
Specialization through Dynamic Staging

Piotr Danilewski1,2 Marcel Köster1 Roland Leißa1

Richard Membarth1,2,3 Philipp Slusallek1,2,3

1Saarland University, Germany 2Intel Visual Computing Institute, Germany
3Deutsches Forschungszentrum für Künstliche Intelligenz, Germany

{danilewski,membarth,slusallek}@cg.uni-saarland.de {leissa,koester}@cdl.uni-saarland.de

Abstract
Partial evaluation allows for specialization of program fragments.
This can be realized by staging, where one fragment is executed
earlier than its surrounding code. However, taking advantage of
these capabilities is often a cumbersome endeavor.

In this paper, we present a new metaprogramming concept using
staging parameters that are first-class citizen entities and define
the order of execution of the program. Staging parameters can be
used to define MetaML-like quotations, but can also allow stages
to be created and resolved dynamically. The programmer can write
generic, polyvariant code which can be reused in the context of
different stages. We demonstrate how our approach can be used to
define and apply domain-specific optimizations. Our implementation
of the proposed metaprogramming concept generates code which is
on a par with templated C++ code in terms of execution time.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Partial evaluation; D.3.1 [Programming Languages]: Formal Defi-
nitions and Theory—Semantics

General Terms Languages, performance

Keywords Dynamic staging, partial evaluation, code specialization

1. Introduction
The bread and butter of an optimizing compiler is partial evaluation:
Parts of the program are evaluated at compile time in order to speed
up the execution at run time. This includes constant propagation,
loop unrolling, loop peeling, or inlining.

Due to the halting problem, a compiler cannot in general deter-
mine whether aggressive evaluation of code during compile time
will terminate. Compilers therefore often cannot perform such ag-
gressive optimization. For this reason, it is attractive to shift the
responsibility to the programmer. By integrating annotations into a
language one can explicitly trigger partial evaluation. We say this
partially evaluated code fragment is run in a different stage than the
rest of that program.

Common programming languages provide a fixed number of
stages. For example, C++ provides three stages: preprocessing,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GPCE’14, September 15-16, 2014, Västerås, Sweden.
Copyright c© 2014 ACM 978-1-4503-3161-6/14/09. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

template evaluation, and run time. However, in practice these stages
do often not suffice. For instance, tools like lex or yacc [7]
generate C/C++ sources, a process which can be regarded as a new,
separate stage preceding C preprocessing. Complex code projects
even generate source code with the help of scripting languages like
Python1. This is inelegant for several reasons:

1. This kind of staging requires use of different languages with
their own syntax and semantics.

2. The same logical functionality required in different stages must
be reimplemented in the syntax of those stages.

3. There is no type safety between stages.

A major step forward in this domain was achieved by introducing
MetaML [13]. The language introduced a dedicated construct for
staging, allowing the programmer to use an arbitrary number of
stages. The code of a deferred stage can be explicitly composed and
combined and then invoked through a special run command. The
presence of staging is, however, statically defined and cannot be
easily parametrized.

A diametrically different approach is given by Lightweight
Modular Staging (LMS) [10], where staging is not controlled by
dedicated language constructs. Instead, it is implicit and automatic,
controlled by the type system and function overloading. The source
code is usually easy to read and maintain, but it is hard to override
the staging rules.

We propose another approach: Dynamic Staging which formally
is achieved by merely changing the order of beta reduction of
otherwise normal programs. This order is explicitly controlled
by special stage variables, which are first-class citizens of the
language and can dynamically emerge during evaluation. Terms in
the language are not explicitly quoted, but are staged via staging
expressions. Most importantly, the programmer can synthesize
different code variants suitable for different stages from the same
source code fragment.

Contributions. In this paper, we introduce and formally define
(Section 3) dynamic staging as a first-class citizen for metaprogram-
ming languages. Dynamic staging does not require quotations and
does not influence data types. Novel to our staging approach is
that neither the number of stages nor their evaluation order is stati-
cally fixed in the program source, but can be specified dynamically.
Having staging as a first-class citizen has the following benefits:

• The metaprogramming system is homogeneous, that is, the same
language is used for all stages. Values and functions can be
reused between stages.

• Staging does not require quotation and is independent of data
types.

1 For example, GROMACS’ build system makes heavy use of this technique.
See http://www.gromacs.org.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

GPCE’14, September 15-16, 2014, Västerås, Sweden
ACM 978-1-4503-3161-6/14/09
http://dx.doi.org/10.1145/2658761.2658774

103

• All stages share the same lexical environment and variables can
be accessed directly without any escape syntax.

• Dynamic staging permits polyvariant specialization in a straight-
forward way. The same function can be specialized for different
subsets of known parameters.

• Staging may depend on values obtained through arbitrarily
complex computation.

• Staging is explicit and the programmer has full control over it.

2. Related Work
The common translation process of many programming languages
features multiple compilation stages. Thereby, the number of com-
pilation stages is fixed by the programming environment.

For example, C++ distinguishes between preprocessing, template
evaluation, and the actual translation of the rest of the C++ program
as three distinct stages. In this scenario, each stage even uses
a different programming language: the C/C++ preprocessor, the
template language and the core C++ language. Hence, reusing code
between or in the context of different stages requires rewriting of
the affected parts of the program.

In contrast to C++, templates in Template Haskell [11] are type
safe. It is an extension to Haskell that adds new language features in
order to support compile-time meta programming. However, it still
requires specific syntax to define and to operate on templates.

One of the first extensions of C in the field of staging is ‘C [5]. A
programmer can write programs that produce dynamically generated
code, indicated by a quotation: ‘{f(x);}. The code inside such a
quotation is parsed and type-checked at compile-time. The quoted
code fragments can be passed as a value, joined together via the @
operator and specialized through the $ operator. The approach has
several limitations. For instance, quotations cannot be nested and
names declared within a quotation cannot be referenced from the
outside.

MetaML [13] enhances the concept of ‘C in a well-defined
and formal way and integrates it into a functional language. A
programmer can construct pieces of code using <f x> which can be
defined, combined and executed. Pieces of code can be arbitrarily
nested and spliced into surrounding code via the ~ operator. These
pieces of code can be executed by a run command that peels off a
single level of angular brackets.

However, the placement of the run command is limited to ensure
that the execution of a piece of code does not get stuck. For instance,
the term fn x => run x is not typable in MetaML and requires
either rewriting or an extension of the MetaML type system as
described in [14]. Furthermore, it is often difficult to maintain, adapt,
and create staged pieces of code in MetaML, as shown in Listing 1.

An approach to enhance MetaML is presented in [8]. It over-
comes the limitations of the previously described MetaML via addi-
tional operations (e.g. box and unbox). It tracks so called open and
closed code, that is, code with and without free variables. Moreover,
it does not suffer from the limitation of the run operation anymore.

fun back2 f = <fn x => <fn y => ~~(f <x> <<y>>)>>
fun dotF2 n v w =

if n ’>’ 0
then <<(~(lift (nth ~v ~(lift n))) * (nth

~~w ~(lift (~lift n)))) + ~~(dotF2 (n-1)
v w)>>

else <<0>>;
fun dot n = back2(dotF2 n)

Listing 1: The staged dot-product function in MetaML [13]. The
function can be specialized over the size of the vectors n, as well as
over the actual value of the second vector.

However, construction and splicing of pieces of code becomes even
more complicated since the user needs to insert and maintain even
more staging annotations at the right locations.

Several other languages adopted similar staging concept using
quotations and annotations. For example, MetaOCaml [2] and
Mint [16] are a direct results of bringing the concept of MetaML
into OCaml and Java, respectively.

A more pragmatic approach to multiple stages is given by
Lightweight Modular Staging (LMS) [10]. It introduces a new type
Rep[T]. Functions can make use of this type to defer the execution
of parts of the code. First the initially staged program is written and
then executed afterwards. Instead of executing the intended program
code completely, the intended operations are passed to wrappers
via custom implementations for different types (e.g. Rep[int]).
Those wrappers can emit code, create intermediate-representation
nodes or perform additional operations. In this approach staging is
statically fixed by the type system and specialization is greedy. As a
result, additional parameters have to be passed to a function in order
to achieve polyvariant specialization. There is no clean mechanism
to specify staging rules locally within the body of a single function
without affecting its signature.

In the most recent trend, staging is used for domain-specific
optimizations. A prominent example is the Terra language [4], which
uses a fixed two-stage approach. The first stage uses the untyped
Lua language, whereas the second stage uses a typed extension to
Lua called Terra. The Lua part can be used to construct fragments of
Terra programs, which can be combined and spliced. The resulting
Terra code is type checked upon compilation which happens just-in-
time during execution of a program.

3. Dynamic Staging
In its core, dynamic staging merely defines the order of beta
reduction in the program. It is an explicit low-level operation, which,
while being verbose, provides more flexibility compared to previous
approaches. Dynamic staging can be used to describe quotation-
based or type-based staging, but—as we will show—other constructs
can be expressed with it in a straightforward way as well; something
that is problematic when using previous approaches.

In this section we first intuitively describe our approach to
dynamic staging, followed by its formal definition. In Section 4
we provide simple examples, which show how our approach can
be used to generate efficient functions, and how different execution
plans can be defined depending on the input parameters. Section 5
shows typical use cases for dynamic staging and how the concept
can be used to define more practical, higher-level languages. We
also show in Section 6 that despite the increased flexibility, the code
can be compiled into a highly efficient machine code.

float dot(float[] x, float[] y, int n) {
@n: if (n>0) {

stage t = *;
float rest = dot(x,y,n-1);
@t & x: float xn = x[n];
@t & y: float yn = y[n];
@xn & yn & rest:

float result = rest+xn*yn;
@t: return result;

} else
return 0.0;

}

Listing 2: The same staged dot-product function in Stage-C which
we introduce in this paper. The function can be specialized over the
size of the vectors n, as well as over the actual value of either of the
vectors.

104

v ::= (value)

c ∈ {0, 1, 2, . . . ,true,false, . . .} (constant)

λx.b (function)

x (parameter)

b ::= (body)

v v (application)

fix x = λx.b in b (fix)

Figure 1: Syntax of CPS-based lambda calculus.

3.1 Overview
We define the dynamic staging concept as an extension of a
Continuation Passing Style (CPS) functional language. We have
chosen CPS because:

• The canonical order of execution in a CPS program is well
defined.

• In standard CPS [1, 12] every expression is contained within
its own unique lambda function, thus becoming its com-
plete body. There are no subexpressions. This correspondence
expression↔lambda is important for our definition of staging.

The programmer can annotate function bodies with boolean
staging expressions. When the staging expression evaluates to >,
we denote the annotated body as active. In each evaluation step we
find the innermost active body and perform a beta reduction on that
body.

The staging expression is a boolean expression over an arbitrary
set of parameters. When evaluating it, however, we do not check
the values of the parameters, but only if the parameters are concrete
values or remain unbound. Known values (constants and lambdas)
are >, while unbound values are ⊥.

Every lambda function defines a special implicit staging param-
eter associated with the function. When the function is invoked, this
implicit staging parameter becomes set. A staging parameter does
not hold any meaningful value. The mere fact that it is being set is
what matters, as it impacts the result of staging expressions where
the parameter is used.

In addition to the implicit staging parameter, functions can accept
an arbitrary number of explicit staging parameters. Implicit and
explicit staging parameters can be freely passed as arguments to
subsequent functions.

3.2 CPS-based Lambda Calculus
3.2.1 Syntax
The syntax of the CPS-based lambda calculus (Figure 1) is similar
to the untyped lambda calculus [9, Chap. 5]. However, there exist
two major differences:

1. Functions do not return in CPS, thus they never return a value.
A function body is a single application or a fix construct. The
whole remainder of the program is contained either within the
body, or is passed as an argument, called a continuation.

2. For the same reason, subexpressions cannot be expressed and
we cannot curry functions. Hence, we allow arbitrarily long
parameter lists.

We further define a fixed-point combinator directly in the language
to support simple recursion: fix xf = λx.b in bf allows recursive
use of xf in b.

v ::= (value)

c ∈ {0, 1, 2, . . . ,true,false, . . .} (constant)

λ[y]x.b (function)

x (parameter)

y (staging parameter)

e ::= (staging expression)

> (true)

⊥ (false)

v (value)

e and e (and expression)

e or e (or expression)

not e (not expression)

b ::= (body)

[e]v v (application)

[e]fix x = λ[y]x.b in b (fix)

Figure 2: Syntax of staged CPS-based lambda calculus.

Finally, we directly include constants in order to make the
language more practical. We use the common notation a to denote a
list a1, . . . , an.

3.2.2 Semantics
The following rules, similarly to Pierce [9, Chap. 5.3], describe the
operational semantics of the language:

(λx.b) v → [x1 7→ v1, . . . , xn 7→ vn] b

fix xf = λx.b in bf → [xf 7→ λx.fix xf = λx.b in b] bf

We require all names in the program to be unique in order
to circumvent name capture issues in the rules. Apart from the
differences to untyped lambda calculus mentioned earlier, the rules
are standard.

3.3 Staging in CPS-based Lambda Calculus
In traditional CPS in each step the beta reduction is applied on the
top-most body only. This causes the program to be evaluated in
the order from top to bottom. A different approach may permit a
beta reduction step to occur indeterminately on any body within
the program, which causes a reordering of the aforementioned
beta reduction. With the concept of dynamic staging we let the
programmer explicitly specify the order of the applied reduction
steps.

3.3.1 Syntax
In order to extend the presented calculus with staging we introduce a
new syntactic category staging expressions (Figure 2). These are the
usual boolean expressions and all applications and fix constructs are
annotated with them. Staging expressions may reference parameters
or staging parameters.

3.3.2 Semantics
Before diving into the whole semantics of staged CPS-based lambda
calculus, we need to define some supporting relations. These rela-
tions find the deepest bodies that are ready to be executed and mark
them as active, ensuring that the deepest bodies are executed first as
described in Section 3.1.

105

Active. The following judgment determines whether a staging
expression is active (A), that is, the staging expression evaluates to
>:

A(>) A(c) A(λ[y]x.b)

A(e1) A(e2)

A(e1 and e2)

A(e1) ∨A(e2)

A(e1 or e2)

¬A(e)

A(not e)

Note that there do not exist rules for⊥, x, and y. This means, a term
x is considered inactive as long as it is unresolved. The substitution
semantics given below replaces all occurrences of x as soon as the
parameter is bound, rendering the emerging staging subexpression
active. Similarly, any staging term y is considered inactive. As
soon as the corresponding function is applied, all occurrences of y
are replaced with > rendering the emerging staging subexpression
active, too. Informally, we say a body is active, when its staging
expression is active.

Waiting. A term (a value or a body) is called waiting (Wv ,
Wb) when it does not contain any arbitrarily nested active staging
expression.

Wv(c) Wv(x) Wv(y)

Wb(b)

Wv(λ[y]x.b)

¬A(e) Wv(v) Wv(v)

Wb([e]v v)

¬A(e) Wb(b) Wb(bf)

Wb([e]fix xf = λ[y]x.b in bf)

Rebuilding. A term is only allowed to execute, when it is active
and all its subterms are waiting. All other terms not being executed
produce a new term by recursively decomposing all subterms and
reassembling them again with the newly produced subterms:

c→v c x→v x

b→b b
′

λ[y]x.b→v λ[y]x.b′

¬(A(e) ∧Wv(v) ∧Wv(v)) v →v v
′ v →v v′

[e]v v →b [e]v′ v′

A(e) Wv(v) Wv(v) [e]v v → b′

[e]v v →b b′

¬(A(e) ∧Wb(b) ∧Wb(bf)) b→b b
′ bf →b b

′
f

[e]fix xf = λ[y]x.b in bf →b

→b [e]fix xf = λ[y]x.b′ in b′f

A(e) Wb(b) Wb(bf) [e]fix xf = λ[y]x.b in bf → b′

[e]fix xf = λ[y]x.b in bf →b b′

Evaluation. We enhance the original evaluation rules by includ-
ing staging expressions. In particular, we replace all occurrences of
y with > in the case of an application:

[e] (λ[y]x.b) v → [x1 7→ v1, . . . , xn 7→ vn, y 7→ >] b

[e] fix xf = λ[y]x.b in bf →
→ [xf 7→ λ[y]x.[y and e] fix xf = λ[y]x.b in b] bf

Staged Execution. Finally, we keep rebuilding the program as
long as we find active terms. The program may terminate if it
collapses to an application of a built-in exit function called with
argument v. Then, v is the result of the program:

b→b b
′

λ.b→p λ.b′
b→b exit v

λ.b→p v

3.4 Typing
Reading the previous paragraph from a different point of view,
reveals that program execution may get stuck if there exist no more
active subterms. So far, our considerations were untyped. There
arises the question whether we could design a sound type system for
the language, that is, we could statically guarantee that well-typed
programs never get stuck.

However, one of the key features of the presented staging
approach is that whether a stage becomes active or not depends
on staging parameters (y). Their value may depend on the execution
of an arbitrary function f . Since we impose no restriction on the
contents of f and the language is Turing-complete and due to the
halting problem [15] it is in general undecidable to statically foresee
the result of f and the value of y. Hence, it is not possible in general
to design a sound type system without significantly cutting the power
of the calculus (see also Section 6.2.3).

3.5 Observations
Staging List. A stage parameter can be seen as a staging list con-
taining references to all bodies that need to be checked for possibly
becoming active when the stage parameter itself is set. When stage
argument a is explicitly passed to a function as parameter q, the
bodies in the list q become added to the list a. In this view staging
lists are passed in the reverse direction: from the callee to the caller.

Natural Staging. It is a common case for a given function λ with
an implicit staging parameter s to have its body annotated by [s]:

λ[s]x.[s]vv

Assuming that this is the only use of s, when the lambda is invoked,
its body is the only new body that becomes active. Consequently,
the body is evaluated in the next execution step similarly to a normal
CPS program.

Deepest First. When multiple bodies are active, the deepest one
is always executed first. This is the case because the Evaluation
rules are applied only for active bodies whose subterms are waiting,
containing no further active bodies.

This ensures that any body that is made active will never be
duplicated due to parameter-argument substitution during beta
reduction of some parent body. Consequently, once a body is made
active, it is executed exactly once.

4. A Language for Staged CPS
4.1 Syntax
In this section we introduce a functional language called DeepCPS,
suited for CPS programming with staging annotations. The syntax is
similar to a normal functional language, but with noticeable changes
to facilitate more compact and readable code, as summarized in
Figure 3:

• The lambda function specifies its implicit staging parameter in
square brackets.

• While functions are of arbitrary arity, the invocation does not
need any parenthesis. This is because subexpressions are not
allowed in CPS, thus currying cannot occur.

• Since lambda functions can be member of a multi-argument list,
their body is put into curly brackets. The braces can be dropped
only when a function is the last argument in the list.

• Application is preceded by the staging expression, put in be-
tween @ and :. Lack of such annotation implies natural staging.

• Sections of code that do not require staging or CPS are going
to be written in pseudocode for the sake of readability. These
sections are highlighted in blue and the following lambda
function is invoked with the resulting value.

106

Basic syntax:
λ[y]x.b (x1, x2, ...)[y]{b} (function)
x type name (parameter)
> ⊥ always never (staging values: true, false)
and or not & | ! (staging boolean operators)
[e]v v @e:v v1 v2 ... (application)
[e]fix x = function in b fix def x function b (fix)

Syntactic sugar:
λ[y]x.[y]vv (x1, x2, ...){ v v1 v2 ... } (natural staging)
[y1] λ[y2]x.b v @y1:let [y2] x v b (let construct)
λ[y]x.b (x1, x2, ...)[y]b (function as last argument)
p λ[y]x.b p (x) b (non-CPS expression p)

Figure 3: Syntax of lambda calculus and DeepCPS.

let power (float base, int exp, fn[float] cont) {
exp==0 (bool b)
if b () {
cont 1

} ()
exp mod 2 == 1 (bool b)
if b () {
exp-1 (em)
power base em (part)
part*base (result)
cont result

} () {
exp/2 (eh)
power base eh (part)
part*part (result)
cont result

}
}
let power72 (float base, fn[float] cont) {

power base 72 (result)
cont result

}

Listing 3: An integer power function and a special case where the
input base value is raised to the power of 72.

In DeepCPS, values are expressed as numeric constants, names
of previously declared parameters, or one of the intrinsic func-
tions. A conditional if is also an intrinsic function, rather than a
fixed specialized language construct: if cond true_branch
false_branch accepts a normal (not staging) boolean value and
invokes either true_branch or false_branch.

We use basic numeric types (bool, int, float) as well as
aggregate type [...] and function type fn[...]. When the type
can be easily deduced from the context or is irrelevant for the given
example, we choose to omit it. In addition, each application is started
a new line for readability.

4.2 Static Use of Staging
In the following, we use the integer power function of Listing 3 as
a simple running example. power72 is a specialized function for
a single known exponent. However, it does not benefit from this
knowledge and it still invokes the same generic power function
every time power72 is invoked.

We assume for now that a powergen function is provided, that
generates specialized code when the exponent is provided while
the base value is unknown. The powergen function should be
executed once in the context of a function power72, before the
latter is invoked. We are not changing the logic of those functions,
but merely the order of their execution. This can be achieved

let [def] powergen (...) { ... }
@def: let power72 (float base, fn[float]

cont)[call] {
@def: powergen base 72 (result)[]
@call: cont result

}

Listing 4: Invoking powergen before power72 is invoked. As
soon as powergen is defined by the let instruction, the staging
variable def becomes active, which triggers all instructions marked
by @def, starting from the deepest one. Only once the powergen
finishes, the modified anonymous function is bound to the name
power72.

through static usage of staging variables as shown in Listing 4
and graphically visualized in Figure 4.

At the start of the program, the first let instruction is invoked,
which defines the powergen function. Moreover, this invocation
activates the def staging variable. Two instructions, as indicated by
red arrows, become active: the direct follow-up that binds a function
definition to the name power72 and the call to powergen within
the body of that function.

The powergen call has a deeper nesting level and is, hence,
executed first. At the time of the call the parameter base is not yet
known and powergen is partially evaluated, producing code that is
spliced into the definition of power72. The powergen at the end
of its execution invokes its continuation function (result)[].
The empty bracket indicates that the implicit staging variable is not
used anywhere and no further instruction is scheduled for execution
as a result of this. At this point, the previously annotated @def:let
instruction can be executed, which binds the partially evaluated,
anonymous function to the name power72.

Note that the spliced code of the partially evaluated powergen
function should be executed when power72 is invoked. For that
reason, when [call] gets active, the execution should not jump
directly to the cont result instruction. It is indeed an error,
introduced for the sake of simplicity of the example. We are now
going to show how to correct this error.

4.3 Staging as a Parameter
We now focus on powergen, which is shown in Listing 5. The
computational logic of the function does not differ from power,
but care has to be taken on which values are known and which are
not:

• Although not indicated by the type system, an argument with
unknown value can be passed as base. We name these kind of
parameters as meta parameters.

107

let powergen

let power72

powergen base 72

return result;

power72 3

(base return)

(base exp return)

(result)

(val3to72)

(a) unstaged CPS

powergen base 72

power72 3

(base exp return)

(result)

(val3to72)

@def:

end 1goto 2

12

(base return)
[call]

return result;
@call:

let powergen
[def]

let power72
@def:

(b) staged CPS

Figure 4: Graphical representation of the instruction schedule using
(a) unstaged and (b) staged CPS. Green arrows show the order of
execution, red mark the staging.

• However, some instructions can be executed only when both
exp and base values are known. For that reason, we introduce
the full staging parameter, which will be active if both values
are known.

• When powergen is partially evaluated, it calls cont with
the parameter result which will be bound later. As soon
as result becomes known (bound), the associated stage
parameter recf becomes active.

This passing of staging parameters allows the programmer to
specify which portions of the code can execute immediately, and
which can execute only once another function was called. Thus,
setting variables to concrete values is performed upon the call.

In the example of Listing 5, the code that depends only on
exp—the conditions and recursion—is evaluated immediately. The
recursive call passes the value part and the stage value recf to its
continuation. The stage value indicates when part will evaluate to
a concrete value. The following multiplication instruction is being
postponed and the cont is invoked with a yet unknown value
result.

The specialized power72 function needs to be adjusted to use
additional staging parameters. The additional stage parameter
[call], which becomes active when power72 is invoked and
the concrete value of base is known, is passed to the powergen
function. Similarly, the continuation of powergen has a param-
eter recf which becomes set when result is a concrete value.
This stage is used in power72 as recf to stage the final cont
statement.

4.4 Staging on Variables
It is very common, as in our example, to accompany a meta
parameter with a staging parameter indicating when the meta
parameter will hold a concrete value. To facilitate this common case
we can use meta variables within the staging annotation directly.

let [def] powergen (float base, int exp, stage
full, fn[float, stage] cont) {

exp == 0 (bool b)
if b () {
cont 1 always

} ()
exp mod 2 == 1 (bool b)
if b () {
exp-1 (em)
powergen base em full (part, recf)[rec]
@full & recf: part * base (result)[res]
@rec: cont result res

} () {
exp/2 (eh)
powergen base eh (part, recf)[rec]
@recf: part * part (result)[res]
@rec: cont result res

}
}
@def: let power72 (float base, fn[float]

cont)[call] {
@def: powergen base 72 call (result, recf)[]
@recf: cont result

}

Listing 5: Explicitly staged version of the powergen function.
base can accept an unbound name which is resolved to a concrete
value no later than at a stage full. The multiplication operations
are annotated by staging expressions, ensuring that the operation is
done only when the parameters are concrete values. The recursive
call to cont, however, is allowed to be invoked early. This allows
resolving the recursion while working on the symbolic values.

This follows the semantic rules of Active as defined in Section 3.2.2:
a parameter with a bound concrete value becomes equivalent to >,
while a unknown value corresponds to ⊥. This allows to simplify
the previous example by removing the explicit stage parameter from
powergen, as shown in Listing 6.

let powergen (float base, int exp, fn[float]
cont) {

exp == 0 (bool b)
if b () {
cont 1

} ()
exp mod 2 == 1 (bool b)
if b () {
exp-1 (em)
power base em (part)[rec]
@base & part: part * base (result)
@rec: cont result

} () {
exp/2 (eh)
power base eh (part)[rec]
@part: part * part (result)
@rec: cont result

}
}
@power: let power72 (float base, fn[float] cont)

{
@power: powergen base 72 (result)
@result: cont result

}

Listing 6: powergen function with staging on parameters, which
allows to remove almost all explicit usage of stage parameters.
@part, @base, @power, and @result are read “as soon as
given parameter is set to a concrete value”.

108

At this point, the signature of powergen does not differ from
power and can be used in all contexts where the original power
function was used.

5. Applications of Dynamic Staging
Having all the concepts of dynamic staging explained, we focus
now on practical applications. We show typical patterns of staging
in DeepCPS and additionally show how they can be mapped to
Staged-C—a higher-level C-like language with staging, so that the
flexibility is maintained but the user would not have to deal with
low-level CPS explicitly.

5.1 Staged-C
In Staged-C we use the same syntax as in DeepCPS to annotate
instructions that need to be executed at a different stage. The anno-
tation resembles the goto label. Instructions without an annotation
are executed immediately after the preceding one.

In Staged-C the implicit stage parameter associated with a
function is named the same as the function. We do not use the
[name] syntax after the parenthesis.

A special stage * indicates the stage of the preceding instruction
in the program text.

When multiple instructions are staged upon the same variable
in Staged-C, the earlier one is executed first—unlike in DeepCPS
where we required the deepestmost action to be taken first. This
change can be easily achieved in DeepCPS by staging the next
instruction upon the previous one:
DeepCPS:
@s: f1 ()[s1]

...
@s1: f2 ()[s2]

...
@s2: f3 ()[s3]

...

Stage-C:
@s: f1();

...
@s: f2();

...
@s: f3();

...
The DeepCPS order was necessary at the low-level to handle higher-
order functions properly, but Staged-C does not support higher-order
functions.

5.2 Function Specialization
Unlike in MetaML, the process of function specialization does not
differ from a normal function call. A function does not return an
object of type code, which would then be invoked with run. Instead,
upon invocation the function is inlined and the deferred code remains
as a “left over” from the call, in the context of the caller.

In order to specialize a function, one encapsulates the call to
the generic version in another function. The generic version is then
invoked before the anonymous lambda function is bound to a name.
As a result, a specialized version is inlined into the body of the
lambda function and does not differ from a version that would be
hand-written at that location in the code.

Because this is a very common pattern, Staged-C introduces a
new syntax for it. We permit a function to be defined as a call to a
generic version using angular brackets:
DeepCPS:
let generic(params) ...
let special(prms,ret) {

@generic:
generic args (res)

@res: ret res
}

Stage-C:
ret_type

generic(params);
ret_type special(prms)

= generic<args>;

The arguments within the brackets may include any previously
declared variable in the current scope, as well as the parameters of
the specialized function. The angular-bracket call is not considered
to be an invocation. The generic function is merely inlined and only
code staged upon known variables is executed.

let f1(stage in, fn[stage] cont) {
... normal code ... [jmp]
@in: ... fragment 1 code ... [s1]
@jmp: cont s1

}
let f2(stage in, fn[stage] cont) {
... normal code ... [jmp]
@in: ... fragment 2 code ... [s2]
@jmp: cont s2

}
let f3 ...
let f4 ...
let fM(stage start, fn[stage] ret) {
f1 start (s1)
f2 s1 (s2)
f3 s2 (s3)
f4 s3 (s4)
ret s4

}

(a) Unconnected code fragments.

@start: ... fragment 1 code ... [s1]
@s1: ... fragment 2 code ... [s2]
@s2: ... fragment 3 code ... [s3]
@s3: ... fragment 4 code ... [s4]
...

(b) Generated code after fragment chaining.

Fragment 1

inf1

@in:

ret

[s1]()
ret

fM start ret

Fragment 2

inf2

@in:

ret

[s2]()
ret

(c) Graphical representation.

Listing 7: Fragment chaining pattern:
(a) Function f1 and f2 contain a code fragment that is staged
upon the stage parameter in and the stage of the fragment’s last
instruction is returned. These functions are invoked in a sequence,
chaining the code fragments by passing the result of one function as
an input for the next one.
(b) The result of the invocation of the master function fM.
(c) Graphical representation of the fragment chaining pattern. Blue
blocks represent the code being executed immediately, orange blocks
are the deferred fragments chained together.

5.3 Fragment Chaining
One of the capabilities of CPS and dynamic staging is to connect
two initially unrelated blocks of code, so that in the next stage they
are executed one after another. This is achieved through the fragment
chaining pattern:

Consider a set of functions f1, f2, . . . , fn, each of type
fn[stage, fn[stage]]. Each function contains a code frag-
ment staged with respect to its stage parameter, creating the staged
fragment pattern as described before. Therefore, we call such func-
tions container functions. These functions can be chained together
by using the return value from a function as input for a subsequent
function.

For example, the master function fM in Listing 7 (a) invokes
functions f1, . . . , fn in that order. When fM is invoked, all the
fi are executed whereby the staging parameters get resolved. As a

109

let sfor(stage pstage, int from, int to,
fn[stage, int, fn[stage]] body, fn[stage]
end) {

from<to (bool continue)
if continue () {
body pstage from (stage nstage)
from+1 (next)
sfor nstage next to body end

} () {
end pstage

}
}

Listing 8: CPS-style for loop with its body invoked at a separate
stage. This allows the loop to be explicitly unrolled.

result, all code fragments in fi become connected through staging
as shown in Listing 7 (b).

5.4 Staged For Loop
As a special case of fragment chaining consider sfor in Listing 8.
The function implements a C-like for loop in CPS style, iterating
from integer value from to to, invoking its body with each iteration
value as an argument. Unlike a typical loop, however, it additionally
passes a stage value to the body, and receives a new stage
value from the body through the continuation call.

The function sfor acts as master function. It iteratively invokes
its container function body. The author of body stages a part of its
content on the input stage parameter, forming the fragment block.

Upon the execution of sfor, the loop semantics are resolved
while the deferred fragment blocks from body remain as a code
fragment, staging one upon another in a chain. As a result we obtain
an unrolled version of the loop.

Naturally, in Staged-C, for loop is given as a keyword rather
than a function. Arbitrary number of parameters, including staging
parameters can be passed into the body of the loop. By having the for
loop at a different stage than a fragment of its body the programmer
can explicitly trigger unrolling of the loop.

5.5 Staged Convolution
A more practical example of using the staged for loop are convolu-
tions as used in image processing. As an example, we consider the
1D convolution in Listing 9 (a): The generic convolve function
accepts three pointers to memory: the input image in, the kernel
data K, and the output image out. When dealing with memory,
automated tools have to be very conservative when doing optimiza-
tions. With dynamic staging, however, the programmer can explicitly
define which kind of specialization should be applied.

As a result of partial evaluation, we obtain a convolution with an
unrolled inner loop (Listing 9 (c)), although the number of iterations
is unknown in the original code. Note that address calculation for
indexing K and associated loads have been completely removed. Ap-
plying constant folding afterwards would remove all multiplications,
in turn eliminating the unnecessary memory access.

5.6 Fast Fourier Transform
Another example in which staging is useful is the Fast Fourier
Transform. We have implemented the recursive Cooley-Tukey
algorithm [3] (Listing 10), with the assumption that the input
contains 2k elements. All functions that are recursively called are
specialized for a concrete value of size.

We introduce a local stage variable unroll which gets asso-
ciated either with sh or image depending on the value of sh. Its
value controls if the recursive calls and the for loop are unrolled
early, during the specialization, or are left intact to be resolved only

void convolve(float* in, int size, float* K, int
range, float* out) {

for (int x=0; x<size; ++x) {
float v = 0;
@K & range:
for (int j=-range; j<=range; ++j) {

float kv = K[range+j];
@* & in:
v += in[x+j]*kv;

}
out[x] = v;

}
}

(a) Staged 1D convolution.

void conv_spec(float* in, int size, float* out) =
convolve<in, size, {-1.0, 0.0, 1.0}, 1, out>;

(b) Specialization for K = [−1 0 1].

void conv_spec(float* in, int size, float* out) {
for (int x=0; x<size; ++x) {
float v = 0;
v += in[x-1]*-1.0;
v += in[x+0]*0.0;
v += in[x+1]*1.0;
out[x] = v;

}
}

(c) Specialized code for K = [−1 0 1].

Listing 9: (a) staged 1D convolution, which can be specialized for a
given kernel K. (b) specialization of the convolution. (c) specialized
code for K = [−1 0 1].

when image is provided. This kind of computation on stages is
possible because staging is a first-class citizen of the language.

If specialization works automatically and greedily like in LMS,
trying to use all the information available, both the recursion and
loop will be unrolled for all values of size, which will lead to
code having O(n logn) instructions. We use staging annotations to
prevent that and precisely specify how much of the code we want to
be specialized.

6. Evaluation and Discussion
In this section, we evaluate our staging concept in terms of perfor-
mance and discuss other aspects like expressiveness and program
correctness.

6.1 Evaluation
In order to evaluate our staging concept with respect to perfor-
mance, we have implemented a CPS-based language interpreter and
compiler. We can interpret programs using the staging rules as de-
scribed before. A intrinsic function compile is provided that takes
a (partially-evaluated) function as an argument and compiles using
LLVM [6].

We have selected a few algorithms and implemented them using
both our language and C++:

1. Power function computing x72 of Listing 6.

2. A convolution of an unknown 1D data set with a kernel of
[−1,−2, 0,+2,+1].

3. The same convolution, but with additional boundary handling
(mirror).

4. Fast Fourier Transform (FFT) of a 1D signal of 224 elements.

110

Table 1: Absolute execution times of different implementations of the power function and 1D convolution. Two variants of the convolution are
considered, one using mirroring as boundary handling (BH) and one without boundary handling.

power convolution convolution FFT
BH: none BH: mirror

Number of iterations 108 106 106 1

Standard C++ 1402ms 1079ms 1171ms 2510ms
Templated C++ 192ms 419ms 421ms 551ms
CPS without staging 1685ms 1012ms 1047ms 2584ms
CPS with staging 194ms 413ms 420ms 573ms

void reindex(float* image, int size) { ... }
void sfft(float* image, int size) {

@size:
if (size == 1) return;
int sh = size/2;
stage unroll = sh<=4 ? sh : image;
void sffth(float* img) = sfft<img, sh>;

@* & unroll:
sffth(image);
sffth(image + sh);

@sh:
float wtemp = sin(pi/sh);
float wpr = -2.0 * sqr(wtemp);
float wpi = -sin(2*pi/sh);
float wr = 1.0;
float wi = 0.0;

@* & unroll:
for (int i=0; i<sh; i+=2) {

@* & image:
tempr = image[i+sh]*wr -

image[i+sh+1]*wi;
tempi = image[i+sh]*wi +

image[i+sh+1]*wr;
image[i+sh] = image[i]-tempr;
image[i+sh+1] = image[i+1]-tempi;
image[i] += tempr;
image[i+1] += tempi;

@i:
wtemp = wr;
wr += wr*wpr - wi*wpi;
wi += wi*wpr + wtemp*wpi;

}
}
void fft(float* image, int size) {

reindex(image, size);
@size:
sfft(image, size);

}

Listing 10: The implementation of the recursive Cooley-Tukey
algorithm for the Fast Fourier Transform. When size is known,
all recursive functions can be partially evaluated, eliminating the
extensive trigonometric functions. For big values of size the
recursion itself and the loop are left intact however, to keep the
produced code short.

These algorithms are implemented in the following 4 ways:

1. Standard C++ dynamic code.

2. C++ with metaprogramming, partially executed at compile-time.

3. In our CPS language without staging, producing dynamic code.

4. In our CPS language with staging, partially executed at compile-
time.

For boundary handling, we specialize the convolution on dif-
ferent regions of the data set: instead of checking the boundary
condition for every data point, we peel off the iterations that re-
quire boundary handling and specialize these iterations. This results
in three loops iterating over the left-most, inner, and right-most
part of the data set. Hence, the inner loop does not require checks
for boundary handling. The corresponding implementation using
C++ templates requires the body of the convolution to be available
as a lambda function (introduced with C++11), which is passed to
templates that peel off the loop iterations.

The naive implementation of the Fast Fourier Transform uses a
recursion while the templated/staged version unwinds it at compile
time.

C++ sources have been compiled using clang 3.3 into LLVM
bitcode [6] (clang++). The staged implementations are compiled
into LLVM bitcode using our compiler. The LLVM bitcode is
then compiled and linked into native code using LLVM with
optimizations performed on the bitcode (opt -O3).

All the produced functions have been called from the same
main loop, repeating the call several times. The parameters were
flagged as volatile to prevent any optimization between loop
iterations. The produced executables have been run on a computer
equipped with an Intel i7-2600K 3.4GHz CPU and 8GB of DDR3
(1333MHz) memory, running 64-bit Ubuntu 12.04.2 LTS. Each
executable was run 5 times and the average timing was used.

From Table 1, the following can be seen:

• Partially evaluated code can perform significantly better than
unspecialized code.

• Using our LLVM back end to compile our implementations
using staging produces code that is comparable in performance
to the existing and well-adopted C++ compiler.

Using dynamic staging, the programmer simply had to add
staging annotations to generic implementations. There was no need
to use multiple languages like in Terra, or to write different code for
specialization like in C++ metaprogramming.

6.2 Discussion
6.2.1 Staging Expressiveness
Using our staging approach, we can express quoted code blocks,
known from MetaML and other staging languages. This can be
achieved by a pattern similar to fragment chaining in Listing 7.
Dynamic staging, however, steps beyond selecting instruction blocks
for earlier/later execution. It allows repeated execution of the same
function in the context of different stages. The author of the function
can write generic code with respect to staging, and the caller can
determine its execution plan using stage parameters.

6.2.2 Cross-stage Persistence
As staging is defined merely as a change of order of the beta
reduction steps, there is no distinct transition from one stage to

111

another. Values created in one stage remain live as long as the code
referencing them can potentially be executed. There is no special
action required from the user to achieve that.

6.2.3 Program Correctness Using Staging
It is the programmer’s responsibility to ensure program correctness
under staging. Careless staging may cause programs to return incor-
rect values, to never terminate, or to produce infinite intermediate
code. In particular, the programmer has to pay attention when stag-
ing over branch nodes, since it may lead to code execution in a
branch that is ultimately not taken. These problems cannot be cir-
cumvented since staging permits the programmer to specify what
he considers to be safe, even if the compiler is not able to prove the
correctness of the desired transformation.

Incorrect staging can also lead to an error, when either no
instructions are active, or an active instruction requires a concrete
value when only an unbound parameter is provided. As discussed
in Section 3.4, a type system cannot in general detect these cases.
Consider the following example of a recursive function fun:
fix fun(int m, int n, int p, fn[] return) {
(cont : fn[stage]) {

ackermann(m,n)>125 (bool b)
if b () { cont always }

() { cont p }
} (stage s)
@s: p-1 (q)
fun m p q return

} ...
The stage parameter s depends on the result of a computation
of the non-primitive-recursive Ackermann function. In general a
compiler cannot determine whether this invocation will terminate
or not and cannot predict whether stage s will become active or
not. Consequently, all instructions staged upon s are not verifiable
through a static analysis.

7. Conclusions and Future Work
In this paper, we introduced a novel staging approach called dynamic
staging that can be integrated into other languages. Our solution in-
troduces staging as a first-class citizen. This allows the programmer
to flexibly control the process of partial evaluation. The same func-
tion can be reused in the context of different stages and specialized
in different variants. Staging may also depend on result of some
other computation.

We provide a formalization of our approach including full
semantics. We are able to express other staging concepts, like the
general concept of quotation, with our approach. We hope that our
formalization can be used in the future as a basis for defining and
reasoning about all forms of staging.

In our experiments we have shown that our compilation pipeline
employing the dynamic staging concept can compete with existing
compilers in terms of produced code efficiency, while starting from
a completely generic code base.

Future Work. Languages supporting staging may be of great use
when creating Domain Specific Languages (DSLs). This is because
DSLs often perform domain-specific semantic analysis and optimiza-
tions. These processes as well as code generation can be delegated
to different stages. We believe that our approach may be particu-
larly useful in this context because of the homogeneous syntax and
code reusability between stages. In particular, the fragment chain-
ing pattern (see Section 5.3) allows to create building blocks for
DSLs. Moreover, having staging as a first-class construct should
permit DSLs to also support their own kind of staging—explicitly
or implicitly.

Acknowledgments
This work is partly supported by the Federal Ministry of Education
and Research (BMBF), as part of the ECOUSS project, and by the
Intel Visual Computing Institute (IVCI) Saarbrücken. It is also co-
funded by the European Union (EU), as part of the Dreamspace
project.

References
[1] A. W. Appel. Compiling with Continuations. Cambridge University

Press, 1992. ISBN 0-521-41695-7.
[2] C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing Multi-

stage Languages using ASTs, Gensym, and Reflection. In Proceedings
of the 2nd International Conference on Generative Programming and
Component Engineering (GPCE), pages 57–76. Springer, Sept. 2003.

[3] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine
Calculation of Complex Fourier Series. Mathematics of Computation,
19(90):297–301, 1965.

[4] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek. Terra: A
Multi-Stage Language for High-Performance Computing. In Proceed-
ings of the 34th annual ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 105–116. ACM,
June 2013.

[5] D. R. Engler, W. C. Hsieh, and M. F. Kaashoek. ‘C: A Language
for High-level, Efficient, and Machine-independent Dynamic Code
Generation. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages
131–144. ACM, 1996.

[6] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004
International Symposium on Code Generation and Optimization (CGO),
pages 75–86. IEEE, Mar. 2004.

[7] J. Levine, T. Mason, and D. Brown. Lex & Yacc. O’Reilly & Associates,
1992.

[8] E. Moggi, W. Taha, Z.-E.-A. Benaissa, and T. Sheard. An Idealized
MetaML: Simpler, and More Expressive. Lecture Notes in Computer
Science, pages 193–207. Springer, 1999.

[9] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
ISBN 0-262-16209-1.

[10] T. Rompf and M. Odersky. Lightweight Modular Staging: A Prag-
matic Approach to Runtime Code Generation and Compiled DSLs.
In Proceedings of the 9th International Conference on Generative
Programming and Component Engineering (GPCE), pages 127–136.
ACM, Oct. 2010.

[11] T. Sheard and S. P. Jones. Template Meta-programming for Haskell. In
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, pages
1–16. ACM, 2002.

[12] G. Sussman and G. Steele. Scheme: An Interpreter for Extended
Lambda Calculus. Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, 1975.

[13] W. Taha and T. Sheard. Multi-Stage Programming with Explicit
Annotations. ACM SIGPLAN Notices, 32(12):203–217, 1997.

[14] W. Taha and T. Sheard. MetaML and Multi-Stage Programming with
Explicit Annotations. In Theoretical Computer Science, pages 203–217.
ACM Press, 1999.

[15] A. M. Turing. On Computable Numbers, With an Application to
the Entscheidungsproblem. Proceedings of the London Mathematical
Society, 42(2):230–265, 1936.

[16] E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Abdelatif, and W. Taha.
Mint: Java Multi-stage Programming Using Weak Separability. In
Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 400–411. ACM,
June 2010.

112

