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Abstract—Concurrent queue algorithms have been subject to
extensive research. However, the target hardware and evaluation
methodology on which the published results for any two given
concurrent queue algorithms are based often share only minimal
overlap. A meaningful comparison is, thus, exceedingly difficult.
With the continuing trend towards more and more heterogeneous
systems, it is becoming more and more important to not only
evaluate and compare novel and existing queue algorithms across
a wider range of target architectures, but to also be able to
continuously re-evaluate queue algorithms in light of novel
architectures and capabilities.

To address this need, we present AnyQ, an evaluation
framework for concurrent queue algorithms. We design a set of
programming abstractions that enable the mapping of concurrent
queue algorithms and benchmarks to a wide variety of target
architectures. We demonstrate the effectiveness of these abstrac-
tions by showing that a queue algorithm expressed in a portable,
high-level manner can achieve performance comparable to hand-
crafted implementations. We design a system for testing and
benchmarking queue algorithms. Using the developed framework,
we investigate concurrent queue algorithm performance across a
range of both CPU as well as GPU architectures. In hopes that
it may serve the community as a starting point for building a
common repository of concurrent queue algorithms as well as a
base for future research, all code and data is made available as
open source software at https://anydsl.github.io/anyq.

Index Terms—Massively Parallel, Concurrent Queue, GPU

I. INTRODUCTION

Queues are an essential component of many concurrent
systems. Whether it is for distributing tasks among processing
nodes, to link producers and consumers in a processing pipeline,
or as a general data structure in parallel algorithms; where
there is concurrency, there are queues.

Due to their fundamental importance, concurrent queue
algorithms have been subject of extensive research. However,
the target hardware, evaluation methodology, and competing
algorithms considered in the publications of any two given
concurrent queue algorithms often share only minimal overlap,
resulting in a lack of comparability of the published results. It
is currently unclear, for example, whether the queue algorithm
designed by Kerbl et al. [1] for the GPU should be expected
to perform similarly well on current CPU architectures, or
whether the algorithms by Morrison and Afek [2] or Yang and
Mellor-Crummey [3] are still to be preferred. New hardware

features such as independent thread scheduling (ITS) [4] might
affect how these algorithms compare even on more recent
GPU architectures. It remains also unclear how well any one
of these algorithms should be expected to perform on, e.g.,
many ARM or RISC-V processors, where the performance
characteristics of relevant atomic operations are different from
the x86 architecture considered by most previous work.

In general, based on the available published data, we cannot
conclude what the current state-of-the-art in concurrent queue
algorithms looks like across an increasingly heterogeneous
computing landscape. It is now more important than ever
to be able to evaluate and compare new and existing queue
algorithms across a wide range of target platforms. Given
the rapid evolution of parallel processing hardware, it is of
particular importance to also be able to continuously re-evaluate
the body of existing algorithms in light of novel platforms,
applications, and hardware features.

To address this need, we present an evaluation framework
for concurrent queue algorithms, making the following contri-
butions:

• We design a set of abstractions that allow for the efficient
mapping of concurrent queue algorithms to a wide variety
of target architectures.

• We demonstrate the effectiveness of these abstractions by
showing that they can achieve performance comparable
to hand-crafted implementations.

• Based on these abstractions, we design a system for testing
and benchmarking concurrent queue algorithms.

• Using this system, we perform a set of experiments and
present selected insights concerning the current state of
the art in concurrent queue algorithms across multiple
CPU as well as GPU architectures.

By making all our code and results available as open source
software, we provide the community with a starting point for
what we hope would become a common repository of concur-
rent queue algorithms and benchmarks. Such a repository could
not only ensure continued evaluability of concurrent queue
algorithms across current and future hardware architectures,
but also significantly reduce the effort of conducting such
comparisons for future research.



II. RELATED WORK

At its core, a queue is a first in, first out (FIFO) data structure
with two operations: push and pop. A push operation inserts a
new element at the tail of the queue. A pop operation removes
the next available element from the head of the queue. A
concurrent queue allows push and pop operations to take place
concurrently.

However, the very idea of a FIFO data structure inherently
depends on operations being performed in some order, a concept
that no longer simply applies in the face of concurrency.
Different approaches exist to restore meaning and be able
to reason about the behavior and correctness of a concurrent
queue algorithm. The most common approach is to design the
algorithm to be linearizable [5], i.e., such that all threads agree
on one total order in which all operations logically take effect,
even if their execution overlapped. Linearizability, however, can
be costly to achieve, and many applications do not require such
a strong guarantee in order to function. Therefore, formalisms
with weaker properties have been developed and employed to
increase performance [6], [7], [8], [1].

The purpose of a queue is to store elements for the duration
from when they are pushed until they are popped. Concurrent
queue algorithms broadly fall into one of two categories for
how storage of queue elements is organized: A bounded queue
operates within a buffer of a fixed, predefined size while an
unbounded queue can dynamically grow and shrink within
available memory. Bounded queues tend to be array-based,
i.e., storing the queue contents in one contiguous array, while
unbounded queues tend to be link-based, i.e., using some data
structure that consists of nodes and links between nodes.

Queue operations can be either blocking, or non-blocking
with obstruction-free, lock-free, or wait-free progress guaran-
tees [9]. Basis of any concurrent queue algorithm is a set of
atomic operations which are assumed as given and used to
orchestrate inter-thread communication and synchronization.
The choice of this set of atomic operations has profound
implications for the performance and portability of a queue
algorithm. Furthermore, applicability of a queue algorithm
also depends on what type of element data it is able to store.
Some queue algorithms rely on the ability to load and store
queue element data atomically while other algorithms can store
arbitrary data.

One of the first practical lock-free concurrent queue al-
gorithms that found widespread adoption was described by
Michael and Scott [10]. Like many other lock-free algorithms,
their algorithm relies on an optimistic concurrency control [11]
approach based on an atomic compare-and-swap (CAS) primi-
tive. Queue operations are performed in two steps: the algorithm
first prepares the follow-up state of the queue based on the last
observed state and then attempts to transition the queue into
this prepared state in a way that atomically either succeeds
or fails. Downside of such an approach is that only one such
operation can succeed at any point in time while any other
concurrent attempts will fail and be forced to retry, which
limits scalability.

More recently, algorithms like the lock-free LCRQ [2] and
SCQ [12], and the wait-free algorithm by Yang and Mellor-
Crummey [3] have started to take advantage of the fact that
many processor architectures can natively perform atomic fetch-
and-add (FAA) operations, which can be used to avoid retries of
failed operations, resulting in significantly increased scalability
and performance.

However, some widely-used architectures such as certain
versions of ARM do not directly support atomic read-modify-
write (RMW) operations like FAA. Instead, these architectures
rely on a load-linked conditional store (LLCS) mechanism [13]
where RMW atomics must be emulated by continuously re-
trying the operation until it succeeds, which potentially voids
all of the benefits of relying on FAA over of CAS.

The design and evaluation of all the algorithms mentioned so
far exclusively considered the x86 CPU architecture as target.
On the GPU side, the Broker Queue [1] also relies on atomic
FAA and has been shown to outperform other queue algorithms.
However, their evaluation considered only NVIDIA GPUs.

Comprehensive evaluations that consider a variety of both
CPU and GPU architectures are rare in the literature. One
notable exception is the work by Scogland and Feng [14].
However, while their results were very valuable, they represent
the state a few hardware generations ago and did not consider
CPU architectures other than x86.

To the best of our knowledge, no previous work has
considered the effect of vectorization on queue performance
on the CPU, whether algorithms designed for the GPU might
outperform classic CPU queue designs in such a setting, or
how LLCS-based atomicity might shift the balance in favor
of algorithms and design aspects that have otherwise received
less attention. In contrast to previous work, the goal of this
present work is not to design and evaluate a novel queue
algorithm but to provide an update on the state of performance
of concurrent queue algorithms on current CPU and GPU
hardware as well as to design tools that will allow us to ensure
continued evaluability for the body of work on concurrent
queue algorithms going forward.

III. FRAMEWORK DESIGN

Prerequisite for being able to evaluate and compare con-
current queue algorithms across a wide range of architectures
is the ability to map queue and benchmark implementations
to the desired target hardware. Given our goal of continued
evaluability, it is imperative that the compiler technology at
the core of this mapping can be expected to be reasonably
future-proof. Due to its widespread use and large industry
backing, the de-facto standard choice for such technology is
LLVM [15].

On top of LLVM, we rely on AnyDSL [16], a high-
level programming framework with Rust-like syntax which
can target CPUs as well as GPU compute platforms like
CUDA [17], OpenCL [18], and HSA [19]. AnyDSL also
provides mechanisms for explicit automatic vectorization based
on the Region Vectorizer [20] to utilize single instruction,
multiple data (SIMD) processing on CPUs as well as a runtime
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Figure 1: The AnyQ stack. Queue and benchmark implemen-
tations can be written independently using the abstractions
provided by AnyQ in the form of an AnyDSL library. Any
combination of queue and benchmark implementation can be
compiled together with the AnyQ library through AnyDSL in
order to obtain a fully-specialized benchmark executable for
any of the supported target platforms.

layer for running the generated code on all supported platforms.
Key feature of AnyDSL is its partial evaluation mechanism
which allows us to generate specialized implementations for
every combination of benchmark, queue, and target platform.
Figure 1 illustrates the structure of this software stack.

The AnyQ evaluation framework consists of three major
components: A set of concurrency abstractions that allow us
to write parallel programs in a way that maps to any of the
desired target platforms, a queue interface to decouple queue
implementations from benchmarks, and a benchmark layer
that provides facilities for writing benchmarks, instantiating
benchmarks for given sets of queues and target platforms, and
collecting performance measurements.

A. Concurrency Abstractions

To write queue benchmarks that can target both scalar and
SIMD execution on CPUs as well as single instruction, multiple
thread (SIMT) execution on GPUs, we need a set of abstractions
that maps to all three execution models. We use a single
program, multiple data (SPMD) approach similar to CUDA,
OpenCL, or ispc [21]. Computation takes place in a grid of
concurrent function invocations, each invocation representing
a logical thread. These threads are grouped into waves that
correspond to the natural unit of execution on the target device.
On GPUs, these waves directly map to the warps or wavefronts
of the native execution model. For vectorized execution on
CPUs, waves are mapped to function invocations that are
evaluated in parallel in different SIMD lanes. Scalar execution
is modeled as a special case of vectorized execution with a
wave size of one thread.

To represent these abstractions in code, we follow an
approach similar to CUDA cooperative thread groups [17].
A device object represents a particular processor and offers

Table I: Types of thread groups as well as the operations each
type of group context offers.

grid split into waves/threads

wave
split into threads

barrier (with reduction)
shuffle

thread

atomic load/store, xchg, cas/cas_weak,
atomic add/sub, inc, min/max, and/or/xor

memory_barrier
wait

a method to launch a grid of threads on that processor. The
groupings of grid, waves, and threads are represented as context
objects. Threads, that are part of the same group, have access
to various operations in the form of methods on their context
object. Table I gives an overview of context types as well as
the operations they support. The memory model is based on
the C++ memory model [22].

A simple example program using these abstractions could
look as follows:
for grid in device.launch(1024) {
for wave in grid.waves() {

for thread in wave.threads() {
let i = wave.idx()/2 + thread.idx(0);

if wave.idx() % 2 == 0 {
data(i) = generate();
thread.atomic_store(rdy(i), 1, release);

} else {
thread.wait(@||
thread.atomic_load(rdy(i), acquire) == 1);

process(data(i));
}}}}

We launch 1024 threads. All threads in even numbered waves
generate data and then set a ready flag rdy. All threads in
odd numbered waves wait until they see the ready flag and
then read the corresponding data. We note that, due to the
underlying SIMD execution, threads within the same wave
generally cannot synchronize with one another except when
running on architectures that support ITS. Support for ITS can
be queried via a property on the given device object.

For every target platform, we provide a mapping layer that
implements the primitives described above. For CPUs, we
support both a scalar mapping as well as a vectorized mapping
utilizing SSE/AVX on x86 and NEON on ARM. NVIDIA
GPUs are supported via a CUDA and AMD GPUs via a HSA
mapping using the NVPTX and AMDGPU LLVM backends.
While scheduling of waves is handled automatically by the
hardware on GPUs, execution on CPUs has to take place in
threads managed by the operating system. We rely on Intel’s
TBB [23] library to schedule our waves on top of a thread
pool utilizing all available CPU cores.

B. Queue Interface

A concurrent queue offers two fundamental operations:
push and pop. Depending on the queue algorithm, each of
these operations may be blocking or non-blocking, and may fail
sporadically, or because the queue is full or empty. To be able to



independently vary queue and benchmark implementations, an
interface is needed that can accommodate any such concurrent
queue design. To allow for a meaningful comparison of very
different queue algorithms in various different benchmarks,
it is important that this interface does not impose artificial
restrictions that would prevent a given benchmark from making
optimal use of a given queue.

The interface we have arrived at to satisfy these requirements
is modeled parameterized on the queue element type T as
type source[T] = fn() -> T;
type sink[T] = fn(T) -> ();

struct ProducerConsumerQueue[T] {
push: fn(source[T]) -> fn(ctx) -> i32,
pop: fn(sink[T]) -> fn(ctx) -> i32

}

where ctx is the context object associated with the thread
performing the operation. Once more, due to the underlying
SIMD execution, invoking queue operations from divergent
control flow within the same wave can generally only be
supported on devices that support ITS.

The push and pop operations are higher-order functions
that take as parameters a source and sink function respectively.
The source function is invoked by the queue implementation
to generate the element value to be pushed into the queue.
The sink function is invoked by the queue implementation to
receive the value of a popped element. This inversion of control
allows for code associated with the generation or processing of
queue elements to be evaluated lazily. A queue implementation
can decide to only invoke these source and sink functions once
the algorithm has determined that it can indeed accept a new
element or does have an element to dequeue, which allows for
queue algorithms with such ability to be utilized appropriately.
At the same time, client code is given the flexibility to decide
which computations to potentially perform lazily inside or
always non-lazily outside of the source and sink functions it
passes to the queue.

Calling the push and pop functions yields itself a function
that will perform the push or pop operation with the given
source or sink when invoked. The result of calling this generated
function is either 0 or 1 depending on whether the operation
failed or succeeded. Client code uses a given queue assuming
every operation is non-blocking and might fail. Queues that
block or only fail in certain circumstances simply return
constant 0 or 1 along the respective control flow paths. The
partial evaluator in AnyDSL then ensures that the resulting
code collapses to an optimal implementation for any given
queue and benchmark combination.

To verify the correctness of queue implementations, we
provide a set of tests that check invariants that must be
preserved even by the most relaxed concurrent queue designs:
pushed elements must eventually be returned by a pop, popped
elements must have previously been pushed, and the number
of successful push and pop operations must be consistent with
the number of attempted and failed operations.

Listing 1: A simple queue benchmark program that exercises
a given queue by attempting to push and pop elements
num_attempts times. Note the use of the queue instrumenta-
tion wrapper provided by the framework to collect timings and
queue operation statistics. AnyDSL’s for construct provides an
easy way to pass source and sink functions to queue operations.
let stats = create_queue_instrumentation(device);

for recorder in stats.collect() {
for grid in device.launch(num_threads) {

for wave in grid.waves() {
for thread in wave.threads() {

for n in range(0, num_attempts) {
for q in recorder.record(thread, queue) {
// queue operations in here are recorded

for q.push(thread) {
42 // return the value to push

}

wave.barrier();

for value in q.pop(thread) {
// discard popped value

}

wave.barrier();
}}}}}}

device.synchronize(); // wait for launch to finish

let results = stats.results(); // obtain results

C. Benchmark Layer

To facilitate the collection of benchmark data, we provide
a queue wrapper that can be used to transparently add
instrumentation on top of any given queue implementation
that conforms to the queue interface. This queue instrumen-
tation wrapper abstracts away the complexities of accurately
measuring time on all the various target platforms as well
as collecting and aggregating timings and statistics at the
granularity of individual queue operations over the course
of a benchmark run. A passthrough implementation of the
queue instrumentation wrapper is also provided to allow for
simple switching between using and not using instrumentation.
Listing 1 shows an example of a benchmark implemented using
our queue instrumentation wrapper.

The framework furthermore includes a build system that
allows for the easy addition of queue and benchmark imple-
mentations, the generation of executables for combinations of
queues, benchmarks, and target platforms, as well as scripts to
automate the running of benchmark sets, and the processing
and visualization of results derived from benchmark data.

D. Framework Evaluation

We use the simple benchmark shown in Listing 1 to
compare the code generated by our framework for the
Broker Work Distributor (BWD) [1] and Yang and Mellor-
Crummey (YMCQ) [3] queue algorithms with the reference
implementations published with each algorithm. The same
benchmark implementation written in AnyQ is used with both



Table II: Run times (mean and standard deviation across 8 runs
after 2 warmup runs) in ms for a simple benchmark comparing
a BWD and YMCQ implementation using our AnyQ framework
with the reference implementation provided by the authors of
each respective algorithm. As can be seen, both versions show
comparable, if not virtually identical performance.

algorithm processor implementation run time
mean stddev

BWD
GTX 1080 AnyQ 0.4120 0.0016

reference 0.4156 0.0035

RTX 2080 SUPER AnyQ 0.0684 0.0137
reference 0.0653 0.0127

YMCQ
Ryzen 9 5950X AnyQ 1.7151 0.0554

reference 1.6496 0.0593

Apple M1 AnyQ 1.9936 0.2287
reference 1.8929 0.2027

the AnyQ as well as the reference queue implementations. In
order for the AnyQ benchmark to use a reference queue imple-
mentation, an adapter is used that implements the AnyQ queue
interface and forwards all calls to the reference implementation.
During partial evaluation, this adapter code is folded away and,
thus, does not introduce any overhead.

When targeting CUDA, AnyDSL generates CUDA C++
code for the parts to be run on the GPU. The BWD reference
implementation is itself originally written in CUDA C++ and
can, thus, simply be included into the generated benchmark
code. Similarly, on x86 and ARM, the YMCQ reference
implementation written in C can simply be compiled and
statically linked to the benchmark code.

The BWD benchmark was run with 100 k threads on both
an NVIDIA GeForce GTX 1080 as well as GeForce RTX 2080
SUPER GPU with each thread performing 20 enqueue and
dequeue attempts. The YMCQ benchmark was run via our
scalar mapping on an AMD Ryzen 9 5950X x86 CPU with 16
threads as well as on an Apple M1 ARM CPU with 8 threads,
each thread performing 1600 enqueue and dequeue attempts.
The differences in thread counts and number of enqueue and
dequeue attempts are to account for the differences in degree
of parallelism as well as base overhead between the different
systems and queue algorithms.

As can be seen in Table II, the AnyQ implementations per-
form almost exactly the same as the reference implementations
on all devices, demonstrating that our programming abstractions
enable a highly-performant implementation of queue algorithms
on each of these platforms.

IV. BENCHMARK SETUP AND METHODOLOGY

To evaluate various queues across a range of different
scenarios, we use a synthetic benchmark inspired by Kerbl et
al. [1]. We launch a given number of threads that will act as
concurrent producers and consumers. Each thread runs through
a predefined number of iterations in each of which it randomly
decides to produce an element, consume an element, or both.

Due to the SIMD nature of wave execution, we must avoid to
perform enqueue and dequeue operations in parallel in threads
within the same wave as this could result in a deadlock. To
avoid this problem, we issue a wave barrier between enqueue
and dequeue operations. To avoid introducing bias as a result
of threads always attempting to enqueue before attempting to
dequeue, we also randomize whether the wave as a whole will
perform its enqueue or dequeue attempts first.

By varying the enqueue and dequeue probabilities, different
classes of workloads can be simulated. An enqueue probability
greater than the dequeue probability will result in queues oper-
ating in a closer to full state while the reverse configuration will
operate queues in a closer to empty state. Equal probabilities
model a balanced workload.

A per-thread 32-bit xorshift [24] generator (RNG) is used
as a low-overhead source of randomness. Each benchmark
is run a number of times with each thread going through an
individual but consistent sequence of RNG seeds across runs.
This ensures that each queue algorithm will be taken through
the exact same reproducible regime of enqueue and dequeue
operations while also avoiding artifacts that might arise as a
result of correlations if each thread were to perform the exact
same sequence of operations in every benchmark run.

A typical application will spend a certain amount of time
performing computations and not interacting with the queue. To
model this computational effort associated with the production
and processing of queue elements, we introduce a simulated
workload. Before each enqueue operation, the value to be
enqueued is computed by advancing the RNG a predefined
number of steps. Similarly, after each dequeue operation, the
RNG is also advanced a predefined number of steps. Thus, we
introduce a fixed amount of purely arithmetic work that can be
precisely controlled, cannot be optimized away by the compiler,
and does not put additional pressure onto the memory system.

By using synthetic benchmarks, we are able to analyze and
compare queue performance under a certain usage pattern in
isolation in an easily reproducible manner. The context of a
complete application would bring with it many complicating
factors like memory and compute loads unrelated to queue
operation, resulting in complex and hard to predict interactions
and noise, making it difficult to attribute observations to specific
causes. Nevertheless, our framework enables users to write
benchmarks that model the workload presented by a specific
application to any desired level of detail.

To quantify queue performance, we measure the total
runtime t of each benchmark pass. Using our queue instru-
mentation wrapper, we count the total number Nenq and Ndeq

of successful, and N¬enq and N¬deq of failed enqueue and
dequeue attempts within each benchmark pass. We can then
calculate the achieved queue throughput

T =
Ndeq

t
(1)

as the number of elements per second that could successfully
be passed through the queue during the run.



We furthermore use our queue instrumentation wrapper to
measure the latency of each successful and failed enqueue and
dequeue attempt. The measured latencies are accumulated to
the total time Λenq , Λ¬enq , Λdeq , and Λ¬deq spent on each set
of attempts. Given the total time Λop spent on a given set of
attempts as well as count Nop of attempts, we can calculate the
average latency λ̄op as well as the success or failure rate ηop
for these attempts as

λ̄op =
Λop

Nop
and ηop =

Nop

Nop +N¬op
. (2)

V. DISCUSSION

Using our framework, we ran an extensive suite of bench-
marks of select queue algorithms in variations of the synthetic
producer-consumer scenario described above on an AMD
Ryzen 9 5950X x86 CPU and an Apple M1 ARM CPU as well
as on NVIDIA GeForce GTX 1080 and GeForce RTX 2080
SUPER, and AMD Radeon RX 6800 GPUs.

As one of the most-widely used queue algorithms, the
Michael & Scott queue (MSQ) [10] serves as a baseline
and representative of a linked, unbounded queue. Since this
algorithm requires dynamic allocation of nodes, we provide a
pre-allocated node pool large enough for the given benchmark
scenario to keep allocation overhead to a minimum and study
this algorithm in a best-case scenario.

Second, we benchmark the Broker Queue, a bounded queue
designed for the GPU that has been shown to outperform
other queue algorithms on the GPU [1]. We compare two
versions of the Broker Queue: the non-linearizable Broker Work
Distributor (BWD) and an optimized index queue variant (BIQ)
of the BWD designed to store integer numbers.

Third, we benchmark the moodycamel queue (MOQ),
which may be among the fastest concurrent queue implemen-
tations on the CPU [25] and is also widely used in practice.
Here, we utilize the original author’s implementation of the
MOQ integrated into our framework via its C interface in the
manner described in section III-D.

Benchmark scenarios include all combinations of enqueue
and dequeue probabilities penq and pdeq of 1, 0.5, and 0.25
with workload sizes W of 1 and 512 for powers of two in
thread count N between 1 and 220. For BWD, BIQ, and MOQ,
queue sizes S of 16 k and 1M are used. In all cases, queues
store 32-bit integer elements.

Measurements were averaged over 8 out of 10 benchmark
runs where the first 2 runs are discarded as warm up runs.
The version of the framework we used was compiled with
LLVM 14. When targeting the Apple M1, the target CPU was
explicitly set to ensure appropriate code generation as we found
that the target would otherwise default to an older version.

In the following section, we present some insights gained
using the AnyQ evaluation framework. We will only highlight
certain subsets of the data relevant to the discussion of
the respective points. The complete dataset and interactive
visualizations generated by the AnyQ framework are available
online at https://anydsl.github.io/anyq.
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Figure 2: Throughput of BWD and MSQ on an NVIDIA
GeForce RTX 2080 SUPER and AMD Radeon RX 6800 in a
balanced scenario (penq = pdeq = 0.5, W = 1 with S = 10 k).

A. Fastest Queue on the GPU

As another validation of our framework, we wanted to
reproduce previously published results. While it is difficult
to match exact numbers as we did not have access to the same
GPUs used by Kerbl et al. [1], we can confirm the superior
performance of the BWD on NVIDIA GeForce GTX 1080 and
GeForce RTX 2080 SUPER GPUs. As can be seen in Figure 2,
we can further amend these results with numbers that show
BWD performance on an AMD Radeon RX 6800 to be very
similar to its performance on NVIDIA hardware.

B. Fastest Queue on the CPU

The MOQ has been shown by its author to outperform several
other commonly-used concurrent queue implementations such
as the queues provided by the Intel TBB and Boost.Lockfree
libraries [25]. We expand upon on these results by comparing
MOQ against algorithms that have been studied in the scientific
literature. At the same time, we provide a first evaluation of
the Broker Queue algorithm on the CPU.

Figure 3 shows the average throughput as well as enqueue
and dequeue latencies on an AMD Ryzen 9 5950X and Apple
M1 CPU for a balanced scenario using our vectorized mapping.
On both architectures, BIQ achieves the highest throughput,
demonstrating that queue algorithms designed for the GPU
translate well to SIMD execution on modern CPUs.

The relative performance of queue algorithms behaves simi-
larly on both the x86 and ARM CPUs. For low thread counts, all
queue algorithms are closely matched on the x86 CPU. On the
ARM CPU, we find that MSQ outperforms the other algorithms
at low levels of contention but is quickly overtaken by the other
queues as contention increases. BWD, BIQ, and MOQ simply
approach and then plateau at their maximum throughput. This
further demonstrates the effectiveness of our mapping as we
see scaling well beyond hardware concurrency on both CPUs,
limited only by atomic operation throughput. MSQ peaks at
around 32 threads. As a result of its optimistic concurrency
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(b) Apple M1

Figure 3: Average throughput as well as enqueue and dequeue latency for BWD, BIQ, MOQ, and MSQ on (a) an AMD Ryzen 9
5950X x86 CPU and (b) an Apple M1 ARM CPU in a vectorized balanced scenario (penq = pdeq = 0.5, W = 1, S = 16 k).

control, any further increase in concurrent queue operations
simply leads to more and more contending operations causing
each other to fail, tying up hardware resources in the process,
and resulting in the algorithm settling at a lower throughput.

Due to its integration as an external library, MOQ does not
lend itself to vectorization. Nevertheless, we found that both
Broker Queue variants consistently outperform MOQ on the
x86 CPU even under the scalar mapping. On the ARM CPU,
however, the relative disadvantage of MOQ was significantly
less already in the vectorized case, likely due to the smaller
SIMD width. As can be seen in Figure 4, MOQ outperforms
all other queues on the ARM CPU in the scalar case.

Thus, while MOQ still seems to have an edge in traditional
scalar threaded applications on ARM, the Broker Queue needs
to be considered on x86 and for SIMD processing in general.
We also point out that, on both CPUs, MOQ showed faster
enqueue times while BWD and BIQ showed faster dequeue
times, which may be a relevant factor for latency-sensitive
applications to take into account.
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Figure 4: Average throughput for BWD, BIQ, MOQ, and MSQ
on an Apple M1 ARM CPU in a scalar balanced scenario
(penq = pdeq = 0.5, W = 1, S = 16 k).



C. Effect of Vectorization

Comparing queue performance under our vectorized and
scalar mappings, we find that the vectorized mapping consis-
tently outperforms the scalar mapping across the entire range
of benchmark parameters for all queue algorithms on both the
AMD Ryzen 9 5950X x86 CPU and the Apple M1 ARM CPU.
However, as can be seen in Figure 5, some queue algorithms
benefit from vectorization more than others.

The BWD and BIQ algorithms use atomic FAA to assign
queue slots to threads. The vectorizer can aggregate the FAAs
performed by all threads within a wave via a parallel reduction.
Thus, a single atomic FAA can service all threads in the wave
that are performing the same queue operation in parallel. As
a result, successful queue operations within the same wave
will also be operating on consecutive queue elements, which
further benefits performance and may give rise to additional
vectorization opportunities.

While the BWD and BIQ represent a close to ideal case for
vectorization, the MSQ algorithm represents a closer to worst-
case scenario. At its core, the MSQ consists of CAS loops
where parallel queue operations inherently cannot succeed in
parallel. However, even given these algorithmic limitations,
MSQ still benefits from vectorization as at least the atomic
loads for fetching the current queue state can be performed as
one shared operation for all threads in a wave.

Since queue throughput is ultimately limited by atomic
operation throughput, the vectorized mapping achieves higher
performance by being able to perform more queue operations
for the same amount of atomic operations. However, latency
of queue operations also increases due to additional work for
distributing results of atomics back to the individual threads as
well as due to the wave being dominated by its slowest thread.

D. Independent Thread Scheduling

Starting with the Volta architecture, NVIDIA GPUs support
ITS, which provides a forward progress guarantee for all
threads irrespective of branching behavior. As a result, the
constraints concerning queue operations in divergent branches
within the same wave can be dropped. To investigate the
impact of ITS on queue performance, we implemented a variant
of our benchmark without wave barriers separating enqueue
and dequeue attempts, and compare the performance of both
variants for BWD and MSQ on the GeForce RTX 2080 SUPER.

As can be seen in Figure 6, overall queue throughput with
ITS is decreased for BWD and almost unchanged for MSQ.
We attribute the lower BWD performance to the fact that
enqueue and dequeue operations for the same wave can now
both run concurrently, resulting in more atomic operations in
flight and, thus, increased pressure on the memory system.
Despite the loss in throughput, individual operation latency is
slightly reduced, however, most-likely as a result of the lack
of wave-level synchronization allowing operations to complete
without having to wait on others.

Since MSQ is based on contending threads helping one an-
other complete each other’s operations, the impact of increasing
the number of concurrent queue operations is mitigated and
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Figure 5: Comparison of scalar and 8-wide vectorized execution
of the same balanced scenario on an AMD Ryzen 9 5950X.
The vectorized BIQ8, MOQ8, MSQ8 consistently outperform
the corresponding scalar BIQ1, MOQ1, MSQ1. As a result
of the reduction in atomic operations, the vectorized versions
achieve a significantly higher peak throughput at exactly 8×
the number of threads at the cost of increased latency.

we observe no significant change in overall throughput with
ITS. Due to less synchronization and potentially there being
more helpers, the latency at which individual queue operations
complete is noticeably reduced.

E. Atomics on ARM Architecture

As pointed out earlier, certain architectures rely on LLCS in-
structions to implement the atomic operations queue algorithms
depend on. Due to the different performance characteristics of
such atomics compared to native atomic RMW instructions, we
would expect there to be potentially significant differences in
how various queue algorithms compare on such architectures.
To investigate, we benchmark the BIQ and MSQ algorithms
on an Apple M1 ARM CPU. As BIQ heavily relies on FAA
while MSQ exclusively uses CAS, we would expect these two
candidates to be representative of the range of behaviors one
might encounter.
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Figure 6: Effect of ITS on a NVIDIA GeForce RTX 2080 SU-
PER. The BWD experiences reduced performance with ITS as
a result of increased contention from more queue operations
being executed concurrently. Performance for MSQ meanwhile
is mostly unaffected. Due to the lack of wave-level synchro-
nization, ITS generally results in reduced latency.

The Apple M1 supports the Armv8.1 Large System Exten-
sions (LSE) [26], which add native atomic RMW instructions.
We compiled the same benchmark once with LSE enabled and
once with LSE disabled. With LSE, the compiler will use native
RMW atomics, turning LSE off will cause the compiler to
fall back to LLCS instructions. We verified that the generated
machine code only differs in the instructions used for the
respective atomic operations. The only other differences we
found were minor shifts in register and address allocation as a
consequence of the changes around atomic operations.

Thus, we can now compare the exact same benchmark
on the exact same machine with the only difference being
whether LLCS or native RMW atomics are being used. Figure 7
shows the results for a balanced workload using our vectorized
mapping. Similar trends, albeit less pronounced, were observed
with the scalar mapping. As expected, both throughput as well
as latency significantly improve for BIQ when using native
RMW atomics. The algorithm is designed to take advantage
of FAA. With LLCS, only one contending FAA can succeed
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Figure 7: Effect of using native atomic RMW operations on
an Apple M1 ARM CPU over LLCS instructions. While BIQ
benefits from native RMW atomics and finds its performance
severely hampered by the need to implement RMW operations
using LLCS instructions, LLCS affords MSQ a unique ability
to fail early, resulting in performance much more competitive
than would otherwise be expected.

at a time and will cause all others to fail and require a retry.
As contention rises, this quickly turns into a bottleneck.

MSQ performance, however, increases dramatically when
using LLCS instructions. The MSQ is built around CAS
retry loops and our implementation takes advantage of weak
CAS where possible. If another thread interferes at any point
during an attempted queue operation, the algorithm needs to
retry the entire operation. When using LLCS, interference by
another thread will immediately cause the weak CAS to fail
spuriously. The native CAS, on the other hand, must wait for
the hardware to resolve contending operations before being
able to even detect that a retry is required, which explains the
lower throughput and higher latencies.

Thus, while BIQ behaved as expected, somewhat counter-
intuitively, it may be advantageous to avoid LSE extensions
and take advantage of LLCS for highly-contended weak CAS
operations in MSQ and similar style algorithms on ARM and
other architectures that offer both kinds of instructions.



VI. CONCLUSION

We have presented the design and implementation of AnyQ,
an evaluation framework for concurrent queue algorithms.
AnyQ enables us to express concurrent queue algorithms and
benchmarks in a way that allows for automatic mapping to a
wide range of target architectures. As a result, it is now possible
to easily study and compare the performance of different queue
algorithms on a variety of machines.

Using the developed framework, we set out to re-evaluate var-
ious existing queue algorithms to both provide updated results
on their performance as well as address unanswered questions.
We showed that concurrent queues can benefit significantly
from SIMD execution on CPUs, and that queue algorithms
designed for the GPU, such as the Broker Queue, perform
similarly well on modern CPUs. We found similarities and
differences in how queue algorithms perform on architectures
not considered in their original design and evaluation.

Our results suggest that LLCS may offer unique abilities and
should be considered more than simply a way to implement the
usual atomic FAA and CAS primitives. LLCS also avoids the
ABA problem that has been plaguing concurrent algorithms for
a very long time [27]. We believe that the design of algorithms
that specifically take advantage of these abilities presents an
interesting avenue for future research. While architectures like
ARM with LSE today offer both kinds of instructions as an
accidental consequence of their evolution, it may turn out
desirable for instruction set architectures in the future to offer
both native atomic RMW as well as LLCS instructions.

All source code and data is available as open source software
at https://anydsl.github.io/anyq. We hope that it may serve as a
starting point for the community to build a common repository
of concurrent queue algorithms and benchmarks. We openly
invite contributions of additional queue algorithms, benchmarks,
and results. Such a repository would move us closer to the
goal of ensuring continued evaluability of queue algorithms
as the landscape of computing hardware keeps evolving. It
could provide a wider audience of developers with a quick and
easy way to find out which queue algorithm to use by writing
an AnyQ benchmark modeling their application’s workload.
And it would offer a base for future research to develop and
easily evaluate concurrent queue algorithms in a way that is
representative, comparable, and reproducible.
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