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Fig. 1. The performance of multiple importance sampling can be greatly improved by choosing appropriate sample counts for each sampling strategy. Here, we

compare the performance of our fixed-point approach applied to bidirectional path tracing (10 minute equal-time renders). Existing methods are either limited

to per-pixel decisions (“brute-force” [Grittmann et al. 2022]) or to choosing the same amount of samples for each strategy (“EARS” [Rath et al. 2022]). Our

method learns spatially varying sample counts individually for each strategy, visualized on the right, which increases performance by 65% over previous works.

Multiple importance sampling (MIS) is an indispensable tool in rendering

that constructs robust sampling strategies by combining the respective

strengths of individual distributions.Its efficiency can be greatly improved by

carefully selecting the number of samples drawn from each distribution, but

automating this process remains a challenging problem.Existing works are

mostly limited to mixture sampling, in which only a single sample is drawn

in total, and the works that do investigate multi-sample MIS only optimize

the sample counts at a per-pixel level, which cannot account for variations

beyond the first bounce.Recent work on Russian roulette and splitting has

demonstrated how fixed-point schemes can be used to spatially vary sample

counts to optimize image efficiency but is limited to choosing the same
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number of samples across all sampling strategies.Our work proposes a highly

flexible sample allocation strategy that bridges the gap between these areas

of work.We show how to iteratively optimize the sample counts to maximize

the efficiency of the rendered image using a lightweight data structure,

which allows us to make local and individual decisions per technique.We

demonstrate the benefits of our approach in two applications, path guiding
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substantial speedups over the respective previous state-of-the-art.
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1 INTRODUCTION

Synthetically generating realistic images from virtual, mathematical

descriptions is an essential aspect in various fields such as multime-

dia, gaming, and advertisement. This is achieved by reconstructing

the image from a sample of admissible light paths, which are com-

monly obtained through unidirectional or bidirectional path tracing.

Despite decades of research, there is no single sampling distribu-

tion that robustly captures all effects. Instead, contemporary works

employ a blend of multiple strategies to attain completeness, using

a technique known as multiple importance sampling (MIS). Many

works have explored how to weight strategies in an MIS combi-

nation, but surprisingly little attention has been devoted to deter-

mining the optimal number of samples to assign to each technique

in a (bidirectional) path tracing context. Although attempts have

been made to address this question, none have provided entirely

satisfactory solutions. In practice, sample counts are often steered

by user intervention.

We present a novel theory for MIS sample allocation. By consider-

ing the local variances and costs of samples, our approach efficiently

distributes samples among various strategies, leading to significantly

increased rendering efficiency. Moreover, we validate our theory by

applying it to two rendering algorithms, demonstrating its practical

viability. In summary, our contributions are:

• We derive a novel theory for multi-sample MIS budget alloca-

tion, based on the theory of fixed-point iterations (section 3)

• We show how to apply our theory in the popular context of

path guiding, achieving noticeable speedups over previous

works (section 4)

• Additionally, we accelerate bidirectional path tracing with

our approach and demonstrate equally substantial speedups

(section 5)

Our Mitsuba [Jakob 2010] implementation of the two applications

is publicly available at https://github.com/woshicado/mars.

2 PREVIOUS WORK

Light transport. Almost 40 years ago, Kajiya [1986] described how

light is propagated within a scene , which can succinctly be written

as the path integral [Veach 1997]

𝐼px =

∫
P
𝑓px (𝑥) d𝑥,

where a pixel’s value 𝐼px is given by the integral of the contribution

function 𝑓px over the space P of all light transport paths connecting

the pixel px to a light source. Due to the high dimensionality, many

discontinuities, and overall complexity, obtaining a general analyt-

ical solution is impractical. Therefore, Monte Carlo integration is

typically used to compute this integral. Importance sampling (IS)

augments the integration process by sampling from a distribution

similar to the integrand in order to reduce variance.

Multiple importance sampling. Often, there is not a single distribu-
tion that estimates the target sufficiently well over thewhole domain.

Multiple importance sampling (MIS) [Veach and Guibas 1995b] can

be utilized to combine several sampling distributions strategically to

leverage their respective strengths. To that end, a weighting heuristic

approximates which strategy performs well within which subdo-

main to weight them against each other, which has been explored

in great detail by previous works [Kondapaneni et al. 2019; Veach

and Guibas 1995b].

Path tracing. Forward path tracing [Kajiya 1986] is the primary

choice for simulating light transport due to its flexibility and exten-

sibility. Starting from the camera, a random walk through the scene

is performed to construct a path sample. At each intersection, the

reflection properties (bidirectional scattering distribution function,
BSDF) are sampled to steer the random walk. Additional samples,

such as direct connections to light sources (next event estimation,
NEE), are commonly incorporated throughMIS. However, even with

sophisticated NEE enhancements, like manifold next event estima-
tion [Hanika et al. 2015; Zeltner et al. 2020], forward path tracing

alone does not suffice to efficiently render many effects.

Bidirectional methods. In bidirectional path tracing (BDPT) [Veach
and Guibas 1995a], an additional random walk from light sources

is performed. Using MIS, it is possible to connect all pairs of in-

tersections between the camera and light path to obtain many

complete path samples [Lafortune and Willems 1993]. It has been

shown that connecting each camera path vertex to a fixed number

of light subpath vertices can impact the rendering performance

positively [Nabata et al. 2020; Popov et al. 2015].

Path guiding. Another popular approach to improve upon clas-

sical path tracing is path guiding [Jensen 1995; Müller et al. 2017;

Vorba et al. 2014]. Using previously acquired samples, it is possible

to identify important directions and build adaptive sampling den-

sities accordingly. To increase robustness, guiding is jointly used

with standard forward path tracing and NEE in an MIS combina-

tion. Subsequent studies explored further improvements to increase

robustness for common effects [Rath et al. 2023; Ruppert et al. 2020].

Mixture sampling ratios. The ratios with which techniques are

picked have a profound impact on the efficiency of MIS, but ex-

isting works on automating those share many limitations. Most

works focus on direct illumination only, optimizing the ratio be-

tween BSDF and NEE samples on a per-pixel basis, for example

through second-order approximations [Lu et al. 2013] or iterative

Newton-Raphson root finding [Sbert et al. 2019; Szirmay-Kalos and

Sbert 2022]. Murray et al. [2020] introduce a simple heuristic to

extend these works to global illumination. A more powerful alter-

native to learning ratios per pixel is to learn them per region of

space. Vorba et al. [2019] use gradient descent to compute sampling

ratios between BSDF and path guiding, allowing to optimize for

variance or KL divergence. Rath et al. [2020] improved this method

by considering image variance instead of local variance alone.

An important limitation shared by these approaches is that they

only optimize mixture sampling (also known as one-sample MIS),
i.e., the random walk in path tracing is ever only continued with

a single sample. Consequently, they cannot take advantage of op-

timizing efficiency at a particular intersection without resampling

the whole path prefix. They are also limited to optimizing efficiency

locally since the ratios are optimized independently.
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Fig. 2. Existing sample allocation works share three common limitations. (a) One-sample MIS randomly picks a single strategy to continue the path, which can

result in poor efficiency since path prefixes are not re-used. (b) RRS can re-use path prefixes, but chooses the same sample count for each sampling strategy

independent of whether the strategy contributes or not. (c) Existing multi-sample MIS approaches are limited to using the same locally-unaware sample

accounts along the entire path. (d) Our method generalizes all of these methods and chooses spatially varying sample counts for each strategy individually.

Russian roulette and splitting. An integral component of path trac-

ing is Russian roulette and splitting (RRS) [Arvo and Kirk 1990].

RR entails prematurely terminating paths based on their current

throughput while splitting increases the number of subpaths at a

given intersection. More advanced approaches take into consid-

eration additional metrics. Vorba and Křivánek [2016] propose a

method that factors in expectations of future contributions. Further,

EARS [Rath et al. 2022] employs a fixed-point iteration scheme to

optimize RRS factors for efficiency, based on the theoretical optimal

derivations of Bolin and Meyer [1997]. While these methods can

optimize for global efficiency, they only determine the total number

of samples taken at each intersection and have no control over how

they are allocated to individual strategies.

Multi-sample allocation. In multi-sample MIS, each distribution

gets to draw an arbitrary amount of samples. This combines the

strengths of mixture sampling (i.e., determining the ratios across

techniques) and RRS (i.e., determining the total number of samples).

However, we show that combining existing works from both do-

mains, even if they are individually optimal, is insufficient to achieve

optimal performance. Hence, they must be optimized jointly.

By modeling the expected computational cost of an MIS combi-

nation, Grittmann et al. [2022] globally optimize BDPT efficiency

using a simple brute-force search through a set of candidate sample

counts. Due to the curse of dimensionality, this technique is lim-

ited to optimizing global parameters (such as light path counts) or

boolean per-pixel decisions.

Our approach (fig. 2) similarly optimizes the efficiency of multi-

sample MIS combinations but does so at a much higher granularity

of optimizing individual sampling strategies with spatially varying

sample counts. This is enabled through a fixed-point scheme similar

to EARS [Rath et al. 2022], which we generalize for MIS.

3 THEORY

In the following, we derive an efficiency-aware multi-sample MIS

budget allocation strategy.We approach this problem by formulating

a general model, analyzing its properties, and deriving a fixed-point

scheme. In this section, we outline the key equations and arguments

necessary to follow the idea. A full derivation can be found in the

supplementary material.

The model. In multi-sample MIS, we are interested in finding

an integral value 𝐼 =
∫
X 𝑓 (𝑥) d𝑥 by combining estimates from 𝑛𝑡

different sampling strategies with varying sample counts 𝛽𝑡

⟨𝐼 ⟩ =
𝑛𝑡∑︁
𝑡=1

1

𝛽𝑡

𝛽𝑡∑︁
𝑠=1

⟨𝐼𝑡 (𝑥𝑡,𝑠 )⟩ =
𝑛𝑡∑︁
𝑡=1

⟨𝐼𝑡 (𝑥𝑡,·); 𝛽𝑡 ⟩, (1)

where ⟨𝐼 ; 𝛽⟩ denotes a secondary estimator for 𝐼 with 𝛽 samples,

and ⟨𝐼𝑡 ⟩ denotes the primary estimator of technique 𝑡 .

An important aspect is that estimators often capture different,

possibly disjoint parts of the integrand. In path tracing, for example,

we commonly have two subintegrands: direct light (estimated by

NEE and BSDF sampling), and indirect light (only estimated by BSDF

sampling). We address this by expressing the integrand as a sum

of subintegrands 𝑓 =
∑𝑛𝑖
𝑖=1

𝑓𝑖 and perform MIS weighting thereof

within the primary estimators ⟨𝐼𝑡 ⟩

⟨𝐼𝑡 (𝑥)⟩ =
𝑛𝑖∑︁
𝑖=1

𝑓𝑖 (𝑥)
𝑝𝑡 (𝑥)

𝑤𝑖𝑡 (𝑥),

where 𝑝𝑡 is the probability density function of technique 𝑡 and𝑤𝑖𝑡 is

the MIS weight with respect to all other methods that estimate

integrand 𝑓𝑖 .

Continuous sample counts. Instead of restricting ourselves to inte-

ger sample counts 𝛽𝑡 ∈ N, we shift the domain to R+ to make the

problem continuous. Since, in reality, we can only perform an integer

number of samples, we employ a stochastic rounding function

𝑟 (𝛽) =
{
⌊𝛽⌋ + 1 with probability 𝛽 − ⌊𝛽⌋,
⌊𝛽⌋ otherwise,

where ⌊·⌋ is the floor function. The estimator ⟨𝐼 ⟩ still divides by the

real-valued 𝛽𝑡 , forming an unbiased stochastic sampling scheme.

This is analogous to how previous works determine sample counts

for RRS [Rath et al. 2022; Vorba and Křivánek 2016], but generalizes

the concept to individual techniques instead of using the same

splitting factor across all of them.

The objective. Our goal is to assign an optimal number of samples

to each strategy, i.e., to find optimal 𝛽𝑡 . Previous works have mostly

focused on optimizing variance, which works well as long as the

computational cost is largely unaffected by the choice of 𝛽𝑡 , such as

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.
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Fig. 3. (a)We evaluate the performance of our model on a simple 1D example, in which a single integrand 𝑓 is estimated by two techniques 𝑝1 and 𝑝2, the

latter of which matches slightly better but is 30× as expensive as 𝑝1. (b)We compare the efficiency of four approaches: Optimal mixture sampling (“OS”),

optimal Russian roulette and splitting (“RRS”), combining the two (“O+R”), and our proxy model (“Ours”). Note that combining optimal mixture sampling and

RRS does not yield optimal performance. Our model optimizes ratios and total sample counts jointly, resulting in optimal performance for budget-unaware

MIS weights. (c) For budget-aware MIS weights, the optimum predicted by our model can deviate from the true efficiency optimum. (d) We investigate the

error of our proxy by plotting the dot product of the true gradients and our proxy gradients (“1” indicates a perfect match, “-1” indicates opposing directions).

when optimizing one-sample MIS combinations. In multi-sample

MIS the cost highly depends on the number of samples, and we

must therefore consider the efficiency E [Pharr et al. 2016]

E [⟨𝐼 ⟩] = 1

V [⟨𝐼 ⟩] C [⟨𝐼 ⟩] .

Consequently, to optimize the efficiency, we need to predict the

variance and cost for any choice of 𝛽𝑡 .

Cost model. The cost of our multi-sample MIS estimator is given

by the sum of all techniques’ sample counts multiplied by the cost

of taking a sample for this technique, i.e., C[⟨𝐼 ⟩] = ∑𝑛𝑡
𝑡=1

𝛽𝑡C𝑡 + CΔ,

where CΔ is a constant to incorporate overhead costs.

Variance model. We will assume that the techniques are uncorre-

lated, which allows us to express the variance of the MIS estimator

as the sum of the variances of all techniques

V [⟨𝐼 ⟩] =
𝑛𝑡∑︁
𝑡=1

V [⟨𝐼𝑡 ; 𝛽𝑡 ⟩] .

We can express the variance of the secondary estimator in terms of

the variance and expected value of the primary estimator:

V [⟨𝐼𝑡 ; 𝛽𝑡 ⟩] =
1

𝛽𝑡
V [⟨𝐼𝑡 ⟩] + 𝜌 (𝛽𝑡 ) E2 [⟨𝐼𝑡 ⟩] ,

where 𝜌 (𝛽) = (𝛽−⌊𝛽 ⌋ ) ( ⌈𝛽 ⌉−𝛽 )
𝛽2

results from stochastic rounding.

Optimization. We want to find the optimal 𝛽𝑡 that maximize ef-

ficiency. To reduce clutter, our derivation pursues the equivalent

goal of minimizing inverse efficiency, i.e., E−1 [⟨𝐼 ⟩]. A necessary

condition for a minimumwith respect to 𝛽𝑡 is that the partial deriva-

tives of inverse efficiency equal 0. Since the complex shape of 𝜌 (𝛽𝑡 )
makes analysis challenging, we resort to the same simplification

employed by previous works [Rath et al. 2022]

V [⟨𝐼𝑡 ; 𝛽𝑡 ⟩] =
{

1

𝛽𝑡
E [⟨𝐼𝑡 ⟩2] − E2 [⟨𝐼𝑡 ⟩] if 𝛽𝑡 ≤ 1,

1

𝛽𝑡
V [⟨𝐼𝑡 ⟩] otherwise.

This simplification only affects the 𝛽 > 1 case, where it drops

the noise introduced by stochastic rounding to arrive at a convex

expression for variance. An analysis of this simplification, alongwith

alternative options for rounding, can be found in the supplemental.

Proxy model. Even for simple weighting functions such as the

balance heuristic, the efficiency is not generally convex in 𝛽𝑡 due to

the terms the MIS weights introduce in the variance derivatives

dV[⟨𝐼 ⟩]
d𝛽𝑡

=


− 1

𝛽2

𝑡

E[⟨𝐼𝑡 ⟩2] +
∑𝑛𝑡
𝑘=1

1

𝛽𝑘

dE[ ⟨𝐼𝑘 ⟩2 ]
d𝛽𝑡

if 𝛽𝑡 ≤ 1,

− 1

𝛽2

𝑡

V[⟨𝐼𝑡 ⟩] +
∑𝑛𝑡
𝑘=1

1

𝛽𝑘

dV[ ⟨𝐼𝑘 ⟩ ]
d𝛽𝑡

otherwise.

We instead resort to optimizing a proxy for efficiency, in which the

MIS weight dependencies are dropped from the variance derivative

dV[⟨𝐼 ⟩]
d𝛽𝑡

=


− 1

𝛽2

𝑡

E[⟨𝐼𝑡 ⟩2] if 𝛽𝑡 ≤ 1,

− 1

𝛽2

𝑡

V[⟨𝐼𝑡 ⟩] otherwise.

This proxy is optimal for budget-unaware MIS weights (i.e., weights

independent of 𝛽𝑡 ), but for budget-aware weights (i.e., weights con-
taining the techniques’ budgets 𝛽𝑡 ) its optimum can deviate from

the true optimal solution. We perform two evaluations to verify

the effectiveness of this proxy: First, we compare its derivatives

and optima to the true efficiency for simple one-dimensional func-

tions (see fig. 3 and further examples in the supplemental). Second,

in our two rendering applications, we demonstrate that budget-

aware weights with this proxy robustly outperform theoretically

optimal allocations of budget-unaware weights.

Fixed point. The optimal 𝛽𝑡 that minimize inverse efficiency in

our proxy model are given by

𝛽𝑡 =


𝛽RR𝑡 =

√︃
C[ ⟨𝐼 ⟩ ]
C𝑡

E[ ⟨𝐼𝑡 ⟩2 ]
V[ ⟨𝐼 ⟩ ] if 𝛽RR𝑡 < 1,

𝛽S𝑡 =

√︃
C[ ⟨𝐼 ⟩ ]
C𝑡

V[ ⟨𝐼𝑡 ⟩ ]
V[ ⟨𝐼 ⟩ ] if 𝛽S𝑡 > 1,

1 otherwise.

(2)

An analytical solution to this equation is impractical because 𝛽𝑡
appears non-linearly on the right-hand side as part of C[⟨𝐼 ⟩] and
V [⟨𝐼 ⟩]. Therefore, to find the root numerically, we employ a fixed-

point iteration scheme similar to the work of Rath et al. [2022]. Our

equation is of the same form and, thus, we can iteratively approach

the root by using eq. (2) as an update function. In practice, this

converges quickly after only a few iterations as depicted in fig. 4.
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Fig. 4. (a) We visualize the quick convergence of the sample allocations 𝛽1

and 𝛽2 towards their optimal values for a simple 1D example. The shaded

area corresponds to trajectories of various initializations. (b) After 5 itera-
tions we are close to the optimal efficiency. While training longer brings us

closer, it yields diminishing returns. (c)We show the path our fixed-point

iteration takes along the efficiency landscape.

3.1 Application to Path Tracing

We will now discuss how to apply our theory to path tracing, for

which we extend our theory to multiple spatially varying estimators.

Primary estimator. In path tracing, we combinemultiple strategies

for estimating reflected radiance 𝐿𝑟 at each intersection

⟨𝐿r,𝑡 (𝑥,𝜔o)⟩ =
⟨𝐿i (𝑥, 𝜔i)⟩ 𝐵(𝑥, 𝜔i, 𝜔o) |cos𝜃i |

𝑝𝑡 (𝜔i | 𝑥,𝜔o)
𝑤𝑡 (𝑥,𝜔i, 𝜔o),

where technique 𝑡 samples 𝜔i ∼ 𝑝𝑡 and 𝐵 denotes the BSDF.

Secondary estimator. Analogous to eq. (1), we define the multi-

sample estimator for 𝐿r

⟨𝐿r (𝑥,𝜔o)⟩ =
𝑛𝑡∑︁
𝑡=1

1

𝛽𝑡 (𝑥)

𝛽𝑡 (𝑥 )∑︁
𝑠=1

⟨𝐿r,𝑡 (𝑥𝑠 , 𝜔o)⟩ =
𝑛𝑡∑︁
𝑡=1

⟨𝐿r,𝑡 ; 𝛽𝑡 (𝑥)⟩,

where the sample budgets 𝛽𝑡 are optimized for each individual

technique 𝑡 and path prefix 𝑥 . Instead of budgets that are constant

across the image, we thereby adapt them locally.

Random walks. Our random walk for a pixel px begins with a

ray sampled by the camera and then recursively applies the multi-

sample estimator of 𝐿r at each intersection

⟨𝐼px⟩ =
𝑊px (𝑥0, 𝜔i,0)
𝑝 (𝑥0, 𝜔i,0)

⟨𝐿r (𝑥1, 𝜔o,1)⟩.

Multiple estimators. Optimizing each pixel individually is insuf-

ficient to achieve a global optimum as this will oversample bright

regions. Hence, we maximize the efficiency built from the average

variance VI and average cost CI over the entire image instead [Rath

et al. 2022]. To not assign too much weight to bright pixels, we

similarly use the relative variance of each pixel, i.e., we divide by

the pixel’s ground truth 𝐼px

E−1 =
©« 1

𝑁px

𝑁px∑︁
px

V
[
⟨𝐼px⟩

]
𝐼2

px

ª®¬︸                     ︷︷                     ︸
VI

©« 1

𝑁px

𝑁px∑︁
px

C[⟨𝐼px⟩]ª®¬︸                   ︷︷                   ︸
CI

.

Since, in practice, 𝐼px is not readily available, we discuss an approxi-

mation thereof in in section 4.1.

Optimization. Extended to multiple spatially varying estimators,

our update function becomes

𝛽𝑡 (𝑥) =


𝛽RR𝑡 =

𝑇 (𝑥 )
𝐼px

√︂
CI

C𝑡

E[⟨𝐿r,𝑡 ⟩2]
VI

if 𝛽RR𝑡 < 1,

𝛽S𝑡 =
𝑇 (𝑥 )
𝐼px

√︂
CI

C𝑡

V[⟨𝐿r,𝑡 ⟩]
VI

if 𝛽S𝑡 > 1,

1 otherwise.

Here, 𝑇 (𝑥𝑘 ) denotes the throughput weight of the path prefix

𝑇 (𝑥𝑘 ) =
𝑊px (𝑥0, 𝜔i,0)
𝑝 (𝑥0, 𝜔i,0)

𝑘−1∏
𝑗=1

𝐵(𝑥 𝑗 , 𝜔i, 𝑗 , 𝜔o, 𝑗 ) |cos𝜃i, 𝑗 |
𝑝𝑡 𝑗 (𝜔i, 𝑗 | 𝑥 𝑗 , 𝜔o, 𝑗 )

𝑤
ind,𝑡 𝑗 (𝑥 𝑗 )
𝛽𝑡 𝑗 (𝑥 𝑗 )

,

where 𝑡 𝑗 denotes the technique that was used at the 𝑗-th bounce,

and 𝑤
ind

is the MIS weight over all techniques that participate in

estimating indirect light (i.e., lead to a secondary estimator being

performed at 𝑥 𝑗 ).

4 APPLICATION I: PATH GUIDING

We begin by demonstrating how our technique can be used in uni-

directional rendering to combine three common strategies: BSDF

sampling, next event estimation (NEE) and guided sampling.

4.1 Implementation

We test our method in a guided path tracer on top of the imple-

mentation of Müller et al. [2017] in Mitsuba [Jakob 2010]. Each

completed training iteration of the guiding iteration marks one step

of our fixed-point scheme. To compute the necessary variance and

cost estimates, we build Monte Carlo estimates from the samples

obtained throughout the iteration.

Local estimates. We share the spatio-directional tree used by guid-

ing to store the local estimates needed by our method, such as cost,

variances, and second moments for each region and each technique.

For every cache 𝑐 and technique 𝑡 , the first and second moments

are estimated from the iteration’s training samples that landed in

the cache and were produced by the technique itself

E
[
⟨𝐿r,𝑡 ⟩

]
≈ 1

𝑛𝑡,𝑐

𝑛𝑡,𝑐∑︁
𝑠=1

⟨𝐿r,𝑡𝑠 (𝑥𝑠 )⟩; E
[
⟨𝐿r,𝑡 ⟩2

]
≈ 1

𝑛𝑡,𝑐

𝑛𝑡,𝑐∑︁
𝑠=1

⟨𝐿r,𝑡𝑠 (𝑥𝑠 )⟩2,

from which we can compute the estimate for the variance.

To estimate the cost of each technique, we employ the well-

established heuristic of using the average path length generated by

the technique as a proxy for cost [Rath et al. 2022; Veach 1997].

Image estimates. In lieu of the real ground truth, we apply a

denoiser [Áfra 2019] to determine the pixel estimates 𝐼px. The pixel

estimates are also used to estimate the image variance

V [⟨𝐼 ⟩] ≈ 1

𝑁px

∑︁
px

1

𝑁spp

𝑁spp∑︁
𝑠=1

(
⟨𝐼px⟩𝑠 − 𝐼px

𝐼px

)
2

.

The cost of the entire image is similarly estimated by counting the

total number of rays that were traced.
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Fixed-point iteration. Implementing our fixed-point iteration algo-

rithm requires an iterative rendering process, in which each iteration

performs some number of samples to estimate the variances and

costs, thus, allowing us to perform steps toward the fixed-point.

Path guiding already uses an iterative scheme to learn its guided

sampling distribution in a training phase that we can integrate the

fixed-point iteration into. We use ordinary throughput-based Rus-

sian roulette without splitting for the first three training iterations

to give the data structure time to adapt and let the estimates become

less noisy before we switch to our sample allocation.

Outlier clamping. Outliers can drastically reduce the quality of

the variance estimates. To combat this, we clamp the contribution

of paths to a fixed multiple of the pixel estimate (50). Note that this

is only used for our local- and image variance estimates, and is not

used for the render itself. Similar to previous works, we also clamp

the maximal number of samples per technique (to [0.05, 20]).

Handling colors. To extend our theory to color, we perform com-

putations channel-wise and use the 𝐿2 norm to compute the final

sample counts analogous to previous works [Rath et al. 2022].

4.2 Evaluation

We compare our approach against the state-of-the-art in path guid-

ing, based on mixture optimization using gradient descent [Vorba

et al. 2019] in conjunction with EARS [Rath et al. 2022] to steer

sample counts (“EARS”). We use the variant that minimizes KL di-

vergence of image contributions [Rath et al. 2020], which works

best across all our scenes. As a baseline, we include path guiding

with throughput-based RR (“classic RR”) starting at the 5th bounce,

while all other methods start performing RR with the first bounce.

We provide results of our strategy for the budget-unaware and

the budget-aware MIS weight scenarios. As discussed, the budget-

aware configuration uses the the budget-unaware derivations as an

approximation. An ablation (“Ours + Grad. Descent”) combines gra-

dient descent (mixing BSDF and guiding) and our approach (sample

counts of NEE and the mixture) to demonstrate that our approach

chooses better mixtures than the previous state-of-the-art optimizer.

Setup. All images are rendered for 5 minutes (2.5min training,

2.5min rendering) on an AMD Ryzen Threadripper 2950X. The

maximum path length is 40 and we perform 9 training iterations

whose time increases exponentially [Müller et al. 2017]. We limit

the data structure’s footprint to a maximum of 72MB. The noise is

quantified using relative mean squared error (relMSE), with 0.01% of

the brightest outliers discarded to arrive at a robust error estimate.

Results. We tested our method on a set of 10 common benchmark

scenes, where it achieves an average speedup of 1.32× over the

previous state-of-the-art, even though it traces 17% fewer rays. We

find that the budget-aware variant almost always yields superior

performance. A selection of interesting scenes can be found in fig. 6.

In Living Room, our method automatically detects that BSDF

sampling performs best to estimate the incident light on the floor. On

diffuse surfaces, guiding is used instead. NEE is left mostly disabled,

saving computational cost and yielding a 39% speedup.

The Glossy Kitchen contains various glossy surfaces, which

make guiding and NEE poor choices. By disabling NEE almost en-

tirely and using guiding only on the counter in the lower part where

it is beneficial, we save precious time that can be spent elsewhere.

Corona Benchmark features strong indirect illumination from a

directly illuminated spot on the sofa. Our method correctly identifies

that any path arriving at the sofa should attempt a high number of

NEE samples. Note that this would not be possible with per-pixel-

based approaches, which are limited to using the same sampling

ratios independent of where the path lands at later bounces.

The Bedroom is a scene where all three available techniques

are useful in different areas. The left wall benefits greatly from

performing NEE and every path encountering it can utilize this.

As an outdoor scene, we include the Pool. In this scene, contain-

ing many caustics, our budget-aware method achieves a speedup

of 43%. Our method correctly identifies that guiding is necessary to

estimate the caustic cast by the windows on the right of the pool.

Convergence in practice. We verified that our method converges in

practice by ensuring repeated rendering yields the same results, and

that the curves of average budget allocation per technique as well as

overall efficiency flatten over time. We provide these convergence

plots in the supplementary material.

5 APPLICATION II: BIDIRECTIONAL PATH TRACING

In our bidirectional application, the techniques to combine are path

tracing, connections with light paths, and NEE. While NEE is a

special case of light paths, its different variance and cost properties

make it beneficial to assign it its own budget. In theory, performance

could be improved further by assigning separate budgets of light

paths for any length, but we leave exploring this as future work.

While it might make sense to perform splitting for both the

camera- and light paths, doing so comes with its own set of chal-

lenges. Most importantly, splitting paths on both ends and combin-

ing all acquired intersections leads to an exponential increase in

connections between the paths which is computationally expensive.

For this reason, we resort to throughput-based RR for the light path.

We leave exploring more sophisticated variants of bidirectional

rendering, such as vertex merging, light path caches, or stochastic

connections as future work.

5.1 Implementation

The implementation of our second application is analogous to the

first. Local estimates are recorded in the octree data structure pro-

posed by EARS [Rath et al. 2022]. To execute our fixed-point scheme,

we rewrite Mitsuba’s BDPT implementation to become progressive:

Rendering occurs in short iterations that grow in duration over

time, with the final image being the inverse-variance weighted com-

bination of all iterations [Vorba et al. 2019]. We apply a similar

outlier rejection to EARS [Rath et al. 2022], which eliminates the 10

brightest pixels in each pass for the image variance estimate. Similar

to guiding, we additionally tried applying an outlier rejection to

the local samples recorded in the octree but found that this results

on average in a 6% performance decrease on the evaluated scenes:

Since in this application sampling is not learned adaptively, it seems

beneficial to perform excessive splitting in the presence of outliers.
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5.2 Evaluation

We compare against EARS applied to camera paths (“EARS”) and

provide the results of a vanilla BDPT baseline (“classic RR”). Sample

allocation/RRS is only performed on the camera path side, and

throughput-based RR is used to construct light paths. Additionally,

we implemented a variation of efficiency-aware MIS [Grittmann

et al. 2022] (“brute-force”), which is applied to pure bidirectional

path tracing without merging and makes decisions on a per-pixel

basis instead of a single global one to allocate the budget.

All images are rendered for 5 minutes on an AMD Ryzen Thread-

ripper 2950X with 16 cores with a maximum path length of 40.

The first 3 iterations use classic RR also for the camera path to

let estimates converge. The data structure’s memory size is lim-

ited to at most 72MB. As in guiding, we evaluate a version with

budget-unaware MIS weights which performs 13%worse on average.

Averaged, we achieve a speedup of 1.6× over EARS applied to BDPT,
while tracing 13% fewer rays, and a speedup of 2.6× over BDPT.

The teaser (fig. 1) shows a modified version of the Kitchenette

including a small tealight. Plain RRS cannot separate the contribu-

tions of the different techniques, wasting compute time on negligible

contributions, while our method can locally identify regions where

each particular sampling technique performs well.

Figure 7 showcases a variety of interesting scenes, e.g., theGlossy

Kitchen that shows a similar pattern. The glossy features neither

benefit greatly from light connections nor NEE. Being able to auto-

matically detect and tune down these techniques locally, still using

connections on diffuse surfaces, yields a speedup of 74%.

The Glossy Bathroom similarly avoids NEE, but for a different

reason: No light is directly visible in this scene. Instead, our method

relies on BSDF sampling for glossy surfaces and light paths for

rougher surfaces. Similar to EARS, our method uses less splitting

overall (indicated by the darker colors). EARS exhibits the same

issue as in its original paper due to issues with variance estimates

on glossy surfaces. While our method fundamentally suffers from

the same issue, this is offset by an overall better sample allocation

resulting in a 79% speedup over EARS.

In contrast to the previous scenes, the Living Room is a scene

where NEE is invaluable, given that guiding is unavailable. The sofa

on the right is directly hit by the light sources and well estimated

by NEE. Random BSDF bounces from diffuse elements in the scene

ending at this location can exploit this effective technique. Light

paths are avoided entirely, as they struggle to penetrate the room.

The Bedroom and the Bookshelf both feature difficult indirect

illumination where light is only induced from small areas: from

behind the curtains and from small light sources, respectively. For

BSDF samples alone, it is hard to find a contributing path without

the assistance of NEE or light path connections. Therefore, at inter-

sections where there are no occluders and a direct light connection

is possible, our method automatically increases the NEE sampling

budget to reduce the variance at this intersection. At other inter-

sections, with an occluder present, light connections can provide

help avoiding it. Making these decisions locally in space allows for

superior estimations of indirect illumination while previous work

is limited to taking a single decision for the whole path.

(BDPT)(BDPT) 1.25931.2593

classic RRclassic RR

1.57061.5706

OursOurs

(BDPT)(BDPT) 0.01940.0194

classic RRclassic RR

0.02610.0261

OursOurs

Fig. 5. We show two failure cases. The Country Kitchen is a noisy scene

in which our method requires time to converge and convert the overhead

into an advantage. The 30 seconds it was rendered for do not suffice, but

by rendering only slightly longer we surpass BDPT’s performance. In the

second case, we present a Cornell Box. In trivial scenes, the overhead we

introduce dominates the advantage. We give the relMSE in the upper right.

Convergence in practice. As in path guiding, we verified that re-

peated runs result in the same performance. We similarly provide

plots for the convergence of average sample allocations across tech-

niques and overall efficiency in the supplementary material.

6 LIMITATIONS AND FUTURE WORK

Our method efficiently allocates sampling budgets while remain-

ing flexible and extensible, but relies heavily on the accuracy and

robustness of local estimates for variance.

Overhead. Our method introduces the overhead of collecting local

estimates which does not always pay off. In the presence of very

short rendering times, the collected estimates have not converged

enough yet when the rendering finishes. In fig. 5 we present the

Country Kitchen where a rendering time of 30 seconds does not

suffice, even though we outperform BDPT quickly afterward.

Local estimates. Outliers in the local estimates can reduce perfor-

mance due to excessive splitting. We used a simple outlier rejection

scheme in the guiding application, but future work could look into

applying more sophisticated techniques [Zirr et al. 2018].

Discontinuity artefacts. Noise in the spatial caches can lead to

noticeable discontinuities [Rath et al. 2022], which is especially

pronounced with shorter render times. Possible mitigations could

be to apply spatial denoising to the local estimates or interpolate

them to arrive at smoothly varying sample counts.

Proxy accuracy. Our proxy is only optimal for budget-unaware

MIS weights. While it performs robustly for budget-aware weights

across all our tested scenes, a more sophisticated proxy can likely in-

crease efficiency even further. Our supplemental includes additional

1D examples that investigate the error of the proxy further.

Dynamic scenes. We only considered static scenes. Future work

could extend our method to dynamic scenes, such as real-time ren-

dering, in which local estimates or sample allocations from earlier

frames could be re-used to kickstart the fixed-point scheme.
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MIS weights. We limited our analysis to the most common MIS

weighting function, the balance heuristic [Veach and Guibas 1995b].

Future work could investigate the impact of more sophisticated

budget-aware weights on our proxy model, such as the optimal

weights proposed by Kondapaneni et al. [2019].

Correlated Techniques. Our decomposition of the variance as-

sumes that techniques are uncorrelated. To perform optimally for

correlated techniques (such as photon mapping), one also needs to

track correlation statistics, which we leave as future work.

Applications outside of rendering. We presented our approach in

the context of rendering, but it could be applied to any Monte Carlo

integration problem that relies on multi-sample MIS estimation.

7 CONCLUSION

We present a novel theory on multi-sample MIS allocation strategy

based on fixed-point schemes. For budget-unaware weights, our

method is proven to yield optimal performance as long as variances

and costs are known accurately. We demonstrate that our approach

achieves consistent speedups over previous approaches, even with

noisy estimates and budget-aware weights, in both path guiding

and bidirectional path tracing. Our theory can be applied to any

Monte Carlo integration problem, even outside of rendering, in

which multiple sampling techniques are combined through MIS.
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Reference classic RR EARS Ours
+ Grad. Descent

Ours
budget-unaware Ours

1100 1010 1100 1010 1100 1010
BSDF NEE guiding

Living Room relMSE 1.3e−2(0.48×) 6.3e−3(1.00×) 4.9e−3(1.27×) 5.5e−3(1.14×) 4.5e−3(1.39×)

OursOurs

EARSEARS

Sample Allocation

Glossy Kitchen relMSE 2.3e−2(0.56×) 1.3e−2(1.00×) 1.0e−2(1.25×) 1.3e−2(1.01×) 1.0e−2(1.27×)

OursOurs

EARSEARS

Sample Allocation

Corona Benchmark relMSE 6.1e−2(0.34×) 2.1e−2(1.00×) 1.5e−2(1.39×) 1.8e−2(1.18×) 1.4e−2(1.50×)

OursOurs

EARSEARS

Sample Allocation

Bedroom relMSE 6.7e−2(0.26×) 1.7e−2(1.00×) 1.5e−2(1.16×) 1.6e−2(1.07×) 1.5e−2(1.18×)

OursOurs

EARSEARS

Sample Allocation

Pool relMSE 1.4e−2(0.56×) 7.9e−3(1.00×) 6.4e−3(1.23×) 5.4e−3(1.48×) 5.5e−3(1.43×)

OursOurs

EARSEARS

Sample Allocation

Fig. 6. We compare our method against state-of-the-art EARS applied to guiding in 5 scenes in a 5 minute equal-time comparison. The numbers below the

crops correspond to the relative mean squared error over the whole image (relMSE, lower is better), with the speedup compared against EARS in parentheses

(higher is better). To the right, we visualize the allocation decisions EARS and our method take. The color channels red, green and blue correspond to BSDF,

NEE, and guiding samples, respectively, with brighter colors indicating higher sample counts. The other 5 scenes we tested are provided in the supplementary

material. Our “+ Grad. Descent” test uses gradient descent for the BSDF/guiding mixture and our method to combine it with NEE using budget-aware weights.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.
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Reference classic RR brute-force EARS Ours
budget-unaware Ours

1100 2020 1100 2020 1100 2020
BSDF NEE LP

Living Room relMSE 1.9e−2(0.69×) 1.3e−2(1.06×) 1.4e−2(1.00×) 9.8e−3(1.38×) 9.0e−3(1.49×)

OursOurs

EARSEARS

Sample Allocation

Glossy Kitchen relMSE 3.6e−2(0.68×) 4.8e−2(0.52×) 2.5e−2(1.00×) 2.0e−2(1.24×) 1.4e−2(1.74×)

OursOurs

EARSEARS

Sample Allocation

Bedroom relMSE 4.4e−2(0.75×) 1.1e−1(0.30×) 3.3e−2(1.00×) 2.5e−2(1.32×) 2.3e−2(1.46×)

OursOurs

EARSEARS

Sample Allocation

Glossy Bathroom relMSE 1.2e−1(1.23×) 1.4e−1(1.04×) 1.4e−1(1.00×) 8.9e−2(1.62×) 8.0e−2(1.79×)

OursOurs

EARSEARS

Sample Allocation

Bookshelf relMSE 1.2e−2(0.41×) 2.9e−1(0.02×) 4.9e−3(1.00×) 3.3e−3(1.48×) 3.3e−3(1.50×)

OursOurs

EARSEARS

Sample Allocation

Fig. 7. We compare our method against state-of-the-art EARS applied to BDPT in 5 scenes in a 5 minute equal-time comparison. The numbers below the crops

correspond to the relative mean squared error over the whole image (relMSE, lower is better), with the speedup compared against EARS in parentheses (higher

is better). To the right, we visualize the allocation decisions EARS and our method take. The color channels red, green and blue correspond to BSDF, NEE, and

light path samples, respectively, with brighter colors indicating higher sample counts. The other 5 scenes we tested are provided in the supplementary material.
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A DERIVATION

In this section, we provide the formal derivation of the fixed-point

iteration scheme that is described in the paper. We start by introduc-

ing the model and follow up with the derivation of the formulation

for variance. With these foundations, we can give an expression for

efficiency to take the derivative of and compute its root.

A.1 Base Model

We are interested in finding the value of 𝐼 =
∫
X 𝑓 (𝑥) d𝑥 by com-

bining estimates from 𝑛𝑡 different strategies with varying sample

counts 𝛽𝑡 , leading us to a multi-sample MIS formulation

⟨𝐼 ⟩ =
𝑛𝑡∑︁
𝑡=1

1

𝛽𝑡

𝛽𝑡∑︁
𝑠=1

⟨𝐼𝑡 (𝑥𝑡,𝑠 )⟩ =
𝑛𝑡∑︁
𝑡=1

⟨𝐼𝑡 (𝑥𝑡,·); 𝛽𝑡 ⟩,

where ⟨𝐼 ; 𝛽⟩ is a secondary estimator with sample count 𝛽 . Further,

we express the integrand 𝑓 as a sum of subintegrands 𝑓 =
∑𝑛𝑖
𝑖=1

𝑓𝑖 ,

allowing us to consider and combine techniques that estimate differ-

ent, possibly disjoint, parts of the main integrand. This gives each

primary estimator the form

⟨𝐼𝑡 (𝑥)⟩ =
𝑛𝑖∑︁
𝑖=1

𝑓𝑖 (𝑥)
𝑝𝑡 (𝑥)

𝑤𝑖𝑡 (𝑥),

where 𝑝𝑡 is the probability density function of technique 𝑡 and

𝑤𝑖𝑡 (𝑥) is the MIS weight with respect to all other methods that

estimate integrand 𝑓𝑖 . Its dependency on 𝑖 is due to the characteristic

function 1𝑖𝑡 in the MIS weights, which is 1 whenever technique 𝑡

estimates integrand 𝑓𝑖 and 0 otherwise. This ensures correctness

and

∑𝑛𝑡
𝑡=1

𝑤𝑖𝑡 (𝑥) = 1 for all 𝑖 . For example, for the budget-unaware

balance heuristic we obtain

𝑤𝑖𝑡 (𝑥) =
1𝑖𝑡𝑝𝑡 (𝑥)∑𝑛𝑡

𝑘=1
1𝑖𝑘𝑝𝑘 (𝑥)

.

For brevity, we will drop the argument of 𝐼𝑡 where it is not the

subject of interest. Note, that we can also drop the argument with

explicit subscript 𝑠 for the 𝑠-th sample since the samples are pairwise

independent.

Continuity. Sample allocation is a discrete problem since we can

only take a natural number of samples. Similar to previous work

[Vorba and Křivánek 2016], we employ the stochastic rounding

function

𝑟 (𝛽) =
{
⌊𝛽⌋ + 1 with probability 𝛽 − ⌊𝛽⌋
⌊𝛽⌋ otherwise,

to allow for real-valued 𝛽 and make the optimization simpler.

Unbiasedness. Having adapted the standard multi-sample MIS

model and introduced stochastic rounding, we have to verify that our

model still yields an unbiased estimate of 𝐼 . This is a straightforward

computation in which we use that the sum of the MIS weights over

all techniques is 1:

E [⟨𝐼 ⟩] = 1

𝛽𝑡

𝑛𝑡∑︁
𝑡=1

E


𝑟 (𝛽𝑡 )∑︁
𝑠=1

⟨𝐼𝑡 ⟩


=

(
(𝛽𝑡 − ⌊𝛽𝑡 ⌋)(⌊𝛽𝑡 ⌋ + 1)

𝛽𝑡
+ (1 − 𝛽𝑡 + ⌊𝛽𝑡 ⌋) ⌊𝛽𝑡 ⌋

𝛽𝑡

) 𝑛𝑡∑︁
𝑡=1

E [⟨𝐼𝑡 ⟩]

=

𝑛𝑡∑︁
𝑡=1

E [⟨𝐼𝑡 ⟩] =
𝑛𝑡∑︁
𝑡=1

𝑛𝑖∑︁
𝑖=1

E
[
𝑓𝑖 (𝑥)
𝑝𝑡 (𝑥)

𝑤𝑖𝑡 (𝑥)
]

=

∫
X

𝑛𝑖∑︁
𝑖=1

𝑓𝑖 (𝑥)
(
𝑛𝑡∑︁
𝑡=1

𝑤𝑖𝑡 (𝑥)
)

︸          ︷︷          ︸
=1

d𝑥 = 𝐼 .

Variance. The efficiency E [Pharr et al. 2016] of an estimator ⟨𝐼 ⟩
is given by

E[⟨𝐼 ⟩] = 1

V [⟨𝐼 ⟩] C [⟨𝐼 ⟩] .

Consequently, to allocate sampling budgets maximizing efficiency,

having formulations for variance and cost is essential. We start with

variance. It is generally given by

V [⟨𝐼 ⟩] = E
[
⟨𝐼 ⟩2

]
− E2 [⟨𝐼 ⟩] .

We already know that E2 [⟨𝐼 ⟩] = 𝐼2
since our estimator is unbi-

ased. Thus, we only need to compute the second moment of our

estimator

E
[
⟨𝐼 ⟩2

]
= E


(
𝑛𝑡∑︁
𝑡=1

⟨𝐼𝑡 ; 𝛽𝑡 ⟩
)

2
=

𝑛𝑡∑︁
𝑡=1

E
[
⟨𝐼𝑡 ; 𝛽𝑡 ⟩2

]
+

𝑛𝑡∑︁
𝑘≠𝑙

E [⟨𝐼𝑘 ; 𝛽𝑘 ⟩⟨𝐼𝑙 ; 𝛽𝑙 ⟩]

=

𝑛𝑡∑︁
𝑡=1

E
[
⟨𝐼𝑡 ; 𝛽𝑡 ⟩2

]
+

𝑛𝑡∑︁
𝑘≠𝑙

E [⟨𝐼𝑘 ⟩] E [⟨𝐼𝑙 ⟩] ,

where for the last equality we assume independence of the tech-

niques, which usually is a reasonable assumption, and the fact that

E [⟨𝐼𝑡 ; 𝛽𝑡 ⟩] = E [⟨𝐼𝑡 ⟩], as can easily be seen in the previous unbi-

asedness computation.

Assuming independence of the acquired samples within a tech-

nique, and 𝛽𝑡 ∈ N>0, take note of the identity

E

©«
𝛽𝑡∑︁
𝑠=1

⟨𝐼𝑡 ⟩ª®¬
2 = 𝛽𝑡E

[
⟨𝐼𝑡 ⟩2

]
+ 𝛽𝑡 (𝛽𝑡 − 1)E2 [⟨𝐼𝑡 ⟩] .

Using it, we can further simplify the second moment by getting rid

of its inherent dependency on 𝛽𝑡 . For any fixed 𝑡 , the secondary

estimator’s second moment is of the form

E
[
⟨𝐼𝑡 ; 𝛽𝑡 ⟩2

]
=

1

𝛽2

𝑡

E

©«
𝑟 (𝛽𝑡 )∑︁
𝑠=1

⟨𝐼𝑡 ⟩ª®¬
2

=
𝛽𝑡 − ⌊𝛽𝑡 ⌋

𝛽2

𝑡

E

©«
⌊𝛽𝑡 ⌋+1∑︁
𝑠=1

⟨𝐼𝑡 ⟩ª®¬
2

+ 1 − 𝛽𝑡 + ⌊𝛽𝑡 ⌋
𝛽2

𝑡

E

©«
⌊𝛽𝑡 ⌋∑︁
𝑠=1

⟨𝐼𝑡 ⟩ª®¬
2

=
1

𝛽𝑡
E

[
⟨𝐼𝑡 ⟩2

]
+ 2𝛽𝑡 ⌊𝛽𝑡 ⌋ − ⌊𝛽𝑡 ⌋2 − ⌊𝛽𝑡 ⌋

𝛽2

𝑡

E2 [⟨𝐼𝑡 ⟩] .
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One last trick is to express the first moment squared, 𝐼2
, in terms as

a sum of the technique estimators as follows

𝐼2 =

(
𝑛𝑡∑︁
𝑡=1

E [⟨𝐼𝑡 ⟩]
)

2

=

𝑛𝑡∑︁
𝑡=1

E2 [⟨𝐼𝑡 ⟩] +
𝑛𝑡∑︁
𝑘≠𝑙

E [⟨𝐼𝑘 ⟩] E [⟨𝐼𝑙 ⟩] .

Putting these formulations for the first and second moment together,

the formula for the variance of our estimator simply becomes the

sum of the variance of all techniques in use

V [𝐼 ] =
𝑛𝑡∑︁
𝑡=1

V [⟨𝐼𝑡 ; 𝛽𝑡 ⟩] =
𝑛𝑡∑︁
𝑡=1

(
1

𝛽𝑡
V [⟨𝐼𝑡 ⟩] + 𝜌 (𝛽𝑡 )E2 [⟨𝐼𝑡 ⟩]

)
,

where 𝜌 (𝛽) = (𝛽−⌊𝛽 ⌋ ) ( ⌈𝛽 ⌉−𝛽 )
𝛽2

arises due to stochastic rounding.

Cost. Modeling the cost of our estimator is done in a similar way

as in previous work [Rath et al. 2022]. We assume the cost C𝑡 of

taking a single sample for technique 𝑡 to be constant. To obtain the

cost of the overall estimator, we multiply each technique’s cost by

the real-valued 𝛽𝑡 and sum them up. We also include a constant

cost term CΔ to incorporate all overhead costs. Formally, this yields

C [⟨𝐼 ⟩] = ∑𝑛𝑡
𝑡=1

𝛽𝑡C𝑡 + CΔ.

A.2 Optimizing for Efficiency

Our goal is to obtain a sample allocation that maximizes efficiency.

Instead of doing this directly, we consider the equivalent problem

of minimizing inverse efficiency E−1
to improve the readability and

reduce clutter of the following equations. At a minimum, the deriva-

tive necessarily has a root. Therefore, we first compute the derivative

w.r.t. all 𝛽𝑡 of inverse efficiency in this section. In the next sections,

we then find an expression for its minimum.

Efficiency derivative. We can use the product formula to get

dE−1 [⟨𝐼 ⟩]
d𝛽𝑡

=
dV [⟨𝐼 ⟩]

d𝛽𝑡
C [⟨𝐼 ⟩] + V [⟨𝐼 ⟩] dC [⟨𝐼 ⟩]

d𝛽𝑡
,

revealing that we need derivatives of the cost and variance expres-

sions computed previously.

Cost derivative. The derivative of cost is easy as only one of the

summands depends on 𝛽𝑡 . Therefore:
dC[ ⟨𝐼 ⟩ ]

d𝛽𝑡
= C𝑡 .

Variance derivative. The derivative of variance is given by

dV [⟨𝐼 ⟩]
d𝛽𝑡

=

𝑛𝑡∑︁
𝑘=1

(
d

d𝛽𝑡

1

𝛽𝑘
V [⟨𝐼𝑘 ⟩] +

d

d𝛽𝑡
𝜌 (𝛽𝑘 )E2 [⟨𝐼𝑘 ⟩]

)
= − 1

𝛽2

𝑡

V [⟨𝐼𝑡 ⟩] +
d𝜌 (𝛽𝑡 )

d𝛽𝑡
E2 [⟨𝐼𝑡 ⟩]

+
𝑛𝑡∑︁
𝑘=1

(
1

𝛽𝑘

dV [⟨𝐼𝑘 ⟩]
d𝛽𝑡

+ 𝜌 (𝛽𝑘 )
dE2 [⟨𝐼𝑘 ⟩]

d𝛽𝑡

)
︸                                         ︷︷                                         ︸

=0, for budget-unaware MIS weights

Note that, at this point, the sum over all 𝑛𝑡 techniques is 0 if the

MIS weights are budget-unaware, i.e., do not contain 𝛽 . Moreover,

the derivative of 𝜌 in this equation, which arises due to stochastic

rounding, forces us to make a simplification that has been done

by previous work in similar situations as well [Rath et al. 2022],

i.e., we assume 𝜌 (𝛽) = max(1, 1

𝛽
) − 1. It is easy to verify that this

simplification only affects the 𝛽 > 1 case, giving us

V [⟨𝐼𝑡 ; 𝛽𝑡 ⟩] =
{

1

𝛽𝑡
E

[
⟨𝐼𝑡 ⟩2

]
− E2 [⟨𝐼𝑡 ⟩] if 𝛽𝑡 < 1

1

𝛽𝑡
V [⟨𝐼𝑡 ⟩] otherwise

(3)

as a formulation for variance, and

dV [⟨𝐼 ⟩]
d𝛽𝑡

=


− 1

𝛽2

𝑡

E
[
⟨𝐼𝑡 ⟩2

]
if 𝛽𝑡 < 1,

− 1

𝛽2

𝑡

V [⟨𝐼𝑡 ⟩] otherwise

for the derivative in the budget-unaware scenario.
In the budget-aware scenario, the exact expression strongly de-

pends on the MIS weight heuristic, but is not generally convex any-

more even for simple heuristics like the balance heuristic. Hence,

we will focus on the budget-unaware case and treat it as a simplifi-

cation for the budget-aware case. With this simplification, we lose

optimality, but we show empirically that it performs well both in

simple 1D examples (see fig. 10) and complex rendering applications

(see paper).

Putting the equations together, we obtain

dE−1 [⟨𝐼 ⟩]
d𝛽𝑡

=


− 1

𝛽2

𝑡

E
[
⟨𝐼𝑡 ⟩2

]
C [⟨𝐼 ⟩] + V [⟨𝐼 ⟩] C𝑡 if 𝛽𝑡 ≤ 1,

− 1

𝛽2

𝑡

V [⟨𝐼𝑡 ⟩] C [⟨𝐼 ⟩] + V [⟨𝐼 ⟩] C𝑡 otherw.
(4)

Budget-aware derivatives. The variance’s derivative includes some

extra terms that are generated by the derivative of the MIS weights.

For any fixed 𝑘 , these extra terms take the form

1

𝛽𝑘

dV [⟨𝐼𝑘 ⟩]
d𝛽𝑡

+ 𝜌 (𝛽𝑘 )
dE2 [⟨𝐼𝑘 ⟩]

d𝛽𝑡

=
2

𝛽𝑘
E

[
⟨𝐼𝑘 ⟩

d⟨𝐼𝑘 ⟩
d𝛽𝑡

]
+ 2

𝛽𝑘
E [⟨𝐼𝑘 ⟩] E2

[
d⟨𝐼𝑘 ⟩
d𝛽𝑡

]
+ 2𝜌 (𝛽𝑘 )E [⟨𝐼𝑘 ⟩] E2

[
d⟨𝐼𝑘 ⟩
d𝛽𝑡

]
=

2

𝛽𝑘
E

[
⟨𝐼𝑘 ⟩

𝑛𝑖∑︁
𝑖=1

𝑓𝑖 (𝑥)
𝑝𝑘 (𝑥)

d𝑤𝑖𝑘 (𝑥)
d𝛽𝑡

]
+ 2

𝛽𝑘
E [⟨𝐼𝑘 ⟩] E2

[
𝑛𝑖∑︁
𝑖=1

𝑓𝑖 (𝑥)
𝑝𝑘 (𝑥)

d𝑤𝑖𝑘 (𝑥)
d𝛽𝑡

]
+ 2𝜌 (𝛽𝑘 )E [⟨𝐼𝑘 ⟩] E2

[
𝑛𝑖∑︁
𝑖=1

𝑓𝑖 (𝑥)
𝑝𝑘 (𝑥)

d𝑤𝑖𝑘 (𝑥)
d𝛽𝑡

]
.

A.3 Fixed-Point Iteration

To devise a fixed-point scheme, we need to find the inverse effi-

ciency’s derivative’s roots, which we achieve by rearranging eq. (4).

For brevity, let𝑀𝑡 =
dV[ ⟨𝐼 ⟩ ]

d𝛽𝑡
. Then

dE−1 [⟨𝐼 ⟩]
d𝛽𝑡

!

= 0

⇐⇒ − 1

𝛽2

𝑡

𝑀𝑡C [⟨𝐼 ⟩] + V [⟨𝐼 ⟩] C𝑡 = 0

⇐⇒ 𝛽𝑡 =

√︄
𝑀𝑡

V [⟨𝐼 ⟩]
C [⟨𝐼 ⟩]
C𝑡

,

where the last equivalence holds because 𝛽𝑡 > 0.
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With this equation, there is to note that 𝛽𝑡 appears on both sides.

And non-linearly so on the right-hand side as a part of V [⟨𝐼 ⟩].
Hence, an analytical solution becomes impractical and we have to

resort to numerical methods. The equation looks similar to what

previous work [Rath et al. 2022] has encountered before and solved

with a fixed-point iteration scheme. Following their example, we

can employ a fixed-point iteration by using the equation above as an

update function and compute the new sample allocations based on

the variances and costs of using the previous iterations’ allocations,

as given by

𝛽𝑡,𝑖+1 =


𝛽RR
𝑡,𝑖

=

√︂
E[⟨𝐼𝑡 ;𝛽𝑡,𝑖 ⟩2]
V[ ⟨𝐼 ;𝜷𝑖 ⟩ ]

C[ ⟨𝐼 ;𝜷𝑖 ⟩ ]
C𝑡

if 𝛽RR
𝑡,𝑖

< 1,

𝛽S
𝑡,𝑖

=

√︂
V[⟨𝐼𝑡 ;𝛽𝑡,𝑖 ⟩]
V[ ⟨𝐼 ;𝜷𝑖 ⟩ ]

C[ ⟨𝐼 ;𝜷𝑖 ⟩ ]
C𝑡

if 𝛽S
𝑡,𝑖

> 1,

1 otherwise,

where 𝜷𝑖 is the vector of all 𝛽𝑡,𝑖 of the 𝑖-th iteration. The third case

arises due to a technicality. With our proxy, the problem is split

into two cases, one where 𝛽𝑡 ≤ 1 and one where 𝛽𝑡 > 1. In some

scenarios, an update step using the first case would lead to 𝛽𝑡,𝑖+1 ≥ 1,

whereas an update step in the second case would lead to 𝛽𝑡,𝑖+1 ≤ 1.

The two cases are in disagreement. Therefore, in such scenarios, we

resort to following neither decision by allocating a single sample.

A.4 Proof of Optimality for Budget-Unaware Weights

We know that the efficiency is of the form

E−1 (𝛽) =
(
𝑛𝑡∑︁
𝑡

1

𝛽𝑡
V[⟨𝐼𝑡 ⟩] + VΔ

)
︸                       ︷︷                       ︸

VΣ

(
𝑛𝑡∑︁
𝑡

𝛽𝑡C[⟨𝐼𝑡 ⟩] + CΔ

)
︸                     ︷︷                     ︸

CΣ

,

and hence optimal 𝛽∗𝑡 must satisfy

𝛽∗𝑡 =

√︄
V[⟨𝐼𝑡 ⟩]
C[⟨𝐼𝑡 ⟩]

CΣ

VΣ
= 𝜆

√︄
V[⟨𝐼𝑡 ⟩]
C[⟨𝐼𝑡 ⟩]

.

For budget-unaware weights, the variance V[⟨𝐼𝑡 ⟩] is independent
of 𝛽𝑡 , and hence all that remains to be found is 𝜆. Rewriting the

inverse efficiency in terms of 𝜆 yields

E−1 (𝜆) =
(

1

𝜆
𝑀 + VΔ

)
(𝜆𝑀 + CΔ) ,

where𝑀 = 𝑛𝑡
√︁
V[⟨𝐼𝑡 ⟩]C[⟨𝐼𝑡 ⟩]. Since our update formula enforces

that we move on the line defined by 𝜆, our fixed-point scheme

degenerates to the EARS fixed-point scheme after a single step,

which has been proven to be optimal [Rath et al. 2022].

B ADDITIONAL DISCUSSION

B.1 Rounding

Rounding variants. Rounding fractional sample counts to inte-

gers, which is required since we can only take an integer amount

of samples, always introduces additional noise in the secondary

estimator. The shape and magnitude of noise depend on how the

secondary estimator is normalized after rounding. We evaluate two

unbiased options: (1) dividing by the real-valued sample count as

done by previous works [Rath et al. 2022; Vorba and Křivánek 2016],

and (2) dividing by the rounded sample count in the case of split-

ting and real-valued count for RR. The theoretical difference in

noise is demonstrated in fig. 8. In practice, we have found that both

techniques perform equally well, and hence for consistency with

previous works, we normalize by real-valued sample counts in all

of our evaluations.

Low discrepancy rounding. In practice, we apply a small trick to

reduce the variance introduced by stochastic rounding by roughly

2%. With naïve stochastic rounding, every technique draws an inde-

pendent random number to decide whether to round the number of

samples up or down. Looking at the sampling process as a whole,

the decision is not whether 1 sample is taken or not, but rather

whether 𝑛𝑡 samples are taken, each individually. With an unlucky

draw none of the allocations are rounded up, whereas with a lucky

draw, all of them are rounded up. We instead only draw a single
random number to decide the rounding of all techniques (see alg.
1). After a technique was rounded, the probability of rounding up

the next sample increases or decreases with whether the previous

ones were rounded down or up, respectively. Overall, this leads to

the random process only deciding between taking 1 sample more

or less, instead of 𝑛𝑡 samples, which reduces variance slightly.

ALGORITHM 1: Low Discrepancy Stochastic Rounding

/* Given stochastic number of samples 𝛽𝑡 ∈ R+
0

*/

𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚 ( ) ; /* Uniform random number in [0, 1] */

for 𝑡 = 1 to 𝑛𝑡 do /* Round all 𝑛𝑡 sample allocations */
𝛾𝑡 ← ⌊𝛽𝑡 + 𝑟 ⌋ ; /* 𝛽𝑡 ∈ R+

0
; stochast. rounded 𝛾𝑡 ∈ N */

𝑟 ← 𝑟 + 𝛽𝑡 − 𝛾𝑡 ; /* Remaining fractional random part */

end
/* Use each 𝛾𝑡 as number of samples for technique 𝑡. */

B.2 Convergence

In addition to the rendered images that show an improvement over

state-of-the-art methods and the visualizations of where which

technique is used, we provide efficiency and sample allocation plots

over rendering time. In fig. 9, we present efficiency and sample

allocation plots of a small selection of scenes in path guiding as well

as in bidirectional path tracing.We can observe the curves flattening,

or being near constant at the end of the rendering process, indicating

a sufficiently converged sample-allocation fixed point in our proxy

model.

C ADDITIONAL RESULTS

C.1 1D Examples

Apart from verifying the adequacy of our proxy model in complex

rendering applications, we also investigate its performance and

deviation from the true efficiency in a number of 1D examples

visualized in fig. 10. While our proxy model matches exactly for

the budget-unaware case, its optimum can deviate from the true

optimal solution for budget-aware weights. This is most pronounced

when the optimal solution is to discard all but one distribution,

either because one strategy samples perfectly (second last row) or

the problem becomes non-convex as individual strategies perform

better than the MIS combination (last row).
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100 101 β

E
V[〈It〉] = 0.1×E[〈It〉]

Model Stochastic rounding Nearest rounding

100 101 β

E
V[〈It〉] = 1×E[〈It〉]

Model Stochastic rounding Nearest rounding

100 101 β

E
V[〈It〉] = 10×E[〈It〉]

Model Stochastic rounding Nearest rounding

(a) Low variance (b) Medium variance (c) High variance

Fig. 8. We compare the efficiency of stochastic rounding, rounding to nearest integers, and the simplified model for the secondary estimator variance our work

has in common with previous works. The performance of stochastic rounding depends on the ratio of estimator variance to expected value. All models perform

the same for RR (𝛽 < 1) and at integer splitting factors. (a) For low variance estimators, stochastic rounding can introduce more noise than nearest rounding.

(b)When the estimator variance is on the same order of magnitude as its expected value, stochastic rounding becomes the best option. (c) Stochastic rounding
and the simplified model begin to agree perfectly when the variance is high.
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(a) Glossy Kitchen (b) Dining Room (c) Glossy Bathroom (d) Bookshelf

Fig. 9. We show convergence of the average primary hit point sample allocation (first row) and overall efficiency (second row, higher is better) in four selected

scenes for path guiding and BDPT. The evaluation setup is the same as in the main text. Our fixed-point scheme quickly converges towards solutions that are

better than the baseline and previous state-of-the-art.
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C.2 Mixture Optimization in Path Guiding

In path guiding, we optimize the BSDF/guiding ratio of previous

work using the KL divergence extended to image contributions

[Rath et al. 2020]. This cannot directly maximize efficiency because

(1) it does not contain information about cost, (2) only optimizes

decisions locally rather than balancing variance across pixels and

regions, and (3) optimizes KL divergence instead of variance. While

(1) and (2) are fundamental limitations of the approach, (3) is in
theory addressed by the variance optimizing variant [Vorba et al.

2019], but performed poorly across our tests scenes–likely due to

the Adam optimizer drastically reducing its step-size in the pres-

ence of strong outliers. Hence, as suggested by the original au-

thors, we use the KL divergence instead. A brief selection of scenes

rendered for 5 minutes showcasing minimizing for (a) KL diver-

gence, (b) KL divergence with image contributions, (c) variance,
and (d) variance with image contributions can be found in fig. 11.

Glossy Kitchen

Reference EARS
KL divergence

EARS
image KL divergence

EARS
variance

EARS
image variance

relMSE 1.32e−2(0.98×) 1.30e−2(1.00×) 1.93e−2(0.68×) 2.63e−2(0.49×)

Bookshelf relMSE 4.11e−3(0.82×) 3.38e−3(1.00×) 3.63e−3(0.93×) 3.57e−3(0.95×)

Fig. 11. We compare variants of gradient descent for the BSDF and guiding sample mixture on top of EARS in guiding: (a) KL divergence, (b) KL divergence of

image contributions, (c) variance, and (d) variance of image contributions. Across our set of test scenes, KL divergence with image contributions performs best.

C.3 Additional Renders

For brevity, we have only included the most interesting scenes in

our main text. We show results for all other scenes from our test

set in fig. 12 (for path guiding) and fig. 13 (for BDPT). As with the

scenes shown in the paper, our method consistently outperforms

the respective previous state-of-the-art.
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(a) Integrand (b) Budget-unaware balance heuristic (c) Budget-aware balance heuristic (d) Proxy error

Fig. 10. (a) We evaluate the performance of our model on simple 1D examples, in which a single integrand 𝑓 is estimated by two techniques 𝑝1 and 𝑝2, the

costs of which are indicated by C1 and C2 (CΔ = 1 and VΔ = 1 across all examples). (b) We compare the efficiency of four approaches: Optimal mixture

sampling (“OS”), optimal Russian roulette and splitting (“RRS”), combining the two (“O+R”), and our proxy model (“Ours”). Note that combining optimal

mixture sampling and RRS does not yield optimal performance. Our model optimizes ratios and total sample counts jointly, resulting in optimal performance

for budget-unaware MIS weights. (c) For budget-aware MIS weights, the optimum predicted by our model can deviate from the true efficiency optimum.

(d)We investigate the error of our proxy by plotting the dot product of the true gradients and our proxy gradients (“1” indicates a perfect match, and “-1”

indicates opposing directions).
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Reference classic RR EARS Ours
+ Grad. Descent

Ours
budget-unaware Ours

1100 1010 1100 1010 1100 1010
BSDF NEE guiding

Dining Room relMSE 3.0e−3(0.47×) 1.4e−3(1.00×) 1.4e−3(1.05×) 1.4e−3(1.01×) 1.2e−3(1.14×)

OursOurs

EARSEARS

Sample Allocation

Glossy Bathroom relMSE 1.7e−1(0.29×) 4.9e−2(1.00×) 4.2e−2(1.17×) 4.9e−2(1.01×) 4.1e−2(1.20×)

OursOurs

EARSEARS

Sample Allocation

Bookshelf relMSE 2.1e−2(0.16×) 3.4e−3(1.00×) 3.4e−3(0.98×) 3.6e−3(0.93×) 3.3e−3(1.01×)

OursOurs

EARSEARS

Sample Allocation

Kitchenette relMSE 1.9e−1(0.70×) 1.3e−1(1.00×) 9.9e−2(1.35×) 1.1e−1(1.19×) 7.2e−2(1.85×)

OursOurs

EARSEARS

Sample Allocation

Country Kitchen relMSE 2.5e−2(0.45×) 1.1e−2(1.00×) 1.0e−2(1.11×) 1.1e−2(1.05×) 9.7e−3(1.18×)

OursOurs

EARSEARS

Sample Allocation

Fig. 12. We compare our method against state-of-the-art EARS applied to guiding in the 5 scenes not provided in the paper. The numbers below the crops

correspond to the relative mean squared error (relMSE, lower is better), with the speedup compared against EARS in parentheses (higher is better). To the

right, we visualize the allocation decisions EARS and our method take. The color channels red, green and blue correspond to BSDF, NEE, and guiding samples,

respectively, with brighter colors indicating higher sample counts. The other 5 scenes we tested are provided in the main text. Our “+ Grad. Descent” test uses

gradient descent for the BSDF/guiding mixture and our method to combine it with NEE using budget-aware weights.
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Reference classic RR brute-force EARS Ours
budget-unaware Ours

1100 2020 1100 2020 1100 2020
BSDF NEE LP

Country Kitchen relMSE 2.7e−1(0.77×) 1.4e0(0.15×) 2.1e−1(1.00×) 2.1e−1(1.00×) 2.0e−1(1.06×)

OursOurs

EARSEARS

Sample Allocation

Dining Room relMSE 5.0e−3(0.53×) 3.4e−3(0.77×) 2.6e−3(1.00×) 1.8e−3(1.45×) 1.6e−3(1.61×)

OursOurs

EARSEARS

Sample Allocation

Corona Benchmark relMSE 4.0e−1(0.40×) 2.5e−1(0.63×) 1.6e−1(1.00×) 1.1e−1(1.43×) 9.6e−2(1.66×)

OursOurs

EARSEARS

Sample Allocation

Kitchenette relMSE 3.9e−1(1.06×) 7.3e1(0.01×) 4.1e−1(1.00×) 2.5e−1(1.65×) 2.2e−1(1.87×)

OursOurs

EARSEARS

Sample Allocation

Pool relMSE 1.2e0(0.39×) 1.2e0(0.42×) 4.8e−1(1.00×) 3.0e−1(1.62×) 2.9e−1(1.65×)

OursOurs

EARSEARS

Sample Allocation

Fig. 13. We compare our method against state-of-the-art EARS applied to BDPT in the 5 scenes not provided in the paper in a 5 minute equal-time comparison.

The numbers below the crops correspond to the relative mean squared error (relMSE, lower is better), with the speedup compared against EARS in parentheses

(higher is better). To the right, we visualize the allocation decisions EARS and our method take. The color channels red, green and blue correspond to BSDF,

NEE, and light path samples, respectively, with brighter colors indicating higher sample counts. The other 5 scenes we tested are provided in the main text.
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