
1

HIPAcc: A Domain-Specific Language and
Compiler for Image Processing

Richard Membarth, Oliver Reiche, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland Eckert

F

Abstract—Domain-Specific Languages (DSLs) provide high-level and
domain-specific abstractions that allow expressive and concise algorithm
descriptions. Since the description in a DSL hides also the properties of
the target hardware, DSLs are a promising path to target different parallel
and heterogeneous hardware from the same algorithm description. In
theory, the DSL description can capture all characteristics of the algorithm
that are required to generate highly efficient parallel implementations.
However, most frameworks do not make use of this knowledge and the
performance cannot reach that of optimized library implementations.

In this article, we present the HIPAcc framework, a DSL and source-to-
source compiler for image processing. We show that domain knowledge
can be captured in the language and that this knowledge enables us to
generate tailored implementations for a given target architecture. Back
ends for CUDA, OpenCL, and Renderscript allow us to target discrete
Graphics Processing Units (GPUs) as well as mobile, embedded GPUs.
Exploiting the captured domain knowledge, we can generate specialized
algorithm variants that reach the maximal achievable performance due to
the peak memory bandwidth. These implementations outperform state-
of-the-art domain-specific languages and libraries significantly.

Index Terms—domain-specific language, image processing, code gener-
ation, source-to-source translation, GPU, CUDA, OpenCL, Renderscript.

1 INTRODUCTION

Image processing is one of the basic and ubiquitous algorithm
classes. Yet, it is challenging and poses high demands on the
environment in which they are embedded in: Mobile devices
like phones and tablets strive for efficient implementations
to save battery live; driver assistance systems require image
processing to be in time; and systems in medical imaging have
extremely high data volumes that have to be processed fast.
All these systems require highly efficient implementations
of image processing algorithms on today’s more and more
(massively) parallel hardware.

This poses challenges to algorithm developers that are
typically no machine experts. What (parallel) language should
be used for implementation? While CUDA might be the number
one choice on GPUs from NVIDIA, there is no CUDA support
from other vendors. OpenCL is well supported by most hard-
ware manufacturers, but Google removed OpenCL support

• R. Membarth is with the German Research Center for Artificial Intelligence,
Germany and the Computer Graphics Lab & Intel Visual Computing
Institute, Saarland University, Germany.
richard.membarth@dfki.de

• O. Reiche, F. Hannig, and J. Teich are with the Department of Computer
Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
{oliver.reiche,hannig,teich}@cs.fau.de

• M. Körner is with Siemens Healthcare Sector, Forchheim, Germany.
mario.koerner@siemens.com

• W. Eckert is with Siemens Corporate Technology, Erlangen, Germany.
wieland.eckert@siemens.com

C++
embedded DSL

Source-to-Source
Compiler

Clang/LLVM

Domain
Knowledge

Architecture
Knowledge

CUDA
(GPU)

OpenCL
(x86/GPU)

Renderscript
(x86/ARM/GPU)

C/C++
(x86)

CUDA/OpenCL/Renderscript Runtime Library

Figure 1: HIPAcc framework: Generation of efficient low-level
code based on an algorithm description in a DSL utilizing
target hardware and domain knowledge.

on Android. What optimizations should be applied for a given
target platform? Target-specific optimization require profound
knowledge of the target hardware. Although languages like
CUDA and OpenCL provide functional portability across a
range of devices, target-specific tuning is required for good
performance [1].

One compelling solution to tackle these challenges are
DSLs: Algorithms can be described concisely in a high-level
language and code for different target architectures can be
generated from this description. All the required knowledge
for optimization is captured by DSL constructs and platform-
specific optimization strategies can be provided as additional
input. This allows to generate highly efficient implemen-
tations from a common algorithm description that is not
contaminated with target-dependent code for a variety of
domains such as image processing [2], [3], PDE solvers [4], or
machine learning [5].

In this article, we present the Heterogeneous Image Pro-
cessing Acceleration (HIPAcc) framework (Figure 1): A DSL
for image processing (Section 2) that captures domain-specific
characteristics of algorithms and a source-to-source compiler
(Section 3) that generates highly optimized and efficient target
code. Using source-to-source compilation, we rely on compil-
ers of hardware-vendors for target code generation, but we
also benefit from their target-specific optimizations: We pre-
process the DSL input and emit code for which the compiler of
the hardware-vendor can generate efficient code. Our focus
is parallel execution on GPUs: CUDA and OpenCL allow effi-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

cient execution on standalone GPUs [6], [7] and Renderscript
allows to target mobile embedded GPUs running Android [8].
Our approach allows compact algorithm descriptions (high
productivity), portability between different target platforms,
as well as excellent execution speed (performance) compared
to state-of-the-art frameworks (Section 4).

The contributions of this article can be summarized as
follows:
• We introduce a domain-specific language embedded into

C++ for describing image processing algorithms.
• A source-to-source compiler that translates algorithms

defined in the DSL into target-specific implementations.
• Target-specific and domain-specific mapping to the deep

memory hierarchy as well as to the different types of
parallelism found in today’s GPUs.

• A range of algorithms and applications implemented in
the proposed framework. We show that the DSL descrip-
tion allows a compact and portable representation while
providing excellent performance.

• In detail, we evaluate our approach by assessing the
performance of generated implementations and the pro-
ductivity gains by using our DSL. We show that only
HIPAcc generates highly-optimized implementations that
achieve performance near to the limits as predicted by the
Roofline model [9]. Moreover, we show that HIPAcc im-
proves productivity significantly according to Halstead’s
productivity metrics [10], reducing development times
from days to minutes.

2 LANGUAGE DESIGN

A careful analysis of the application domain is necessary and
indispensable before designing a DSL. This includes analysis
of the algorithmic type of operations and operators as well as
the analysis of basic components characteristic to a domain.
Using this information allows to design an expressive language
that is compact and orthogonal at the same time.

For image processing algorithms, there exist a wide range
of literature. Bankman [11] uses a classification based on
what information is used to map one image to another. The
three basic classes are pixel operations updating single pixel
values, local operators considering also neighboring pixels,
and operations with multiple images where several images of
the same scene are used. Other classifications are based on
why a method is applied [12]: The classes include correcting
imaging defects due to imperfect detectors or limitations of the
optics, image enhancement in the spatial domain to increase the
visibility of one aspect, or processing images in the frequency
space due to computational advantages. We follow the first
approach and classify image processing algorithms based
on what information contribute to the result: point, local, and
global operators. However, compared to the classification
presented in [13] and [11], it is not important how many
images contribute to the operation or whether the result is
again an image: Also the computation of a single value (e. g.,
the sum of pixels) is considered as an image operator.

2.1 Language Components

HIPAcc provides a DSL embedded in C++ and uses C++ classes
to describe components of the DSL. Similarly, computations
on images are encapsulated in C++ classes, which inherit from
base classes provided by the framework.

Level 6
Level 5

Level 4
Level 3

Level 2
Level 1

Level 0

Figure 2: Image pyramid with 7 resolution levels. The most
fine-grained image is located at the bottom level and the most
coarse-grained image is located at the top level.

2.1.1 Images in the DSL
An Image in the DSL describes the data storage for the pixels
of a digital image. Each pixel can be stored using the standard
data types (such as int or float) as well as vector types
(such as uchar4). Images in HIPAcc are two-dimensional
at the moment, but also 3D-images (volumes) might be
supported in the future:

Image<pixel_t>(size_t width, size_t height, pixel_t *img)

The data layout of the image is not exposed to the program-
mer and can be different depending on the target platform.

Images are often processed at different resolutions so that
image details can be best detected and processed. A com-
mon multiresoultion data representation in image processing
are image pyramids [14]: Operating on an image pyramid
includes creating different fine- and coarse-grained images
each of a certain resolution, which we denote as levels as
shown exemplarily for 7 levels in Figure 2.

A Pyramid in the DSL is defined by providing the image
at the most fine-grained level and the number of levels for
the image pyramid:

Pyramid<pixel_t>(Image<pixel_t> &img, size_t depth)

Again, the data layout of the image pyramid is hidden from
the programmer and no care has to be taken for allocating
data for the different image pyramid levels.

2.1.2 Accessing Images
We differentiate between reads and writes to an image in the
DSL. The Iteration Space defines the pixels of an image that are
computed during an operation. An iteration space is bound
to an image and can be restricted by defining a rectangular
Region of Interest (ROI):

IterationSpace<pixel_t>(Image<pixel_t> &img,
size_t width, size_t height,
int offset_x, int offset_y)

That is, the image bound to the iteration space will be written
during the operation. The parameters for the ROI are optional
and can be omitted. The image can be also retrieved from an
image pyramid, providing the desired level within the image
pyramid:

Pyramid<pixel_t> &pyr(size_t level)

The pixels from (different) images that contribute to the
computation are defined by accessors. An Accessor is like the
iteration space bound to an image and can be restricted to a
ROI:

Accessor<pixel_t>(Image<pixel_t> &img,
size_t width, size_t height,
int offset_x, int offset_y)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

(a) Image and boundary. (b) Image offset. (c) Image crop. (d) Image crop with offset. (e) Image stride.

Figure 3: The Accessor defines different views on an image for image operators: (a) shows the whole image and the surrounding
boundary (light blue), while in (b) an offset to the image is used. In (c) only a subregion of an image (crop) is considered and
(d) shows the combination of offset and crop. (e) shows an access pattern where only every second pixel in the x-dimension is
considered.

Since the computed and contributing images may be of
different size, the pixel value returned when accessing a pixel
is interpolated using either nearest neighbor, linear filtering,
cubic filtering, or Lanczos resampling. The interpolation mode
is provided as argument to the constructor of an accessor.
Figure 3 visualizes the pixels that are returned by the view
defined by different accessors: The image is extended by a
virtual boundary (light-blue); dark-blue pixels are read and
white pixels of the image are not considered by the accessor.
Note that the stride shown in Figure 3 (e) is implicitly defined
by using an input image twice as wide as the output image
and using nearest neighbor as interpolation mode.

These are all DSL constructs required to describe point
operators. Next, we will introduce support for boundary han-
dling and filter masks, which are required for local operators.

2.1.3 Boundary Handling
As indicated in Figure 3, each image is extended by a virtual
boundary so that images can be accessed out-of-bounds. This
is, for example, the case for sliding window operators where
neighboring pixels contribute to the new pixel value. For
such operators the accessor should take care for boundary
handling. For this purpose, the Boundary Condition defines the
size of the region around each pixel where boundary handling
is required as well as the desired boundary handling mode:

BoundaryCondition<pixel_t>(Image<pixel_t> &img,
size_t size_x, size_t size_y,
boundary_mode mode, pixel_t val)

The framework supports repeat, clamp, mirror, constant, and un-
defined as boundary handling modes as visualized in Figure 4.
The accessor can be also defined by providing a boundary
condition instance instead of an image. Note that using an
undefined boundary handling mode might be desirable in
case the accessor is only defined for a smaller ROI.

2.1.4 Sliding Windows
Sliding window, local operators that iterate over neighboring
pixels are common in image processing. Therefore, HIPAcc

provides two constructs in the DSL for sliding windows: A
Domain, which defines the iteration space of a sliding window
and a Mask, which is a more specific version of a Domain,
providing also filter coefficients for that window.

Domain(size_t size_x, size_t size_y)
Domain(uchar &domain[size_y][size_x])
Domain(Mask<pixel_t> &mask)
Mask<pixel_t>(size_t size_x, size_t size_y)
Mask<pixel_t>(pixel_t &data[size_y][size_x])

−10

−5

0

5

10−10

−5

0

5

10

0

0.5

1

x y

f(
x,

y)

0.0571

0.1248

0.0571

0.1248

0.2725

0.1248

0.0571

0.1248

0.0571

Figure 5: Two-dimensional Gaussian function. The normal-
ized constants for a 3× 3 filter mask are shown above.

For example, Figure 5 shows the two-dimensional Gaussian
function and the normalized constants for a corresponding
3× 3 filter mask.

Example: Gaussian Blur Filter
Having all DSL components defined, we consider the Gaus-
sian blur filter as an example application to show how DSL
components interact. Listing 1 defines first a Mask mask for
the Gaussian blur filter, reads then the input picture (image)
from disk and assigns it to the Image in. To read from the in
Image, a Boundary Condition is defined for the size of the Mask
mask and clamp is used as boundary handling mode. The
Iteration Space iter is defined on the result Image out. Using
these DSL components, an instance of the LinearFilter
operator, which will be introduced in the next section, is
created and executed.

2.2 Defining Operators

Operators are defined similarly to operators in Threading
Building Blocks (TBB) [15], where programmers implement
the operator() and the join() methods of custom C++
classes. The equivalent to the operator() method is the
kernel() method in HIPAcc: The method specifies the com-
putation for each pixel in the Iteration Space. Hence, there is no

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

C D

G H

A B C D

E F G H

A B

E F

O P

K L

G H

C D

M N O P

I J K L

E F G H

A B C D

M N

I J

E F

A B

O P

K L

M N O P

I J K L

M N

I J

(a) Repeat.

M M

M M

M N O P

M N O P

P P

P P

M M

I I

E E

A A

M N O P

I J K L

E F G H

A B C D

P P

L L

H H

D D

A A

A A

A B C D

A B C D

D D

D D

(b) Clamp.

I M

J N

M N O P

I J K L

P L

O K

N M

J I

F E

B A

M N O P

I J K L

E F G H

A B C D

P O

L K

H G

D C

E A

F B

A B C D

E F G H

D H

C G

(c) Mirror.

Q Q

Q Q

Q Q Q Q

Q Q Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

M N O P

I J K L

E F G H

A B C D

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q Q Q

Q Q Q Q

Q Q

Q Q

(d) Constant.

? ?

? ?

? ? ? ?

? ? ? ?

? ?

? ?

? ?

? ?

? ?

? ?

M N O P

I J K L

E F G H

A B C D

? ?

? ?

? ?

? ?

? ?

? ?

? ? ? ?

? ? ? ?

? ?

? ?

(e) Undefined.

Figure 4: Boundary handling modes for image processing. By default, the behavior is undefined when the image is accessed
out of bounds (e). The framework allows to specify different boundary handling modes like repeating the image (a), clamping
to the last valid pixel (b), mirroring the image at the image border (c), and returning a constant value when accessed out of
bounds (d).

1 // filter mask for Gaussian blur filter
2 const float filter_mask[3][3] = {
3 { 0.057118f, 0.124758f, 0.057118f },
4 { 0.124758f, 0.272496f, 0.124758f },
5 { 0.057118f, 0.124758f, 0.057118f }
6 };
7 Mask<float> mask(filter_mask);
8

9 // input image
10 size_t width, height;
11 uchar *image = read_image(&width, &height, "input.pgm");
12 Image<uchar> in(width, height, image);
13

14 // reading from in with clamping as boundary condition
15 BoundaryCondition<uchar> cond(in, mask, Boundary::CLAMP);
16 Accessor<uchar> acc(cond);
17

18 // output image
19 Image<uchar> out(width, height);
20 IterationSpace<uchar> iter(out);
21

22 // instantiate and launch the Gaussian blur filter
23 LinearFilter Gaussian(iter, acc, mask, 3);
24 Gaussian.execute();

Listing 1: Instantiation of an operator for the Gaussian blur
filter in the DSL.

difference between point and local operators in HIPAcc. Both
are realized by the kernel() method. Instead of providing
a generic join() method, HIPAcc allows currently only to
define global reductions using the reduce() method.

2.2.1 Local and Point Operators
The kernel() method is embedded into a user-defined
class that derives from the Kernel base class provided by
the framework. Listing 2 shows such a class implementing
linear filters that retrieve the precomputed constants from the
Mask mask. The provided implementation iterates manually
over the mask elements, accessing neighboring pixels using
relative offsets. The result is stored using the output()
method.

For describing sliding window operators, the framework
provides built-in functions that allow a more concise descrip-
tion: The convolve() method taking a) the filter mask, b)
the aggregation mode, and c) the computation instructions
for a single filter mask component with the corresponding
image pixel described as a C++ lambda function:

void kernel() {
output() = (uchar)

convolve(mask, Reduce::SUM, [&] () -> float {
return mask() * input(mask);

1 class LinearFilter : public Kernel<uchar> {
2 private:
3 Accessor<uchar> &input;
4 Mask<float> &mask;
5 size_t size;
6

7 public:
8 LinearFilter(IterationSpace<uchar> &iter, Accessor<

uchar> &input, Mask<float> &mask, size_t size) :
9 Kernel(iter), input(input), mask(mask), size(size)

10 { add_accessor(&input); }
11

12 void kernel() {
13 float sum = 0;
14 int range = size/2;
15

16 for (int yf = -range; yf <= range; ++yf)
17 for (int xf = -range; xf <= range; ++xf)
18 sum += mask(xf, yf) * input(xf, yf);
19

20 output() = (uchar) sum;
21 }
22 };

Listing 2: Kernel description for the Gaussian blur filter.

});
}

HIPAcc currently supports min, max, sum, and prod as aggrega-
tion mode.

For more complex algorithms that do not follow the above
scheme, the iterate function can be used. Consider the
bilateral filter that combines a closeness component c and a
similarity component s over a common sliding window [16].
Using iterate(), we can iterate over the sliding window
defined by the Domain dom and compute both components
as well as the normalization factor:

void kernel() {
float d = 0, p = 0;

iterate(dom, [&] () -> void {
float diff = in(dom) - in();
float c = mask(dom);
float s = expf(-c_r * diff*diff);
d += c*s;
p += c*s * in(dom);

});

output() = p/d;
}

The aggregation is explicit in this case and the closeness
component is read from the Mask mask. The similarity could
be also read from a Mask, but is computed on-the-fly in this
case.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

2.2.2 Global Reduction Operators
For global reduction operators, the reduce() method can
be implemented by the programmer. We use the definition
provided by Blelloch [17] for the reduce operation, but do not
require the identity: The operator defined by the reduce()
method is applied to all elements defined by the Iteration Space
of the user-defined Kernel class. For instance, the minimum
of all pixels can be described as follows:

int reduce(int left, int right) {
return min(left, right);

}

The result of the reduction can be retrieved using the
reduced_data() method of the Kernel class.

2.3 Image Pyramid Construction
During traversal of the pyramid, either a more fine-grained or
a more coarse-grained representation is created by upscaling
or downscaling the image. The actual operators are then
applied to the images at each level. To construct the images at
different pyramid levels, the DSL provides the traverse()
function:

void traverse(std::vector<Pyramid>,
const std::function<void()>)

It takes a vector of image pyramids as argument and a C++
lambda function that describes the traversal of the pyramids.
Pyramids are registered in the traverse() function and
images of each pyramid can be requested using a relative
index. That is, querying a pyramid at index ’0’ will return
an image handle for the current traversal level. The index ’1’
refers to the image on the next (more coarse-grained) level,
whereas index ’−1’ refers to the image of the previous (more
fine-grained) level, respectively.

The traversal of the pyramid in the C++ lambda function is
triggered by a pseudo-recursive call to traverse(): Listing 3
shows a simple example for operating on pyramid data
structures using the presented traversal functions. As needed
for the traversal, two image pyramids are created (lines 3–4)
with a depth of 7. Both are bound to a traverse function
call (line 6), together with the lambda function describing
the actual recursion body (lines 7–26). The body contains
the set-up and execution of three kernels: downscale (lines
8–11), compute (lines 14–17), and upscale (lines 22–25).
The recursive call (line 19) occurs right after the compute
kernel but could also be placed before without changing the
schedule.

2.4 C++ Integration
Since the presented DSL is realized through C++ classes,
programs can be compiled with any C++ compiler such that
incremental porting of applications is possible. However,
compiled with the source-to-source compiler provided by
HIPAcc, target code for GPU accelerators is generated as
discussed in the next section. The programmer can combine
the DSL with regular C++ as shown in the following example,
using OpenCV for I/O and HIPAcc for computing:

// load image in OpenCV
Mat frame = imread("lena.pgm", CV_LOAD_IMAGE_GRAYSCALE);

// use image in hipacc
Image<uchar> img(frame.cols, frame.rows);
img = frame.data;
...

// use OpenCV to display image
frame.data = img.data();
imshow("Result Image", frame);

1 Image<uchar> in;
2 Image<uchar> out;
3 Pyramid<uchar> pin(in, 7);
4 Pyramid<uchar> pout(out, 7);
5

6 traverse({ &pin, &pout }, [&] {
7 if (!pin.is_top_level()) {
8 Accessor<uchar> acc_in(pin(-1), Interpolate::LF);
9 IterationSpace<uchar> iter_in(pin(0));

10 Downscale ds(iter_in, acc_in);
11 ds.execute();
12 }
13

14 Accessor<uchar> acc_in(pin(0));
15 IterationSpace<uchar> iter_out(pout(0));
16 Compute c(iter_out, acc_in);
17 c.execute();
18

19 traverse();
20

21 if (!pout.is_bottom_level()) {
22 Accessor<uchar> acc_out_cg(pout(1), Interpolate::LF);
23 Accessor<uchar> acc_out(pout(0));
24 Upscale us(iter_out, acc_out, acc_out_cg);
25 us.execute();
26 }
27 });

Listing 3: Pyramid traversal: The downscale/upscale
kernels create a coarser/finer representation and the
compute kernel processes the data at each level.

C++
embedded DSL

Clang AST

C++ DSL - Host Code DSL - Device Code

Rewrite

C++ & HIPAcc Runtime

Match

Analysis

Clone/Translate

PrettyPrint

CUDA/OpenCL/Renderscript

Figure 6: DSL program compilation work flow of HIPAcc.

3 COMPILER FRAMEWORK

Instead of implementing a new front end for C++, we decided
to build our source-to-source compiler on top of Clang1, a
C language family front end for LLVM. Clang performs the
typical steps of a compiler front end: Syntactic analysis (lexing
and parsing), semantic analysis, and the construction of an
Intermediate Representation (IR) [18], [19]. Clang uses an Ab-
stract Syntax Tree (AST) as IR that stores further information
of the input source program for each AST node.

3.1 Compiler Work Flow
The source-to-source compiler of HIPAcc traverses the AST
build by Clang in order to generate target code as shown in

1. http://clang.llvm.org

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

Figure 6. First, all AST nodes are visited using a preorder
depth-first traversal in the Match library. AST nodes that
corresponds to a) declarations and definitions of DSL classes,
b) statements that define objects in the DSL, and c) expres-
sions involving DSL objects are stored and further operations
are triggered depending on their type: a) class definitions
are removed from the textual source program representation
using the Rewrite library, but the AST representation is still
available to generate target code for the kernel; b) statements
defining DSL objects are replaced by corresponding calls to
the HIPAcc runtime (e. g., to allocate an image object on the
GPU); and c) expressions on DSL objects are also replaced
by calls to the HIPAcc runtime (e. g., to copy data to/from the
memory allocated previously on the GPU). Depending on the
target language, different runtime Application Programming
Interface (API) calls are emitted by the Rewrite library and
the updated textual representation is stored to a file. Only
parts of the input source file that make use of the DSL are
changed. This helps the user to understand the applied
changes and allows him to further modify the generated
source files.

The Analysis library extracts metadata from DSL classes
and image operators. This includes the size of filter masks
as well as boundary handling modes, information that is
required for target code generation. However, most important
is the analysis and categorization of kernels: Memory accesses
and arithmetic operations are analyzed for the user-provided
kernel() method. Therefore, a Control Flow Graph (CFG)
of the method is constructed and visited in postorder depth-
first traversal in order to collect the following information:
(a) the number of instructions. The instructions are classified

into memory accesses and arithmetic instructions.
(b) memory access properties of images. Each memory access

is analyzed and for each image it is stored if it is only
read, written, or both read and written. In case of reading
and writing an image within the same kernel, a warning is
emitted since this may lead to inconsistent memory views.

(c) memory access pattern of images and kernels. In addition
to the read/write analysis, also the pattern of memory
accesses are analyzed. It is differentiated between accesses
with stride-x, stride-y, stride-xy, and without any stride.
This information is collected for each image, and the
aggregated stride information of all images is annotated
to the kernel. This allows to categorize kernels as point
operators (no stride) and local operators (stride-x, stride-y,
stride-xy). Row filters correspond then to stride-x local
operators and column filters to stride-y local operators.

(d) use-def chain. Each definition of a variable and its uses is
stored. This liveness analysis can be used to remove dead
code, but is extended to include divergence information.
This information is essential for vectorization [20].
Once the metadata has been extracted, the AST of the

kernel() method is converted for execution on the target
hardware. Since Clang does not allow to modify the AST
representation—the AST is immutable—the whole AST rep-
resentation has to be recreated in order to add or modify AST
nodes. The Clone library provides the facility to duplicate
single AST nodes and will issue an error message if C++
operators are used that are not supported on the target
hardware such as for try, catch, and throw as well as
for instructions not supported by HIPAcc such as new and
delete.

The Translate library replaces AST nodes without chang-
ing the semantics of the operation they describe. For example,

accesses to an image object in the DSL are replaced by
accesses to GPU memory. However, this is not limited to
simple one to one translations, but also more sophisticated
transformations are supported such as loop unrolling or
staging of data to scratchpad memory. During AST traversal,
we keep track of kernel class member variable uses. Only
member variables that are present in the generated code will
be added as parameter to the compute kernel. For example,
Domains need only to be added as parameter in case the
iteration space defined by the Domain is not unrolled.

Having the AST transformed for the target hardware, the
PrettyPrint library stores the AST to a file using the syntax
of the target language. During pretty printing, function and
variable qualifiers are emitted. For example, the __kernel
qualifier is emitted in OpenCL for kernel entry functions and
the __local address space qualifier for scratchpad memory.
Similarly, CUDA requires attributes for kernel entry functions
(__attribute__ ((global))) and scratchpad memory
(__attribute__ ((shared))).

3.2 Kernel Code Generation
The source-to-source compiler transforms the DSL descrip-
tion in target-specific source code optimized with respect to
execution speed. Therefore, the metadata extracted from the
DSL description as well as the information obtained through
code analysis is used.
• Memory padding: The data storage for images are allocated

by the runtime system such that each image line is aligned
to a multiple of the memory transaction size on the
target architecture. The generated memory access index
computation takes the introduced padding into account.
This preserves kernel performance for images of arbitrary
size.

• Memory layout: Image data can be stored using dif-
ferent memory layouts. This includes linearized one-
dimensional memory, two-dimensional memory, as well
as hardware-vendor specific memory layouts using space-
filling curves. Therefore, the runtime can allocate memory
using different memory layouts and the required API calls
to read/write to the selected data structure are emitted
during code generation. This includes image objects for
OpenCL or texture and surface memory for CUDA.

• Memory hierarchy: GPU accelerators feature deep memory
hierarchies that have to be utilized in order to overcome
the long memory latency and improve locality. Depending
on the memory access pattern, different approaches are
followed in order to improve locality. We distinguish
between the following scenarios: a) in case a kernel reads
only a single pixel of a given image, locality cannot be
improved and no special memory mapping is generated;
b) in case a kernel reads multiple surrounding pixels, lo-
cality may be improved by using a special memory layout
as described above and by staging data to fast scratchpad
memory; c) in case a kernel reads the same data for each
pixel and that data is of known size, constant memory can
be utilized to provide a cache that broadcasts the data
to multiple threads. Constant memory is predestined for
Masks (Domains) and is used whenever the compiler is
not able to resolve all computations involving a Mask at
compile time. Scratchpad memory and special memory
layouts are selected depending on the target platform.
Both can be combined as shown in the following for
CUDA, reading data from a texture reference bound to
linear 1D memory and staging it to shared memory:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

// texture declaration for input
texture<float, cudaTextureType1D,

cudaReadModeElementType> tex_in;
// shared memory declaration for input
__shared__ float in_sm[8][33];
// load data to scratchpad
in_sm[threadIdx.y][threadIdx.x] =

tex1Dfetch(tex_in, gid_x * in_stride + gid_y);
__syncthreads();
// read data from scratchpad
... in_sm[threadIdx.y-1][threadIdx.x+1] ...

The example above is generated for a work-group configu-
ration of 32×4 and a filter mask size of 1×5. The allocated
scratchpad for the x-dimension are 1 · 32 + 1 = 33pixels,
adding one element padding to avoid bank conflicts
in shared memory. Considering the given work-group
configuration in the y-dimension, 4 + (5− 1) = 8 lines of
scratchpad are required.

• Constant propagation & loop unrolling: The local window
described by Domains and Masks can be fully unrolled
knowing the filter window size. This removes the looping
overhead in the compute kernel and the requirement to
pass a Domain or Mask to the compute kernel as parameter.
In case a Mask is compile-time constant, the constants of
the mask can be propagated in addition to unrolling the
iteration space. This can only be done if the access to the
Mask is also known at compile time.

• Thread coarsening: Merging the computation of multiple
iteration points into a single thread can improve local-
ity and reuse of data. At the same time, it reduces the
launch overhead for lightweight GPU threads. This trans-
formation is equivalent to loop unrolling of the global
iteration space, reducing the number of threads running
on the GPU. GPU accelerators have strict requirements
on memory access patterns in order to utilize bandwidth
best: contiguous memory should be accessed by threads
executed in lockstep for memory coalescing. For this
reason, we apply thread coarsening only to threads of
the global iteration space in the y-dimension:

gid_x = blockDim.x * blockIdx.x + threadIdx.x;
gid_y = blockDim.y * blockIdx.y * N + threadIdx.y;

// first iteration
{

// begin kernel code
... = in[gid_y * in_stride + gid_x];
// end kernel code

}

// second iteration
if (gid_y + 1 * blockDim.y < is_height) {
// begin kernel code
... = in[(gid_y+1) * in_stride + gid_x];
// end kernel code

}

// n-th iteration
if (gid_y + (N-1) * blockDim.y < is_height) {
// begin kernel code
... = in[(gid_y+N-1) * in_stride + gid_x];
// end kernel code

}

The example above unrolls the global iteration space by
a factor of N with Image accesses being updated for the
current iteration point. Since we do not know if the image
size is a multiple of N at compile time, we also need to add
guards that ensure that the current iteration point belongs
to the global iteration space. Setting N to 4 requires now
4 · N + (5 − 1) = 20 lines of scratchpad in the previous
example.

• Multiple Program, Multiple Data (MPMD) code generation:

To support boundary handling, checks have to be added
for reads to an Image. Checking boundary conditions for
each memory access is expensive and leads to increased
execution times in the magnitude of 10% up to 100%
depending on the boundary handling mode as well as
on the target hardware. One solution to this problem is
the use of texturing hardware that takes care of boundary
handling. However, texturing hardware is not available
on all platforms and allows only boundary handling on
two-dimensional arrays. This imposes a memory layout
that is not optimal for achieving best performance and
does not allow to define boundary handling on a ROI
(cf. [6], [7]). Therefore, we divide the image in different
regions according to the image borders and generate spe-
cialized variants for boundary handling for each region
as indicated below and visualized in Figure 7:

__global__ void kernel(... int bh_t, int bh_fb) {
if (bh_fb) goto BH_FB;
if (blockIdx.x < bh_l &&

blockIdx.y < bh_t) goto BH_TL;
... // checks for other variants
goto BH_NO;

BH_FB:
// handle all image borders
<pretty printed AST>
return;

BH_TL:
// handle only top left border
<pretty printed AST>
return;

... // other variants
BH_NO:

// no boundary handling
<pretty printed AST>

}

This results in one big kernel that includes all special-
ized variants. This is similar to index set splitting [21],
but the code variant is selected at run time depending
on the block index. All threads executed on the same
compute unit execute always the same code variant, and
therefore, in lockstep. Now, only checks are issued at
thread blocks processing pixels at image borders and
no checks are generated for the inner image region. We
choose to generate one big kernel instead of multiple
kernels since the overhead of scheduling multiple small
kernels for the image borders is higher than the benefit
of specialized boundary handling. In total we generate
up to ten variants: Up to eight for the image borders, one
for the inner region, and one fall-back variant for very
small images (e. g., as required for Pyramids). The memory
access pattern extracted during code analysis defines the
code variants required: Only left and right borders have
to be handled for row kernels and only top and bottom
borders for column kernels.

3.3 Optimization Strategy
HIPAcc follows a model-driven approach for code optimiza-
tion utilizing the metadata captured by the DSL constructs
and information from an architecture model. Tailored im-
plementations are generated using the fused information
about the input algorithm and the target architecture. The
architecture model describes which optimizations are valid
and beneficial for a given target architecture:
• The memory layout and alignment for images.
• Texture memory layout and usage.
• Thresholds for staging data to scratchpad memory.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

M M

M M

M N O P M N O P

M N O P M N O P

P P

P P

M M

M M

I I

I I

E E

E E

A A

A A

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A B C D

P P

P P

L L

L L

H H

H H

D D

D D

A A

A A

A B C D A B C D

A B C D A B C D

D D

D D

BH_NO

BH_TL BH_T BH_TR

BH_L BH_R

BH_BL BH_B BH_BR

Figure 7: Code variant assignment to image border: Boundary
handling for local operators is limited to those regions where
out of bounds image accesses occur. Different code variants
are generated for the top left (BH_TL), top (BH_T), etc. image
borders.

• The thread coarsening factor.
The launch configuration of a kernel determines the tiling

of the global iteration space and the occupancy of hardware
resources. HIPAcc extracts resource usage (such as number of
registers and shared memory usage) of generated kernels to
fine-tune their tiling to achieve good occupancy and improve
locality: The compiler calculates for all valid configuration
sizes (S) (due to shared memory/register usage) that result
in good memory bandwidth utilization (due to coalescing)
the occupancy. Then the heuristic of Algorithm 1 selects a
configuration cs,txy

from the list of configuration sizes S. For
each configuration size s, the shape of the configuration is
determined such that the resulting tiling txy of the image
into sub-problems processed on a compute unit adapts to the
available resources and inherent locality of the considered
kernel.

Depending on the operator kind, a different strategy is
used. For point and global operators, a 1D-tiling is chosen
since the resulting code requires less instructions (e. g., no
guards for the y-dimension, simpler index address calcula-
tion) and point and global operators do not benefit from a
2D-tiling (there is no temporal locality). The size of the tiling is
selected such that a high occupancy is given. In case multiple
configurations result in the same occupancy, the configuration
with the lowest number of threads is chosen. This gives higher
flexibility to the hardware scheduler since multiple work-
groups can be scheduled and executed at the same time on
a single compute unit. This results in 1D-configurations like
128× 1 or 256× 1. Such configurations are typically selected
by expert programmers and yield good performance for most
kernels. In contrast, a 2D-tiling is chosen for local operators.
This has two reasons: To minimize the number of threads that
execute code with conditionals for boundary handling and
to maximize locality by selecting a 2D-shape. The minimal
size for the x-dimension (the warp size) is typically enough
to cover boundary handling in the x-dimension with a single
work-group (e. g., for a kernel window size of 3 × 1 up
to 65 × 1 for a warp size of 32). Instead, the y-dimension

Algorithm 1: Heuristic for selecting kernel configuration
and tiling depending on resource usage, filter mask sizes,
and target graphics card.

Input: Kernel K , list of configuration sizes S for GPU G
Output: Configuration cs,txy

with size s and tiling txy
for kernel K

1 S← configuration sizes of S multiple of warp size of G
and within resource limitations of G

2 S← sorted configuration sizes of S with descending
occupancy and ascending number of threads

3 s← first configuration size of S
4 if local operator then
5 txy ← tiling of s, prefer y over x
6 threads_bh← calculate number of threads for border

handling for kernel K with tiling txy
7 S′← configuration sizes with occupancy within 10%

of s
8 foreach configuration size s′ of S′ do
9 t′xy ← tiling of s′, prefer y over x

10 threads_bh′← calculate number of threads for
border handling for kernel K with
tiling t′xy

11 if threads_bh′ < threads_bh then
12 s← s′

13 txy ← t′xy
14 threads_bh← threads_bh′

15 end
16 end
17 else
18 txy ← tiling of s, prefer x over y
19 end
20 cs,txy ← s, txy

is increased and not only the first configuration size with
the highest occupancy is considered. All configuration sizes
that are within a given threshold, for instance 10% of the
configuration size with the highest occupancy are considered:
The configuration is chosen such that the number of threads
with boundary handling conditionals is minimized (e. g.,
a configuration of 32 × 6 is preferred over 32 × 4 for a
kernel window size of 13 × 13; however, a configuration
of 32 × 3 would be preferred to the two aforementioned
configurations). Once a configuration size and tiling for a
kernel have been determined according to the presented
heuristic, the source-to-source compiler can emit the kernel
configuration for invocations of the kernel.

3.3.1 Configuration Space Exploration
The rules of the architecture model decide what code variant
is generated. However, the compiler allows also to set trans-
formations manually using compiler switches. For example,
the user can specify that scratchpad memory or a certain kind
of texture memory should be turned on or off. Similarly, the
amount of padding or the thread coarsening factor can be set
by the user. This allows for an easy exploration of features for
future architectures.

In addition, the source-to-source compiler can gener-
ate code to explore kernel tiling parameters using the
--explore-config compiler switch. The generated code
includes macro-based code snippets for features that depend
on tiling (statically allocated scratchpad memory and the
work-group size). During execution, the runtime system
compiles those variants using Just-In-Time (JIT) compilation.
The influence of the kernel configuration (size and shape)
on execution time is shown in Figure 8 for the bilateral filter.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

128 256 384 512 640 768 896 1024

20

25

30

35

40

Optimum with 32× 4: 18.49ms
Heuristic with 32× 6: 18.68ms

number of threads

ex
ec

ut
io

n
ti

m
e
[m

s]

Figure 8: Configuration space exploration for the bilateral
filter (filter window size: 13× 13) for an image of size 4096×
4096 on the Tesla K20.

Only configurations that are a multiple of the warp size are
considered. In the example, execution times vary between
18.49ms for a configuration of 32 × 4 and 41.84ms for a
configuration of 32× 1. The proposed heuristic (Algorithm 1)
selected the configuration of 32 × 6, which results in an
execution time of 18.68ms. The insights from explorations
can be used to set an optimized configuration by hand or to
fine-tune the heuristic.

4 RESULTS

In this section, we evaluate important aspects of domain-
specific languages for image processing. In particular, we will
evaluate the performance of the generated implementations,
the portability of the description itself, and the gains in pro-
ductivity using the proposed DSL. In the following, we first
investigate a single, representative sliding window algorithm
in detail, before we show how bigger applications can be
described in the DSL.

4.1 Comparison against RapidMind, Halide, OpenCV,
and NPP
We picked the Gaussian blur filter as representative sliding
window algorithm since implementations exist in highly-
optimized domain-specific libraries such as Open Source
Computer Vision (OpenCV) and NVIDIA Performance Prim-
itives (NPP). At the same time, implementations in other
domain-specific language such as RapidMind or Halide are
available.

RapidMind [22] is a multi-core development platform
that allows to describe algorithms as computations on arrays
similar to the proposed framework. Actually, the kernel
description (embedded into C++) differs only by the used
keywords and data types. GPUs from NVIDIA are supported
by the CUDA back end.

Halide [2] is a domain-specific language embedded into
C++ for image processing and supports GPU accelerators
through a CUDA and OpenCL back end. Algorithms are
expressed using functional expressions and the target-specific

optimization (the schedule) is defined separately by the
programmer.

The OpenCV library is a widely used library for image
processing and provides a CUDA and OpenCL module to
target GPU accelerators. Hand-tuned implementations are
provided for each module, which are further optimized
depending on the target GPU.

The NPP library is part of CUDA and provides optimized
primitives for imaging and video processing on NVIDIA
GPUs. In contrast to OpenCV, NPP supports only processing
of 8-bit gray-scale images for the considered primitives. There
is also no boundary handling support in NPP. The valid
image region shrinks after each kernel invocation.

4.1.1 Results
Table 1 and Table 2 show the execution times of the auto-
matically generated implementations for the Gaussian blur
filter on an image of 4096× 4096 pixels on a Tesla K20 and
Radeon R9 290X. The optimizations applied by the HIPAcc

framework include constant propagation and unrolling of
the convolve method, using texture memory when reading
from global memory (CUDA), staging the data to scratchpad
memory as well as unrolling of the global iteration space. The
configuration is determined by the HIPAcc framework and six
specialized variants for boundary handling are generated.
The tables list also a naïve implementation generated by
HIPAcc where only global and constant memory are used
with a fixed configuration of 128× 1.

The results show that our generated implementations are
on both GPUs faster than low-level hand-written implemen-
tations (OpenCV and NPP) as well as the implementations
generated by RapidMind and Halide. The RapidMind imple-
mentation crashed when Repeat is used as boundary handling
mode and is otherwise slower by a factor of three. For Rapid-
Mind, we recompute the filter mask, which is faster than
using precomputed values. For Halide, we explored different
optimizations (schedules). It turned out that a separated
schedule yields the fastest implementation on both GPUs.
Halide provides also a RDom object that can be used the
same way as a Domain in HIPAcc. Describing the convolution
using RDom results in higher execution times (11.62ms vs.
10.95ms) for the K20 and is significantly faster on the R9 290X
(0.82ms vs. 1.10ms). Since both Halide and RapidMind use
a JIT compiler, NVIDIA’s nvprof profiler is used to measure
kernel timings.

The OpenCV implementation has a competitive perfor-
mance across different boundary handling modes and is
faster compared to the naïve implementation. OpenCV is
even faster compared to NPP, although NPP does not imple-
ment boundary handling and requires only to transfer one
fourth of the data (using uchar instead of float for the
intermediate result).

Table 3 shows the execution times on the Intel Xeon Phi
7120P with similar results as for the AMD and NVIDIA cards:
Our generated code is significantly faster compared to the
implementation in OpenCV (3×) and more than 10% faster
compared to Halide.

For the ARM Mali T-604 running Android, we generate
specialized Renderscript implementations. Table 4 shows
that we get a speedup of roughly 40% compared to a naïve
implementation in Renderscript. While there is no other
framework targeting Renderscript at the moment, we have
shown previously that our generated Renderscript implemen-
tations outperforms a) highly optimized implementations

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

Table 1: Execution times in ms for the Gaussian blur filter
on a Tesla K20 using the CUDA back end for an image of
4096× 4096 pixels and a filter window size of 5× 5.

Undef. Clamp Repeat Mirror Const.

naïve crash 3.04 3.14 3.15 3.19

RapidMind 5.40 6.00 crash n/a 5.97
Halide n/a 4.17 n/a n/a n/a

OpenCV n/a 2.12 2.15 2.22 2.01
NPP† 2.40 n/a n/a n/a n/a

HIPAcc 1.32 1.38 1.40 1.38 1.39
† NPP’s implementation works on 8-bit data only; no support for

boundary handling; output image dimensions are reduced by the
filter window size.

Table 2: Execution times inms for the Gaussian blur filter on
a Radeon R9 290X using the OpenCL back end for an image
of 4096× 4096 pixels and a filter window size of 5× 5.

Undef. Clamp Repeat Mirror Const.

naïve 1.19 1.18 1.19 1.18 1.20

Halide† n/a 0.82 n/a n/a n/a

OpenCV n/a 0.89 1.43 0.90 0.91

HIPAcc 0.67 0.64 0.68 0.67 0.66
† Using RDom for the convolution, normal schedule requires
1.10ms.

from the hardware-vendor of the Mali T-604 when executed
on the embedded GPU; as well as b) the hand-tuned and
vectorized CPU implementations provided in OpenCV when
executed on the ARM CPU (cf. [8]).

4.1.2 Performance Model
Since it is known that stencil codes are usually bandwidth
limited, we use a simple performance model to estimate the
performance of the generated code. For a separated Gaussian
blur filter, we load pixels of type uchar and store float

Table 3: Execution times inms for the Gaussian blur filter on
a Xeon Phi 7120P using the OpenCL back end for an image
of 4096× 4096 pixels and a filter window size of 5× 5.

Undef. Clamp Repeat Mirror Const.

naïve crash 6.42 5.96 6.34 6.39

Halide n/a 3.94 n/a n/a n/a

OpenCV n/a 10.96 14.06 11.13 9.75

HIPAcc crash 3.57 3.78 3.70 3.87

Table 4: Execution times inms for the Gaussian blur filter on
a Mali T-604 using the Renderscript back end for an image
of 4096× 4096 pixels and a filter window size of 5× 5.

Undef. Clamp Repeat Mirror Const.

naïve crash 342.87 348.34 338.58 348.36
HIPAcc crash 213.38 214.28 215.71 219.65

Tesla K20 Radeon R9 290X Xeon Phi 7190P Mali T-604
0

10

20

30

40

50

60

70

80

90

100

m
em

or
y

ba
nd

w
id

th
[%

]

memcpy RapidMind Halide OpenCV NPP HIPAcc

Figure 9: Memory bandwidth of the Gaussian blur filter imple-
mentations in different frameworks. The memcpy bandwidth
is given as reference.

values in the first component. The second component loads
float values and stores pixels back as uchar. If we assume
that all neighboring memory accesses for the convolution
are in cache, we have to transfer 4 · 2 + 1 · 2 = 10bytes per
pixel. On the Tesla K20 with achievable memory bandwidth
of b = 140GB/s and for a problem size N = 4096 × 4096
we thus estimate N ·10

b · 1000 ≈ 1.20ms for the Gaussian
blur. This corresponds to the maximal performance the
Gaussian blur filter can achieve due to the peak stream
memory bandwidth in the Roofline model [9]. We use
OpenCL’s clEnqueueCopyBuffer() and Renderscript’s
copy1DRangeFrom() to measure this achievable memcpy
bandwidth, which we consider as an upper bound.

Figure 9 shows the achieved memory performance of the
Gaussian blur filter implementations in the different frame-
works2. It can be seen that the memory bandwidth utilization
is highest when using HIPAcc. For NVIDIA hardware, we
achieve almost the memcpy bandwidth and exceed it even on
the AMD card. Efficient implementations for the current Xeon
Phi coprocessor require prefetching which is not exposed in
OpenCL. This results in a bandwidth utilization that is far
below the theoretical peak memory bandwidth. Similarly,
the bandwidth utilization we see for the ARM Mali is far
below the theoretical memory bandwidth. Here, we consider
the dual port memory bandwidth as peak, but the system
might only use a singe port of the memory. However, all other
implementations we investigated suffer from the same low
bandwidth utilization.

4.1.3 Programming Effort
We consider the productivity metrics introduced by Hal-
stead [10] in order to quantify the programming effort using
HIPAcc. Halstead’s metrics are based on two code features:
operators and operands. Operands denote the variables and
constants of a program on which operators act. If we count
the number of distinct operators η1 and operands η2 as well

2. Note that the NPP implementation transfers only 4bytes per pixel
and the OpenCL implementation in OpenCV only 8 bytes per pixel.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

Table 5: Halstead’s productivity measures for the Gaussian blur filter in HIPAcc, OpenCV (CUDA), and the generated CUDA
implementation. Shown are the number of unique/total operators (η1/N1) and operands (η2/N2) as well as the resulting
volume V and effort E for the implementation.

η1 η2 N1 N2 V E Lines of Code (LoC)

HIPAcc col 15 3 23 5 261.70 3082.87 10row 16 5 26 7

OpenCV col 42 49 357 230 7447.45 713047.41 185row 40 47 345 218

generated col 32 78 2951 1509 74208.40 24701839.63 1190row 32 104 3935 2268

as the total numbers of operatorsN1 and operandsN2 within
an algorithm implementation, we can compute the volume
V , difficulty D, and effort E for the given implementation:

Volume V = (N1 +N2)× log2 (η1 + η2)

Difficulty D =
η1
2

× N2

η2
Effort E = D × V

We use and extend the implementation from [23] to recog-
nize also the CUDA language in order to compute Halstead’s
productivity metrics. Table 5 shows the productivity metrics
as well as the LoC for the Gaussian blur filter description in
HIPAcc, the corresponding CUDA implementation in OpenCV,
as well as for the generated CUDA implementation, spe-
cialized for the Tesla K20. We describe the row and column
component in HIPAcc separately in order to round the second
component the same way as in OpenCV in order to get
consistent results. Apart from rounding, the code of both
components is identical and a single description would be
sufficient to generate the same specialized implementations.
In contrast, two separate and completely different implemen-
tations are used in OpenCV. It can be seen that the description
in HIPAcc has by far the smallest volume and effort. The
volume of the generated code is 10× the volume of the hand-
tuned CUDA implementation in OpenCV, but has an ∼ 35×
higher effort to implement.

We can estimate the time T required for the implementa-
tion if we divide the effort E by the Stroud number S:

Time T =
E

S
seconds

Using 18 for S for fluent, concentrating programmers3 [25] we
estimate the time T as follows: 3minutes for the description
in HIPAcc, 11hours for the CUDA implementation in OpenCV,
and 15.8days for the generated CUDA implementation. Note
that this takes into account neither that parallel programming
increases programming complexity nor the fact that the gen-
erated CUDA implementations compute 4pixels per thread
(4× the LoC).

4.2 Applications
In addition to the Gaussian blur filter, we consider typical
image processing algorithms for feature detection: a Lapacian
edge detector, a multiresolution filter, a Harris corner detec-
tor [26], and the computation of optical flow using the census
transform [27]. Those algorithms form a realistic scenario and
reflect possible cost-sensitive implementations in commercial

3. Stroud [24] suggests 5 ≤ S ≤ 20 discriminations per second.

products, such as augmented reality or driver assistance
systems. All of them are based on local and point operators
or a combination of both but differ greatly in implementation
detail.

Figure 10 shows the number of operators and operator in-
vocations for these algorithms. It shows also the LoC required
to describe them in HIPAcc as well as the performance of the
generated implementations. In the following, we summarize
which operators are required for each algorithm and highlight
features of the DSL to realize them:
• The Laplacian operator is a sliding window operator

similar to the Gaussian blur filter. However, the filter mask
of size 5×5 cannot be separated and is realized as a single
operator.

• The multiresolution filter creates first a pyramid represen-
tation of the input image of depth 6. Then, it applies the
bilateral filter [16] on each image of the pyramid. Finally,
it reconstructs the image at the most fine-grained level.
For the image pyramid traversal, we use the traverse()
function working on pyramids for the input image, output
image, and an image for intermediate results.

• The Harris corner detector embodies a combination of
point and local operators that form a complex image
pipeline. In total, twelve operator invocations are required
to detect the edges in the input image.

• The optical flow includes the computation of a signature
for each pixel of the smoothed input images. The signa-
tures of two successive images are used to compute the
optical flow: They are compared within a sliding window
of size 15 × 15 using the iterate() function over a
Domain that excludes the center.

5 RELATED WORK

Abstractions are a compelling way to hide low-level details.
High-level programming languages provide abstractions
from storage locations or calling conventions of a processor by
variables and function calls. However, these abstractions are
specific to the target processor and offer no means to exploit
optimizations specific to a given application domain or paral-
lelism within algorithm descriptions. As a consequence, tools
and languages have been developed to extract or capture the
required knowledge. For example, the polyhedron model [28]
relies on code analysis to extract information required for
parallelization. The need for abstraction of domain properties
resulted in several languages and frameworks for a variety of
domains including image processing. A prominent example
for DSLs is Delite [29], [30]: A common compiler and run-
time infrastructure for building new performance-oriented
DSLs. It provides facilities for defining and embedding a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

1Operator & 1 Invocation
HIPAcc: 8 + 6LoC

Radeon R9 290X: 408.33FPS
Tesla K20: 272.79FPS

Xeon Phi 7120P: 16.84FPS
Mali T-604: 2.88FPS

(a) Laplace.

4Operators & 21 Invocations
HIPAcc: 29 + 17LoC

Radeon R9 290X: 362.85FPS
Tesla K20: 159.49FPS

Xeon Phi 7120P: compiler segfault
Mali T-604: 1.77FPS

(b) Multiresolution Filter.

6Operators & 12 Invocations
HIPAcc: 47 + 26LoC

Radeon R9 290X: 232.99FPS
Tesla K20: 137.58FPS

Xeon Phi 7120P: 77.30FPS
Mali T-604: 1.26FPS

(c) Harris Corner.

3Operators & 5 Invocations
HIPAcc: 26 + 28LoC

Radeon R9 290X: 163.59FPS
Tesla K20: 60.66FPS

Xeon Phi 7120P: 65.46FPS
Mali T-604: 0.44FPS

(d) Optical Flow.

Figure 10: Algorithms in HIPAcc: edge detection (a), multiresolution processing (b), corner detection (c), as well as optical flow
(d). Listed are the number of operators required for the algorithms as well as the total number of operator invocations. The
(X + Y) LoC denote the DSL parametrization (X) and the algorithm implementation (Y) in DSL code. All benchmarks were
performed using OpenCL on 4K UltraHD (3840× 2160) images.

DSL in Scala. A DSL can make use of parallel building
blocks provided by the Delite infrastructure, which can be
in turn mapped efficiently to parallel execution patterns.
Programs written in a DSL are broken down into these
building blocks which are then combined and optimized for
parallel execution. A number of DSLs have been implemented
on top of Delite such as Liszt [4] for mesh-based PDE solvers
or OptiML [5] for machine learning, but none for image
processing. This work follows a different approach: Instead
of breaking computations down into their building blocks,
in order to combine them as required, this work employs
domain-specific optimizations using domain knowledge for
code generation.

Other domain-specific or domain-agnostic approaches
focus on image processing just as HIPAcc: These include
RapidMind [22], Halide [2], KernelGenius [3], and the work
of Howes et al. [31] and Cornwall et al. [32].

The work most close to the work at hand is the RapidMind
multi-core development platform [22] targeting standard
multi-core processors as well as accelerators like the Cell
Broadband Engine (Cell B. E.) and GPUs. The RapidMind
technology is based on Sh [33], a high-level metaprogram-
ming language for graphics cards. RapidMind provides its
own data types that can be arranged in multi-dimensional
arrays. Boundary handling properties are defined on acces-
sors and neighboring elements can be accessed using the
shift() method on input data. Since there are no details on
code generation for boundary handling publicly available
for RapidMind, the approach followed in this work can
only be compared quantitatively with the one of RapidMind.
However, our evaluation indicates that no domain-specific
knowledge is used for code generation. In 2009, Intel acquired
RapidMind and incorporated the RapidMind technology
into Intel Array Building Blocks (ArBB) [34]. The focus of
Intel’s ArBB is on vector parallel programming and for that
reason, image processing features of RapidMind like generic
boundary handling support were not adopted. Also the back
ends for accelerators were dropped.

Cornwall et al. [32] introduced a domain-specific frame-

work for visual effects that generates target code for CUDA.
Their framework is based on indexed metadata in the form
of C++ classes. Similar optimizations are available for code
generation (staging data to local memory, realignment of
threads for coalescing, 1:N mapping, and automatic work-
group size and shape selection). However, only data contain-
ers for images are provided. The work at hand introduces
notations for other domain-specific traits such as filter masks
and provides additional domain-specific optimizations such
as specialized code variant generation for boundary handling.

Howes et al. [31] propose a framework for decoupled ac-
cess/execute (Æcute) specification, capturing both execution
constraints and memory access patterns of a computational
kernel. Their domain-agnostic framework is also based on C++
classes with tailored implementations for the Cell B. E. and
standard multi-core processors. In [35], the authors highlight
possible annotations for GPU accelerators using CUDA as
target language. They provide hand-tuned implementations
showing the benefit that can be achieved if a source-to-source
compiler makes use of this knowledge. HIPAcc is capable to
employ not only the proposed optimizations, but also further
transformations. We have shown that we can achieve the
same performance compared to their hand-tuned code [36].

Halide [2], a DSL for image processing, follows a promis-
ing path by using functional programming to express kernels
in a compact and concise way. Using functional programming,
images have no explicit storage, but are pure functions that
define the value of each pixel. The schedule for these func-
tions has to be specified separately and determines how the
computation is mapped to the target hardware and if memory
needs to be allocated for the computation. In particular, image
processing pipelines benefit from this concept. However,
no domain-specific optimizations are applied during code
generation. Boundary handling is realized as a function that
is applied for each image pixel (with the resulting overhead).

KernelGenius [3] provides a DSL for image processing
kernels using C-like syntax and generates target OpenCL
code for the STHORM embedded many-core architecture of
STMicroelectronics. Functions in a kernel can be combined

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

REFERENCES 13

using common predefined templates to create an extended
Synchronous Dataflow (SDF) graph. Nodes of this graph are
then scheduled within an OpenCL kernel to exploit locality.
A concise syntax is provided to express boundary handling
modes and convolutions.

6 CONCLUSION

In this article, we have introduced a DSL for image pro-
cessing and a source-to-source compiler to generate highly
efficient parallel implementations. Both are part of the
HIPAcc framework and are available as open-source under
http://hipacc-lang.org.

We have shown that a close co-design of language and
compiler can exploit domain-specific properties for special-
ization. Considering target architecture information yields
tailored implementations that are in many cases faster than
corresponding hand-tuned implementations. The abstrac-
tions of the DSL allow to map an algorithm to a quite large
spectrum of GPU target architectures and to exploit the
available types of parallelism. The algorithm description itself
is not contaminated with the mapping and parallelization for
a specific architecture or other hardware-dependent optimiza-
tions. We plan to exploit this property also for vectorization
and have recently shown that it can be used for synthesis of
efficient hardware designs [37].

ACKNOWLEDGMENTS

This work is supported by the German Research Foundation
(DFG), as part of the Research Training Group 1773 “Hetero-
geneous Image Systems”. The Tesla K20 used for this research
was donated by the NVIDIA Corporation.

REFERENCES
[1] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson,

and J. Dongarra, “From CUDA to OpenCL: Towards a
performance-portable solution for multi-platform GPU
programming”, Parallel Computing, vol. 38, no. 8, pp. 391–
407, 2011.

[2] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Ama-
rasinghe, and F. Durand, “Decoupling algorithms from
schedules for easy optimization of image processing
pipelines”, ACM Transactions on Graphics (TOG), vol. 31,
no. 4, 32:1–32:12, 2012.

[3] T. Lepley, P. Paulin, and E. Flamand, “A novel compilation
approach for image processing graphs on a many-core
platform with explicitly managed memory”, in Proc. of the
2013 Int. Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), IEEE, 2013, 6:1–6:10.

[4] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina,
M. Barrientos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy,
E. Darve, J. Alonso, and P. Hanrahan, “Liszt: A domain
specific language for building portable mesh-based PDE
solvers”, in Proc. of the 2011 Int. Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC),
ACM, 2011, 9:1–9:12.

[5] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, H. Chafi,
M. Wu, A. R. Atreya, M. Odersky, and K. Olukotun,
“OptiML: An implicitly parallel domain-specific language
for machine learning”, in Proc. of the 28th Int. Conference on
Machine Learning (ICML), ACM, 2011, pp. 609–616.

[6] R. Membarth, F. Hannig, J. Teich, M. Körner, and W. Eckert,
“Generating device-specific GPU code for local operators
in medical imaging”, in Proc. of the 26th IEEE Int. Parallel
& Distributed Processing Symposium (IPDPS), IEEE, 2012,
pp. 569–581.

[7] R. Membarth, “Code generation for GPU accelerators from
a domain-specific language for medical imaging”, Verlag
Dr. Hut, Munich, Germany, Dissertation, Hardware/-
Software Co-Design, Department of Computer Science,
University of Erlangen-Nuremberg, Germany, 2013.

[8] R. Membarth, O. Reiche, F. Hannig, and J. Teich, “Code
generation for embedded heterogeneous architectures on
Android”, in Proc. of the Conference on Design, Automation
and Test in Europe (DATE), IEEE, 2014, 86:1–86:6.

[9] S. Williams, A. Waterman, and D. Patterson, “Roofline:
An insightful visual performance model for multicore
architectures”, Communications of the ACM, vol. 52, no. 4,
pp. 65–76, 2009.

[10] M. H. Halstead, Elements of Software Science, ser. Operating
and Programming Systems. Elsevier, 1977.

[11] I. N. Bankman, Handbook of Medical Image Processing and
Analysis. Academic Press, 2008, vol. 2.

[12] J. C. Russ, The Image Processing Handbook. CRC Press, 2006,
vol. 5.

[13] R. Klette and P. Zamperoni, Handbook of Image Processing
Operators. John Wiley & Sons, 1996, vol. 1.

[14] P. Burt and E. Adelson, “The Laplacian pyramid as a com-
pact image code”, IEEE Transactions on Communications,
vol. 31, no. 4, pp. 532–540, 1983.

[15] J. Reinders, Intel Threading Building Blocks: Outfitting C++
for Multi-core Processor Parallelism. O’Reilly Media, 2007.

[16] C. Tomasi and R. Manduchi, “Bilateral filtering for gray
and color images”, IEEE, 1998, pp. 839–846.

[17] G. E. Blelloch, “Prefix sums and their applications”, in
Synthesis of Parallel Algorithms, J. H. Reif, Ed., Morgan
Kaufmann, 1993, ch. 1, pp. 35–60.

[18] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986, vol. 2.

[19] N. Wirth, “Program development by stepwise refinement”,
Communications of the ACM, vol. 14, no. 4, pp. 221–227,
1971.

[20] R. Karrenberg and S. Hack, “Whole-function vectoriza-
tion”, in Proc. of the 9th Annual IEEE/ACM Int. Symposium
on Code Generation and Optimization (CGO), IEEE, 2011,
pp. 141–150.

[21] M. Wolfe, High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

[22] RapidMind, RapidMind development platform documentation,
RapidMind Inc., 2009.

[23] C. H. González and B. B. Fraguela, “A generic algorithm
template for divide-and-conquer in multicore systems”, in
Proc. of the 12th Int. Conference on High Performance Comput-
ing and Communications (HPCC), IEEE, 2010, pp. 79–88.

[24] J. M. Stroud, “The fine structure of psychological time”,
Information Theory in Psychology, 1956.

[25] R. D. Gordon and M. H. Halstead, “An experiment com-
paring Fortran programming times with the software
physics hypothesis”, in Proc. of the National Computer
Conference; American Federation of Information Processing
Societies (AFIPS), ACM, 1976, pp. 935–937.

[26] C. Harris and M. Stephens, “A combined corner and edge
detector”, in Proc. of the 4th Alvey Vision Conference, 1988,
pp. 147–151.

[27] F. Stein, “Efficient computation of optical flow using the
census transform”, in Pattern Recognition, ser. Lecture
Notes in Computer Science, vol. 3175, Springer, 2004,
pp. 79–86.

[28] P. Feautrier and C. Lengauer, “Polyhedron model”, in
Encyclopedia of Parallel Computing, Springer, 2011, pp. 1581–
1592.

[29] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth,
P. Hanrahan, M. Odersky, and K. Olukotun, “Language
virtualization for heterogeneous parallel computing”, in
Proc. of the ACM Int. Conference on Object Oriented Program-
ming Systems Languages and Applications (OOPSLA), ACM,
2010, pp. 835–847.

[30] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya,
and K. Olukotun, “A domain-specific approach to hetero-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

geneous parallelism”, in Proc. of the 16th Annual Symposium
on Principles and Practice of Parallel Programming (PPoPP),
ACM, 2011, pp. 35–46.

[31] L. Howes, A. Lokhmotov, A. Donaldson, and P. H. J.
Kelly, “Deriving efficient data movement from decoupled
access/execute specifications”, in Proc. of the 4th Int. Con-
ference on High-Performance and Embedded Architectures and
Compilers (HiPEAC), Springer, 2009, pp. 168–182.

[32] J. L. Cornwall, L. Howes, P. H. J. Kelly, P. Parsonage, and
B. Nicoletti, “High-performance SIMT code generation
in an active visual effects library”, in Proc. of the 6th ACM
Conference on Computing Frontiers (CF), ACM, 2009, pp. 175–
184.

[33] M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule,
“Shader algebra”, ACM Transactions on Graphics (TOG), vol.
23, no. 3, pp. 787–795, 2004.

[34] C. J. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum,
S. Du Toit, Z. G. Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo,
Z. Liu, and D. Zhang, “Intel’s Array Building Blocks: A
retargetable, dynamic compiler and embedded language”,
in Proc. of the 9th Annual IEEE/ACM Int. Symposium on Code
Generation and Optimization (CGO), IEEE, 2011, pp. 224–
235.

[35] L. Howes, A. Lokhmotov, A. F. Donaldson, and P. H. J.
Kelly, “Towards metaprogramming for parallel systems
on a chip”, in Proc. of the 3rd Workshop on Highly Parallel
Processing on a Chip (HPPC), Springer, 2009, pp. 36–45.

[36] R. Membarth, A. Lokhmotov, and J. Teich, “Generating
GPU code from a high-level representation for image pro-
cessing kernels”, in Proc. of the 5th Workshop on Highly Paral-
lel Processing on a Chip (HPPC), Springer, 2011, pp. 270–280.

[37] O. Reiche, M. Schmid, F. Hannig, R. Membarth, and J.
Teich, “Code generation from a domain-specific language
for C-based HLS of hardware accelerators”, in Proc. of the
Int. Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), ACM, 2014, 17:1–17:10.

7 AUTHOR BIOGRAPHY

Richard Membarth is a senior researcher
at the German Research Center for
Artificial Intelligence (DFKI). He holds
a diploma degree in Computer Science
from the University of Erlangen-
Nuremberg and a postgraduate
diploma in Computer and Information
Sciences from Auckland University of
Technologies. In 2013, he received his
Ph.D. (Dr.-Ing.) at the University of
Erlangen-Nuremberg on the automatic
code generation for GPU accelerators
from a domain-specific language for

medical imaging. After his Ph.D., he joined the Graphics Chair
and the Intel Visual Computing Institute at Saarland University
as postdoctoral researcher. His research interests include parallel
computer architectures and programming models with focus on
automatic code generation.

Oliver Reiche holds a bachelor’s degree
and a master’s degree in Computer
Science, both from the University of
Applied Sciences in Nuremberg. Since
2012, he is a Ph.D. student at the Chair
for Hardware/Software Co-Design at
the Department of Computer Science
at the University Erlangen-Nuremberg
and a member of the Research Training
Group Heterogeneous Image Systems.

His research interests are embedded systems, efficient mapping
strategies of image algorithms to heterogeneous architectures
and domain-specific languages.

Frank Hannig leads the Architecture
and Compiler Design Group in the
CS Department at the University of
Erlangen-Nuremberg, Germany, since
2004. He received a diploma degree in
an interdisciplinary course of study in EE
and CS from the University of Paderborn,
Germany in 2000 and a Ph.D. in CS from
the University of Erlangen-Nuremberg
in 2009. His main research interests
are the design of massively parallel
architectures, ranging from dedicated

hardware to multi-core architectures, mapping methodologies
for domain-specific computing, and architecture/compiler
co-design.

Jürgen Teich received an M.S. degree
(Dipl.-Ing.; with honors) from the
University of Kaiserslautern, Germany,
in 1989 and a Ph.D. (summa cum laude)
from Saarland University, Germany,
in 1993. In 1994, he joined the DSP
design group of Prof. E. A. Lee in the
Department of Electrical Engineering and
Computer Sciences (EECS), University of
California at Berkeley (PostDoc). From
1995 to 1998, he held a position at the
Institute of Computer Engineering and
Communications Networks Laboratory

(TIK), ETH Zurich, Switzerland (Habilitation). From 1998 to
2002, he was a Full Professor in the Electrical Engineering and
Information Technology Department, University of Paderborn,
Germany. Since 2003, he has been a Full Professor in the
Department of Computer Science, University of Erlangen-
Nuremberg, Germany, holding a chair in Hardware/Software
Co-Design.

Mario Körner works as software architect
for the Angiography and Interventional
X-Ray Systems business unit at Siemens
Healthcare. He completed his degree
in Computer Science at the University
of Erlangen-Nuremberg in 2007. Since
then he has been working in different
roles on the development of medical
imaging applications for interventional
procedures. His main interests are
algorithms for image processing,
visualization and geometry calibration,
software engineering methods, efficient
mapping to hardware accelerators as well

as usability aspects for making new technologies available to
medical users.

Wieland Eckert received a M.S. degree in
Computer Science (Dipl.-Inf.) and a Ph.D.
(Dr.-Ing.) at the University of Erlangen-
Nuremberg in 1991 and 1996, respectively.
From 1996 to 1999 he held a Senior Re-
searcher position at AT&T Labs Research
in Florham Park, NJ, in the speech recog-
nition and dialog systems laboratory. In
1999 he joined Lucent Technologies in
Nuremberg, Germany, designing and de-
veloping architectures and software for
embedded communication systems. In
2004 he joined Siemens Healthcare as a

Senior Software Architect for interventional X-ray systems. Since
2012 he is with the research unit Corporate Technology of
Siemens AG. His main research interests are effective software
architectures and challenges of efficient implementation on new
and powerful hardware designs like multi-core and many-core
processors combined with easy to use programming models.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2394802

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

