieland Eckert. 2016. HIPAcc: A Domain-Specific Lan-
guage and Compiler for Image Processing. IEEE Trans. Parallel Distrib.
Syst. 27, 1 (2016), 210–224. https://doi.org/10.1109/TPDS.2015.2394802

[26] Tomas Möller and Ben Trumbore. 1997. Fast, Minimum Storage Ray-
Triangle Intersection. J. Graphics, GPU, & Game Tools 2, 1 (1997).
https://doi.org/10.1080/10867651.1997.10487468

[27] Chris J. Newburn, Byoungro So, Zhenying Liu, Michael D. McCool,
Anwar M. Ghuloum, Stefanus Du Toit, Zhi-Gang Wang, Zhaohui Du,
Yongjian Chen, Gansha Wu, Peng Guo, Zhanglin Liu, and Dan Zhang.
2011. Intel’s Array Building Blocks: A retargetable, dynamic com-
piler and embedded language. In Proceedings of the 9th International
Symposium on Code Generation and Optimization (CGO). 224–235.
https://doi.org/10.1109/CGO.2011.5764690

[28] NVIDIA. 2014.Whitepaper: NVIDIA GeForce GTX 980. Technical Report.
NVIDIA Corporation.

[29] Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and
Markus Püschel. 2013. Spiral in Scala: Towards the Systematic Con-
struction of Generators for Performance Libraries. In International
Conference on Generative Programming: Concepts & Experiences (GPCE).
125–134. https://doi.org/10.1145/2517208.2517228

[30] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley, Brian
Smits, and Charles Hansen. 1999. Interactive Ray Tracing. In Pro-
ceedings of the Symposium on Interactive 3D Graphics. ACM, 119–126.
https://doi.org/10.1145/300523.300537

[31] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith
Morley, Austin Robison, and Martin Stich. 2010. OptiX: A General
Purpose Ray Tracing Engine. ACM Transactions on Graphics (2010).
https://doi.org/10.1145/1778765.1778803

[32] M. Pharr and W. R. Mark. 2012. ispc: A SPMD Compiler for High-
Performance CPU Programming. In In Proceedings of Innovative Parallel
Computing (InPar). https://doi.org/10.1109/InPar.2012.6339601

[33] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a
language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). 519–530.
https://doi.org/10.1145/2462156.2462176

[34] Alexander Reshetov, Alexei Soupikov, and JimHurley. 2005. Multi-level
Ray Tracing Algorithm. ACM Trans. Graph. 24, 3 (2005), 1176–1185.
https://doi.org/10.1145/1073204.1073329

[35] Tiark Rompf and Martin Odersky. 2010. Lightweight modular stag-
ing: a pragmatic approach to runtime code generation and compiled
DSLs. In Proceedings of the 10th International Conference on Gen-
erative Programming and Component Engineering (GPCE). 127–136.
https://doi.org/10.1145/1868294.1868314

https://doi.org/10.1145/2601097.2601222
https://doi.org/10.1145/1572769.1572791
https://doi.org/10.1109/TVCG.2011.277
https://doi.org/10.1109/TVCG.2011.277
https://doi.org/10.1109/PACT.2011.15
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/1869459.1869527
https://doi.org/10.1145/2254064.2254079
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/964965.808590
https://doi.org/10.1111/j.1467-8659.2008.01261.x
https://doi.org/10.1111/j.1467-8659.2008.01261.x
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.1145/1071866.1071869
https://doi.org/10.1145/1071866.1071869
https://doi.org/10.1109/RT.2008.4634631
https://doi.org/10.1109/RT.2008.4634631
https://doi.org/10.1109/RT.2007.4342598
https://doi.org/10.1145/1449913.1449935
https://doi.org/10.1145/1230100.1230129
http://dl.acm.org/citation.cfm?id=551789.853532
http://dl.acm.org/citation.cfm?id=551789.853532
https://doi.org/10.1145/15886.15916
https://doi.org/10.1145/15886.15916
https://doi.org/10.1145/2814204.2814208
https://doi.org/10.1109/CGO.2015.7054200
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1109/CGO.2011.5764690
https://doi.org/10.1145/2517208.2517228
https://doi.org/10.1145/300523.300537
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1109/InPar.2012.6339601
https://doi.org/10.1145/2462156.2462176
https://doi.org/10.1145/1073204.1073329
https://doi.org/10.1145/1868294.1868314

GPCE’17, October 23–24, 2017, Vancouver, Canada Pérard-Gayot, Weier, Membarth, Slusallek, Leißa, and Hack

[36] Kai Selgrad, Alexander Lier, Franz Köferl, Marc Stamminger, and
Daniel Lohmann. 2015. Lightweight, Generative Variant Exploration
for High-performance Graphics Applications. In Proceedings of the
14th International Conference on Generative Programming: Concepts &
Experiences (GPCE). ACM, 141–150. https://doi.org/10.1145/2814204.
2814220

[37] Martin Stich, Heiko Friedrich, and Andreas Dietrich. 2009. Spatial
Splits in Bounding VolumeHierarchies. In Proceedings of the Conference
on High-Performance Graphics (HPG). ACM, 7–13. https://doi.org/10.
1145/1572769.1572771

[38] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Tiark Rompf,
Hassan Chafi, Michael Wu, Anand R. Atreya, Martin Odersky, and
Kunle Olukotun. 2011. OptiML: An Implicitly Parallel Domain-Specific
Language forMachine Learning. In Proceedings of the 28th International
Conference on Machine Learning (ICML). 609–616.

[39] John A. Tsakok. 2009. Faster Incoherent Rays: Multi-BVH Ray Stream
Tracing. In Proceedings of the Conference on High-Performance Graphics

(HPG). ACM, 151–158. https://doi.org/10.1145/1572769.1572793
[40] Ingo Wald. 2005. The OpenRT-API. In ACM SIGGRAPH Courses. ACM,

Article 21. https://doi.org/10.1145/1198555.1198760
[41] Ingo Wald, Carsten Benthin, and Solomon Boulos. 2008. Getting rid

of packets: Efficient SIMD single-ray traversal using multibranching
BVHs. In IEEE/Eurographics Symposium on Interactive Ray Tracing.
49–57. https://doi.org/10.1109/RT.2008.4634620

[42] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner.
2001. Interactive Rendering with Coherent Ray Tracing. Computer
Graphics Forum (2001). https://doi.org/10.1111/1467-8659.00508

[43] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and
Manfred Ernst. 2014. Embree: A Kernel Framework for Efficient CPU
Ray Tracing. ACM Trans. Graph. 33, 4, Article 143 (2014), 8 pages.
https://doi.org/10.1145/2601097.2601199

[44] Sven Woop. 2004. A Ray Tracing Hardware Architecture for Dynamic
Scenes. Technical Report. Saarland University.

https://doi.org/10.1145/2814204.2814220
https://doi.org/10.1145/2814204.2814220
https://doi.org/10.1145/1572769.1572771
https://doi.org/10.1145/1572769.1572771
https://doi.org/10.1145/1572769.1572793
https://doi.org/10.1145/1198555.1198760
https://doi.org/10.1109/RT.2008.4634620
https://doi.org/10.1111/1467-8659.00508
https://doi.org/10.1145/2601097.2601199

	Abstract
	1 Introduction
	2 Related Work
	3 Abstractions for Ray Traversal
	3.1 Zero-cost Abstractions
	3.2 Traversal Algorithm
	3.3 Traversal Abstractions

	4 Mappings to Different Architectures
	4.1 CPU Mapping
	4.2 GPU Mapping

	5 Variants of the Traversal
	6 Results
	6.1 Benchmarks
	6.2 Code Complexity

	7 Conclusion and Future Work
	Acknowledgments
	References

