The Basic Building Blocks of Declarative 3D on the Web

Stefan Lemme* Jan Sutter!

DFKI DFKI
Saarland University Saarland University
Intel VCI

Abstract

WebGL enabled real-time 3D graphics on the Web. With the ob-
jective to integrate 3D graphics into the rest of the Web technology
stack, and to make it easier for Web developers to develop inter-
active 3D graphics, Declarative 3D approaches were developed:
X3DOM and XML3D. While the former focuses on backward-
compatibility to X3D and a large set of convenience elements, the
latter attempts to define a minimal set of flexible elements as an
extension to HTMLS.

It has now been more than 6 years since Declarative 3D was first
proposed for the Web. However, despite their different philoso-
phies neither X3DOM nor XML3D has yet been able to achieve the
same momentum and adoption rate as imperative frameworks like
three.js. In the meantime, the underlying Web technology stack has
made significant advances.

In this paper we revisit both approaches in light of new Web tech-
nologies, such as Web Components, to define a small set of core
elements that can provide the convenience of X3DOM while remai-
ning as flexible and customizable as XML3D. Further, we present
a strategy for building upon these core elements to enable user-
defined elements, with the ability to cover domain-specific needs in
Declarative 3D. Lastly, we show how these concepts can be used to
simplify existing approaches (i.e. X3DOM and XML3D) and pro-
vide the basic building blocks of Declarative 3D on the Web.

Keywords: HTML, Dec3D, Web Components, X3DOM, XML3D

Concepts: eComputing methodologies — Graphics systems
and interfaces; Graphics file formats; Rendering;

1 Introduction

The HTML <canvas> element has introduced an imperative inter-
face to produce 3D renderings on the Web via WebGL. However,
the core content technologies, HTML and CSS, are declarative. De-
clarative 3D for the Web (Dec3D) [Jankowski et al. 2013] attempts
to extend HTML with a declarative option for 3D graphics that in-
tegrates with the existing Web technology stack to be compatible
with the DOM, events, and CSS. X3DOM |[Behr et al. 2009] and
XML3D [Sons et al. 2010], the two most notable approaches, pro-
vide Web developers with new HTML elements to embed inter-
active 3D content into their Web pages. Both also integrate with
JavaScript to create dynamic 3D content using the DOM API.

Figure 1 shows the integration levels for 3D graphics on the Web
defined by Jankowski et al. [2013]. The first level is defined to be on
par with WebGL, an imperative API to define 3D content. This is

*e-mail:stefan.lemme @dfki.de
te-mail:jan.sutter@dfki.de
te-mail:christian.schlinkmann @dfki.de
8e-mail:philipp.slusallek @dfki.de

Web3D ’16,, July 22-24, 2016, Anaheim , CA, USA
ISBN: 978-1-4503-4428-9/16/07
DOI: http://dx.doi.org/10.1145/2945292.2945303

Christian Schlinkmann* Philipp Slusallek®
DFKI DFKI
Saarland University
Intel VCI
Level4 [CSSMaterials | oo Imedration
| Debugging |
Level 3
current XML3D/X3DOM

| CSS-Transforms |

implementations

Utilize Web Components

Canvas/API |

three.js

Figure 1: Integration levels for 3D content on the Web according to
Jankowski et al. [2013]. Our contribution will focus on the DOM
integration taking into account recent Web technologies like Web
Components.

the level of integration provided by libraries such as three.js'. Ap-
proaches at the second integration level have the 3D scene descrip-
tion integrated into the DOM. This level of integration is achieved
by both X3DOM and XML3D. The third and fourth level of inte-
gration require CSS transformations, debugging functionality, and
CSS based material descriptions. A CSS integration for declarative
3D on the Web has recently been proposed by Sutter et al. [2015],
which provides the necessary means to achieve the third and fourth
level of integration.

The DOM integration (Level 2 in Figure 1) provided by XML3D
and X3DOM includes specific 3D-related HTML elements and
events. Both approaches rely on polyfill implementations [Sons
et al. 2010; Behr et al. 2010] based on JavaScript and WebGL. As a
result, the integration of XML3D and X3DOM, including the cho-
sen elements and the level of CSS integration, were heavily shaped
by the available Web technologies at that time.

While X3DOM and XML3D both provide a DOM-integrated scene
description, both approaches differ considerably: X3DOM is fo-
cused on backward compatibility to X3D and, thus, integrates a
subset of X3D’s abstract model as well as many of X3D’s con-
cepts. X3DOM, due to its compatibility with X3D, provides highly
specialized nodes. They make it easier for beginners to create a
3D scene from scratch. However, those highly specialized nodes
also make it hard for Web developers to extend X3DOM with
application-specific functionality as X3D prototypes are not sup-
ported by X3DOM. XML3D, on the other hand, attempts to keep
the number of 3D-specific DOM elements minimal, providing only
a generic set of elements while leaving application-related func-
tionality to JavaScript and data processing to Xflow [Klein et al.
2012]. However, this generic approach is more difficult for Web
developers to start with due to the lack of convenience elements
and domain-specific functionality.

Both approaches have not managed to gain the momentum for a
wide adoption in the Web developer community. On the other hand,
libraries such as three.js that do not provide any integration with the

Thttp://threejs.org

http://dx.doi.org/10.1145/2945292.2945303

existing Web technology stack beyond the first Level (see Figure 1)
have a large community and strong momentum. We maintain that
Dec3D is an important part of the future of 3D graphics on the
Web and its adoption should be the primary goal of the Declara-
tive 3D community, before considering standardization efforts or
native implementations in the browsers. To increase the adoption,
we identified that two major aspects must be considered: Usability
and extensibility.

Usability in the Dec3D context should be focused on Web
developers without an extensive background in 3D graphics. The
highly specialized nodes of X3DOM are useful to provide the con-
venience that such developers need to quickly start to incorporate
3D renderings into a Web page with minimal effort.

Extensibility is the other important factor for adoption. A prime
example of this is the prototype system of X3D. Developers demand
the ability to extend existing elements as well as create new func-
tionality on top the already provided elements. This is something
that XML3D provides with its generic as well as flexible approach.

Neither X3DOM nor XML3D covers both aspects to the degree
necessary for a wider adoption of Dec3D on the Web. In order
to fulfill the requirements of usability as well as extensibility we
need an approach that provides the same convenience that X3DOM
offers while remaining as extensible and configurable as XML3D.
Consequently, we have decided to reevaluate the second level of in-
tegration of Dec3D for the Web, the DOM integration level, taking
into account recent Web technologies that were not available during
the initial design of XML3D and X3DOM.

In the following, we identify the minimum set of necessary new
HTML elements that are required to provide a declarative way for
integrating 3D graphics into a Web page. These core elements will
follow the philosophy of XML3D and offer the minimum set of
required functionality to embed 3D graphics. To provide the neces-
sary convenience we show how this set of core elements, together
with the concepts of Xflow and shade.js, can be used as building
blocks for user-defined elements by leveraging the power of Web
Components. Such elements may cover domain-specific functio-
nality or provide additional convenience through an easy-to-use in-
terface. In addition, we will demonstrate how existing nodes in
X3DOM and also some of the nodes of XML3D can be imple-
mented using our unifying approach.

2 Related Work

2.1 X3D and X3DOM

X3D is an ISO Standard [ISO 2008] file format to represent 3D
scenes. Its optional XML encoding is backward compatible to
VRMLO7. In addition to the 3D scene description it defines a full
runtime environment including an event system and scripting that
are not compatible with the Web.

X3DOM [Behr et al. 2009] is an approach to embed a subset of
X3D scenes into the DOM of a Web page. Similar to SVG [W3C
2011], the 3D rendering should be displayed without the need to
install a plug-in. To integrate X3D into the DOM, its functionality
was stripped down to visualization components while dynamics,
distribution, security, and scripting are managed through existing
Web technologies provided by the browser.

X3DOM attempts to add an existing 3D graphics format to the Web,
rather than extending the current Web technology where necessary.
This way, existing X3D content can be reused in the browser - as
long as it does not exceed the proposed DOM profile, which is only

a subset of X3D. Although X3DOM is an obvious approach to in-
tegrate X3D into the DOM, it is sometimes counter-intuitive for
Web developers as it keeps many of the VRML/X3D concepts, for
instance DEF/USE and routing.

2.2 XML3D and Xflow

XML3D [Sons et al. 2010] is a declarative approach for 3D graphics
designed as a minimal extension to HTMLS. It defines very light-
weight scene graph elements, such as meshes, groups, materials,
light sources, and viewpoints. The general design of XML3D is
focused around the data structures to provide a very generic scene
graph that is independent of the underlying rendering system. In
contrast to the highly specialized X3D/X3DOM nodes that each
have custom data structures, XML3D elements are built around
generic data blocks with typed buffers using the <data> element
[Klein et al. 2012]. This nicely matches the design of today’s gra-
phics hardware and APIs that support programmable shaders and
work on generic input buffers. With this approach XML3D can
easily take advantage of programmable GPUs [Klein et al. 2013].

Similar to HTML for 2D, XML3D provides only elements to de-
scribe a static 3D scene. Dynamic changes to the scene are handled
by application logic handled in JavaScript. Additionally, XML3D
takes advantage of Xflow for declarative dataflow processing that
also integrates into the DOM. Instead of covering functionality in
a use-case-oriented and specialized way, Xflow provides data pro-
cessing graphs in a generic way, just as XML3D provides a generic
approach to scene descriptions.

2.3 shade.js

A key objective of Dec3D has always been about the independence
from the concrete rendering approach. For X3D material definitions
typically come in the form of predefined “uber-shaders”, such as the
CommonSurfaceShader proposal [Schwenk et al. 2010]. These ma-
terial models have a well-known set of input parameters that can be
changed to configure the appearance of the material. This, however,
makes it impossible to use material appearances that go beyond the
built-in models. Custom material models cannot be defined this
way.

shade.js [Sons et al. 2014] addresses this issue and provides a way
to describe material models in a renderer-agnostic way. It uses a
domain-specific language (i.e. a dialect of JavaScript) and a com-
piler framework that translates shade.js material definitions to the
targeted rendering approach and API (e.g. WebGL, ray and path-
tracer, etc.).

2.4 Web Components

Web Components is an umbrella term for a set of four new
Web technologies: Custom Elements [W3C 2014b] for defi-
ning new HTML elements, HTML Templates (which are part of
HTMLS [W3C 2014d]) for defining reusable mark-up as DOM
fragments, Shadow DOM [W3C 2014e] to encapsulate, scope, and
hide DOM content, and HTML Imports [W3C 2014c] to reuse exis-
ting HTML documents. Together, these Web technologies pro-
vide means for encapsulation of functionality similar to OOP or
the facade pattern in software engineering. It provides reusabi-
lity of a once defined behavior in multiple contexts, and com-
posability for constructing complex (application) components from
smaller general-purpose components. This nicely addresses the re-
quirement of extensibility for Dec3D, and furthermore, allows for
streamlining the set of core elements to its essential building blocks.

<xml3d view="#camera">
<mesh material="#env" src="cube. json"></mesh>

<material id="env"
model="urn:xml3d:material:diffuse">
<data compute="genCubeMap () ">
<texture name="front">

</texture>
<!-- same for back, left, right, top -->
<texture name="bottom">

</texture>
</data>
<float3 name="emissiveColor">1 1 1</float3>
<float3 name="diffuseColor">0 0 0</float3>
</material>

<view id="camera"></view>
</xml3d>

Listing 1: Scene background with XML3D using six static images.

3 Limitations of X3DOM and XML3D

As a running example of the usability and extensibility require-
ments in the context of Dec3D we examine the declarative approach
to define a background for a 3D scene. This is a common task in
3D graphics, often achieved by wrapping the scene into a cube with
specially prepared textures for each face. Typically, this is known as
a skybox, or environment map, and may use cube mapping or polar
mapping to sample the textures without visible seams at the edges
of the cube. X3D provides the Background node, which offers cube
mapping by defining up to six static images using the attributes
frontUrl, backUrl, leftUrl, rightUrl, topUrl, bottomUrl. Thus, the
utilization of a single <Background> element in X3DOM leads to
the desired result and consequently scores high in terms of usability.

XML3D requires several more elements to achieve similar results
(see Listing 1). While powerful in terms of flexibility, the required
boiler plate code may discourage Web developers from adding a
background to their scene. Worse still, this background will fail as
soon as the camera leaves the origin of the scene because the skybox
must be transformed with the camera. Hence, we immediately hit a
further limitation of XML3D in that we are unable to change how
the model-view-matrix is applied to an object during rendering.

In addition to the Background node X3D also provides a Texture-
Background node, which supports the use of animated scenery (e.g.
MovieTextures) as backdrop. However, the TextureBackground
node is not supported by X3DOM, and thus it is only possible to
use static images as a background in X3DOM.

XML3D generally allows texture images to be replaced with the
<video> element, which allows animated backgrounds. Alterna-
tively, XML3D provides the flexibility that the six textures be the
output of a dataflow operator which can generate the image data
programmatically. Something that is impossible in X3D.

However there are many other things to consider when trying to
specifty a background. For example, we may wish to use other kinds
of environmental projections (e.g. polarmaps) instead of cubemaps.
We may wish to provide our 6 textures as a single image, or use
High Dynamic Range textures that require a different sampling al-
gorithm. With this many permutations specialized elements can
quickly become over-complicated, while a completely generic ap-
proach becomes difficult for Web developers to work with.

In the following sections we will focus on this example to show
how our proposed approach to Dec3D can be used to provide both
extensibility and an ease of usability similar to X3D’s TextureBack-
ground node.

Hence, we enable the community of 3D developers and domain
experts to create and share these components with non-experts.

4 Core Elements of Declarative 3D

Following the generic fashion of XML3D, we propose a new ap-
proach for Dec3D that allows for the specification of very few core
elements. Moreover, we leverage recent Web technologies to enable
the creation, sharing, and reuse of new elements, built from these
core elements. This can introduce additional semantics or conve-
nience as provided by X3D/X3DOM and XML3D.

The effort required for the implementation of Dec3D on the Web is
significantly reduced by the small number of core elements. Fur-
thermore, the approach allows users and communities to build new
domain-specific elements and share them, for instance in the fa-
shion of libraries, which ensures extensibility.

Overall, we have identified 8 interrelated core elements: For
rendering (<drawable>, <material>, <light>), data descrip-
tion (<data>, <value>), scene graph organization (<camera>,
<group>), and a root element (<web3d>) to embed the 3D content
in HTML (see Figure 2).

4.1 Rendering Elements

Rendering elements act as data sinks to describe and send data to
the renderer. Thus, each rendering element represents a dedicated
interface for data that is fed into the respective part of the render-
ing process. In a web-based environment, we specifically target
rasterization by utilizing WebGL. However, the Dec3D layer is de-
signed to be renderer independent and may target other rendering
approaches (e.g. ray tracing) as well.

4.1.1 Rendering Primitives

The <drawable> element represents geometry in the scene similar
to the XML3D concept. A Drawable supports common rendering
primitives (i.e. triangles, lines, points, triangle strips, line strips,
triangle fans) via its attribute type. Hence, the vertex position of the
geometry is mandatory input data. In terms of WebGL, a Drawable
requires the value that is written to g/_Position in the vertex shader
stage. Moreover, an index to fetch vertices of the geometry for
each rendering primitive can be utilized as input data. This will
result in an indexed draw call in WebGL. Other input data will be
made available to the renderer, which may take them into account
as additional vertex attributes and uniforms.

With regard to our scene background example, the input for the
Drawable will consist of position and texcoord for 12 triangles to
render the six sides of a cube.

4.1.2 Appearance and Lighting

Each Drawable refers via document id to a <material> element
that defines the geometry’s surface appearance. A Material uses
one of the built-in material models (e.g. matte, diffuse, Phong) and
configures its properties. In addition, a Drawable may override spe-
cific properties of its assigned Material in order to customize its
appearance.

Moreover, we utilize a <light> element that represents a light
source in the scene. A Light uses one of the built-in light models

Rendering Elements Data Elements
g 8 |2 - material | _Name | Type | BufferAccessor |
8 < PR model position float3 {object}
'g o &| transform operation feed data " texcoord float2 {object}
g E |5 . eeh
e = ° type [EECIEWETILS light remove
material model compute DataTable /
A dimensions
shape
Scene Graph Elements padims/geti)
inherits with predefined group transforlm
i materia
transform operation feed data v lovel types
web3d camera name float 2/3/4, int 2/3/4,
projection type mat2/3/4, byte 2/3/4, string

Figure 2: The relation of core elements for Dec3D on the Web: Rendering elements (drawable, material, light), data elements (data, value),
scene graph elements (camera, group), and root element (web3d). The sg-mesh element is a built-in Web Component based on drawable.

(i.e. distant, point, spot), which are commonly used and well-known
from APIs like OpenGL. These Lights may be taken into account
by the Material of a Drawable during the rendering process.

For our background cube we utilize a material model that renders
with constant intensity over our backdrop.

4.1.3 Custom Material Models

To go beyond ubershaders, we make use of shade.js [Sons et al.
2014] as a concept of portable material descriptions. Consequently,
a Material may refer to a user-defined material model that is speci-
fied via shade.js rather than using one of the built-ins.

Despite the fact that it would be possible to define the appearance
of our backdrop by a built-in material model, defining a custom
one has several advantages. First, we can get rid of unnecessary
computational overhead. Moreover, we can utilize an actual cube-
map sampler using respective texture lookups rather than folding
the 2D-texture around the cube. It would also allow us to support
polar mapping directly, rather than resampling it into a cubemap as
would be needed in X3D/X3DOM.

4.2 Data Elements

Our proposal for data elements heavily builds upon the concept of
generic dataflow processing as described by Klein et al. [2012]. The
most relevant <data> element represents a data container expo-
sing an interface to retrieve a DataTable with entries consisting of
a name, the type of available data, and a BufferAccessor (see Fi-
gure 2). The name of a data entry appears only once per DataTable
and is arbitrary, but it may have a semantic for the data sink that it
feeds into. The type identifier of the available data has predefined
values representing low-level types, such as float[234], int[234],
mat[234], byte[234] as well as string. The BufferAccessor acts
as an interface to the actual data represented as an n-dimensional
array of the defined type, providing the dimension and the shape
of the available data. Moreover, the BufferAccessor offers an n-
dimensional get () to fetch data directly (i.e. specify all n dimen-
sions) or retrieve another BufferAccessor to data containing less
dimensions than before (i.e. slice of n-dimensional data).

4.2.1 Data Input
To initially feed a data container with entries, a <value> element is

utilized that represents a single data entry. This element offers two
attributes to define the name of the entry in the DataTable as well as

the type. Thereby, the type identifier indicates how to parse the text
content of the value element as well as the exposed BufferAccessor.

Using this approach, we can interface commonly used data struc-
tures such as vector types, arrays of simple and vector types, images
(i.e. 2-dimensional arrays of vector types), and arrays of images, in
the same manner. Listing 2 (Lines 3-5) demonstrates a <value>
element containing a list of float2 that are interpreted by the ren-
derer of the Drawable as texture coordinates.

4.2.2 Data Compositing

The DataTables of several data containers can be merged either by
nesting them or by using references via document id in the attribute
src (see Listing 2). Moreover, external data can be incorporated by
referring to external documents (e.g. json, xml) while taking advan-
tage of built-in format handlers that fill a respective DataTable. This
data composition approach allows a DataTable to be extended with
additional data. It is efficient due to the reuse of data buffers (e.g.
on the GPU) while remaining flexible through the ability to work
with both individual entries or entire sets of entries.

Furthermore, unnecessary data entries can be stripped-off from the
table by using the attributes keep and remove of the <data> ele-
ment. When both attributes are present the attribute keep has prio-
rity. Listing 2 shows the attribute keep being used to proceed only
with the data from the external file that we’re interested in.

4.2.3 Data Processing

Additionally, a data container may perform a computation on its
DataTable to derive new entries or replace existing ones. This is
done by declaring an operator invocation on a <data> element
using the attribute compute. Operators are designed to have named
inputs rather than positional arguments. Thus, generic operators
may need to map specific entries of the DataTable to their named
inputs. Likewise, the results returned by an operator computation
may need to be redirected to the right data entries by name. For
that purpose, we utilize a destructuring assignment and passing pa-
rameters as object properties (see Listing 2 Line 24) as defined in
ECMAScript 2015%.

4.2.4 Custom Operators and Data Types

Additional operators may also be registered with the dataflow en-
gine and used at any point. This enables extensibility of the

Zhttp://www.ecma-international org/ecma-262/6.0/index.html

<data id="a" keep="position, texcoord, index">
<data src="cube. json"></data>
<value name="texcoord" type="float2">
0 0.33 0.25 0.33 0 0.66 0.25 0.66
</value>

</data>

<data id="b" compute="rgbeToFloat ()">
<!-- stores rgbe values in rgba channels —-->

</data>

<script type="application/compute-operator">
function rgbeToFloat (inputs) {
var img = inputs.rgbelmg.map (pixel => {
return rgbe2float (pixel);
}
return {rgbalmg:
}

</script>

img};

<data id="background-cube">
<data src="#a"></data>
<data compute="assign ({envmap:rgbalmg})">
<data src="#b"></data>
</data>
</data>

Listing 2: An example data graph that filters, renames and mani-
pulates a set of mesh data.

data processing using custom operators and allows to perform
application-specific computations such as data decoding. With re-
gard to our backdrop example, we utilize a custom operator to de-
code an RGBE into a floating point image compatible with our exis-
ting background (see Line 8 of Listing 2).

Similarly, one would like to amend the built-in types. Hence, the
type identifier in the DataTable can be any arbitrary name to repre-
sent custom types. A custom BufferAccessor would be required to
interface with this new data type. Custom types can be introduced
either as output of a custom operator or by a custom <value> ele-
ment. In any case, they must resolve to built-in low-level types
during the dataflow processing before being fed into a data sink.
This is normally done using an operator that converts the custom
type into a type that the data sink expects.

4.2.,5 Sampling Data Buffers

The BufferAccessor itself solely interfaces with the raw data. When
operating on n-dimensional data, such as 2D/3D images, the inter-
polation method and the boundary handling come into play. These
sampling concepts can easily be implemented on top of the Buffer-
Accessor and thereby left to the relevant places (i.e. shading).

4.3 Scene Graph Elements

Rendering elements of the scene (i.e. <drawable>, <light>) can
be organized by being placed into <group> elements [Sons et al.
2010]. Each Group defines a coordinate system relative to its pa-
rent element that can be manipulated via CSS 3D Transforms [W3C
2013]. This way, a tree of <group> elements represents the trans-
formation hierarchy of the scene within a <web3d> element as
root. In addition to rendering elements, this hierarchy may include
others, such as <camera> elements for viewpoints. This type of
scene description implicitly defines several spaces (i.e. coordinate
systems) that are well-known in computer graphics. Furthermore,

<script type="application/transform-operation">
// usual scene graph mesh (sg-mesh)

ClipSpace := projectionMatrix x ViewSpace

ViewSpace := viewMatrix * WorldSpace

WorldSpace := modelMatrix * ObjectSpace
</script>

<script type="application/transform-operation">
// environmental background

// mat3() represents upper 3x3 matrix

ClipSpace := projectionMatrix x ViewSpace

ViewSpace := mat3(viewMatrix) * WorldSpace

WorldSpace := mat3 (modelMatrix) = ObjectSpace
</script>

<script type="application/transform-operation">

// screen-aligned quad

ClipSpace := ObjectSpace
</script>
Listing 3: Example transform operations for usual meshes, envi-
ronmental background, and screen-aligned quads. These expres-
sions are used to generate code for the respective platform (e.g. a
vertex shader).

web3d
world space

camera
view space

clip space

projectionMatrix

drawable
object space

Figure 3: Spaces and transform operations between them within a
scene graph hierarchy.

a <camera> element may include intrinsic camera properties to be
passed to the renderer.

4.3.1 Scene Graph Mesh

The geometry of a scene is usually defined in a local coordinate sys-
tem referred to as object space. Furthermore, the <web3d> element
defines a coordinate system referred to as world space, whereas
the active <camera> element defines the view space and clip space

based on the (perspective) projection. The transformation required
to switch from one space into another is illustrated in Figure 3.

Geometry that is fed into a Drawable must be transformed into clip
space during the rendering process. Thus, a Drawable specifies a
transform operation in the form of expressions (see Listing 3) that
is used by the renderer to generate implementation-specific code
(i.e. vertex shader). The matrices are provided by the renderer, uti-
lizing the scene hierarchy of <group> elements (with their respec-
tive transforms) as well as the active <camera> element. Since the
vast majority of usual scene content shares the same transform ope-
ration we introduce the <sg-mesh> element as built-in Web Com-
ponent, which maps to a Drawable with a transform operation as
defined in Listing 3 (Lines 3-5).

4.3.2 Custom Meshes
In some cases we may want to define a different transform ope-

ration for a piece of geometry. For example our backdrop cube
should only be affected by camera rotations and not translations.

Normally, such geometry would require special handling, whereas
the proposed <drawable> element would simply define a different
transform operation (see Listing 3 Lines 10-12). Likewise, the in-
verse direction of space transforms can be easily derived, which is
essential for other rendering approaches such as ray tracing.

4.3.3 Configuring the Scene Graph

In addition to the <sg-mesh> element, other scene graph elements
may also act as sinks for data containers. The attribute transform of
a <group> element may refer to a <data> element with an entry
of type mat4 named “transform” in order to manipulate its local
coordinate system. For interactive changes this can be much faster
than updating the CSS 3D Transform of the respective <group>
element. It also enables dataflow processing to affect transforms.

Moreover, the attribute projection of a <camera> element may re-
fer to a <data> element with an entry of type mat4 named “pro-
jection”, allowing arbitrary projections. Built-in dataflow operators
provide support for commonly used configurable projections (e.g.
perspective, ortho).

5 Building upon Core Elements of Dec3D

On top of these core elements, we show in the following how to
develop user-defined elements by utilizing Web Components. Web
Components cover a set of APIs to introduce Custom Elements, re-
use DOM-fragments by utilizing HTML Templates, and encapsulate
subtrees of the document in the scope of a Shadow DOM. To illus-
trate this process, we will develop a <x-background> element as
described in Section 3 as well as a convenience element for render-
ing text in a 3D scene (see Figure 4).

5.1 Custom Elements

It has always been possible to use arbitrary elements in HTML. Ele-
ments unknown to the parser are not rendered and are represented
as generic DOM elements without specific functionality. The Cus-
tom Elements specification provides an API to register new types
of elements using JavaScript. To avoid naming collisions with exis-
ting and future HTML elements, custom elements require a dash in
their name. This is the reason for naming our user-defined elements
<x-background> and <x-label> respectively.

Instances of registered elements receive life cycle callbacks on crea-
tion, DOM attachment and detachment, and on attribute changes.
This allows for a per-element API to build fully-featured DOM ele-
ments.

5.2 HTML Templates

HTMLS introduced the <template> element to create reuseable
DOM fragments, which are declared as inert DOM subtrees. Sub-
sequently, they can be instantiated and inserted into the DOM via
JavaScript and thereby significantly reduce the effort to program-
matically create and append DOM elements.

Moreover, HTML Templates ease the declaration of complex or
compound elements that bring higher semantics into 3D scenes. As
an example, we introduce an <x-label> element that creates a
piece of text based on quadrilateral strips and bitmap fonts. The
element exposes, via an attribute, the property string containing the
text to be displayed. Listing 4 shows the element’s HTML template.
A generic method of a one-way binding of the attributes of a custom
element to a named placeholder (i.e. { {string}})is used in order
to feed the content of an element’s attribute into the instance of a
template.

<template id="x-label" string="default text">
<sg-mesh material="text.xml#shader-alphatest">
<data compute="xflow.quads2triangles()">
<data compute="xflow.text ()">
<data src="text.xml#font-config"></data>
<value type="string" name="text">
{{string}}
</value>
</data>
</data>
</sg-mesh>
</template>

Listing 4: HTML Template for a Custom Element x-label to place
text in 3D scenes. The value of the attribute “string” is being fed
into the named placeholder where it is used to generate 3D text
geometry.

5.3 Shadow DOM

Taking advantage of reusable components may introduce a simi-
lar issue that a simple copy and pasting of existing HTML layouts
raises: Applying CSS to define the style of HTML elements may
lead to unexpected results due to the multiple ways CSS selectors
may unintentionally match parts of the copied HTML.

The Shadow DOM is a W3C working draft to enable encapsulation
and isolation of DOM content. Content within the Shadow DOM is
not visible in the website’s actual DOM, but still considered for ren-
dering. For CSS this means no rule can interfere with content that
resides in the Shadow DOM as long as it is not explicitly targeting
this content with special selectors. The same applies the other way
around, which means that CSS bundled with the reusable compo-
nent does not interfere with content outside the Shadow DOM (i.e.
the hosting element) except where explicitly targeted.

In conjunction with Custom Elements this means reusable but en-
capsulated HTML elements can now be created. With regard to our
example of the <x-1abel> element, the boxed part in Figure 4 con-
taining the <sg-mesh> and <data> is encapsulated in the Shadow
DOM.

5.4 Generic Templates and Attribute Binding

The combined capabilities of Web Components and dataflows in
Dec3D reduces the implementation of <x-label> to a simple in-
stantiation of the template as shown in Listing 4 in the Shadow
DOM and a primitive one-way attribute binding. Hence, a reuseable
Dec3D component requires no runtime logic in JavaScript since
its behavior can be completely encoded in a declarative dataflow
graph. As a consequence, even user-defined elements can be fully
declarative. Ultimately, the complexity of rendering text in a 3D
scene (see Figure 4) is defined in a declarative fashion and hidden
behind a single element. As a result a user can add 3D text to a
scene with only a single line of HTML.

6 Representation of Pre-Existing Elements

Creating full-fledged custom elements is not the only motivation
for the introduction of Custom Elements. According to its specifi-
cation, it is also designed to rationalize the Web platform, i.e. “these
new features could be used to explain the functionality of existing
Web platform features, such as HTML elements” and the spec “is
designed to shorten the distance to a much more ambitious goal of
rationalizing all HTML, SVG, and MathML elements into one co-
herent system” [W3C 2014b]. Hence, a Dec3D scene description

camera

mponents

Y ﬂ Elements Console Sources Network Timeline Profiles Resources Security Audits

mesh src="teapot.json" material="#orangePhong"></mesh
/group
V x-label string-"Web Components"
¥ #shadow-root (open)
¥ ¢sg-mesh material="text.xml#shader-alphatest
value type="float3" name="diffuseColor”>e .57 ©.57</value
¥ data compute="xflow.quads2triangles()

¥ <data compute="{position:pos, normal:norm, texcoord:tc, diffuseTexture:bitmap} = xflow.text()

data src="text.xml#config"></data
value type="string” name="text">Web Components</value
/data
/data
/sg-mesh
/x-label

ntmi body web3d [[EEESN

data

string text

data

text.xml

=

#font-config

N =

* | styles | Computed Event Listeners DOM Breakpoints
+,cs X @&
element.style {
}

web3d * {
display: inherit;

<style>.</style>

1 margin -

Figure 4: 3D scene showing Custom Element x-label, that hides the complexity of text rendering using Web Components. Shown in Google
Chrome with debugging and expanded DOM tree including the Shadow DOM as well as a visualization of the dataflow.

should set itself the same ambitions goals.

With this in mind it is worth revisiting the abstract models of
X3DOM and XML3D. It would be possible to streamline both, dis-
carding elements which can be implemented using Web Compo-
nents. XML3D was designed to provide a minimal set of elements
necessary to describe 3D scenes [Sons et al. 2010] and provides
very few candidates for streamlining. In contrast, X3DOM already
implements large parts of the related X3D specification [ISO 2008],
which consists of more than 250 nodes. Many of these nodes can
now be implemented using Web Components.

This approach dramatically reduces the need for special handling
of Dec3D content by the browser or any polyfill implementation,
opting instead to encapsulate it inside user-defined components that
can be further combined and shared.

These components can be created and maintained by the Web com-
munity, greatly easing the implementation burden currently put on
developers of Dec3D approaches. They can also be easy to work
with, as most of the complex implementation details are hidden be-
hind the encapsulated Shadow DOM. Web developers may then use
the component as they would any other HTML element, through a
well defined interface of attributes and JavaScript functions.

6.1 X3DOM Nodes

The current X3DOM specification contains about 187 individual
leaf nodes® (i.e. HTML elements). Some elements, for instance
those related to audio, are outside the scope of this paper as we
focus solely on the core functionality needed for 3D graphics. Lis-
ting 5 shows a portion of the example “Hello X3DOM” that we
utilize to demonstrate Web Components and our core elements of
Dec3D. This scene contains some of the most common scene con-
tent such as materials, transforms and various generated shapes.

We prefix every element with “x3d-" to meet the naming scheme
of Custom Elements and subsequently embed the scene into a
<web3d> element. This process is done programmatically with a
script replacing the polyfill of X3DOM. The script also gathers the
list of required components and loads them dynamically from a cen-
tral repository. That allows for providing a compatibility layer for

3http://doc.x3dom.org/author/nodes.html

<web3d>
<x3d-scene>
<!-- x3d-group with x3d-box -->
<x3d-transform translation="-3 0 0">
<x3d-shape>
<x3d-appearance>
<x3d-material diffuseColor="0 1 0">
</x3d-material>
</x3d-appearance>
<x3d-cone></x3d-cone>
</x3d-shape>
</x3d-transform>

<!-- x3d-transform with x3d-box -->
</x3d-scene>
</web3d>

Listing 5: A portion of the example “Hello X3DOM” implemented
with Web Components on top of the core elements.

displaying existing X3DOM scenes as well as seamless sharing of
other custom components.

Scene The <x3d-scene> element is a wrapper around the 3D
scene content. It is not part of the X3D spec, but acts as a sim-
ple Group while also handling the configuration of some global
X3DOM-specific parameters such as picking.

Transform The <x3d-transform> element also behaves like a
Group and always defines a 3D transformation to be applied to its
children. This can be mapped using CSS 3D Transforms or, as we
did, with a <data> element that calculates an entry “transform” of
type mat4 as described in Section 4.3.3.

Shape A <x3d-shape> element combines a surface material
with geometry to define renderable objects. Hence, it maps to one
<material> element, referenced by a <group> element that wraps
all attached geometry, such as elements resolved to Drawables.

Cone The <x3d-cone> element represents the geometry needed
to render a cone. We generate the geometry using a dataflow and
feed the resulting mesh data into a <sg-mesh> element. The va-

<template id="xml3d-transform"
translation="0 0 O"
rotation="0 0 1 0" center="0 0 O"
scale="1 1 1" scaleOrientation="1 1 1">
<data compute="createTransform()">
<value type="float3" name="translation">
{{translation}}
</value>
<value type="float4" name="rotation">
{{rotation}}
</value>
<!-- center, scale, scaleOrientation -->
</data>
</template>

Listing 6: Custom Element xml3d-transform using HTML Tem-
plates and dataflow operators for the computation.

rious attributes (e.g. height and bottomRadius) are used as in-
put to the dataflow. The other geometry nodes of X3DOM (e.g. box
and sphere) are implemented similarly.

Appearance The <x3d-appearance> element aggregates seve-
ral properties affecting the surface appearance of the associated
geometry. The combined set of these properties is fed into the
<material> element of a shape and thus applied to the attached
geometry.

Material The <x3d-material> element covers properties rele-
vant to surface shading, such as diffuse color and transparency. Va-
lues can be set through its attributes and are subsequently passed
into the dataflow of the surrounding <x3d-appearance> element,
which ultimately feeds the <material> element of a shape.

6.2 XML3D Elements

Although the XML3D specification has traditionally contained a
relatively small number of elements even some of them can now be
replaced by Web Components. Similar to X3D/X3DOM we prefix
the elements with “xml3d-" to meet the naming scheme of Custom
Elements as well as make clear that they relate to XML3D.

Value Elements XML3D currently contains many elements
which act as input to Xflow’s data processing. All those can be
represented using a single <value> element while setting the res-
pective low-level type through the rype attribute as described in Sec-
tion 4.2.1. This approach would also be more flexible as it can
easily be extended with new data types. For example, the current
XML3D specification lacks an <xm13d-int 3> element, which can
be created similar to the existing <xm13d-int4>.

Transform XML3D provides multiple ways to define a 3D trans-
formation on scene elements. The transformation of a scene ob-
ject is usually specified using CSS 3D Transforms [W3C 2013],
or alternatively by referencing a <data> element that holds
the transformation. For convenience XML3D also offers the
<xml3d-transform> element, which composes a transformation
matrix from attributes such as translation and rotation. The result
of this element is just a transformation matrix, so it can also be
defined as the output of a dataflow. Hence, the built-in functiona-
lity of the <xm13d-transform> element can be substituted with a
component as shown in Listing 6.

7 Evaluation

We have presented a set of core elements for embedding 3D gra-
phics into the DOM, achieving a flexible and extensible approach.
Furthermore, we have shown that we can use Web Components to
build convenience and domain-specific elements on top of this exis-
ting core. In doing so, we address the crucial requirements of usa-
bility as well as extensibility for Dec3D.

We implemented 16 of the most common X3DOM nodes using our
set of core elements in the context of several example scenes. To
achieve full compliance with X3DOM the subset of the remaining
175 nodes that is relevant to 3D graphics must be implemented
in the same fashion. Ultimately, concepts such as routes must be
added as well to achieve full backward compatibility.

Since our system takes advantage of Web Components it makes
heavy use of DOM elements. Thus, we performed first measure-
ments of the memory usage and found that it increases almost lin-
early according to the number of scene objects (i.e. number of DOM
elements). The results are shown in Table 1.

Table 1: The memory usage (in MB) increases almost linearly with
regard to the number of scene objects (i.e. 5k, 10k, 15k). Compared
to XML3D the base memory usage of our system is higher, whereas
the average increase per 5k scene objects is slightly lower.

Base 5k 10k 15k | avg per 5k

XML3D 7.8 49.8 91.3 133.0
+42.0 | +83.5 | +125.2 41.78

Our System 12.9 494 86.3 123.0
+36.5 | +73.4 | +110.1 36.67

Our System 13.0 329 53.2 73.9
w/o rendering +19.9 | +40.2 +60.9 20.17

8 Conclusion and Future work

Given the presented set of core elements combined with Web Com-
ponents, we have demonstrated how to rationalize elements of exis-
ting Dec3D approaches, such as X3DOM and XML3D. This allows
the Declarative 3D specification for the Web to be streamlined down
to its essential components.

As a result, we can amend the integration model defined by
Jankowski et al. [2013] with a fifth level of integration that resides
at the top of the stack and consists of re-usable and sharable ele-
ments, in the form of component libraries (see Figure 5). Thereby,
we keep the basic building blocks of Dec3D separated from con-
venience and domain-specific functionality, including compatibi-
lity layers for the two existing approaches. Instead, we allow Web
developers to take advantage of selected components that exactly fit
their needs. This also enables communities to become much more
engaged with Dec3D by contributing to this fifth level. Hereby, we
envision community-maintained repositories of reuseable compo-
nents* for a wide range of Dec3D usecases. Ultimately, we feel
this will help achieve the primary goal of the Dec3D community to
increase the adoption of Dec3D on the Web.

Following our re-evaluation of the DOM integration, we deem it
worthy to revisit further features of Dec3D in light of the advan-
cing Web technology stack. For example, we believe that the in-
stantiation of assets (i.e. prefabs) and interfacing configurable as-
sets [Klein et al. 2014] would be good candidates for future work.

4similar to https://customelements.io/ and https:/elements.polymer-
project.org/

XML3D compatibility
library

X3D compatibility

library Infovis library

Domain Specific
Level 5 Nodes based on
Web Components

User space
libraries

CSS Integration
Sutter et al.

CSS Integration

Extensible Core
DOM Elements

Our contribution

Level 1 Canvas/API | three.js

Figure 5: Our proposed new integration model for 3D content on
the Web incorporating the new Web Components technology as well
as the CSS integration approach.

Acknowledgements

The research leading to these results has been generously supported
by the Intel Visual Computing Institute and has received funding
from the European Union’s Seventh Framework Programme under
grant agreement no. 632893 (FI-Core), and under grant agreement
no. 641191 (CIMPLEX) in the European Union’s H2020 Frame-
work Programme.

References

BEHR, J., ESCHLER, P., JUNG, Y., AND ZOLLNER, M. 2009.
X3DOM: A DOM-based HTML5/X3D Integration Model. In
Proceedings of the 14th International Conference on 3D Web
Technology, ACM, New York, NY, USA, Web3D ’09, 127-135.

BEHR, J., JUNG, Y., KEIL, J., DREVENSEK, T., ZOLLNER, M.,
ESCHLER, P., AND FELLNER, D. W. 2010. A Scalable Ar-
chitecture for the HTML5/X3D Integration Model X3DOM. In
Proceedings of the 15th International Conference on Web 3D
Technology, ACM, New York, NY, USA, Web3D ’10, 185-194.

ISO. 2008. ISO/IEC 19775-1:2008 Extensible 3D (X3D) — Part
1: Architecture and base components. Tech. rep., International
Organization for Standardization.

JANKOWSKI, J., RESSLER, S., SONS, K., JUNG, Y., BEHR, J.,
AND SLUSALLEK, P. 2013. Declarative Integration of Interac-
tive 3D Graphics into the World-Wide Web: Principles, Current
Approaches, and Research Agenda. In Proceedings of the 18th
International Conference on 3D Web Technology, ACM, New
York, NY, USA, Web3D 13, 39-45.

KHRONOS, 2011. WebGL Specifica-
tion Version 1.0, Khronos Specification.
https://www.khronos.org/registry/webgl/specs/1.0.0/, Feb.

KLEIN, F., Sons, K., RUBINSTEIN, D., BYELOZYOROV, S.,
JOHN, S., AND SLUSALLEK, P. 2012. Xflow - Declarative Data
Processing for the Web. In Proceedings of the 17th International
Conference on 3D Web Technology, ACM, New York, NY, USA,
Web3D ’12, 37-46.

KLEIN, F., SONS, K., RUBINSTEIN, D., AND SLUSALLEK, P.
2013. XML3D and Xflow: Combining Declarative 3D for the

Web with Generic Data Flows. IEEE Computer Graphics and
Applications 33, 5 (Sept.), 38-47.

KLEIN, F., SPIELDENNER, T., SONS, K., AND SLUSALLEK, P.
2014. Configurable instances of 3d models for declarative 3d in
the web. In Proceedings of the Nineteenth International ACM
Conference on 3D Web Technologies, ACM, New York, NY,
USA, Web3D 14, 71-79.

SCHWENK, K., JUNG, Y., BEHR, J., AND FELLNER, D. W. 2010.
A Modern Declarative Surface Shader for X3D. In Proceed-
ings of the 15th International Conference on Web 3D Technol-
ogy, ACM, New York, NY, USA, Web3D ’10, 7-16.

Sons, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. XML3D: Interactive 3D Graphics for the
Web. In Proceedings of the 15th International Conference on
Web 3D Technology, ACM, New York, NY, USA, Web3D ’10,
175-184.

SoNns, K., SCHLINKMANN, C., KLEIN, F., RUBINSTEIN, D.,
AND SLUSALLEK, P. 2013. xml3d.js: Architecture of a Polyfill
Implementation of XML3D. In Proceedings of the 6th Workshop
on Software Engineering and Architectures for Realtime Interac-
tive Systems, IEEE, New York, NY, USA, SEARIS ’13, 17-24.

Sons, K., KLEIN, F., SUTTER, J., AND SLUSALLEK, P. 2014.
shade.js: Adaptive Material Descriptions. Computer Graphics
Forum 33,7 (Oct.), 51-60.

SUTTER, J., SONS, K., AND SLUSALLEK, P. 2015. A CSS In-
tegration Model for Declarative 3D. In Proceedings of the 20th
International Conference on 3D Web Technology, ACM, New
York, NY, USA, Web3D 15, 209-217.

W3C, 2011. Scalable Vector Graphics (SVG) 1.1 (Sec-
ond Edition), W3C Recommendation (work in progress).
http://www.w3.0org/TR/2011/REC-SVG11-20110816/, Aug.

W3C, 2013. CSS Transforms Module Level 1, W3C Working
Draft (work in progress). http://www.w3.0org/TR/2013/WD-css-
transforms-1-20131126/, Nov.

W3C, 2014. CSS Custom Properties for Cascading Vari-
ables Module Level 1, W3C Last Call Working Draft (work
in progress). http://www.w3.org/TR/2014/WD-css-variables-1-
20140506/, May.

W3C, 2014. Custom Elements, W3C Working Draft (work in
progress). http://www.w3.org/TR/2014/WD-custom-elements-
20141216/, Dec.

W3C, 2014. HTML Imports, W3C Working Draft (work
in progress). http://www.w3.org/TR/2014/WD-html-imports-
20140311/, Mar.

W3C, 2014. HTMLS - A vocabulary and associated APIs
for HTML and XHTML, W3C Recommendation (work in
progress). http://www.w3.org/TR/2014/REC-html15-20141028/,
Oct.

W3C, 2014. Shadow DOM, W3C Working Draft (work
in progress). http://www.w3.org/TR/2014/WD-shadow-dom-
20140617/, June.

