
FLOWER: A Comprehensive Dataflow Compiler
for High-Level Synthesis

Puya Amiri∗, Arsène Pérard-Gayot§, Richard Membarth†∗, Philipp Slusallek∗§, Roland Leißa‡, Sebastian Hack§
∗German Research Center for Artificial Intelligence (DFKI), Germany

†Technische Hochschule Ingolstadt (THI), Research Institute AImotion Bavaria, Germany
‡University of Mannheim (UMA), Germany
§Saarland University (UdS), Germany

This is a pre-print of an article accepted for publication in Proceedings of the International Conference on Field-Programmable Technology (FPT).
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Abstract— FPGAs have found their way into data centers
as accelerator cards, making reconfigurable computing more
accessible for high-performance applications. At the same time,
new high-level synthesis compilers like Xilinx Vitis and runtime
libraries such as XRT attract software programmers into the
reconfigurable domain. While software programmers are familiar
with task-level and data-parallel programming, FPGAs often
require different types of parallelism. For example, data-driven
parallelism is mandatory to obtain satisfactory hardware designs
for pipelined dataflow architectures. However, software program-
mers are often not acquainted with dataflow architectures—
resulting in poor hardware designs.

In this work we present FLOWER, a comprehensive compiler
infrastructure that provides automatic canonical transformations
for high-level synthesis from a domain-specific library. This al-
lows programmers to focus on algorithm implementations rather
than low-level optimizations for dataflow architectures. We show
that FLOWER allows to synthesize efficient implementations
for high-performance streaming applications targeting System-
on-Chip and FPGA accelerator cards, in the context of image
processing and computer vision.

Index Terms—high-level synthesis, dataflow, compiler, FPGA,
transformations, high-performance computing

I. INTRODUCTION

Although Dennard scaling has broken down some time ago,
it is generally assumed that Moore’s law will continue to hold
for at least a few years. As a consequence, hardware vendors
have built more and more specialized as well as parallel
hardware such as multi-core CPUs, GPUs, or FPGAs. Since
FPGAs are low-power, reconfigurable and highly parallel
integrated circuits, they have already been extensively adopted
in embedded systems and more recently have found their way
into scientific high-performance computing (HPC).

Akin to languages for GPU computing such as CUDA or
OpenCL, FPGA manufacturers offer various vendor-specific
dialects of C/C++ that allow software developers to program
at a high level of abstraction. So-called high-level synthesis
(HLS) compiles these untimed, C-based dialects down into
a timed, high-performance, register-transfer level (RTL) lan-
guage in dataflow style. These HLS languages entail two major
drawbacks: First, each dialect is closely tied to its vendor
which makes code incompatible between different HLS lan-
guages. Second, albeit HLS languages are typically C-based,

This work is supported by the Federal Ministry of Education and Research
(BMBF) as part of the HorME, HP-DLF, MetaDL, and REACT projects.

they still require a hardware design mentality to be fully taken
advantage of. For example, transforming an untimed language
into an RTL language calls for several transformations [1] with
different levels of compilation and hardware synthesis flows.
These transformations have a different structure, depending
on whether the input language is Xilinx C++ for HLS [1], or
Xilinx and Intel OpenCL [2].

To sum up, FPGA vendors offer competing and incom-
patible HLS solutions. For this reason, programmers must
rewrite the application for each of those solutions. Moreover,
hardware and software interaction methods and optimizations
are different among vendors and HLS dialects.

Most FPGA applications require some level of parallelism
or concurrency to achieve the best performance, particularly
for memory accesses. HLS programming allows to express
such parallelism through dataflow regions. To take advantage
of this, developers have to manually separate their application
into tasks, and manually write all the necessary glue code to
transform these separate tasks into a well-formed application.
This process is notoriously difficult, because it requires a lot
of effort and knowledge of the application.

An alternative to HLS languages are domain-specific lan-
guages or libraries (DSLs): By embedding the knowledge of
a particular domain into a language, the compiler or library
automatically applies efficient coding patterns, data movement
mechanisms [3], or spatial designs.

Contributions: This paper introduces FLOWER, a frame-
work for FPGA development that makes the following contri-
butions:

• FLOWER provides a high-level syntax that helps in
the design of dataflow-oriented FPGA applications—in
particular by encouraging the separation between the core
algorithm and data transfers. This simplifies low-level
optimizations like vectorization or burst transfers.

• FLOWER automatically generates kernels that combine
dataflow-oriented tasks from the dataflow graph of the
application (see Section IV-B). While FLOWER’s main
target is HLS for Xilinx FPGAs, it can also generate
multi-target OpenCL kernels which are optimized for
both Intel and Xilinx FPGAs.

• FLOWER automatically generates host-code from a sin-
gle piece of code that describes the entire application (see
Section IV-C).



task1 task2 task3 task4 task5

non-opt. kernel

dataflow-opt. kernel
10

20

30

40

50

60

·105
cy

cl
es

Fig. 1: Latency in cycles for an FPGA design (frequency of
200 MHz) consisting of 5 tasks and one kernel. The two last
bars shows the effect of dataflow optimization on a kernel
containing these 5 tasks.

• We show the applicability of our framework on image
processing and computer vision applications, where our
framework has comparable or even better performance
than alternatives (see Section V).

II. BACKGROUND

A. Stages, Kernels and Tasks

Typical streaming applications consist of several stages.
For instance, Table I shows a list of applications with their
respective number of stages. Considering a directed acyclic
graph (DAG), each node of a DAG represents a stage. In
practice, using HLS, these stages are mapped to kernels and
tasks.

A kernel is a function that is scheduled and controlled from
the host code, and not from within the FPGA design. On the
contrary, a task is a function that is statically scheduled for
execution from within the FPGA design, and not from the
host. A kernel may contain one or more tasks.

Suppose we have a multi-stage application and its FPGA
design consists of a single kernel: HLS tools will then apply a
static model that will schedule every operation inside it. After
synthesis, different segments of the resulting hardware run in
lockstep with each other, and cannot run concurrently. While
this coding style is simpler, it is not well-designed because
dependencies or variable latency operations may introduce
stalls.

A better approach is to apply a dataflow transformation that
uses queues to transfer data between each task and enables
task-parallelism. With that approach, HLS tools will then
generate a kernel that has a latency equal to the latency of
the task with the highest latency. This is in contrast to the
previous approach, where the kernel had a latency equal to
the sum of the latencies of each individual task. Fig. 1 shows
the effect when applying dataflow optimization on a kernel
that consists of five tasks.

The HLS compiler internally uses a Finite State Machine
(FSM) to schedule individual parts of the kernel that does not
use the dataflow transformation. When an expensive operation
is running, this FSM waits for its completion. Hence, all other
components of the kernel are in idle mode. In cases where the

kernel needs a significant amount of data, it may happen that
the FPGA does not have enough BRAM to buffer them all,
which means that the FPGA design may not function properly.
Moreover, such a kernel may need to access global memory
with sporadic patterns, which may decrease the efficiency of
the DMA engine.

In contrast to this, the dataflow-optimized kernel is made of
several small tasks, which allows the HLS compiler to sched-
ule each one independently, and generate one FSM per task.
This means that tasks have their own independent controllers,
connected via FIFO buffers; the buffering requirements get
distributed among the tasks. As a result, when a task stalls in
a clock cycle, other tasks continue running as long as there is
enough data in their input buffers, resulting in a higher overall
throughput. The dataflow transformation also has a significant
impact on physical synthesis: Shortening the critical paths
allows the design to run at a higher clock frequency. What
is more, it benefits the fan-out of control signals.

B. AnyHLS and FLOWER

The work in this paper is built upon AnyHLS [4], a
framework for FPGA application development that is it-
self built upon AnyDSL [5]. AnyHLS introduces high-level
abstractions to design FPGA applications, and extends the
AnyDSL compiler infrastructure to generate FPGA designs
for Intel OpenCL and Xilinx HLS. For this, the syntax of
AnyDSL is extended with additions for FPGA programming.
The image processing applications in AnyHLS are written in
a library that builds on top of these changes. This library
allows programmers to develop point, local, and global image
processing operators with very little effort. In this paper, we
focus on addressing the shortcomings of AnyHLS listed below,
in particular with the automation of host code generation and
dataflow optimizations.

AnyHLS provides a way to abstract typical patterns found
in high-level synthesis in the form of a library with the help
of the partial evaluator provided by AnyDSL. These abstrac-
tions work well for single-kernel and single-task applications.
However, AnyHLS is limited to generate disjoint kernels
in the form of IP-blocks without system integration, task-
level pipelining, dataflow optimization, host-code generation,
or memory optimizations such as burst transfers. In fact,
AnyHLS can only generate disjoint IPs from multi-stage
applications, which then need manual wiring to connect them
together to achieve a sequential execution. In order to drive
the design, the user has to write a corresponding host-side
code for each application. In FLOWER, we rely on AnyHLS
abstractions to describe applications, and extend both AnyHLS
and AnyDSL to support multi-stage applications by mapping
them to different tasks and enable dataflow optimizations. For
this, FLOWER is deeply integrated into the AnyDSL compiler
in order to apply task-level optimization and transformations.
We extend the AnyDSL compiler in order to extract the
dataflow graph from application stages described by the user
program and produce optimized dataflow pipelines according
to the producer-consumer dependencies. Unlike AnyHLS, our



toolchain automates the whole design process from program-
ming to synthesis.

III. MOTIVATION

Software programming is very different from hardware de-
sign since traditional software design methods are not adapted
to execution on FPGAs. HLS tools have been introduced to
help bridge that gap. However, there are still areas where HLS
does not help in the process of designing efficient hardware:

A. Dataflow Transformations
Vitis requires a canonical dataflow form to realize an archi-

tecture that takes advantage of task-pipelining and decreases
redundant host-kernel communication. This particular coding
pattern is not only alien to software programmers, but it
also demands a specific set of canonical rules which are
difficult to apply, tedious, and may distract the programmer
from implementing the actual algorithm. This particularly
applies for deep learning, image processing, and machine
vision applications, where stages of a kernel need to be split
into many tasks so that they can run concurrently or in parallel,
and where a final kernel calls each task in the order dictated
by the dataflow. This is tedious and can be automated, since
the order is in any case fixed by the dataflow.

B. Low-level Optimizations
With FPGA hardware, unlike CPU architectures, the notion

of a hierarchical memory that is transparent to the programmer
does not exist. Instead, there are plenty of BRAMs available on
FPGA fabric that the HLS programmer must explicitly use to
improve overall design performance and also increase global
memory access efficiency [6]. Considering that global memory
access is taking a significant amount of time compared to ker-
nel execution, missing a caching system becomes an essential
problem. In order to decrease this overhead and to exploit
BRAMs as a cache, a batch process strategy must be used,
typically with burst memory transfers. Using burst memory
transfers allows for minimizing the amount of control signal
transactions and for merging several memory access requests
into a single request. This optimization greatly maximizes the
application throughput and decreases global memory access
latency. Sadly, taking advantage of burst transfers requires to
perform the dataflow transformation first, with all the above
problems.

Another important low-level optimization for FPGA designs
is vectorization: One goal of this optimization is to widen the
bitwidth of the inputs of the kernel, so that many elements
can be loaded at the same time and processed in parallel. By
this, vectorization increases throughput and memory efficiency.
In order to vectorize the code, the HLS compiler requires
consecutive memory access indices and several copies of the
computation of interest. Writing entire applications in this style
is profoundly complex and error-prone. In order to fully benefit
from this optimization, the increase of the input’s bitwidth
should be matched by an appropriate number of units that
process the data. This will become substantially difficult if
the application is not tailored for that.

FLOWER
programλ

domain-specific
library

compiler

dataflow
transformations

partial
evaluation

HLS
optimizations

Vitis
compiler

HW IP
SOC

LLVM

Intel
OpenCL SDK

Vitis
linker

FPGA
platform shell

Clang

XRT

Xilinx card

OpenCL lib

Intel card

C++

IR

CL

HDL xo file

ob file
(xo)

binary

bit.str.
xclbin

bitstream
(aocx)

API

API

Fig. 2: FLOWER: compilation workflow.

C. Interfacing Kernels with Hardware

Hardware kernels and IPs need an interface to communicate
with other hardware components and host devices via a hand-
shaking protocol. Depending on the parameters exposed by the
hardware design to the outside or the way the design should be
integrated into the application, HLS languages require various
annotations and configurations. Writing the proper annotation
for each kernel parameter makes the program fragile and bug-
prone: Any change to the parameters of that function has to be
followed with an accompanying change to the corresponding
annotations.

Another practical issue is writing the communication code
between the host and the FPGA device. Given a set of kernels,
writing the corresponding host code in a separate file in order
to interface them with the host is a strenuous endeavor on
its own: Programmers have to take care of buffer allocations,
parameter types, and setting arguments, by using host-side
APIs like XRT. This requires a lot of boilerplate code, which
is proportionately amenable for bugs and errors.

IV. FLOWER

The goal of FLOWER is to solve the problems discussed in
the previous section. Fig. 2 shows the structure of FLOWER:
There is only a single source program, from which both
host and device code get generated. Benefiting from Vitis
features, this single source code can be simulated, emulated,
or eventually synthesized to hardware.

In order to explain the general workflow of FLOWER, let
us have a look at a simple example:
static mut chan1 : channel;
static mut chan2 : channel;
static mut chan3 : channel;
static mut chan4 : channel;

static vector_length = 4;

let in_img = read_image("input.png");
let (width, height) = (in_img.width, in_img.height);
let out_img = create_host_img(width, height);
let tmp_img1 = create_virtual_img(width, height, &mut chan3);
let tmp_img2 = create_virtual_img(width, height, &mut chan4);

let (in_img1, in_img2) = split_image(in_img, &mut chan1,
&mut chan2);

for x, y, out, pix in iteration_point(tmp_img1, in_img1) {



out.write(x, y, fun1(pix));
}

for x, y, out, pix in iteration_point(tmp_img2, in_img2) {
out.write(x, y, fun2(pix));

}

for x, y, out, pix1, pix2 in
iteration_point2(out_img, tmp_img1, tmp_img2) {

out.write(x, y, fun3(pix1, pix2));
}

image_write(out_img, "output.png");

This code uses the image processing DSL of AnyHLS [4].
DSL functions are highlighted in green. Within FLOWER,
each of these functions creates a task, resulting in 4 different
tasks. The function split_image creates the first task, reads
the input image in_img from memory, and writes to two
different virtual images (images that are mapped to channels).
Those virtual images are then used in two different point
operators fun1 and fun2, and the results are passed back to
two more virtual images tmp_img1 and tmp_img2. Finally,
a binary point operator fun3 is applied to the result of the two
previous tasks, and the final result is written back to global
memory.

The DSL functions all use the constant vector_length
internally, so that the resulting kernel is vectorized with burst
transfers. FLOWER achieves this by unrolling the computation
within the loop body:
fn @iteration_point(output: Img, input: Img,

body: fn(i32, i32, Img) -> ()) -> () {
/* ... */
for v in unroll(0, vector_length) {

body(/* ... */);
}
/* ... */

}

This results in several copies of the for-loop body. The HLS
compiler is then able to determine the parts that can execute
in parallel, resulting in the code being vectorized.

A. Dataflow Graph Extraction

From this example, FLOWER extracts a dataflow graph.
Each task represents a node in that graph and each channel is
mapped to an edge.

FLOWER inspects each task to collect the channels that are
read from (incoming edges) or written to (outgoing edges).
During this phase FLOWER detects invalid graphs and emits
error messages if applicable. In particular, it checks that the
graph is acyclic and channels are written to or read from
only once. FLOWER generates the following graph from the
example:

split

fun1 fun2

fun3

call(K1) K1

call(K2) K2

call(K3) K3

call(K4) K4

call(K5) K5

result

host device

(a) before top-level generation

h
l
s
_
t
o
p

call(hls top) T1 T3 T5

T2

result T4

host device

(b) after scheduling kernels as tasks

Fig. 3: Control flow before top-level generation (a) and after
scheduling kernels as tasks (b).

B. Top-level Kernel Generation

Our scheduling algorithm generates an HLS kernel that
combines all the tasks of the application. In the remainder of
this text, we will refer to this kernel as the top-level kernel. For
the HLS compiler to allow for concurrent or parallel execution
of the tasks in the top-level kernel, FLOWER performs a
topological sort of the graph in order to ensure that any task
first writes to a channel before any tasks reads from that
channel. As a side note, this scheduling algorithm also works
with tasks that are isolated from the rest of the graph. Such
tasks execute in parallel with the rest. Fig. 3 illustrates how the
control flow changes between host/device code by introducing
a top-level kernel. On the device-side, FLOWER emits calls
to each individual task and places appropriate #pragma
annotations such that the underlying HLS compiler picks up
the dataflow region. Here is, for instance, the generated top-
level kernel for the example above:
typedef struct { int e[4]; } int4;
typedef hls::stream<int4> int4_chan;

void task1(int[16], int4_chan*, int4_chan*) { /* ... */ }
void task2(int4_chan*, int4_chan*) { /* ... */ }
void task3(int4_chan*, int4_chan*) { /* ... */ }
void task4(int[16], int4_chan*, int4_chan*) { /* ... */ }

void hls_top(int input_data[16], int output_data[16]) {
#pragma HLS INTERFACE m_axi port = input_data

bundle = gmem0 offset = slave
#pragma HLS INTERFACE s_axilite port = input_data
#pragma HLS STABLE variable = input_data
#pragma HLS INTERFACE m_axi port = output_data

bundle = gmem0 offset = slave
#pragma HLS INTERFACE s_axilite port = output_data
#pragma HLS STABLE variable = output_data
#pragma HLS INTERFACE ap_ctrl_chain port = return
#pragma HLS top name = hls_top
#pragma HLS DATAFLOW

int4_chan chan1_slot, chan2_slot, chan3_slot, chan4_slot;
int4_chan* chan1 = &chan1_slot;
int4_chan* chan2 = &chan2_slot;
int4_chan* chan3 = &chan3_slot;



int4_chan* chan4 = &chan4_slot;
#pragma HLS STREAM variable = chan1 depth = 2
#pragma HLS STREAM variable = chan2 depth = 2
#pragma HLS STREAM variable = chan3 depth = 2
#pragma HLS STREAM variable = chan4 depth = 2

task1(input_data, chan1, chan2);
task2(chan1, chan3);
task3(chan2, chan4);
task4(output_data, chan3, chan4);

}

Note that this code uses channels of type int4, since we
have a vectorization factor of 4. FLOWER generates separate
tasks as separate functions. The tasks task1 and task4 have
a parameter that allows them to access global memory. For
the same reason the top-level kernel hls_top expects two
parameters: input_data and output_data. FLOWER
annotates these parameters with pragmas to instruct the un-
derlying HLS compiler to give them an AXI interface to
connect to other peripherals. FLOWER defines the 4 channels
chan1 to chan4 as FIFO channels to communicate data
between tasks (using the #pragma HLS STREAM annota-
tion). Finally, we see how FLOWER places calls of these
tasks in topological order as discussed previously and tells the
HLS compiler via #pragma HLS DATAFLOW of a dataflow
region. Consequently, this structure results in a design in which
all tasks are pipelined and execute concurrently.

While this example plainly introduces the fundamental
functionality of our toolchain, FLOWER is not limited to
that. Figure 4 introduces another example. It demonstrates a
more complicated dataflow graph that implements the Lucas-
Kanade method for optical flow estimation. Black nodes are
not part of algorithm, they specify inputs and outputs and
reside on the host-side. Splitting nodes are not shown for
the sake of simplicity. Since there are parallel paths from
inputs to outputs, a single memory interface cannot feed the
tasks concurrently. Squared nodes named mem1−4 solve this
issue. FLOWER designates 4 different memory bundles using
interface pragmas to separate memory transactions. Assigning
individual memory interfaces avoid congestion in host-device
memory transfers.

C. Hardware/Software Interface

In order to use the generated FPGA design in a practical
setting, we need to interface it with a host. FLOWER generates
interface pragmas for different target platforms. However, this
is not sufficient because the HLS code on its own does not
specify how to communicate data from or to the host system.
In order to do that, the HLS code has to be driven by a host
code, that is typically written with the XRT API provided by
Xilinx. Our framework generates such host code automatically.
The generated code contains the necessary XRT API calls
required to launch the kernel and communicate with it. For
instance, for the application above, the following equivalent
host code will be automatically generated (our framework
generates the host code as LLVM IR, not C++, but the
concepts are the same):
auto device = xcl::get_devices()[0];
auto bitsteam_buffer =

xcl::read_binary_file("fpga_bitsream.xclbin");

f1

m
e
m

1

f2

m
e
m

2

Ix

Iy

It

Ixx

Ixt

Ixy

Iyy

Iyt

WIxx

WIxy

WIxt

WIyy

WIyt

det

Vx

Vy

m
e
m

3
m

e
m

4

Vx

Vy

Fig. 4: Data flow graph for the Lucas-Kanade implementation
for optical flow estimation. f1 and f2 denote two unique
frames. Vx and Vy are components of motion vectors. Ix and
Iy are spatial derivatives. It is a temporal derivative. WIxy is
an example of windowed weighted averages. Splitting nodes
are removed for the sake of simplicity. mem1−4 represent 4
different memory interfaces.

cl::Program::Binaries bins
{{ bitstream_buffer.data(), bitstream_buffer.size() }};

auto context = cl::Context(device, NULL, NULL, NULL);
auto q = cl::CommandQueue(context, device, 0);

cl::Buffer buffer_input(context, CL_MEM_READ_WRITE);
cl::Buffer buffer_output(context, CL_MEM_READ_WRITE);

auto [input_data, width, height] = load_png("input.png");
q.enqueueWriteBuffer(buffer_input, true,

0, width * height, input_data);

cl::Program program(context, {device}, bins, NULL);
auto kernel = cl::Kernel(program, "hls_top");
kernel.setArg(0, buffer_input);
kernel.setArg(1, buffer_output);
q.enqueueTask(kernel);
q.finish();

auto output_data = alloc_pixels(width, height);
q.enqueueReadBuffer(buffer_output, true,

0, width * height, output_data);
write_png(output_data, width, height, "output.png");

Concisely, this code sets up the basic infrastructure to load
the kernel, creates the OpenCL/XRT context and command
queue, then creates buffers to hold the input and output data,
loads the image, runs the kernel, and finally writes back
the result image. In order to generate that code, FLOWER
considers every loop that comes from the DSL (for instance,
the loops created via iteration_point) as executing on
the FPGA. Thus, these parts are translated into a single launch
of the top-level kernel. The rest is considered as running
on the host: The calls to read_image or write_image,
for instance, will be executed there, and not on the FPGA.
Internally, functions like write_image or read_image
use compiler-provided intrinsics to copy data from the host
to the FPGA: Those directly translate to calls to XRT that
transfer the data in the right direction.

As mentioned previously, all the loops that are generated
via the DSL translate into one top-level kernel launch on the
host. The arguments of that kernel launch are set according to
the parameters extracted during the top-level kernel generation



phase. Those typically come from uses of input or output
images in the DSL loops, like in this example.

Thanks to that automatic host code generation, the program-
mer only needs to focus on writing the application from a
single piece of code written using FLOWER. Consequently,
it’s easier to make modifications of the code, since the host
code is automatically synchronized with the FPGA code.

V. EVALUATION

For experimental evaluation, we consider a range of promi-
nent applications that have been used in comparable works [7],
[8], [9], [10]. Table I lists the number of stages of each appli-
cation. This number does not include two additional memory
read/write stages required for burst transfer optimization.

TABLE I: Benchmarking applications.

application stage(s) description

Mean filter 1 5 × 5 filter reducing intensity variation
Gaussion blur 1 5 × 5 integer low-pass filter for noise reduction
Bilateral filter 1 5 × 5 floating-point filter for image smoothing

while preserving edges
Sobel-Luma 2 Edge detection algorithm utilizing

RGB to luma color conversion
Unsharp mask 3 Sharpens an image
Filter chain 3 3 × 3 filter chained 3 times
Jacobi 1 3 × 3 filter for image smoothing
Optical flow (LK) 16 Lucas-Kanade method for motion estimation
Harris 9 Corner detection for finding features in images
Shi-Thomasi 9 Corner detection with improved scoring function
Laplace 1 Derivative operator for edge detection
Square 1 Pixel-wise operation for increasing image contrast
Sobel 1 3 × 3 filter for edge detection

We evaluate FLOWER on two different FPGA platforms:
Xilinx Alveo U280 (xcu280-fsvh2892-2L-e) and Bittware
520N-MX (Intel Stratix 10 MX2100). Both are accelerator
cards connected to the host via PCIe Gen3x16. However, we
can only use PCIe Gen3x8 for the Bittware 520N-MX due to
restrictions of the used BSP.

Intel OpenCL codes are synthesized by the Intel FPGA
SDK for OpenCL 19.4. Xilinx HLS C++ and OpenCL codes
for the accelerator card are synthesized by the Vitis v++
compiler 2020.1. We use Vitis hls 2020.1 to synthesize the
generated IPs. Host programs for the Xilinx card use the XRT
2.7.766 runtime library. Table II shows available benchmark
evaluations with corresponding plots among different backends
of FLOWER.

We start by evaluating our framework against Hipacc [11],
[12] and AnyHLS [4] on a set of image processing applica-
tions, before assessing the OpenCL support.

A. Hipacc

The FPGA support in Hipacc is mostly designed for Zynq
SoPC (System on Programmable Chip) platforms, and the
generated IP blocks obtained from Hipacc are not immediately
ready to be linked with the accelerators’ platform shell.
Therefore, to compare our work with Hipacc, we rely on
the SoPC IP output of FLOWER that is synthesized for the
FPGA part xcu280-fsvh2892-2L-e found in the Alveo U280
card. With Hipacc, we generate each application by first

Xilinx
HLS HLS-SoC OpenCL Intel OpenCL

Mean filter 3 3 - 3
Gaussian blur 3 3 3 3
Bilateral filter 3 3 - -
Sobel-Luma 3 3 - -
Unsharp mask 3 - - -
Filter chain 3 - - 3
Jacobi 3 - - 3
Optical flow (LK) 3 - - -
Harris 3 3 - 3
Shi-Thomasi 3 - - -
Laplace 3 - - -
Square 3 - - -
Sobel 3 3 - -

Figure number Fig. 6 Fig. 5 Fig. 8 Fig. 9

TABLE II: Available application evaluations for the different
backends in FLOWER.

gaussia
n
laplace

mean filter
sobel

harris
corner

bilateral

10.46

10.48

10.5

10.52

10.54

10.56

10.58
·105

cy
cl

es

FLOWER Hipacc

laplace
sobel

harris
corner

2.62

2.63

2.63

2.64

2.64

2.65

2.65·10
5

Fig. 5: Synthesis results, showing the latency of applications
generated by FLOWER and Hipacc. Image size is 1024×1024.
ftarget = 300MHz on a Xilinx Alveo U280 card. Left shows
non-vectorized version, right is vectorized with a factor of 4.

making it compatible with the vitis_hls command-line
tool, and then by synthesizing it as streaming IPs for the
same FPGA part. All applications in Hipacc have an AXIS
interface without any global memory control bundle, and thus
they cannot access global memory. Consequently, we need
to impose this restriction on FLOWER applications as well.
Synthesis results in Fig. 5 alongside with resource usage
in Table III shows that FLOWER applications have lower
latencies. This is true also when applications are vectorized.

B. AnyHLS

AnyHLS does not use any dataflow optimization. That
is, for applications with multiple stages like filter-chain or
Harris-corner, AnyHLS only generates opaque modules. These
modules cannot communicate to each other or to the host.
Therefore, a huge amount of manual HLS coding is required
to optimize and connect them together properly. Applications
generated by FLOWER work without any manual optimization
and produce superior results.

Fig. 6 illustrates how different optimizations dramatically
improve the applications’ performance in terms of execution
time, measured using Vitis analyzer. In order to observe how
task pipelining takes place with dataflow optimization, we



ga
us

sia
n

filte
r-c

ha
in

ha
rri

s

op
.flow

-lk

bil
ate

ral

mea
n-fi

lte
r

sh
i-t

ho
masi

so
be

l-l
um

a

un
sh

arp
-m

ask
sq

ua
re

so
be

l

lap
lac

e

100

1,000
to

ta
l

ru
nt

im
e

(m
s)

base (AnyHLS) vectorized (AnyHLS) burst (FLOWER) vectorized+burst (FLOWER)

Fig. 6: Total kernel runtime of applications through different optimizations, when executed 6 times on a Xilinx Alveo U280.
Image size is 1024× 1024 and vectorization factor is 4. The AnyHLS versions have no burst transfer. Applications which do
not have an AnyHLS version could not be generated using the AnyHLS Xilinx backend, because for the generated kernels,
the synthesis tool requires FIFO buffer sizes that are too large.

TABLE III: Post place and route resource usage of FLOWER
and Hipacc applications. Image size is 1024×1024. Reported
by Vitis targeting Xilinx Alveo U280 card.

Application Tool CLB LUT FF DSP BRAM SRL

Gaussian FLOWER 363 1851 1486 0 8 32
Hipacc 602 2987 2503 0 8 0

Laplace FLOWER 99 371 487 0 4 32
Hipacc 86 374 454 0 4 0

Mean filter FLOWER 396 1861 1509 4 8 32
Hipacc 634 3257 2413 4 8 0

Sobel FLOWER 258 1124 1156 0 8 72
Hipacc 329 1410 1721 0 8 0

Harris corner FLOWER 712 3337 3656 22 20 240
Hipacc 1298 6241 7098 21 20 217

Bilateral FLOWER 18189 76708 81909 1097 8 8062
Hipacc 11781 51644 57906 654 8 5960

launch each kernel 6 times, so that several memory trans-
actions happen consecutively. In all applications, the DMA
engine transfers 25.166 MB from the host to the kernel’s
global memory. FLOWER extracts global memory operations
from the kernel and automatically generates the dataflow-
optimized version, which in turn allows burst transfers for
read/write memory. In fact, in FLOWER, even applications
that consist of only a single stage, are divided into at least three
tasks which are read from global memory, compute, and write
to global memory, enabling pipelined dataflow executions.
Fig. 7 demonstrate how we utilize global memories.

As described in Section IV, vectorization aggregates several
input data (pixels) to vectors, and by replicating the arithmetic
operations, processes them at the same time. Thanks to ap-
propriate packing of data and sequential access patterns on
inputs and outputs of the generated kernel, FLOWER enables
Vitis to figure out the corresponding memory interface data-
width for kernel to global memory transfers. This data-width

read compute write

TR T1 T2 TW

kernel: hls_top

Fig. 7: hls top is a kernel made of 4 tasks: T1 and T2 for
computing plus two additional tasks TR and TW for read-
ing/writing in order to enable global memory burst transfers.

is aligned with the size of the vectorized datapath, which in
turn results in optimal dataflow transfers throughout the entire
design. Memory controllers of common FPGA cards support
a data bus width of up to 512 bits, which in practice defines
an upper limit for constructive vectorization. By combining
vectorization and burst transfer optimizations we get the best
performance.

Since AnyHLS could not take advantage of the dataflow
optimization, it also could not benefit from burst transfers,
resulting in execution times that are up to 20× slower.

C. OpenCL

The OpenCL backend of FLOWER generates multi-
platform OpenCL device and host codes from the same
application. These codes can be synthesized with both Xilinx
Vitis and Intel OpenCL SDK without any modifications. Fig. 8
and Fig. 9 show the total execution time of kernels launched
6 times for Xilinx (measured using Vitis analyzer) and Intel
OpenCL (measured using the Intel dynamic profiler). While
we cannot compare Intel’s OpenCL version to the Xilinx one,
because of the user licenses of the vendor tools, these charts
demonstrate that FLOWER works on both platforms without
requiring any change in the application code.



na
ı̈ve bu

rst

ve
cto

riz
ed

+
bu

rst

0

200

400

600

800 723.9

51.1 38.6

to
ta

l
ru

nt
im

e
(m

s)

Fig. 8: Total kernel runtime of the Gaussian filter. The kernel
is generated using FLOWER’s OpenCL backend for Xilinx
FPGAs. The naı̈ve version is made of only one kernel/task.
The kernel is executed 6 times for a 1024×1024 image on a
Xilinx Alveo U280 PCIe accelerator card.

filte
r-c

ha
in

mea
n-fi

lte
r

ga
us

sia
n

ha
rri

s
jac

ob
i

25.1

39.8

to
ta

l
ru

nt
im

e
(m

s)

non-vectorized vectorized

Fig. 9: Evaluation of FLOWER’s OpenCL backend on a
Bittware 520N-MX card (Intel FPGA). Applications are ex-
ecuted 6 times and total kernel runtime is measured. Image
size is 1024× 1024.

VI. RELATED WORK

FPGA designs applying dataflow optimizations for data
access and reuse are significantly more efficient than non-
optimized designs: A climate prediction application runs 800×
faster than a naı̈ve version when developers correctly address
data movement [1], [13]. Unfortunately, current C/C++ HLS
languages lack the ability to express parallelism and dataflow
properly, which means that a huge amount of low-level pro-
gramming is still required when using those languages.

When it comes to image processing in particular, the
literature contains several DSLs and compilers for FPGAs.
They follow various approaches for generating hardware:
SCORE [14] introduces basic elements of dataflow archi-
tectures and is based on TDF which is basically an RTL
language. RIPL [15] and Spatial [16] target intermediate
languages to generate HDL code, named CAL dataflow [17]
and Chisel [18]. Through these intermediate languages, RIPL
and Spatial apply basic dataflow optimizations at the HDL
level. The LIFT [19] and Darkroom [20] generate HDL
code directly from functional patterns suitable for dataflow
programming and do not support data-parallelism. While these
tools construct hardware IPs and interfaces, they do not
provide the flexibility of HLS tools that generate low-level

RTL through automatic allocation, binding, and scheduling of
operators/registers [21], as in commercial or open-source HLS
tools like LegUp [22].

Hipacc [11], [12], HeteroHalide [7], PolyMage [8], the
Merlin compiler [23], and AnyHLS [4] target C/C++ codes
in their backend while applying optimization passes suitable
for HLS tools such as Xilinx Vitis or Intel HLS compilers.
AnyHLS makes use of the AnyDSL compiler [24] to partially
evaluate [25], [5] higher-order functions in order to generate
optimized OpenCL/C++ HLS codes. Daliha [26] is similar
to AnyHLS, in that it provides a general purpose language
for generating specialized HLS C++ code with performance
predictability. Daliha uses a rich type system to deliver per-
formance, while AnyHLS relies on function specialization.

There are several studies presenting the importance of
dataflow designs for stream processing, most notably Oxi-
Gen [27], which relies on the MaxCompiler, or Frost [28],
which uses the SDAccel synthesis tool (now superseded by
Xilinx Vitis) and doesn’t strictly follow the canonical form
required for Vitis. Both tools require ad-hoc host programs to
be written by the user. HLS dataflow transformations have also
demonstrated benefits in packet processing and deep learning
pipelines [29], [30], [31].

In contrast to FLOWER, most of these frameworks, includ-
ing Hipacc and PolyMage, generate a dataflow design through
C++ template metaprogramming, and their approach does not
rigorously follow the canonical form recommended by Xilinx.
They only support Vivado HLS and are not updated for the
new Vitis toolchain from Xilinx. Additionally, most of these
studies only evaluate the generated C/C++ IPs on Zynq SOC
platforms, which are only designed for embedded systems.
StencilFlow [32], and other frameworks [33], [34] show how
an optimized Intel OpenCL implementation is beneficial for
dataflow and stream processing designs. AFFIX [35] also
provides a scalable OpenCL library for vision algorithms via
Intel OpenCL on FPGAs. While our work is based on stateless
synchronous dataflow graphs, others [36] introduce a data-
centric model for stateful dataflow multigraphs, which relies
on SDAccel and Xilinx OpenCL code.

VII. CONCLUSION

Dataflow transformations, low-level optimizations, and host
code development are essential building blocks to achieve an
efficient design for streaming applications, as shown by the
examples in this paper. FLOWER allows programmers to write
their applications in a high-level library, and automatically
introduces the required transformations and optimizations.
Our results demonstrate that our work is not only faster
compared to similar tools, but also increases productivity, in
contrast with alternatives where manual work is required to
do those transformations. FLOWER is fully compatible with
both Xilinx and Intel FPGA accelerator cards, allowing to use
the same code to drive two different devices. In the future,
we would like to take advantage of the LLVM IR backend
of AnyDSL to target the recently open-sourced front-end of
Vitis, in order to perform even more optimizations.



REFERENCES

[1] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transforma-
tions of high-level synthesis codes for high-performance computing,”
IEEE Transactions on Parallel & Distributed Systems, vol. 32, no. 05,
pp. 1014–1029, Jan. 2021.

[2] T. Kenter, “Invited tutorial: OpenCL design flows for intel and xilinx
FPGAs: Using common design patterns and dealing with vendor-specific
differences,” in Sixth International Workshop on FPGAs for Software
Programmers (FSP Workshop), 2019, pp. 1–8.

[3] N. Brown and D. Dolman, “It’s all about data movement: Optimising
FPGA data access to boost performance,” in IEEE/ACM International
Workshop on Heterogeneous High-performance Reconfigurable Comput-
ing (H2RC), 2019, pp. 1–10.

[4] M. A. Özkan, A. Pérard-Gayot, R. Membarth, P. Slusallek, R. Leißa,
S. Hack, J. Teich, and F. Hannig, “AnyHLS: High-level synthesis with
partial evaluation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) (Proceedings of CODES+ISSS
2020), vol. 39, no. 11, pp. 3202–3214, Sep. 2020.

[5] R. Leißa, K. Boesche, S. Hack, A. Pérard-Gayot, R. Membarth,
P. Slusallek, A. Müller, and B. Schmidt, “AnyDSL: A partial evaluation
framework for programming high-performance libraries,” Proceedings of
the ACM on Programming Languages (PACMPL), vol. 2, no. OOPSLA,
pp. 119:1–119:30, Nov. 2018, HiPEAC 2018 Paper Award.

[6] J. Cong, Z. Fang, Y. Hao, P. Wei, C. H. Yu, C. Zhang, and P. Zhou, “Best-
effort FPGA programming: A few steps can go a long way,” CoRR, vol.
abs/1807.01340, 2018.

[7] J. Li, Y. Chi, and J. Cong, “HeteroHalide: From image processing DSL
to efficient FPGA acceleration,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2020, pp. 51–57.

[8] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, “A DSL compiler
for accelerating image processing pipelines on FPGAs,” in Interna-
tional Conference on Parallel Architecture and Compilation Techniques
(PACT), 2016, pp. 327–338.

[9] S. Purini, V. Benara, Z. Choudhury, and U. Bondhugula, “Bitwidth
customization in image processing pipelines using interval analysis and
smt solvers,” in Proceedings of the 29th International Conference on
Compiler Construction. ACM, 2020, pp. 167–178.

[10] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and
P. Hanrahan, “Rigel: Flexible multi-rate image processing hardware,”
ACM Trans. Graph., vol. 35, no. 4, Jul. 2016.

[11] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and W. Eckert,
“Hipacc: A Domain-Specific Language and Compiler for Image Process-
ing,” Transactions on Parallel and Distributed Systems (TPDS), vol. 27,
no. 1, pp. 210–224, Jan. 2016.

[12] O. Reiche, M. A. Özkan, R. Membarth, J. Teich, and F. Hannig,
“Generating FPGA-based Image Processing Accelerators with Hipacc,”
in Proceedings of the International Conference On Computer Aided
Design (ICCAD). Irvine, CA, USA: IEEE, Nov. 2017, pp. 1026–1033,
Invited Paper.

[13] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible communica-
tion avoiding matrix multiplication on FPGA with high-level synthesis,”
in Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2020, pp. 244–254.

[14] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon,
“Stream computations organized for reconfigurable execution (score),”
in 10th International Workshop on Field-Programmable Logic and
Applications. Springer, 2000, pp. 605–614.

[15] R. Stewart, K. Duncan, G. Michaelson, P. Garcia, D. Bhowmik, and
A. Wallace, “RIPL: A parallel image processing language for FPGAs,”
ACM Trans. Reconfigurable Technol. Syst., vol. 11, no. 1, Mar. 2018.

[16] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel,
T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis, and K. Olukotun, “Spatial:
A language and compiler for application accelerators,” in Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2018, pp. 296–311.

[17] C. Lucarz, M. Mattavelli, M. Wipliez, G. Roquier, M. Raulet, J. W. Jan-
neck, I. D. Miller, and D. B. Parlour, “Dataflow/Actor-Oriented language
for the design of complex signal processing systems,” in Conference
on Design and Architectures for Signal and Image Processing (DASIP
2008), Bruxelles, Belgium, Nov. 2008, pp. 1–8.

[18] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a

scala embedded language,” in Design Automation Conference, 2012, pp.
1212–1221.

[19] M. Kristien, B. Bodin, M. Steuwer, and C. Dubach, “High-level
synthesis of functional patterns with lift,” in Proceedings of the 6th
ACM SIGPLAN International Workshop on Libraries, Languages and
Compilers for Array Programming. ACM, 2019, pp. 35–45.

[20] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: Compiling
high-level image processing code into hardware pipelines,” ACM Trans.
Graph., vol. 33, no. 4, Jul. 2014.

[21] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Design Test of Computers, vol. 26, no. 4,
pp. 8–17, 2009.

[22] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 2, Sep. 2013.

[23] J. Cong, M. Huang, P. Pan, D. Wu, and P. Zhang, “Software infras-
tructure for enabling FPGA-based accelerations in data centers: Invited
paper,” in Proceedings of the 2016 International Symposium on Low
Power Electronics and Design. ACM, 2016, pp. 154–155.

[24] R. Leißa, M. Köster, and S. Hack, “A graph-based higher-order interme-
diate representation,” in IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), Feb. 2015, pp. 202–212.

[25] Y. Futamura, “Partial evaluation of computation process–an approach to
a compiler-compiler,” Higher-Order and Symbolic Computation, vol. 12,
no. 4, pp. 381–391, Dec. 1999.

[26] R. Nigam, S. Atapattu, S. Thomas, Z. Li, T. Bauer, Y. Ye, A. Koti,
A. Sampson, and Z. Zhang, “Predictable accelerator design with time-
sensitive affine types,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation.
ACM, 2020, pp. 393–407.

[27] F. Peverelli, M. Rabozzi, E. Del Sozzo, and M. D. Santambrogio,
“Oxigen: A tool for automatic acceleration of c functions into dataflow
FPGA-based kernels,” in IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2018, pp. 91–98.

[28] E. D. Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio,
“A unified backend for targeting FPGAs from DSLs,” in IEEE 29th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP). Los Alamitos, CA, USA: IEEE Computer
Society, Jul. 2018, pp. 1–8.

[29] H. Eran, L. Zeno, Z. István, and M. Silberstein, “Design patterns for
code reuse in hls packet processing pipelines,” in IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2019, pp. 208–217.

[30] S. Cheng and J. Wawrzynek, “High level synthesis with a dataflow
architectural template,” CoRR, vol. abs/1606.06451, 2016.

[31] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM, 2017,
pp. 65–74.

[32] J. de Fine Licht, A. Kuster, T. D. Matteis, T. Ben-Nun, D. Hofer, and
T. Hoefler, “StencilFlow: Mapping large stencil programs to distributed
spatial computing systems,” CoRR, vol. abs/2010.15218, 2020.

[33] H. R. Zohouri, A. Podobas, and S. Matsuoka, “Combined spatial and
temporal blocking for high-performance stencil computation on FPGAs
using OpenCL,” in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2018, pp.
153–162.

[34] S. Wu, D. Hu, S. Ibrahim, H. Jin, J. Xiao, F. Chen, and H. Liu,
“When FPGA-accelerator meets stream data processing in the edge,” in
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), 2019, pp. 1818–1829.

[35] S. Taheri, P. Behnam, E. Bozorgzadeh, A. Veidenbaum, and A. Nicolau,
“AFFIX: Automatic acceleration framework for FPGA implementation
of OpenVX vision algorithms,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2019, pp. 252–261.

[36] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler,
“Stateful dataflow multigraphs: A data-centric model for performance
portability on heterogeneous architectures,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2019.


