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Figure 1: A scene featuring complex indirect illumination (lamp shade) and caustics (glass) – a prime use-case of bidirectional algorithms.
We show two such methods: bidirectional path tracing with splitting (top row), and vertex connection and merging (bottom row). (a) Both
exhibit problems with MIS in this scenario, due to correlation by shared path prefixes. (b) Our simple heuristic solves these problems.

Abstract
Combining diverse sampling techniques via multiple importance sampling (MIS) is key to achieving robustness in modern
Monte Carlo light transport simulation. Many such methods additionally employ correlated path sampling to boost efficiency.
Photon mapping, bidirectional path tracing, and path-reuse algorithms construct sets of paths that share a common prefix. This
correlation is ignored by classical MIS heuristics, which can result in poor technique combination and noisy images. We propose
a practical and robust solution to that problem. Our idea is to incorporate correlation knowledge into the balance heuristic,
based on known path densities that are already required for MIS. This correlation-aware heuristic can achieve considerably
lower error than the balance heuristic, while avoiding computational and memory overhead.

CCS Concepts
• Computing methodologies → Rendering; Ray tracing;
Keywords: light transport, bidirectional path tracing, VCM, multiple importance sampling, path correlation

1. Introduction

Monte Carlo integration is the standard approach to physically
based rendering. The global illumination in a scene can be esti-
mated by tracing randomly sampled light transport paths. Paths can
be generated in a variety of ways: unidirectionally from the cam-
era [Kaj86], via guiding [Jen95; VKŠ*14], or from both the camera
and the emitters [VG95a; HPJ12; GKDS12]. Different path sam-
pling techniques can be combined via multiple importance sam-
pling (MIS) [VG95b], which is a key ingredient in achieving ro-
bustness under varying illumination and scene configurations.

Some rendering algorithms achieve efficiency by generating cor-
related paths. They reduce the sampling cost by constructing paths
that share a common prefix. This is the overarching idea behind
photon mapping [Jen96], path splitting [AK90] or distribution ray
tracing [CPC84], and path reuse methods [WGGH20; KDB14].
Many of these approaches also make use of MIS to increase ro-
bustness, e.g. vertex connection and merging (VCM) [GKDS12;
HPJ12], or the method of Popov et al. [PRDD15] which utilizes
splitting in bidirectional path tracing (BDPT) [VG95b] by tracing
multiple shadow rays from the same point. However, MIS and the
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popular balance heuristic operate under the assumption of indepen-
dent sampling, i.e. no correlation between individual paths. Lack-
ing a practical alternative, the aforementioned algorithms rely on
the balance heuristic. This is problematic as illustrated in Fig. 1: the
heuristic produces poor combination weights, creating an overly
dark image with strong outliers. Given a splitting technique that
concatenates a single prefix with n suffix paths, the balance heuris-
tic treats these as n mutually independent full paths. It is oblivious
to the increased variance resulting from using a shared prefix.

The impact of correlation on MIS has received little attention in
prior work. Even the recently derived optimal weights [KVG*19]
assume mutually independent paths and samples. For the two ex-
amples in Fig. 1, ad-hoc solutions have been proposed [PRDD15;
JG18; Jen19]. Besides being specific to one of the two cases, these
approaches can produce unsatisfactory results or rely on unintu-
itive parameters. A more general and effective solution would be
to incorporate variance estimates [GGSK19], but as we will dis-
cuss later, that approach is neither robust nor efficient enough to be
practical in the two cases in Fig. 1.

In this paper, we investigate when and why correlated paths are
problematic for MIS and propose a simple and effective heuristic as
a remedy that is based solely on sampling densities. Even without
proof of optimality, the empirical evaluation of our heuristic shows
consistent improvement over the balance heuristic and prior work
across all our test scenes. Implementing our heuristic is straightfor-
ward as it relies on the same quantities as the balance heuristic. It
also adds no noteworthy computation or memory overhead.

2. Background and problem statement

We begin with a brief overview of path-space Monte Carlo light
transport integration, and discuss when and why correlated paths
are problematic for multiple importance sampling.

2.1. Monte Carlo path integration

The value of each pixel in a rendered image can be expressed as an
integral over the space of all light-carrying paths x [Vea97]:

F =
∫
P

f (x)dµ(x), (1)

where P includes all paths x = x0x1 . . .xk of any length k and µ(x)
is the product area measure. An ordinary Monte Carlo estimator
for this integral samples n paths xi with densities p(xi) and has the
form:

〈F〉n =
n

∑
i=1

f (xi)

np(xi)
. (2)

The error of this estimator is characterized by its variance. If the
n paths are mutually independent, i.e., uncorrelated, the variance
reads:

V[〈F〉n] =
∫
P

f 2(x)
np(x)

dµ(x)− 1
n

F2. (3)

That is, the variance depends on the choice of probability density
function (PDF) p, and it decreases inversely proportionally to the
number n of uncorrelated samples (i.e., paths).
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(a) A single path x (b) One of 3 paths formed via splitting

Figure 2: Without splitting (a), we trace independent full paths.
Splitting (b) generates multiple full paths xi = yzi that share a pre-
fix y (in blue) and have mutually independent suffixes zi (in orange).

2.2. Path correlation through splitting

Some rendering methods increase efficiency by sampling corre-
lated paths. One such example is path splitting [AK90; VK16]
which constructs n paths xi = yzi that all share a prefix y, each
having an independently sampled suffix zi (see Fig. 2). Splitting
estimators take the form

〈F〉split =
n

∑
i=1

f (yzi)

np(yzi)
. (4)

Due to the shared prefix y, the paths xi are no longer mutually in-
dependent – they are correlated.

The variance V[〈F〉split] of the splitting estimator can be ex-
pressed as a weighted sum of the variance Vy due to the prefix and
the variance Vz due to the suffix [BM97]. The prefix variance,

Vy := V
[

Fz(y)
p(y)

]
=

∫
P

F2
z (y)
p(y)

dµ(y)−F2, (5)

is the variance of a hypothetical estimator that knows the exact in-
tegral Fz(y) =

∫
P f (yz)dµ(z) over all suffix paths. The suffix vari-

ance is the expectation of the variance of a primary estimator 〈F〉1
over all possible prefixes y:

Vz := E [V [〈F〉1 | y]] =
∫
P

f 2(x)
p(x)

dµ(x)−
∫
P

F2
z (y)
p(y)

dµ(y). (6)

While with independent sampling the total variance is inversely
proportional to the sample count, i.e., V[〈F〉n] = 1

n
(
Vy +Vz

)
, split-

ting reduces only the suffix variance:

V[〈F〉split] =Vy +
1
n

Vz. (7)

Splitting can still be an efficient strategy, particularly when Vy is
low, e.g., due to highly glossy bounces in the prefix y, or if the cost
of sampling the prefix is high.

Expanding the terms in Eq. (7), we can write the variance in a
form similar to that of independent sampling (3):

V [〈F〉split] =
∫
P

f 2(x)
np(x)

dµ(x)+ n−1
n

∫
P

F2
z (y)
p(y)

dµ(y)−F2. (8)

Compared to the variance of independent sampling (3), the value is
increased by the second integral term – the covariance. Intuitively,
the impact of the correlation depends on the value of p(y) com-
pared to the full-path density p(x). This insight is a key motivation
behind our heuristic presented in Section 3.
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Figure 3: A box with diffuse materials and a small area light (shining upwards) positioned far from the ceiling (top) and close to it (bottom).
We render length-3 paths and consider vertex merging techniques only. The variance of merging at x2 increases as the light moves closer to
the ceiling, resulting in a dark image with all energy focused in a few outliers. The classical balance heuristic does not capture that increased
variance and assigns equal weights to the two merging techniques in both scene configurations, producing a poor combination in the latter.

2.3. Multiple importance sampling

Importance sampling can reduce the variance of a Monte Carlo es-
timator by using a sampling technique whose density p is (at least
roughly) proportional to the integrand. While in practice a single
technique cannot achieve perfect proportionality, several approxi-
mate techniques can be combined together via multiple importance
sampling (MIS). The multi-sample MIS estimator [VG95b]

〈F〉MIS = ∑
t

nt

∑
i=1

wt(xt,i)
f (xt,i)

nt pt(xt,i)
(9)

evaluates nt samples with density pt from each technique t. The
balance heuristic [VG95b],

wt(x) =
nt pt(x)

∑k nk pk(x)
, (10)

is a provably good choice for the weighting function, provided
that the nt samples from each technique are mutually indepen-
dent [Vea97]. Unfortunately, when the samples (for some tech-
niques) are correlated, the balance heuristic drifts farther from op-
timality. The reason is that it minimizes only the second moment
in the variance of 〈F〉MIS, i.e., the first integral in Eqs. (3) and (8).
While this is reasonable with independent samples, ignoring the
second integral in (8) – the covariance – can yield a poor technique
combination. The balance heuristic effectively assumes that both
Vy and Vz decrease with increasing n, while in reality only Vz does.
Nevertheless, lacking an alternative, the balance heuristic is used
even in cases involving correlated techniques [GKDS12; HPJ12;
PRDD15; NID20].

2.4. Case study: Vertex connection and merging

Photon mapping [Jen96] is a popular method to render caus-
tics [ŠK19; EK20; GPSK18]. It is a splitting estimator: each camera
prefix subpath branches out into multiple (photon) suffix subpaths.
The difference to the classical splitting estimator (4) is that the suf-
fixes are sampled from the emitters. Vertex connection and merging
(VCM) [GKDS12; HPJ12] constructs one such “merging” estima-
tor at each vertex on a camera subpath, combining all estimates
using the balance heuristic. While in path tracing the splitting fac-
tor n is typically small [VK16], in VCM it is in the order of millions
(i.e., the number of subpaths started from the emitters).

It only takes a simple scene to demonstrate the catastrophic fail-
ure of MIS with correlated samples. Figure 3 shows a diffuse box
illuminated by a small area light source at two different positions:
near the floor (top row) and near the ceiling (bottom row). We con-
sider length-3 paths x = x0x1x2x3 (i.e., one-bounce indirect illu-
mination) and vertex merging techniques only. For each path there
are thus two possible techniques, merging at x1 and x2 respectively.
We compare three variants of the balance heuristic for combining
these two techniques: classical (10), variance-aware [GGSK19],
and our proposed (introduced in Section 3). As the light source
moves closer to the ceiling, the variance of merging at x2 explodes
as the camera subpath is less likely to find the shrinking, brightly
illuminated spot on the ceiling. However, this is not reflected in the
weights of the classical balance heuristic which ends up producing
an extremely noisy image.

The two techniques differ only in the direction in which the edge
x1x2 is sampled. And the corresponding path densities are equal
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when the vertices x1 and x2 are both diffuse, since in that case
p(x1→x2) = p(x2→x1) = G(x1↔ x2)/π, where G is the geome-
try term (which is symmetric w.r.t. x1 and x2). The classical balance
heuristic thus assigns equal weights to the techniques, regardless of
the geometry of the actual path.

While the variance-aware weights [GGSK19] can solve this
problem in this simple case, they are not practical. They require
computing variance estimates of every single merging technique,
for every path length. Crucially, these estimates need to be accu-
rate, which is expensive for techniques that produce nothing but
outliers. (We have used 128 samples/pixel for the experiment in
Fig. 3.) Hence, this method is not efficient in this setting.

The approach of Popov et al. [PRDD15], which sets n = 1 in
the classical heuristic (10), would not work. For one, n cancels out
when only merging techniques are being combined. Worse, when
vertex connection techniques are included, setting n = 1 effectively
disables all merging techniques, reverting VCM to bidirectional
path tracing. The heuristics of Jendersie et al. [JG18; Jen19] ad-
dress this specific failure case but use unintuitive parameters and
can sometimes perform worse than the classical balance heuristic.

3. Correlation-aware balance heuristic

Our goal is to incorporate correlation into MIS in a practical,
lightweight, and robust manner. The optimal way of doing so would
involve computing a large number of complex integrals, which has
been shown to be impractical [PRDD15]. As an alternative, we pro-
pose a heuristic that, like the balance heuristic, relies only on read-
ily available path densities. It utilizes the prefix and suffix subpath
densities in addition to the full-path density. The key to making this
approach work is to convert these densities into unitless and hence
comparable quantities.

Our idea is to apply a correction to the balance heuristic (10), in
a similar fashion to Grittmann et al. [GGSK19]:

wt(x) =
ct(x)nt pt(x)

∑k ck(x)nk pk(x)
, (11)

where the correction factor ct(x) has the bounds

1
nt
≤ ct(x)≤ 1. (12)

A group of correlated paths cannot yield higher variance than a
single path, hence the lower bound of 1/nt . They also cannot reduce
the variance more than independent samples do, hence the upper
bound of one. In the following, we motivate our heuristic to find a
suitable ct(x) and describe how to evaluate it. In essence, we keep
ct close to its lower bound of 1/nt unless we have evidence of low
correlation. This follows the reasoning of Popov et al. [PRDD15].

3.1. Density-based correction factor

The classical MIS heuristics, including the balance heuristic, are
based on the assumption that high sampling density implies low
variance [Vea97]. We expand on this idea by inspecting the sub-
path densities to measure how much splitting increases the estima-
tor variance over independent sampling. For paths with high prefix
density (e.g. with specular interactions), the impact on the variance
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Figure 4: Given a path x = yz (in black), we want to compute the
probability of sampling a similar path, i.e., one falling within the
shaded region. We compute the probability that each edge would
produce a vertex x′i that falls within a disc around the actual vertex
xi. The blue and orange lines visualize how these are computed for
the camera prefix and the light suffix, respectively.

is expected to be low. Conversely, low prefix density (e.g. due to
a diffuse bounce) indicates high prefix variance Vy, which reduces
the impact of the 1/n factor in Eq. (7). The correction factor ct(x)
should thus be roughly proportional to the density of the prefix y.

Let P(x) ∈ [0,1] be a measure of path density which we will
define below. For a given path x, we set the correction factor ct(x)
to the ratio of the prefix density to the full-path density:

ct(x) = max
(

P(y)
P(x)

,
1
nt

)
, (13)

clipping it to the known lower bound of 1/nt . We require P(y) ≤
P(x), which retains the balance heuristic (i.e., ct(x) = 1) when the
prefix y has high relative density. This is the case when, e.g., the
prefix is a glossy subpath and the suffix is diffuse. If the prefix
density is low, e.g., due to diffuse interactions (as in Fig. 3), the
MIS weight (11) is reduced – unless the suffix undergoes even more
diffuse interactions.

3.2. Unitless path density measure

We cannot use the raw densities of x and y directly in Eq. (13),
because they have different units (due to the different number of
vertices) and are scale-dependent. We therefore consider the unit-
less probability to sample a similar (sub)path instead. That is, P(x)
is the probability that each vertex x′i of another path x′ lies within
distance r to the corresponding vertex xi (see Fig. 4). For the sub-
paths y and z these are respectively the products

P(y) = ∏P(yi−1→ yi) and P(z) = P(z0)∏P(zi−1→ zi), (14)

where P(xi−1→ xi) is the probability that a x′i lies within radius
r around xi, when sampled from xi−1. The probability for the full
path is given by basic probability laws:

P(x) = P(z ∩ y) = P(z)+P(y)−P(z)P(y). (15)

Computing the probability for each vertex in Eq. (14) exactly
would involve costly integration, but a cheap approximation is
available [GKDS12]:

P(xi→ x j) =
∫

Dr

p(xi→ x)dx ≈ min
(

πr2 p(xi→ x j),1
)
. (16)

The approximation assumes that the sampling density is constant
inside the r-neighborhood Dr of xi, which is a disk. Clamping the
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result to one ensures we get a valid probability. Such clamping oc-
curs when the probability density is focused in a region smaller than
the disk. In practice, if the radius is well chosen this only happens
for highly glossy scattering and small area lights.

3.3. Radius

What remains is setting the radius r in Eq. (16). The problem is
similar to choosing a good radius for photon mapping: Finding the
best possible value is difficult, but simple heuristics can go a long
way. While in photon mapping the radius trades bias for variance,
we have different considerations to make. If the radius is too large,
the probabilities will all be close to one. This would make P(x)≈ 1,
and we revert to the balance heuristic. If, on the other hand, the
radius is too small, we penalize glossy bounces too much.

We could set the radius as a fraction of the scene extent; how-
ever, this approach is not robust, e.g., when the camera sees
only a small part of a large scene. An alternative is to use pixel
footprints [ŠOHK16]. The resulting radius then depends on the
image resolution and the camera field of view. But increasing
the image resolution should not alter P(x) as it has little ef-
fect on the path sampling variance. Therefore, we replace the
pixel footprint by a related quantity independent of the resolution
or field of view – the footprint of a one-degree viewing angle:

r := d tan
π

180
≈ 0.0175d, (17)

d

r1◦

y0 y1

where d = ‖y1−y0‖ is the distance to the hit point along the cam-
era ray, as sketched on the right above.

4. Evaluation

We have applied our correlation-aware balance heuristic (11) to two
rendering algorithms that sample correlated paths: vertex connec-
tion and merging (VCM) and bidirectional path tracing (BDPT)
with splitting. In both methods, evaluating the correction factor (13)
is straightforward as it relies only on densities that the classical bal-
ance heuristic already requires. We implemented the methods using
the SeeSharp rendering framework. The source code of our experi-
ments is included in the supplemental and also available on GitHub.

Our heuristic does not add any measurable overhead over the
balance heuristic. In the results presented below, we use the same
set of path samples when comparing the various MIS combinations
on each scene. Thus, any differences between the images are solely
due to differences in the weighting.

4.1. Vertex connection and merging

Our VCM implementation follows the original formulation
[GKDS12; HPJ12], with the exception that we forego merging at
the second camera vertex, y1. This technique produces an image
identical to light tracing but with added bias due to blurring. We
compare our heuristic (11) to the classical balance heuristic (10),
the variance-aware balance heuristic [GGSK19], as well as the ap-
proach of Jendersie [Jen19] (which supersedes that of Jendersie and
Grosch [JG18]).

We show results on three scenes in Fig. 5. On ROUGH GLASSES

and MINIMALIST ROOM, the balance heuristic (a) suffers from the
same failure as in Fig. 3. On the HOME OFFICE scene, it works
well despite the indirect illumination around the walls close to the
ceiling: the light source is large, so the variance is high, the density
is low, and merging on the ceiling is beneficial.

The weighting scheme of Jendersie [Jen19] (b) eliminates the
outliers in the top two scenes. Unfortunately, on the ROUGH

GLASSES scene, which features surfaces with varying roughness,
it also deteriorates the quality of glossy reflections compared to the
balance heuristic (bottom zoom-ins). This limits the utility of that
weighting scheme, since glossy reflections of caustics are a key
strength of VCM. The scheme also performs somewhat worse than
the balance heuristic on the HOME OFFICE scene.

More consistent improvements over the balance heuristic can
be achieved with variance-aware weighting (c) [GGSK19]. How-
ever, the variance estimates this method uses are inaccurate, so it
struggles at removing outliers completely, as seen in the MINIMAL-
IST ROOM scene. Additionally, the high computational overhead of
variance estimation becomes a concern at larger path lengths. For
the MINIMALIST ROOM and HOME OFFICE scenes we cap the path
length to five, which is somewhat expensive but still manageable
for the variance-aware scheme. However, highly glossy scenes re-
quire simulating much longer paths. With up to ten bounces on the
ROUGH GLASSES scene, variance-aware weighting takes roughly
4.7× longer to render than the balance heuristic or our approach.

Our heuristic (d) successfully eliminates outliers and retains
glossy reflections at all roughness levels. It never performs worse
than the balance heuristic in any of our test scenes. The only case
where it does not deliver the best variance reduction is in the re-
gion shown in the top zoom-ins of the MINIMALIST ROOM scene.
There, the distances and angles between the wall, lamp shade, and
light source are similar, and they are all diffuse. The path density
does not fully capture the differences in variance.

In Fig. 6 we explore different choices for the radius parameter in
our heuristic. We have found our default choice (17) to be close to
optimal on most scenes. In very uniformly lit scenes, e.g. TARGET

PRACTICE, a larger radius produces slightly better results. There,
diffuse bounces from the camera add little variance and should be
penalized less. This is a limitation of our heuristic as in those cases
a low prefix density does not indicate high variance.

4.2. Bidirectional path tracing

For our second application, we reproduce the correlation problem
of BDPT with multiple connections per camera vertex [PRDD15]
in a simple setting: we use multiple shadow rays for next-event
estimation. In Fig. 7 we compare our heuristic against setting
n = 1 in the balance heuristic [PRDD15] and the variance-aware
weights [GGSK19]. Again, we feed the same set of path samples to
all methods. To highlight the problem and make noise more visible,
we use 100 shadow rays per camera vertex. Lower counts produce
similar results, only less pronounced. Figure 1 shows an example
with 10 shadow rays, and Fig. 8 compares different splitting fac-
tors. All full-size images are included in the supplemental material.

The balance heuristic produces outliers in the LIVING ROOM
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ROUGH GLASSES

relMSE (crop)relMSE (crop) 1.40 (1.00×)1.40 (1.00×) 0.27 (0.19×)0.27 (0.19×) 0.67 (0.48×)0.67 (0.48×) 0.38 (0.27×)0.38 (0.27×)

relMSE (crop)relMSE (crop) 0.48 (1.00×)0.48 (1.00×) 1.15 (2.37×)1.15 (2.37×) 0.45 (0.93×)0.45 (0.93×) 0.44 (0.91×)0.44 (0.91×)
relMSE, time

Reference

2.62 (1.00×), 84s

(a) Balance heuristic

0.60 (0.23×), 84s

(b) [Jen19]

1.76 (0.67×), 400s

(c) [GGSK19]

0.24 (0.09×), 84s

(d) Ours

MINIMALIST ROOM

relMSE (crop)relMSE (crop) 3.92 (1.00×)3.92 (1.00×) 0.35 (0.09×)0.35 (0.09×) 1.32 (0.34×)1.32 (0.34×) 0.51 (0.13×)0.51 (0.13×)

relMSE (crop)relMSE (crop) 5.14 (1.00×)5.14 (1.00×) 0.29 (0.06×)0.29 (0.06×) 2.40 (0.47×)2.40 (0.47×) 0.28 (0.05×)0.28 (0.05×)
relMSE, time 4.62 (1.00×), 44s 0.16 (0.04×), 44s 3.10 (0.67×), 56s 0.16 (0.04×), 44s

HOME OFFICE (a.k.a. The New Normal)

relMSE (crop)relMSE (crop) 0.48 (1.00×)0.48 (1.00×) 0.52 (1.09×)0.52 (1.09×) 0.45 (0.94×)0.45 (0.94×) 0.41 (0.86×)0.41 (0.86×)

relMSE (crop)relMSE (crop) 0.15 (1.00×)0.15 (1.00×) 0.16 (1.06×)0.16 (1.06×) 0.15 (0.98×)0.15 (0.98×) 0.14 (0.91×)0.14 (0.91×)
relMSE, time 0.44 (1.00×), 52s 0.47 (1.07×), 52s 0.42 (0.96×), 70s 0.40 (0.91×), 52s

Figure 5: Equal-sample comparison of different MIS heuristics for VCM (ours in bold). We provide error values (relMSE) per crop and over
the entire image. The values in parentheses are relative to the balance heuristic (lower is better). In contrast to previous work, our heuristic
is consistently better than the balance heuristic, providing significant error reduction in failure cases and slight improvement otherwise.
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MODERN HALL TARGET PRACTICE HOME OFFICE

MINIMALIST ROOM INDIRECT ROOM ROUGH GLASSES

Figure 6: Error relative to the balance heuristic (lower is better) when using different radii for our heuristic. Each line corresponds to one
scene. The values on the x-axis are scaling factors applied to the radius computed using Eq. (17). Our default choice (dashed line) is close to
the optimal for all scenes except TARGET PRACTICE. That scene features uniform illumination where diffuse bounces from the camera add
little variance. A larger radius penalizes such bounces less and improves that specific result, but performs notably worse on all other scenes.
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LIVING ROOM

relMSE (crop)relMSE (crop) 0.06 (1.00×)0.06 (1.00×) 0.09 (1.56×)0.09 (1.56×) 0.06 (1.02×)0.06 (1.02×) 0.07 (1.12×)0.07 (1.12×)

relMSE (crop)relMSE (crop) 0.28 (1.00×)0.28 (1.00×) 0.07 (0.25×)0.07 (0.25×) 0.20 (0.72×)0.20 (0.72×) 0.07 (0.25×)0.07 (0.25×)
relMSE, time

Reference

19.01 (1.00×), 195s

(a) Balance heuristic

4.78 (0.25×), 195s

(b) [PRDD15]

7.24 (0.38×), 220s

(c) [GGSK19]

11.93 (0.63×), 195s

(d) Ours

MODERN HALL

relMSE (crop)relMSE (crop) 0.06 (1.00×)0.06 (1.00×) 0.09 (1.45×)0.09 (1.45×) 0.05 (0.86×)0.05 (0.86×) 0.08 (1.21×)0.08 (1.21×)

relMSE (crop)relMSE (crop) 0.20 (1.00×)0.20 (1.00×) 0.46 (2.25×)0.46 (2.25×) 0.21 (1.03×)0.21 (1.03×) 0.27 (1.29×)0.27 (1.29×)
relMSE, time 0.08 (1.00×), 155s 0.10 (1.31×), 155s 0.07 (0.93×), 210s 0.08 (1.09×), 155s

Figure 7: Equal-sample comparison of different MIS heuristics for BDPT with 100 shadow rays for next-event estimation. Although the
improvement is smaller in this case compared to VCM in Fig. 5, our heuristic still performs best on average.

OursOurs
relMSE:relMSE: 0.250.25

relMSE:relMSE: 0.380.38
Balance heur.Balance heur.

OursOurs
relMSE:relMSE: 0.250.25

relMSE:relMSE: 1.011.01
Balance heur.Balance heur.

OursOurs
relMSE:relMSE: 0.250.25

relMSE:relMSE: 1.541.54
Balance heur.Balance heur.

10 shadow rays 50 shadow rays 100 shadow rays

Figure 8: Zoom-ins of the INDIRECT ROOM scene from Fig. 1 ren-
dered with different shadow-ray counts. With the balance heuristic,
variance increases when more rays are used.

scene due to paths splitting on the lamp shade after bouncing off the
diffuse wall (bottom zoom-ins). To eliminate these outliers, Popov
et al. [PRDD15] set n = 1 in the balance heuristic. Unfortunately,
doing so introduces new outliers in the mirror reflection (top zoom-
ins). Camera prefixes that bounce off the highly glossy mirror do
not increase variance, hence the weight of such paths should not
be reduced. The presence of outliers makes the variance estimates
in the variance-aware weighting unreliable, preventing it from im-
proving noticeably over the balance heuristic. Our method consis-
tently improves on the balance heuristic over the entire image.

The MODERN HALL scene poses an interesting challenge. Il-
luminated by numerous light sources from various directions, the
variance in the camera prefix is low despite the diffuse interactions.
Our heuristic captures most, though not all of that effect. This is
the only scene where our heuristic is outperformed by the balance
heuristic. Our result is still closer to the balance heuristic than the
overly conservative approach of Popov et al. In this scene, the only

method that manages to fully retain the balance-heuristic perfor-
mance are the more costly variance-aware weights.

5. Limitations and future work

The BDPT application shows the limitations of our simple heuris-
tic. If a scene is dominated by uniform and diffuse illumination, as
is the case in the MODERN HALL, the sampling density is a poor
indicator of the variance, as zero variance would be achieved with
a rather uniform density. That is, a low density can sometimes still
yield low variance. By design, our heuristic does not reflect that.
Nevertheless, it performs consistently better than the more aggres-
sive solution of Popov et al., while remaining cheap to evaluate.

We have restricted our discussion to surface scattering from finite
light sources; however, extending our heuristic to infinite lights or
volumetric scattering [KGH*14] should be straightforward. All that
is needed is an analogy of the disc approximation used to make the
sampling densities unitless and comparable. Applying our ideas to
integration problems beyond rendering could also be interesting.
However, due to the complex ways correlation affects variance, it
is questionable whether a general and practical solution is possible.

We do not have hard proofs about the optimality of our heuris-
tic. The result is bounded by the upper bound of Popov et
al. [PRDD15], and we only deviate from that if we have reason to
believe the correlation does not increase variance. While our empir-
ical results might be sufficient evidence to warrant the use in prac-
tice, it is still worthwhile to look for additional guarantees, or alter-
native heuristics based on a more rigorous mathematical derivation.

Multiple importance sampling in the context of VCM also ig-
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nores another important aspect: the bias due to merging. Account-
ing for this bias in the MIS weights could help reduce artifacts.
In that direction, it would be interesting to augment the variance-
aware weights by bias estimates [HJJ10], or to make our simpler
heuristic bias-aware.

Lastly, having more robust MIS weights opens up possibilities
for more creative correlated rendering algorithms. Some prior work
has avoided correlation, to also avoid issues with MIS [NID20]. Al-
lowing correlation and utilizing our heuristic could provide addi-
tional improvements to such methods. Furthermore, there has been
some work on guiding photons based on MIS-weighted contribu-
tions [GPSK18; ŠK19]. The efficiency and/or robustness of such
applications could also benefit from our heuristic.

6. Conclusion

We propose a simple heuristic to account for correlation due to path
splitting in multiple importance sampling for light transport simu-
lation. Our heuristic is efficient and relies on quantities that are al-
ready required by the balance heuristic. In contrast to prior work,
our approach has no overly harmful effects on the technique com-
bination in cases where the correlation has little or no impact on
the variance. Implementing our heuristic takes little effort and in-
troduces negligible overhead.
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