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Abstract. In the last decade, there has been a dramatic growth in
research and development of massively parallel commodity graphics hard-
ware both in academia and industry. Graphics card architectures provide
an optimal platform for parallel execution of many number crunching loop
programs from fields like image processing or linear algebra. However,
it is hard to efficiently map such algorithms to the graphics hardware
even with detailed insight into the architecture. This paper presents a
multiresolution image processing algorithm and shows the efficient map-
ping of this type of algorithms to graphics hardware as well as double
buffering concepts to hide memory transfers. Furthermore, the impact of
execution configuration is illustrated and a method is proposed to deter-
mine offline the best configuration. Using CUDA as programming model,
it is demonstrated that the image processing algorithm is significantly
accelerated and that a speedup of more than 145× can be achieved on
NVIDIA’s Tesla C1060 compared to a parallelized implementation on a
Xeon Quad Core. For deployment in a streaming application with steadily
new incoming data, it is shown that the memory transfer overhead to the
graphics card is reduced by a factor of six using double buffering.

Keywords: CUDA · OpenCL · image processing · mapping methodology
· streaming application

1 Introduction and Related Work

Nowadays noise reducing filters are employed in many fields like digital film
processing or medical imaging to enhance the quality of images. These algorithms
are computationally intensive and operate on single or multiple images. Therefore,
dedicated hardware solutions have been developed in the past [2,4] in order to
process images in real-time. However, with the overwhelming development of
graphics processing units (GPUs) in the last decade, graphics cards became a

https://doi.org/10.1007/978-3-662-58834-5_1


2 R. Membarth et al.

serious alternative and were consequently deployed as accelerators for complex
image processing far beyond simple rasterization [14].

In many fields, multiresolution algorithms are used to process a signal at
different resolutions. In the JPEG 2000 and MPEG-4 standards, the discrete
wavelet transform, which is also a multiresolution filter, is used for image com-
pression [3,7]. Object recognition benefits from multiresolution filters as well by
gaining scale invariance [5].

This paper presents a multiresolution algorithm for image processing and
shows the efficient mapping of this type of algorithms to graphics hardware.
The computationally intensive algorithm is accelerated on commodity graphics
hardware and a performance superior to dedicated hardware solutions is achieved5.
Furthermore, the impact of execution configuration is illustrated. A design
space exploration is presented and a method is proposed to determine the
best configuration. This is done offline and the information is used at run-
time to achieve the best results on different GPUs. We consider not only the
multiresolution algorithm on its own, but also its deployment in a application
with repeated processing and data transfer phases: Instead of processing only
one image, the algorithm is applied to a sequence of images transferred steadily
one after the other into the graphics card. The transfer of the next image to
the graphics card is overlapped with the processing of the current image using
asynchronous memory transfers. We use the Compute Unified Device Architecture
(CUDA) to implement the algorithm and application on GPUs from NVIDIA.
The optimization principles and strategy, however, are not limited to CUDA, but
are also valid for other frameworks like OpenCL [10].

This work is related to other studies. Ryoo et al. [13] present a performance
evaluation of various algorithm implementations on the GeForce 8800 GTX.
Their optimization strategy is, however, limited to compute-bound tasks. In
another paper the same authors determine the optimal tile size by an exhaustive
search [12]. Baskaran et al. [1] show that code could be generated for explicit
managed memories in architectures like GPUs or the Cell processor that accelerate
applications. However, they consider only optimizations for compute-bound tasks
since these predominate. Similarly, none of them shows how to obtain the best
configuration and performance on different graphics cards and they do not consider
applications with overlapping data communication and processing phases at all.
In comparison to our previous work in [9], support for applications employing
double buffering concepts for overlapping computation and communication are
also evaluated in this paper. The impact of hardware architecture changes of
recent graphics card generations on the mapping strategy is also illustrated here.

The remaining paper is organized as follows: Sect. 2 gives an overview of
the hardware architecture. Subsequently, Sect. 3 illustrates the efficient mapping
methodology for multiresolution applications employing double buffering to the
graphics hardware. The application accelerated using CUDA is explained in

5 Exemplary, a comparison of the implementation in this work to the hardware solution
in [4] for the bilateral filter kernel resulted in a speedup of 5× for an image of
1024× 1024 with a filter window of 5× 5 in terms of frames per second.
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Sect. 4, while Sect. 5 shows the results of mapping the algorithms and the
application to the GPU. Finally, in Sect. 6, conclusions of this work are drawn.

2 Architecture

In this section, we present an overview of the Tesla C1060 architecture, which is
used as accelerator for the algorithms studied within this paper. The Tesla is a
highly parallel hardware platform with 240 processors integrated on a chip as
depicted in Fig. 1. The processors are grouped into 30 streaming multiproces-
sors. These multiprocessors comprise eight scalar streaming processors. While
the multiprocessors are responsible for scheduling and work distribution, the
streaming processors do the calculations. For extensive transcendental operations,
the multiprocessors also accommodate two special function units.

Fig. 1: Tesla architecture (cf. [11]): 240 streaming processors distributed over
30 multiprocessors. The 30 multiprocessors are partitioned into 10 groups, each
comprising 3 multiprocessors, cache, and texture unit.

A program executed on the graphics card is called a kernel and is processed
in parallel by many threads on the streaming processors. Therefore, each thread
calculates a small portion of the whole algorithm, for example one pixel of a
large image. A batch of these threads is always grouped together into a thread
block that is scheduled to one multiprocessor and executed by its streaming
processors. One of these thread blocks can contain up to 512 threads, which is
specified by the programmer. The complete problem space has to be divided
into sub-problems such that these can be processed independently within one
thread block on one multiprocessor. The multiprocessor always executes a batch
of 32 threads, also called a warp, in parallel. The two halves of a warp are
sometimes further distinguished as half-warps. NVIDIA calls this new streaming
multiprocessor architecture single instruction, multiple thread (SIMT) [8]. For all
threads of a warp the same instructions are fetched and executed for each thread
independently, that is, the threads of one warp can diverge and execute different
branches. However, when this occurs the divergent branches are serialized until
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both branches merge again. Thereafter, the whole warp is executed in parallel
again. This allows two forms of parallel processing on the graphics card, namely
SIMD like processing within one thread block on the streaming processors and
MIMD like processing of multiple thread blocks on the multiprocessors.

Each thread executed on a multiprocessor has full read/write access to the
4.0GB global memory of the graphics card. This memory has, however, a long
memory latency of 400 to 600 clock cycles. To hide this long latency each multi-
processor is capable to manage and switch between up to eight thread blocks, but
not more than 1024 threads in total. In addition 16384 registers and 16384 bytes
of on-chip shared memory are provided to all threads executed simultaneously on
one multiprocessor. These memory types are faster than the global memory, but
shared between all thread blocks executed on the multiprocessor. The capabilities
of the Tesla architecture are summarized in Table 1.

Table 1: Hardware capabilities of the Tesla C1060.
Threads per warp 32

Warps per multiprocessor 32
Threads per multiprocessor 1024
Blocks per multiprocessor 8

Registers per multiprocessor 16384
Shared memory per multiprocessor 16384

Current graphics cards support also asynchronous data transfers between
host memory and global memory. This allows to execute kernels on the graphics
card, while data is transferred to or from the graphics card. Data transfers are
handled like normal kernels and assigned to a queue of commands to be processed
in order by the GPU. These queues are called streams in CUDA. Commands
from different streams, however, can be executed simultaneously as long as one
of the commands is a computational kernel and the other an asynchronous data
transfer command. This provides support for double buffering concepts.

3 Mapping Methodology

To map applications efficiently to the graphics card, we propose a two-tiered ap-
proach. In the first step, we consider single applications separately, optimizing and
mapping the algorithms of the application to the graphics hardware. Afterwards,
we combine the individual applications on the GPU into one big application
to hide memory transfers. The first step for single application mapping will be
described at first, then double buffering support will be explained.

We distinguish between two types of kernels executed on the GPU, in order
to map algorithms efficiently to graphics hardware. For each type a different
optimization strategies applies. These are compute-bound and memory-bound
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kernels. While the execution time of compute-bound kernels is determined by
the speed of the processors, for memory-bound kernels the limiting factor is the
memory bandwidth. However, there are different measures to achieve a high
throughput and good execution times for both kernel types. A flowchart of our
proposed approach is shown in Fig. 2. First, for each task of the input application
corresponding kernels are created. Afterwards, the memory access of these kernels
is optimized and the kernels are added either to a compute-bound or memory-
bound kernel set. Optimizations are applied to both kernel sets and the memory
access pattern of the resulting kernels is again checked. Finally, the optimized
kernels are obtained and the best configuration for each kernel is determined by
a configuration space exploration.

optimized kernels

application for each task
create kernel

memory access
optimization

determine type
of kernel

tasks

set of memory
bound kernels

set of compute
bound kernels

compute bound memory bound

kernel fusion

- data packing
- ...

- invariant code motion
- intrinsic functions
- ...

memory access
optimization

configuration
exploration

kernels

Fig. 2: Flowchart of proposed mapping strategy.

3.1 Memory Access

Although for both types of kernels different mapping strategies apply, a proper
memory access pattern is necessary in all cases to achieve good memory transfer
rates. Since all kernels get their data in the first place from global memory, reads
and writes to this memory have to be coalesced. This means that all threads
in both half-warps of the currently executed warp have to access contiguous
elements in memory. For coalesced memory access, the access is combined to one
memory transaction utilizing the entire memory bandwidth. Uncoalesced access
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needs multiple memory transactions instead and has a low bandwidth utilization.
On older graphics cards like the Tesla C870, 16 separate memory transactions
are issued for uncoalesced memory access instead of a single transaction resulting
in a low bandwidth utilization. Also reading from global memory has a further
restriction on these cards to achieve coalescing: The data accessed by the entire
half-warp has to reside in the same segment of the global memory and has to
be aligned to its size. For 32-bit and 64-bit data types the segment has a size
of 64 bytes and 128 bytes, respectively. In contrast, newer graphics cards like
the Tesla C1060 can combine all accesses within one segment to one memory
transaction: Misaligned memory access require only one additional transaction,
and the data elements do not need to reside contiguously in memory for achieving
good bandwidth utilization.

Since many algorithms do not adhere to the constraints of the older graphics
cards, two methods are used to get still the same memory performance as for
coalesced memory access. Firstly, for both, memory reads and writes, the faster
on-chip shared memory is used to introduce a new memory layer. This new
layer reduces the performance penalty of uncoalesced memory access significantly
since the access to shared memory can be as fast as for registers. When threads
of a half-warp need data elements residing permuted in global memory, each
thread fetches coalesced data from global memory and stores the data to the
shared memory. Only reading from shared memory is then uncoalesced. The
same applies when writing to global memory. Secondly, the texturing hardware
of the graphics card is used to read from global memory. Texture memory does
not have the constraints for coalescing. Instead, texture memory is cached, which
has further benefits when data elements are accessed multiple times by the same
kernel. Only the first data access has the long latency of the global memory
and subsequent accesses are handled by the much faster texture cache. However,
texture memory has also drawbacks since this memory is read-only and binding
memory to a texture has some overhead. Nevertheless, most kernels benefit from
using textures. An alternative to texture memory is constant memory. This
memory is also cached and is used for small amounts of data when all threads
read the same element.

3.2 Compute-Bound Kernels

Most algorithms that use graphics hardware as accelerator are computationally
intensive and also the resulting kernels are limited by the performance of the
streaming processors. To further accelerate these kernels — after optimizing the
memory access — either the instruction count can be decreased or the time
required by the instructions can be reduced. To reduce the instruction count
traditional loop-optimization techniques can be adopted to kernels. For loop-
invariant computationally intensive parts of a kernel it is possible to precalculate
these offline and to retrieve these values afterwards from fast memory. This
technique is also called loop-invariant code motion [16]. The precalculated values
are stored in a lookup table, which may reside in texture or shared memory.
Constant memory is chosen when all threads in a warp access the same element of
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the lookup table. The instruction performance issue is addressed by using intrinsic
functions of the graphics hardware. These functions accelerate in particular
transcendental functions like sine, cosine, and exponentiations at the expense of
accuracy. Also other functions like division benefit from these intrinsics and can
be executed in only 20 clock cycles instead of 32.

3.3 Memory-Bound Kernels

Compared to the previously described kernels, memory-bound kernels benefit from
a higher ratio of arithmetic instructions to memory accesses. More instructions
help to avoid memory stalls and to hide the long memory latency of global memory.
Considering image processing applications, kernels operate on two-dimensional
images that are processed typically using two nested loops on traditional CPUs.
Therefore, loop fusion [16] can merge multiple kernels that operate on the same
image as long as no inter-kernel data dependencies exist. Merging kernels provides
often new opportunities for further code optimization. Another possibility to
increase the ratio of arithmetic instructions to memory accesses is to calculate
multiple output elements in each thread. This is true in particular when integers
are used as data representation like in many image processing algorithms. For
instance, the images considered for the algorithm presented next in this paper
use a 10-bit grayscale representation. Therefore, only a fraction of the 4 bytes an
integer occupies are needed. Because the memory hardware of GPUs is optimized
for 4 byte operations, short data types yield inferior performance. However,
data packing can be used to store two pixel values in the 4 bytes of an integer.
Afterwards, integer operations can be used for memory access. Doing so increases
also the ratio of arithmetic instructions to memory accesses.

3.4 Configuration Space Exploration

One of the basic principles when mapping a problem to the graphics card using
CUDA is the tiling of the problem into smaller, independent sub-problems. This
is necessary because only up to 512 threads can be grouped into one thread
block. In addition, only threads of one block can cooperate and share data.
Hence, proper tiling influences the performance of the kernel, in particular when
intra-kernel dependencies prevail. The tiles can be specified in various ways,
either one-, two-, or three-dimensional. The used dimension is such chosen that
it maps directly to the problem, that is, two-dimensional tiles are used for image
processing. The tile size has not only influence on the number of threads in a
block and consequently how much threads in a block can cooperate, but also
on the resource usage. Registers and shared memory are used by the threads
of all scheduled blocks of one multiprocessor. Choosing smaller tiles allows a
higher resource usage per thread on the one hand, while larger tiles support the
cooperation of threads in a block on the other hand. Furthermore, the shape of a
tile has influence on the memory access pattern and the memory performance,
too. Consequently, it is not possible to give a formula that predicts the influence
of the thread block configuration on the execution time. Therefore, configurations
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have to be explored in order to find the best configuration, although the amount
of relevant configurations can be significantly narrowed down.

Since the hardware configuration varies for different GPUs, also the best block
configuration changes. Therefore, we propose a method that allows to use always
the best configuration for GPUs at run-time. We explore the configuration space
for each graphics card model offline and store the result in a database. Later at
run-time, the program identifies the model of the GPU and uses the configuration
retrieved from the database. In that way there is no overhead at run-time and
there is no penalty when a different GPU is used. In addition, the binary code
size can be kept nearly as small as the original binary size.

3.5 Double Buffering Support

application mapping

final application

double buffering support (device driver)

communication
support

computation
kernel

communication
support

computation
kernel

application

Fig. 3: Several independent applications are combined into one application em-
ploying double buffering concepts and the mapping strategy of Fig. 2.

The principle of overlapped computation and simultaneous data transfers is
known as double or multi-buffering for architectures like the Cell Broadband
Engine, or graphics cards. This kind of overlapped kernel execution and data
transfer is considered here to hide memory transfers. Most programs do not only
consist of one single application executed once on the graphics card, but of several
independent applications that have to be executed independently of each other.
It is also possible that the same application has to be applied to different data,
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where the data is generated bit by bit (e. g., images are coming constantly from
an external source). The previously introduced mapping strategy optimizes only
the computation kernels, but does not consider a constant stream of data to be
fed to the graphics card. The data has to be transferred every time over the PCI
Express bus from the host. This data transfer requires a considerable amount of
time compared to the time required to process the data. Newer graphics cards
support, however, asynchronous data transfers and allow to transfer data to or
from the graphics card while kernels are running. This way concepts like double
buffering can be realized in order to hide the memory transfers to the graphics
card. Figure 3 depicts a solution of how several independent applications can
be combined to a single application with overlapping data transfers and data
processing. Firstly, each application is mapped to and optimized for the graphics
hardware as described in the mapping strategy of Fig. 2. This step gives us the
computational kernels as well as the implicated communication support for these
kernels. The kernels can now be scheduled in such a way that the data for one
application streams to the graphics card while another algorithm is processed.

4 Multiresolution Filtering

The multiresolution application considered here utilizes the multiresolution ap-
proach presented by Kunz et al. [6] and employs a bilateral filter [15] as filter
kernel. The application is a nonlinear multiresolution gradient adaptive filter for
images and is typically used for intra-frame image processing, that is, only the
information of one image is required. The filter reduces noise significantly while
sharp image details are preserved. Therefore, the application uses a multiresolu-
tion approach representing the image at different resolutions so that each feature
of the image can be processed on its most appropriate scale.

filter1

filter0

filter2

filter3

g0

reconstruct4
filter4

filter5

r0

l1

l2

l3

l4

decompose0

decompose1

decompose2

decompose3

decompose4

g4

g3

g2

g1

l0

f1

f2

f3

f0

r1

r2

r4

reconstruct0

reconstruct1

reconstruct2

reconstruct3

f4

r3

r0
g0

f5g5

Fig. 4: Multiresolution filter application with five layers.



10 R. Membarth et al.

Figure 4 shows the used multiresolution application: In the decompose phase,
two image pyramids with subsequently reduced resolutions (g0(1024 × 1024),
g1(512× 512), ... and l0(1024× 1024), l1(512× 512), ...) are constructed. While
the images of the first pyramid (gx) are used to construct the image of the next
layer, the second pyramid (lx) represents the edges in the image at different
resolutions. The operations involved in these steps are to a large extent memory
intensive with little computational complexity like upsampling, downsampling,
or a lowpass operation. The actual algorithm of the application is working in
the filter phase on the images produced by the decompose phase (l0, ... l4, g5).
This algorithm is described below in detail. After the main filter has processed
these images, the output image is reconstructed again, reverting the steps of the
decompose phase.

Figure 5 shows the images of the first layer of the multiresolution filter using
a leaf as sample image (Fig. 5(a) is the input image g0). The filtered edges of
that image (f0) are shown in Fig. 5(b) and the reconstructed image in Fig. 5(c).
The output image is only smoothed at points where no edge is present.

(a) g0: Input image. (b) f0: Edges in (a). (c) r0: Output image.

Fig. 5: Images of the first layer of the multiresolution filter for a filter window
of 5× 5 (σr = 5): (a) shows the input image, while the filtered edges are shown
in (b) and the final reconstructed image in (c).
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The bilateral filter used in the filter phase of the multiresolution application
applies the principle of traditional domain filters also to the range. Therefore,
the filter has two components: One is operating on the domain of an image and
considers the spatial vicinity of pixels, their closeness. The other component
operates on the range of the image, that is, the vicinity refers to the similarity
of pixel values. Closeness (Eq. (1)), hence, refers to geometric vicinity in the
domain while similarity (Eq. (3)) refers to photometric vicinity in the range. We
use Gaussian functions of the Euclidean distance for the closeness and similarity
function as seen in Eq. (2) and (4). The pixel in the center of the current filter
window is denoted by x, whereas ξ denotes a point in the neighborhood of x.
The function f is used to access the value of a pixel.

c(ξ, x) = e
− 1

2 (
d(ξ,x)
σd

)2 (1)
d(ξ, x) = d(ξ − x) = ‖ξ − x‖ (2)

s(ξ, x) = e−
1
2 (
δ(f(ξ),f(x))

σr
)2 (3)

δ(φ, φ̃) = δ(φ− φ̃) = ‖φ− φ̃‖ (4)

The bilateral filter replaces each pixel by an average of geometric nearby and
photometric similar pixel values as described in Eq. (5) with the normalizing
function of Eq. (6). Only pixels within the neighborhood of the relevant pixel are
used. The neighborhood and consequently also the kernel size is determined by
the geometric spread σd. The parameter σr (photometric spread) in the similarity
function determines the amount of combination. When the difference of pixel
values is less than σr, these values are combined, otherwise not.

h(x) = k−1(x)

∞∫
−∞

∞∫
−∞

f(ξ)c(ξ, x)s(f(ξ), f(x)) dξ (5)

k(x) =

∞∫
−∞

∞∫
−∞

c(ξ, x)s(f(ξ), f(x)) dξ (6)

Compared to the memory access dominated decompose and reconstruct phases,
the bilateral filter is compute intensive. Considering a 5× 5 filter kernel (σd = 1),
50 exponentiations are required for each pixel of the image — 25 for each,
the closeness and similarity function. While the mask coefficients for the close-
ness function are static, those for the similarity function have to be calculated
dynamically based on the photometric vicinity of pixel values.

Algorithm 1 shows exemplarily the implementation of the bilateral filter on
the graphics card. For each pixel of the output image, one thread is used to apply
the bilateral filter. These threads are grouped into thread blocks and process
partitions of the image. All blocks together process the whole image. While the
threads within one block execute in SIMD, different blocks execute in MIMD on
the graphics hardware.
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Algorithm 1: Bilateral filter implementation on the graphics card.
1 forall thread blocks B do in parallel
2 for each thread t in thread block b do in parallel
3 x, y← get_global_index(b, t);
4 for yf = −2 ∗ sigmad to+2 ∗ sigmad do
5 for xf = −2 ∗ sigmad to+2 ∗ sigmad do
6 c← closeness((x, y), (x+ xf, y + yf));
7 s← similarity(input [x, y], input [x+ xf, y + yf ]);
8 k← k+ c ∗ s;
9 p← p+ c ∗ s ∗ input[x+ xf, y + yf ];

10 end
11 end
12 output[x][y]← p/k;
13 end
14 end

5 Results

This section shows the results when the described mapping strategy of Sect. 3 is
applied to the multiresolution filter implementation and double buffering support
is added to process a sequence of images. We show the improvements that we attain
for compute-bound kernels as well as memory-bound kernels. Furthermore, our
proposed method for optimal configuration is shown exemplarily for a Tesla C1060
and a GeForce 8400.

For the compute-bound bilateral filter kernel, loop-invariant code is precalcu-
lated and stored in lookup tables. This is done for the closeness function as well
as for the similarity function. In addition, texture memory is used to improve
the memory performance. Aside from global memory, linear texture memory as
well as a two-dimensional texture array are considered. Figure 6(a) shows the
impact of the lookup tables and texture memory on the execution time for the
older Tesla C870. The lookup tables are stored in constant memory. First, it can
be seen that textures reduce significantly the execution times, in particular when
linear texture memory is used. The biggest speedup is gained using a lookup
table for the closeness function while the speedup for the similarity function
is only marginal. Using lookup tables for both functions provides no further
improvement. In the closeness function all threads access the same element of the
lookup table. Since the constant memory is optimized for such access patterns,
this lookup table shows the biggest gain in acceleration. In Fig. 6(b) intrinsic
functions are used in addition. Compiling a program with the -use_fast_math
compiler option enables intrinsic functions for the whole program. In particular
the naïve implementation benefits from this, having most arithmetic operations of
all implementations. Altogether, the execution time is reduced more than 66% for
processing the best implementation using a lookup table for the closeness function
as well as intrinsic functions. This implementation achieves up to 63GFLOPS
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Fig. 6: Optimization of the compute-bound bilateral filter (filter window size:
9× 9) kernel on the Tesla C870: Shown is the influence of loop-invariant code
motion and intrinsic functions for an image of 1024×1024 using different memory
types on the execution time for processing a single image. (a) shows the results
for normal arithmetic operations and (b) using fastmath operations.

counting a lookup table access as one operation. For the naïve implementation
over 113GFLOPS are achieved using intrinsic functions.

Using the same configuration for the newer Tesla C1060 shows the influence
of the newer memory abstraction level: Global memory has almost the same
performance as texture memory as seen in Fig. 7(a). Still, linear texture memory
and texture arrays are faster, but only marginal, compared to older graphics
cards. Figure 7(b) shows that using intrinsic functions reduces the execution
times further. The best result is achieved here using a texture array and intrinsic
functions being 51% faster and obtaining up to 149GFLOPS. For the naïve
implementation over 225GFLOPS are achieved using intrinsic functions.

The kernels for the decompose and reconstruct phases are memory-bound.
Initially for each task of these phases a separate kernel is used, that is, one
kernel for lowpass filtering, upsampling, downsampling, etc. Subsequently these
kernels are fused as long as data dependencies are met. Figure 8 shows the
impact of merging kernels exemplarily for a sequence of tasks, which is further
called expand operator: First, the image is upsampled, then a lowpass filter is
applied to the resulting image and finally the values are multiplied by a factor of
four. This operator is used in the decompose phase as well as in the reconstruct
phase. Merging the kernels for these tasks reduces global memory accesses and
allows further optimizations within the new kernel. The execution time for an
input image of 512 × 512 (i. e., upsampling to 1024 × 1024 and processing at
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Fig. 7: Optimization of the compute-bound bilateral filter (filter window size:
9× 9) kernel on the Tesla C1060: Shown is the influence of loop-invariant code
motion and intrinsic functions for an image of 1024×1024 using different memory
types on the execution time for processing a single image. (a) shows the results
for normal arithmetic operations and (b) using fastmath operations.

this resolution) could be significantly reduced from about 4.70ms (1.04ms) to
0.67ms (0.14ms) for the Tesla C870 (Tesla C1060). However, writing the results
back to global memory of the new kernel is uncoalesced since each thread has to
write two consecutive data elements after the upsampling step. Therefore, shared
memory is used to buffer the results of all threads and write them afterwards
coalesced back to global memory. This reduces the execution time further to
0.18ms (0.10ms). The performance of the expand operator was improved by
96% and 90%, respectively, using kernel fusion.

After the algorithm is mapped to the graphics hardware, the thread block
configuration is explored. The configuration space for two-dimensional tiles com-
prises 3280 possible configurations. Since always 16 elements have to be accessed
in a row for coalescing, only such configurations are considered. This reduces
the number of relevant configurations to 119, 3.6% of the whole configuration
space. From these configurations, we assumed that a square block with 16× 16
threads would yield the best performance for the bilateral filter kernel. Because
each thread loads also its neighboring pixels, a square block configuration utilizes
the texture cache best when loading data. However, the exploration shows that
the best configurations have 64× 1 threads on the Tesla C1060, 16× 6 on the
Tesla C870, and 32×6 on the GeForce 8400. Figures 9 and 10 show the execution
times of the 119 considered configurations exemplarily for the Tesla C1060 and
the GeForce 8400. The data set is plotted in 2D for better visualization. Plotted
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Fig. 8: Optimization of the memory-bound expand operator: Shown is the influence
of merging multiple kernels (upsampling (us), lowpass (lp), and multiplication
(mul)) and utilization of shared memory (smem) to achieve coalescing for an
input image of 512× 512 (i. e., upsampled to and processed at 1024× 1024). Note:
The scale is different for the two graphs.
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Fig. 9: Configuration space exploration for the bilateral filter (filter window size:
5× 5) for an image of 1024× 1024 on the Tesla C1060. Shown are the execution
times for processing the bilateral filter in dependence on the blocksize.
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Fig. 10: Configuration space exploration for the bilateral filter (filter window size:
5× 5) for an image of 1024× 1024 on the GeForce 8400. Shown are the execution
times for processing the bilateral filter in dependence on the blocksize.

against the x-axis are the number of threads of the block. That is, the configura-
tion 16×16 and 32×8 have for instance the same x-value. The best configuration
takes 1.95ms on the Tesla C1060, 4.19ms on the Tesla C870, and 58.04ms on
the GeForce 8400, whereas the previously as optimal assumed configuration of
16 × 16 takes 1.98ms, 4.67ms, and 59.22ms. While the best configuration is
10.3% faster on the Tesla C870, it is only about 2% faster on the other two cards.
Compared to the worst (however coalesced) configuration the best configuration
is more than 50% faster in all cases. While the best configuration is fixed for a
workload utilizing all resources on the graphics card, the optimal configuration
changes when the graphics card is only partially utilized (e. g., for an image of
64× 64).

This shows that the best configuration for an application is not predictable
and that an exploration is needed to determine the best configuration for each
graphics card. These configurations are determined once offline and stored to a
database. Later at run-time, the application has only to load its configuration
from the database. This way always the best performance can be achieved with
only a moderate code size increase.

A comparison of the complete multiresolution filter implementation with
a CPU implementation shows the speedup that can be achieved on current
graphics cards. The CPU implementation uses the same optimizations as the
implementation on the graphics card (lookup tables for closeness and similarity
functions). OpenMP is used to utilize all four cores of the used Xeon Quad Core
E5430 (2.66 GHz) and scales almost linear with the number of cores. On the
graphics cards and CPU, the best performing implementations are chosen. As
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seen in Table 2, the Tesla C1060 achieves a speedup between 66× for small images
and 145× for large images compared to the Quad Core. Images up to a resolution
of 2048× 2048 can be processed in real-time using a filter window of 9× 9, while
not even images of 512× 512 can be processed in real-time on the CPU. None
of the optimizations change the algorithm itself, but improve the performance.
Only when using fastmath, the floating point intermediate results of the bilateral
filter differ slightly. This has, however, no impact on the output image or on the
quality of the image. If the accuracy of floating point number representation is
not required, good performance can be achieved using fastmath with minimal
programming effort.

Table 2: Speedup and frames per second (FPS) for the multiresolu-
tion application on a Tesla C1060 and a Xeon Quad Core (2.66 GHz)
for a filter window size of 9× 9 and different image sizes.

512× 512 1024× 1024 2048× 2048 4096× 4096

FPS (Xeon) 4.58 1.01 0.19 0.005
FPS (Tesla) 306.55 97.05 26.19 0.66

Speedup 66.95 89.11 135.62 145.88

To support double buffering, we use different CUDA streams to process one
image while the next image is transferred to the graphics memory. Figure 11
shows the activity of the two streams used to realize double buffering in a
Gantt chart. The first image has to be on hand before the two streams can use
asynchronous data transfers to hide the data transfers of the successive iterations.
Each command in a stream is denoted by an own box showing the layered
approach of the multiresolution filter. The data was acquired during profiling
where each asynchronous data transfer did not overlap with kernel execution
as seen in the Gantt chart. Using the double buffering implementation, most of
the data transfers can be hidden as seen in Table 3. The execution time of 100

Table 3: Execution time for 100 iterations of the multireso-
lution filter application for different memory management
approaches when no X–server is running.
No data transfers 133.61ms
Synchronous memory transfers 166.28ms

Asynchronous memory transfers 138.28ms

iterations with no data transfers takes about 133ms. Using only one stream and
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synchronous memory transfers takes about 166ms, hence, 33ms are required for
the data transfers. Using asynchronous memory transfers, the 100 iterations take
138ms, only 5ms instead of 33ms for the data transfers.

time

stream

2

1

kernel execution
memory transfer

Fig. 11: Gantt chart of the multiresolution filter employing double buffering,
processing five images. Two streams are used for asynchronous memory transfers.
While one stream transfers the next image to the graphics memory, the current
image is processed on the graphics card. Red boxes denote asynchronous memory
transfers while kernel execution is denoted by blue boxes.

6 Conclusions

In this paper it has been shown that multiresolution filters can leverage the
potential of current highly parallel graphics cards hardware using CUDA. The
image processing algorithm was accelerated by more than one order of magnitude.
Whether a task is compute-bound or memory-bound, different approaches have
been presented in order to achieve remarkable speedups. Memory-bound tasks
benefit from a higher ratio of arithmetic instructions to memory accesses, whereas
for compute-bound kernels the instruction count has to be decreased at the
expense of additional memory accesses. Finally, it has been shown how the best
configuration for kernels can be determined by exploration of the configuration
space. To avoid exploration at run-time for different graphics cards the best
configuration is determined offline and stored in a database. At run-time the
application retrieves the configuration for its card from the database. That way,
the best performance can be achieved independent of the used hardware.

Applying this strategy to a multiresolution application with a computationally
intensive filter kernel yielded remarkable speedups. The implementation on the
Tesla outperformed an optimized and also parallelized CPU implementation on a
Xeon Quad Core by a factor of up to 145. The computationally most intensive part
of the multiresolution application achieved over 225GFLOPS taking advantage
of the highly parallel architecture. The configuration space exploration for the
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kernels revealed more than 10% faster configurations compared to configurations
thought to be optimal. Using double buffering to hide the memory transfer times,
the data transfer overhead was reduced by a factor of six. An implementation
of the multiresolution filter as gimp plugin is also available online6 showing the
impressive speedup compared to conventional CPUs.
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