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Figure 1: Our compiler offers support for a variety of language features usually unavailable in graphical shaders.

Abstract

Graphics APIs have traditionally relied on shading languages, however, these languages have a number of fundamental defects
and limitations. By contrast, GPU compute platforms offer powerful, feature-rich languages suitable for heterogeneous compute.
We propose reframing shading languages as embedded domain-specific languages, layered on top of a more general language
like C++, doing away with traditional limitations on pointers, functions, and recursion, to the benefit of programmability. This
represents a significant compilation challenge because the limitations of shaders are reflected in their lower-level representations.
We present the Vcc compiler, which allows conventional C and C++ code to run as Vulkan shaders. Our compiler is complemented
by a simple shading library and exposes GPU particulars as intrinsics and annotations.
We evaluate the performance of our compiler using a selection of benchmarks, including a real-time path tracer, achieving
competitive performance compared to their native CUDA counterparts.

CCS Concepts
• Software and its engineering → Compilers; • Computing methodologies → Rendering; Ray tracing;

1. Introduction

Even though both real-time graphics and compute APIs run on the
same hardware, and share many concepts and functionalities, the
finer points of their programming models are surprisingly divergent.

The evolution of programming models for graphics has tracked
the hardware’s, which has evolved from fully fixed-function 3D ac-
celerators to increasingly programmable and general-purpose SIMD
machines. Because of this smooth transition, happening over a long
time, and the practical demands of backwards compatibility, a lot
of vestigial features and designs persist in contemporary graphics
APIs [Sam17].

The main interest of this paper, shading languages, are domain-
specific languages with C-like syntax, used to define the pro-
grammable stages of graphics pipelines. Most shading languages
still in use today like GLSL [Kes05] and HLSL [PM03] were cre-
ated when the scope of shader programs was still small, leading
to them forgoing many features such as pointers, recursion, or vir-
tual functions that could not be effectively supported. These feature
omissions have mostly stood, meanwhile the scope of shader pro-
grams has not stayed small, leading to considerable pains scaling up
programs.

GPU compute APIs have taken a shorter, more straightforward
path to where they are now. They offer a generic SIMT program-
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Figure 2: Diagram of the compromises that must be made when
deciding on a GPU programming interface.

ming model, operating on abstract work-items forming a 3D grid.
As the application domain is not known, programming models al-
lowed the user to define arbitrary complex data structures and con-
trol flow from the start, including pointer support. There are few
domain-specific features such as those found in graphical APIs, in
particular texture support is very limited and the conventional ren-
dering pipeline is not accessible. This is a practical issue for writing
real-time graphics applications, such as games, because it means ig-
noring the hardware acceleration that graphics APIs leverage, which
is a tough proposition for achieving ideal performance.

As discussed in more detail in Section 2, all mainstream pro-
gramming models fall pretty decidedly in one category or the other.
Due to this fractured software landscape, application developers
must make compromises between portability, access to hardware
features and language expressivity. When targeting the GPU, there
is no solution that provides the best of all worlds. Figure 2 visually
represents the current state of the ecosystem and shows where our
solution would fit.

Graphics APIs do support so-called “compute shaders” which
work like the dedicated compute grid models, but use conventional
shading languages. This is a significant obstacle for the reasons
we have outlined earlier. If we could use a graphics API with a
substantially improved language to write shaders in, ideally a C++
dialect comparable to those used in GPU Compute, there would be
a viable path forward for a unified compute and graphics API.

One of the motivations for this work is to study the feasibility
of making Vulkan into that “best of both worlds” API, tackling
the shading language issues by replacing them outright with C++,
although our approach is applicable to other languages such as Rust.

The overall thesis of this work is that current shading languages
are needlessly restrictive when considering modern hardware, and
that an approach based on extending a general-purpose language
with domain-specific constructs is conceptually simpler, no less
effective and opens new exciting possibilities.

In summary, this paper makes the following contributions:

• We offer an overview of the current landscape of GPU program-
ming languages in Section 2 and related work in Section 3.

• In Section 4 we elaborate on the practical implication of using
C++ as embedded (rather than external) shading language.

• Compiling C++ shaders to the limited environment of Vulkan
SPIR-V shaders comes with a number of technical challenges,
tackled by our compiler. We study those in Section 5.

• Our prototype implementation successfully demonstrates the over-
all concept, and present various applications in Section 6, includ-
ing reference implementations in conventional technologies.

2. Background

CUDA [Kir*07] is a well-established platform for GPU computing.
CUDA offers a “single-source” programming model: functions can
be compiled for the CPU, GPU, or both, depending on annotations.
This avoids duplicating shared logic and makes porting existing
applications to the GPU easier. To further ease the burden on pro-
grammers porting their code to the GPU, CUDA supports most of C
and C++ language features, including full pointer support, function
pointers, and recursion. goto statements are also supported.

OpenCL and SYCL are cross-platform standards focused on pro-
gramming parallel processors. OpenCL [Mun09] uses a non-unified
programming model: GPU kernels are written in a specific dialect
of C or C++, and are compiled separately from host code. Un-
like in CUDA, recursion and function pointers are not supported.
SYCL [RL16] is a C++ library that provides abstractions for writ-
ing single-source heterogeneous programs in C++, comparable to
what CUDA offers. While SYCL was initially explicitly tied to
OpenCL, this requirement has since been relaxed to facilitate SYCL
implementations on other platforms.

GLSL and HLSL Graphics APIs such as OpenGL and Vulkan
feature a partially programmable graphics pipeline, with certain
stages implemented by user-defined programs called shaders. Shader
programs are traditionally written in domain-specific languages,
such as OpenGL Shading Language (GLSL) [Kes05; RLG*09] or
High Level Shading Language (HLSL) [PM03]. These languages
are syntactically similar to C [Sam17], but do not offer support for
pointers, union types, or recursion. Due to these restrictions, it is
less practical to port existing code to shading languages, and the
ability to share code between the CPU and GPU is hampered.

Metal [App24] is the proprietary API used on Apple devices. It is
similar to APIs such as Vulkan but of note is the fact it uses a C++
dialect for shaders, Metal Shading Language (MSL). Of interest in
this paper is the fact MSL supports pointers and especially function
pointers in shaders, the only documented platform to do so. Metal
also supports recursion, but requires the programmer to specify the
maximal recursion depth. We did not evaluate Metal in detail in this
work, but we note it tackles many of the concepts discussed in this
paper.

SPIR-V [KOK18] is a standardized program representation used
in graphics and compute APIs, including OpenCL and Vulkan.
SPIR-V as a language is similar to LLVM IR, but natively supports
graphics-relevant concepts such as vector and matrix operations,
GPU resource descriptors, and passing data across pipeline stages.
While SPIR-V can be consumed by both compute and graphics
APIs, many instructions and features are optional (called capabili-
ties). These capabilities are arranged in such a way that there are two
significant dialects: a “kernel” and a “shader” dialect, correspond-
ing to OpenCL and Vulkan respectively. Despite being a different
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kind of pipeline, Vulkan compute shaders still use the “shader” di-
alect: Vulkan does not support “kernel” programs at all. Targeting
this dialect presents a major challenge, as it inherits many of the
limitations of conventional shading languages. In this work we are
interested in the “shader” dialect since it is the one Vulkan supports.

3. Related Work

3.1. Languages Targeting Shader Execution

LARSEN’s master thesis [Lar19] implemented a Vulkan backend for
Futhark as an alternative to OpenCL. Rust GPU [Rus] is a promising
project that aims to allow compilation of Rust directly to SPIR-V.

Slang [HFF18] is a new shading language that targets Vulkan. Of
note, Slang features an interface abstraction that can fill the role
of function pointers in certain scenarios. These interfaces are im-
plemented by either specialization or generating a large monolithic
shader. Implementation via actual function pointers is also possible,
but only available on CUDA targets.

3.2. Program Translation to SPIR-V

A number of OpenCL approaches like Clspv [Goo] and Rusticl [Kar]
as well as SYCL implementations such as Sylkan [TGF21] are being
built on top of Vulkan. They face many of the same challenges
tackled in this work, such as structured control flow and logical
addressing. However, they do not present solutions for recursion
and function pointers, as the source API does not support them
either. The Khronos Group provides a bidirectional LLVM and
SPIR-V translator [Thea], however, it only works with Kernel
programs used by OpenCL. MOLL’s bachelor thesis [Mol11] tackled
transpiling a subset of LLVM IR [LLV] to GLSL which shares many
structural constraints with the “shader” of SPIR-V.

4. Using C++ as a Shading Language

Shading languages are domain-specific languages, which means they
facilitate programming in a particular domain, here real-time graph-
ics. Traditional languages are external shading languages, meaning
they are constructed as stand-alone languages: they have bespoke
grammar, syntax and type systems, and are implemented in special-
ized compilers. Embedded domain-specific languages by contrast
are implemented by co-opting the syntax and constructs of a host
language and can get implemented as a specialized extension to ex-
isting compilers, or even entirely as libraries [LBH*18]. We found
two compelling reasons why shading languages in particular are not
a good fit to be external domain-specific languages:

• It is very much possible, if inconvenient, to write general-purpose
code in shading languages. Shading languages were originally
envisioned as, and stay similar to, C++ derivatives. This is re-
flected in their syntax, type systems, use of the C pre-processor
and similar semantics. The domain-specific aspects of shading
languages are additive to their C++ subset roots.

• The converse is also true: it is possible to write graphics code
in C++. Language features such as overloading and templates
make it practical to implement alternatives to the domain-specific
functionality found in shading languages. This idea goes hand

in hand with the premise of this work, and we put this idea to
practice in Section 4.1.

Additionally, there is an argument to be made about the burden
of maintaining shading languages. Because compute APIs do not
need them, their use-case is extremely narrow, not only are they
only usable on the GPU, they are only useful for graphics tasks. As
they are not formally defined as C++ variants, they generally do not
benefit from large consolidated efforts such as LLVM.

4.1. The Shading Language As a Library

We built the Not A Shading Language (NASL), a small header-only
library that contains all the relevant fundamentals of functionality
typically offered as language features in conventional shading lan-
guages. This library implements a sizable subset of the built-in types
and functions found in GLSL, and is to an extent compatible with it.
We implemented the following features, on a per-need basis for the
applications we built so far:

• Small vectors (vec4, vec3, uvec2, ...) are one of the most
recognizable features of shading languages, but are almost trivial
to implement as C++ templated classes. The interesting challenge
was getting swizzling functionality to work: we opted for a com-
bination of macros and smart union members to offer arbitrary
swizzles for up to 4 components.

• Small matrices (mat4), including transposition and vector multi-
plication.

• Rendering specific utility functions such as normalization, cross
and dot product.

Clang does feature native support for swizzles in OpenCL mode,
which we were not able to take advantage of since we used the
standard C++ front-end. More invasive modifications of Clang were
avoided to keep the scope of our work down, but would potentially
be beneficial for a more mature implementation.

4.2. C++ Language Extensions

Some features found in shading languages are not just built for
convenience but expose actual API and in turn hardware features.
Examples include I/O variables to consume and produce pipelined
data, texture handles, accesses and sampling operations, as well as
buffers with special purposes, such as uniform buffers.

The Clang compiler allows us to annotate declarations with arbi-
trary strings, which we co-opt to specify custom annotations such
as tagging functions as entry points, specifying attributes such as
workgroup size and declaring intrinsic functions. Clang also exposes
LLVM native vector types, which we use in place of NASL vectors
where we have specific interface requirements, such as in shader
inputs and outputs.

We provide a convenience header file with macros for all these
annotations.

4.3. Benefits of C++ for Shaders

Neither NASL nor our language extensions are particularly ad-
vanced, and simply act to fill what would otherwise be a gap in
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int f(int* ptr) {
return *(ptr + 1);

}

float g(char* ptr) {
return *(float*)ptr;

}

int h(void** ptr) {
int i = 0;
while (ptr) {

i++;
ptr = (void**) *ptr;

}
return i;

}

Listing 1: Examples of problematic pointer usage: f performs
unsafe pointer arithmetic, g reinterprets the pointer and h loads a
pointer from memory. Note how these functions cannot be written
with C++ references either.

functionality. This confirms what we suggested at the start of this
section: shading languages just do not have a lot of shading func-
tionality, and what they have does not require them to be separate
languages.

Instead the main benefit of our approach are that code sharing is
made not just possible but practical, and that shaders can use the
richer featuresets of the host language. In our case, this includes
unrestricted data pointers, generic addressing, and function pointers.

5. Overcoming the Limitations of SPIR-V Shaders

The main practical challenge we had to overcome in this work is
the fact the Shader dialect of SPIR-V disallows many essential
language features that are needed to compile languages such as C++.
We structure our discussion of the SPIR-V Shader dialect as a
back and forth between problems and solutions, accompanied with
motivating examples in either C or SPIR-V.

We omit a formal description for each transformation (i.e., in the
form of rewrite rules), and instead show their effect applied to the
motivating example using their human-readable syntax. For further
details on our implementation, we refer the reader to Appendix A
as well as its source code.

5.1. Logical Pointers

Addressing models in SPIR-V describe how pointers can be cre-
ated and used. The Physical32 and Physical64 models spec-
ify that pointers are physical: they have an observable bit-pattern.
This allows reinterpreting memory, creating pointer-based data
structures, and doing arbitrary pointer arithmetic. Unfortunately,
Shader programs are currently restricted to the Logical model,
which disallows all of this.

Logical pointers work similarly to C++ references: they can-
not be offset or reinterpreted and while it is possible to select a
sub-object, it is not possible to go back "up" from a sub-object to

Table 1: Different types of memory on the GPU. The keywords used
here are the ones used in Vcc.

keyword visibility

global all threads in a dispatch
shared threads within a work group
private only available to one thread

the parent object, even if they share the same memory location.
Additionally, it is not legal to load or store a Logical pointer in
memory, unlike C++ references. Listing 1 shows examples of all 3
problem scenarios.

These rules severely restrict what can be done with pointers
and we devised two complementary approaches to overcome this
problem.

5.1.1. Pointer Normalization and Demotion

Our primary solution is to normalize pointers to eliminate non-
logical uses as much as possible. We wrote folding rules in our
optimizer that move unsafe pointer casts and offsets to the end of
the pointer computation. Loads and stores can inspect their pointer
operand for bitcasts: we can rewrite a load from a cast pointer into
loading a different type, and then casting the result, and likewise
for stores. We also attempt to rewrite unsafe pointer offsets as safe
sub-component accesses, and eliminate all redundant casts.

Our optimizer continuously checks the usage of variable declara-
tions, if they have no uses they are eliminated, but if they only have
logical pointer uses, we demote them to logical pointers that we can
safely leave alone.

5.1.2. Memory Emulation

We are left the complex cases that our optimizer could not simplify
away. We deal with them by creating arrays of a base type (u32
by default) and lowering all pointers and memory accesses for a
given address space to indices and load/stores into said array. We
recursively deconstruct complex types into their components, and
bitcast the individual words as we store them in the array. The arrays
are sized so that they can contain all the variables they replace, and
do not incur a significant memory penalty.

This approach gives us correct results for arbitrary pointer us-
age but is quite heavy-handed. Doing so obscures the original
semantics of the program, notably because they remove explicit
local allocations, as a result might make further optimizations
difficult for the graphics driver. Recent versions of Vulkan do
support physical pointers into global memory by enabling the
PhysicalStorageBuffer feature, so we only apply this solu-
tion to Private and Shared memory.

5.2. Lack of Generic Address Space

On a GPU, there are three major types of memory we are concerned
with, summarized in Table 1. When declaring memory, we must
specify what address space it belongs to. This is usually done by
using an extra keyword as an address space qualifier in the declara-
tion.
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int fib(int n) {
if (n <= 1)

return 1;
return fib(n - 1) + fib(n - 2);

}

int pow(int b, int e, int a) = 0 {
switch (e) {

case 0: return a;
case 1: return b * a;
default: return pow(b, e - 1, a * b);

}
}

Listing 2: Recursive (top) and tail-recursive (bottom) formulations
of the fib and pow functions, respectively.

Additionally, most compute APIs offer the possibility to use so-
called “generic” pointers. These pointers can point into any memory
type, negating the need to use address space qualifiers and there-
fore bringing the programming model closer to conventional CPUs,
which only feature one address space.

Vulkan does not offer generic pointers, but emulating them is
rather straightforward: We use the upper bits of the address as a tag,
and replace each generic access with a function that looks up the tag
and performs the appropriate access.

This tagging is well-defined on host architectures such as x86_64
because only the lower bits can be used in practice. Vulkan currently
offers no such guarantees. However, we have experimentally found
this to work across all the hardware we tested.

5.3. Lack of Recursion and Function Pointers

The SPIR-V specification disallows recursion, and does not fea-
ture function pointers. This means the recursive formulation of
iterative algorithms is disallowed, regardless of whether they are
tail-recursive or not. Listing 2 shows two examples of textbook
formulations for simple recursive functions. Neither formulation is
legal due to recursion.

Due to how we use Clang as a front-end we are able to benefit
from the LLVM optimizer, which can eliminate tail-recursion for us.
Therefore in our implementation work we focused on handling fully
generic function calls.

5.3.1. SPIR-V is Effectively Stackless

The lack of recursion and function pointers lead to an interesting
observation: It is perfectly possible for the implementation of a
SPIR-V compiler to have no runtime function call support at all.
Inlining is guaranteed to terminate, although program size might
grow out of control.

This means it is also possible to implement local variables as static
variables instead of allocating them on the stack. Likely because
of this there is no support for dynamic stack allocation in SPIR-V,
which meant we had to implement our own stack to support recur-
sion and function calls. We simply reserve a runtime-configurable

amount of bytes in Private memory and maintain our own stack
pointers.

We observed that this scheme tends to blow up register pressure,
as some compilers attempt to fit the stack in registers. As the pro-
gram stack can get quite large, this easily blows past the register
space and we saw poor occupancy. To mitigate this issue we added
support for allocating the stack in Global memory and dividing it
between subgroups at runtime. This approach saw good results as
discussed in Section 6.

5.3.2. Emulating Function Calls

Due to the lack of function pointers in standard SPIR-V (There is
an Intel exclusive extension for them [Int], available only in their
OpenCL implementation.), we had to devise a scheme to emulate
them outright.

First, we run an analysis to determine which functions are "leaf"
functions, that is to say, functions that do not do indirect or recur-
sive calls, and only call other leaf functions, transitively. As seen
in Section 5.3.1, such functions can be implemented just by inlin-
ing recursively and do not require indirect jumps required for true
function calls. Leaf functions do not require any further effort.

To emulate function calls we first lower them to tail calls: Non-
leaf functions are split in two at the call site, and we spill and reload
their live variables before and after the call respectively. We push
the address of the latter half of the caller to the stack and tail-call
the callee. Once the callee finishes, it pops the return address (the
second half of the caller) from the stack and tail-calls into it to
resume execution in the second half of the caller.

Now, we just need to emulate tail-recursion, which we do by
surrounding the entire function in a switch case, then a loop. In
every iteration, the switch "dispatches" functions calls which return
the identifier of the next one to run. Doing so avoids static recursion:
if we instead used a switch at each indirect call-site there would be
a recursive path in the function call graph, which SPIR-V shaders
disallow. We successfully implemented this “software scheduler” in
Vcc and evaluated the performance in Section 6.

5.3.3. Lowering Function Calls to Callable Shaders

A somewhat recent development in Vulkan is the appearance of a
hardware-accelerated ray tracing pipeline. These pipelines come
with an interesting addition: Callable Shaders. Callable Shaders can
be called indirectly, and recursively, and appear to be just specialized
function calls.

We implemented an alternative function lowering pass that targets
callable shaders, transforms function parameters, and returns into
ray payload accesses. We map each unique function type to a global
ray payload variable. The entry point of the shader becomes a ray
generation shader, whilst every other callee becomes a callable
shader.

Like the previous approach, this scheme requires some runtime
support to setup the Shader Binding Table (SBT) appropriately.
There are two issues with this approach:

• Despite the fact that callable shaders have a stack of their own,
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(a) CORNELLBOX (b) BEDROOM (c) DINING ROOM

Figure 3: Three scenes rendered with our pathtracer with a maximum ray depth of 5.

we still need to use our emulated stack. Local variables are still
bound by logical pointers rules, and so we need two parallel
stacks: the one we emulate ourselves and the opaque one used by
Vulkan. This is an unwanted complication and should be resolved
at the API level.

• Ray tracing pipelines do not have workgroups or shared memory,
and their subgroup composition (which threads run side-by-side)
can be dynamically changed by the implementation for efficiency
reasons. While this might be desirable for typical ray tracing
materials, it causes divergence-sensitive operations to behave
differently from the usual mental model.

5.4. Structured Control Flow

Just like C and C++, shading languages make use of structured pro-
gramming [Dij79]. Structured programming organizes control-flow
in a function in terms of high-level statements such as conditionals,
pattern-matching, loops, etc. instead of naked jumps (goto and
labels). While structured programming is standard practice in high-
level languages, SPIR-V makes the interesting choice of requiring it
in the intermediate representation, unlike other graphics APIs such
as Metal or DirectX.

In SPIR-V, structure is expressed by applying annotations on
certain branches in order to denote what structured constructs basic
blocks belong to. These structured constructs correspond almost ex-
actly with the control-flow statements available in GLSL. Selection
constructs and loop constructs, corresponding to if and switch,
and for and while loops in GLSL, respectively.

We will refrain from precisely describing the structured rules
in full, for more details we refer back to the SPIR-V specifi-
cation [KOK18] and the work by KLIMIS, CLARK, BAKER, et
al. [KCB*23] on formalizing its structured control flow rules.

The presence of structural information in SPIR-V is justified by its
utility when defining the semantics of non-uniform SIMT intrinsics.
The recently released “Maximal Reconvergence” extension[Theb]
uses the structured control-flow information to precisely define the
set of active threads that should be converged at any point in the
program.

In Shady, we rely on the conventional approach of running a struc-
turizer [EH94] on unstructured programs to turn them into structured
code. Our compiler IR is actually able to represent structured con-
trol flow natively, and our optimizations are non-destructive. This
limitation is instead due to our front-end: LLVM is an unstructured
representation which lacks structured control-flow information.

6. Evaluation

6.1. Methodology

We measured execution times on the GPU using the most accu-
rate methods available: For Vulkan, we make use of timestamp
queries to write two time stamps in-between the compute pipeline
dispatch. For CUDA, we use two CUDA events before and after
the cuLaunchKernel call. We run each test program 5 times and
report the median execution time.

6.2. Pathtracer

We implemented an interactive pathtracer supporting CPU, CUDA
and Vulkan; sharing the same C++ rendering code for each sup-
ported device. The pathtracer utilizes its own BVH for scene traver-
sal built in a pre-process step; and recursively computes the global
illumination of a user given scene by estimating the incoming light
using Monte Carlo integration on each bounce [PJH23]. We added
next-event estimation (NEE) for area lights with multiple impor-
tance sampling (MIS) [Vea97], Hessian roulette and multiple mate-
rial models (diffuse, conductor and dielectric). The conductor and
dielectric material support roughness using the GGX microfacet
model [WMLT07]. Support for area lights and environment light is
also included.

In Figure 3 we showcase the three scenes used in evaluation. The
modified CORNELLBOX scene with rough dielectric and conductor
boxes is using a single rectangular area light to illuminate the scene.
The BEDROOM scene is lit by a constant environment light and
DINING ROOM is using three large area lights outside the camera
frustum for illumination.

We showcase the performance results for all 3 scenes in Figures
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Figure 4: This application uses Vcc shaders and achieves the same
performance as with GLSL.

Table 2: Performance of our procedural terrain demo on various
hardware configurations. Shown are median frametimes in millisec-
onds.

Device GLSL Vcc

Radeon 7900 XTX 0.66 0.66
Geforce RTX 4070 13.40 12.66

Geforce RTX 3050Ti 3.94 4.00
i7-12700H (Xe 96EU) 13.67 14.20

5, 6 and 7. The Vcc numbers exist in three variants, referring to
the normal compute shader mode, a special emulated scratch mode
where we allocate the stack in a global memory buffer described
in Section 5.3.1, and finally using callable shaders to implement
function calls as described in Section 5.3.3 While CUDA tends
to perform significantly better in the simple CORNELLBOX and
relatively simpler DINING ROOM scene, the BEDROOM scene has
them tied.

6.3. Realtime Procedural Geometry Demo

While we focused our efforts on the path tracer, we also did some
evaluation work with the conventional graphical pipeline. We wrote
a simple Vulkan application with GLSL shaders that renders proce-
durally generated terrain using Perlin noise, see Figure 4. We used a
MIT-licensed shader from Inigo Quilez as the base [Qui]. We then
ported the shaders to Vcc and measured the performance difference,
presented in Table 2.

We found that the performance was virtually identical, which
we attribute to the lack of complex features in those shaders. This
does raise an interesting point: C++ shaders that do not rely on the
features we covered in Section 5 simply compile down to something
equivalent to their GLSL counterparts. Yet the benefits of code
sharing and compile-time C++ features like templates remain.

6.4. Microbenchmarks

We wanted to have an idea what the overhead of the compilation
techniques described in Section 5 was. To that end we wrote a
small suite of microbenchmarks, designed to stress test particular
components.

All presented benchmarks as shown in Table 3 are written using
standard C++ with the language extensions described in Section 4.2.
Our benchmarks use a common shared abstraction that handles de-
vice initialization and just-in-time compilation. This allows making
the best use of Vulkan’s many optional features and extensions.

6.4.1. Add Buffers

This benchmark does not stress-test any functionality in particular
and instead serves as a baseline to validate that our setup is not
adding any significant overhead between different APIs. The kernel
adds two buffers together, one element per invocation. Performance
is identical between Vcc and CUDA.

6.4.2. Unions

This benchmark showcases the ability to load and store different
types to the same memory addresses. We define a type S that can
carry either an int or a float, as well as a tag specifying how
the data should be interpreted. We first copy an array of those types
from global into private memory. We then mutate it and then hash
the whole array using a hash function that works with bytes. This
process is repeated 16 times.

The resulting performance numbers reveal that for NVIDIA cards,
our approach of emulating untyped memory does not adversely af-
fect performance compared to native CUDA. We tried this bench-
mark with two different word sizes for the emulated memory array:
The int8 path is significantly slower on the AMD card, however
the NVIDIA hardware seems to not suffer much, if at all.

6.4.3. Binary Tree

This benchmark showcases the ability of our compiler to work with
recursive data structures using generic pointers. On the host, we
create a balanced binary search tree and fill it with a large number
of elements. First, we upload the list of elements and then the tree
to GPU memory. Afterwards, a kernel tasked with finding each
element of the list in the tree is dispatched.

The binary tree is stored in global memory, but the pointer to it is
generic. This means all of the accesses need to look at the tag in the
upper bits of the address and perform a branch before the load can
occur, as described in Section 5.2.

We observe similar performance to CUDA on Vulkan with the
NVidia card. The 7900 XTX outperforms it significantly, possibly
indicating additional driver optimisations.

6.4.4. Recursive Function Calls

The kernel computes the Nth number in the fibonacci sequence, for
N = invocation ID modulo 16, because of the limited stack space
available.

We observe that our implementation of function calls adds some

© 2025 The Author(s).
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Table 3: Median execution time of the microbenchmarks over 10
runs, in microseconds. The reference is obtained by running an
equivalent CUDA program on the RTX 2080 Super. We used the
radv driver for the AMD card.

benchmark Reference 2080S 7900 XTX

add_buffers 456 456 633
unions (word=8) 9147 8834 17143

unions (word=32) 9147 8548 4652
binary_tree 6009 7056 955

fib 311612 776337 328598
fn_ptr 644 14620 14225
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Figure 5: Median execution time of our renderer for the CORNELL-
BOX scene.

significant overhead compared to CUDA. This is partly due to a lack
of an appropriate mechanism to do indirect jumps: we had to pass
all arguments and return values through the stack, every time.

6.4.5. Function Pointers

The function pointer benchmark selects one function out of four
possible options and stores its address in a local variable, before
calling it.

Like in the previous section, we note a considerable slowdown
compared to the CUDA reference. It should be understood this
is a worst-case scenario, synthetic test: each function body does
essentially no work and the overhead of the function call is therefore
maximized. It is also likely the native CUDA version benefits from
some sort of specialization or interprocedural register allocation.

7. Conclusion

Our evaluation shows that our approach of compiling C/C++ is
not far off and even occasionally competitive with CUDA, while
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Figure 6: Median execution time of our renderer for the BEDROOM

scene.
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Figure 7: Median execution time of our renderer for the DINING

ROOM scene.

retaining the portability of Vulkan. Performance does suffer with
the use of certain features, with by far the worst results occurring
when our emulated implementation of function calls is relied upon.
Where this is not the case, we see that writing shaders in C++ can
have no intrinsic cost at all (Section 6.3). The remaining issues we
face are almost universally rooted in the technical limitations of our
implementation.

7.1. Improvements to Vulkan/SPIR-V

We think of our strategies as a way to overcome the current lim-
itations of SPIR-V shaders and therefore as a starting point for
ecosystem improvements. In particular, allowing OpenCL features
such as physical and generic pointers in shaders would negate the
need for the techniques described in Section 5.1 and Section 5.2.

One of the most compelling improvements would be first-class
support for function calls, to avoid the issues in Section 6.4.5. Since
drivers have knowledge of the exact target architecture, their com-
pilers can implement efficient calling conventions as well as inter
procedural register allocation to reduce the number of spilled vari-
ables.

Our work could be practically useful, by offering proof of the
viability of the concept we hope to motivate additional work. Addi-
tionally, because our current implementation does not require any
more functionality than what exists today, it could accelerate adop-
tion of native function calls by offering a viable software fallback.

7.2. Future Work

Our renderer did not implement support for Vulkan’s built-in accel-
eration structures. In the future we plan to expand our renderer to
include this support and explore the performance of our BVH in
more detail.

Our work implements the basis of a C/C++ compiler for the
GPU, but does not tackle the question of standard library support:
functionality reliant on the host operating system such as malloc
is unavailable. Implementing such functionality was deemed out of
scope for this work.

Our compiler has the capability to emit compute programs but
also shader stages for use in graphical pipelines. In this work, we
discussed core limitations in shading languages from the perspective
of general-purpose compute applications, but our techniques can
be equally applied to graphical applications, however we did not
evaluate it formally for such.
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In Section 5.4 we kept our discussion of divergence-observing
operations short, and our renderer currently does not use any sub-
group intrinsics. This is partly due to how LLVM does not provide
us with the structured control flow we would need to implement
Maximal Reconvergence. Augmenting the C language family with
such a model and implementing it in a GPU compiler should be a
priority in future research.
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Appendix A: Implementation

In this section, we are going to share some more practical details on
Vcc compiler, our compiler that transforms C/C++ code into SPIR-V
shaders suitable for Vulkan. The implementation of the Vcc compiler
as well as associated samples and benchmarks is available as open
source software at https://github.com/shady-gang.

Features and Limitations of the Compiler

Vcc implements a significant subset of the C++ language, but leaves
out certain aspects. Supported features include:

• Arbitrary control-flow inside functions, including goto.
• Arbitrary pointer usage for all memory types, including global,

shared, and invocation-private. Pointers into I/O variables can be
supported with extra copies. This also includes C++ features that
are implemented with pointers in LLVM, such as references or
bitfields. memcpy is supported.

• Arbitrary function pointers and calls within a shader module.
Lambda functions work, but not std::function, due to STL
issues. The function pointers are 64-bit and can be converted to
integers, for example to implement sorting to combat divergence.

• Recursion, with user-defined stack size, as done in CUDA.

Vcc works for graphics and compute pipelines. We have also
experimented in a limited fashion with ray tracing pipelines, as seen
in Section 6.2.

Since we use an unmodified Clang front-end, the limitations are
actually entirely dictated by the subset of LLVM IR we support.
The following features were not implemented due to scope and time
constraints:

• The C and C++ standard libraries. Some of their functionality
would require some sort of remote procedure call into the host,
which was not in scope for this work.

• C++ exceptions. They require implementing a complex stack
unwinding mechanism, which would be an engineering-heavy
task for a feature that many C++ programmers do not use.

• C++ virtual functions. Likewise doable, but sharing C++ objects
from host and device would not result in portable vtables, which
would make the feature a liability.

Finally, the following features are not planned as part of this work
as they would require a different or at least complementary approach
to tackle things beyond the scope of this work:

• Unified address space between host and device. Vulkan does not
offer this feature and support would require software emulation.

• Single-source programming model. A tightly-integrated host lan-
guage / runtime component would be required for launching GPU
work from the host language.

Compiler Framework

Figure 8 shows the overall compilation flow of Vcc. We rely on
Clang as a C/C++ front-end. Clang emits LLVM IR, which we
convert to Shady—the IR and underlying compiler framework of
Vcc.

Shady can represent GPU programs and supports the analysis
and transformations our compilation pipeline requires. It can parse
SPIR-V and LLVM IR, and can emit SPIR-V, or C-family languages
such as CUDA, GLSL, or C11. Shady is not C or C++ specific and
could easily support other languages.

Our representation is a hybrid between a Control-Flow Graph
(CFG) and a structured representation. We support the typical jump,
branch, and return terminators found in SPIR-V or LLVM and
we also have a structured flavor using if and loop terminators that
correspond to SPIR-V’s structured control flow primitives.

Shader Compilation Pipeline

Most of the transformations are implemented as node rewriting
functions, applied to the whole module at once. The broad pass
order is as follows:

1. Continuation-Passing Style (CPS) transformation: direct-style
calls are replaced with tail calls and return parameters are
added [App06].

2. Closure conversion: basic blocks used as higher-order functions
are lambda-lifted to top-level functions [Joh85].

3. Tail call lowering: Tail calls are eliminated and a top-level dis-
patch function is generated if required, as described in Sec-
tion 5.3.2.

4. Generic pointer lowering: We generate the access functions de-
scribed in Section 5.2.

5. Physical pointer lowering: We generate the global arrays and
functions described in Section 5.1.

6. Restructuring: Non-structured control flow is eliminated from the
IR: all control-flow is now done with if and loop as described
in Section 5.4.

A cleanup phase runs after each pass, applying a simple SSA
construction pass [BBH*13], inlining blocks used only once and
demoting physical memory allocations to logical where possible.
The clean process runs iteratively until a fixed point is reached.

Vcc

program.cpp LLVM IR
Shady

contains unsup-
ported constructs

Shady
only uses features

available in shaders

SPIR-V

CUDA

Clang convert lower emit

Figure 8: Overall compilation pipeline: Vcc compiles shader programs written in C/C++ via Clang/LLVM to SPIR-V and CUDA. The Shady
IR derived from the LLVM IR is only valid for SPIR-V after applying the lowering passes in Vcc.
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