Differentiable Rendering

Differentiable objective function $z = g(\mathbf{y})$ $\frac{\partial z}{\partial \mathbf{y}} =$ $= \frac{1}{\partial \mathbf{v}} g(\mathbf{y})$

Output rendered image

Gurprit Singh

Realistic Image Synthesis SS2024

Shuang Zhao Wenzel Jakob Tzu-Mao Li

SEGRAPH.ORG SECOND CONDENSION CONDENS

PHYSICS-BASED DIFFERENTIABLE RENDERING **A COMPREHENSIVE INTRODUCTION**

University of California, Irvine EPFL, Lausanne, Switzerland MIT CSAIL, Cambridge

Geometry, materials, emitters, ...

Realistic Image Synthesis SS2024

Scene: "bed classic" from jiraniano

Geometry, materials, emitters, ...

Realistic Image Synthesis SS2024

Geometry, materials, emitters, ...

Realistic Image Synthesis SS2024

Scene: "bed classic" from jiraniano

Geometry, materials, emitters, ...

$$f^{-1}(\mathbf{y})?$$

Scene: "bed classic" from jiraniano

INVERSE RENDERING IN COMPUTER VISION

OpenDR: an Approximate Differentiable Renderer [Loper et al. 2014]

Neural 3D Mesh Renderer [Kato et al. 2017]

HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. [Nguyen-Phuoc et al. 2019]

Soft Rasterizer: Differentiable Rendering for Unsupervised Single-View Mesh Reconstruction [Liu et al. 2019]

Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation [Rhodin et al., 2016]

BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images [Nguyen-Phuoc et al. 2020]

PHYSICS-BASED INVERSE RENDERING

- Focus on inverse rendering for realistic functions $f(\mathbf{x})$

Global illumination, complex materials, participating media, polarization, color spectra, etc.

PHYSICS-BASED INVERSE RENDERING

- Focus on inverse rendering for realistic functions $f(\mathbf{x})$

Global illumination, complex materials, participating media, polarization, color spectra, etc.

- No neural networks.

Shouldn't need them, we understand the underlying equations.

(Of course still possible to use neural nets **inside or outside** of the renderer)

SHAPE & MATERIAL RECONSTRUCTION

Target

Target

Reparameterizing discontinuous integrands for differentiable rendering [Loubet et al. 2019]

SHAPE & MATERIAL RECONSTRUCTION

Input scene

Target

Input scene

Target

Reparameterizing discontinuous integrands for differentiable rendering [Loubet et al. 2019]

Input scene

Target

Input scene

SHAPE & MATERIAL RECONSTRUCTION

Input scene

Step 0

Target

Input scene

Step 0

Target

Reparameterizing discontinuous integrands for differentiable rendering [Loubet et al. 2019]

Input scene

Step 0

Target

Input scene

Step 0

CAUSTIC DESIGN

Schwartzburg et al. 2014

(META-) MATERIAL DESIGN

Mitsuba 2: A Retargetable Forward and Inverse Renderer [Nimier-David et al. 2019]

(META-) MATERIAL DESIGN

Mitsuba 2: A Retargetable Forward and Inverse Renderer [Nimier-David et al. 2019]

(META-) MATERIAL DESIGN

Mitsuba 2: A Retargetable Forward and Inverse Renderer [Nimier-David et al. 2019]

FABRICATION: 3D PRINT OPTIMIZATION

Elek et al. 2017

Target

Naive print

Mitsuba 2: A Retargetable Forward and Inverse Renderer [Nimier-David et al. 2019]

Reference: diffuse surface texture

Mitsuba 2: A Retargetable Forward and Inverse Renderer [Nimier-David et al. 2019]

Reference: diffuse surface texture

- Inverse subsurface scattering [Che et al. 2020]

Realistic Image Synth

Integrating physics-based rendering into machine learning & probabilistic inference pipelines

Integrating pl

Inverse subsurface scattering [Che et al. 2020]

based rendering into machine learning & probabilistic in

e pipelines

Integrating pl

Inverse subsurface scattering [Che et al. 2020]

based rendering into machine learning & probabilistic in

e pipelines

DIFFERENTIABLE RENDERING MAKES RENDERING FASTER

- Derivatives reveal neighborhood information of light paths
 - useful for interpolation & guiding samples

H2MC path differentials [Li et al. 2015] [Suykens and Williams 2001]

Realistic Image Synthesis SS2024

light

Langevin MC [Luan et al. 2020]

BEYOND GRAPHICS: A WORLD OF APPLICATIONS

of measurements.

Many disciplines rely on understanding or controlling the behavior of light in images or other kinds

BEYOND GRAPHICS: A WORLD OF APPLICATIONS

of measurements.

Many disciplines rely on understanding or controlling the behavior of light in images or other kinds

[Solar Carve Tower - Studio Gang]

Current rendering

OBJECTIVE FUNCTION (A.K.A. "LOSS")

Realistic Image Synthesis SS2024

OBJECTIVE FUNCTION (A.K.A. "LOSS")

Realistic Image Synthesis SS2024

Rendering

Target

Scene parameters The problem: minimize $g(f(\mathbf{x}))$ $\mathbf{x} \in \mathcal{X} \neq \mathbf{x}$ Objective Rendering algorithm

The problem: minimize $g(f(\mathbf{x}))$ $\mathbf{x} \in \mathcal{X}$

The problem: minimize $g(f(\mathbf{x}))$ $\mathbf{x} \in \mathcal{X}$

- meshes
- material (BSDF) parameters
 - textures, etc.
- parameters of procedural models
- volumes, light sources, ...

The problem: minimize $g(f(\mathbf{x}))$ $\mathbf{x} \in \mathcal{X}$

Realistic Image Synthesis SS2024

The problem: minimize $g(f(\mathbf{x}))$ $\mathbf{x} \in \mathcal{X}$

Realistic Image Synthesis SS2024

The problem: minimize $g(f(\mathbf{x}))$ $\mathbf{x} \in \mathcal{X}$

Realistic Image Synthesis SS2024

CHAIN RULE

 $g(\mathbf{y},...)$

CHAIN RULE

 $g(\mathbf{y},...)$

Realistic Image Synthesis SS2024

CHAIN RULE

 $g(\mathbf{y},...)$

 ∂z ∂z дy $-\overline{\partial \mathbf{v}}$ Эx $\partial \mathbf{x}$

 $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ ∂z ∂z $\overline{\partial \mathbf{x}} = \overline{\partial \mathbf{v}}$

Challenges

- 1. Differentiating f
- 2. Matrix multiplication
- 3. Efficiency?
- 4. How to deal with edges?

Use finite differences!

$\frac{\partial \mathbf{y}}{\partial x_i} = \frac{f(\mathbf{x} + \varepsilon \, \mathbf{e}_i) - f(\mathbf{x} - \varepsilon \, \mathbf{e}_i)}{2 \, \varepsilon}$

Use finite differences!

$$\frac{\partial \mathbf{y}}{\partial x_i} = \frac{f(\mathbf{x} + \varepsilon \, \mathbf{e}_i) - f}{2 \, \varepsilon}$$

Potential problems: - Bad approximation (big ε), rounding error (small ε)

[Wikipedia]

Use finite differences!

$$\frac{\partial \mathbf{y}}{\partial x_i} = \frac{f(\mathbf{x} + \varepsilon \, \mathbf{e}_i) - f}{2 \, \varepsilon}$$

Potential problems:

- Bad approximation (big ε), rounding error (small ε)
- Need to correlate Monte Carlo samples

[Wikipedia]

), rounding error (small ε) Carlo samples

Use finite differences!

$$\frac{\partial \mathbf{y}}{\partial x_i} = \frac{f(\mathbf{x} + \varepsilon \, \mathbf{e}_i) - f}{2 \, \varepsilon}$$

Potential problems:

- Bad approximation (big ε), rounding error (small ε)
- Need to correlate Monte Carlo samples
- Extremely slow when many there are many parameters.

[Wikipedia]

), rounding error (small ε) Carlo samples nv there are manv paramet

AUTOMATIC DIFFERENTIATION

$f(\mathbf{x})$

AUTOMATIC DIFFERENTIATION

ISSUES WITH AUTOMATIC DIFFERENTIATION (AD)

0/1] ▶ mul #233 [E/I: 0/1]		mul #215 [E/I: 0/	1] mul #212 [E/I: 0/1]	scatter #158 [E/I: 0/1] #209 [E/I: 0/1] mul	select #131 [E/I: 0/1] #155 [E/I: 0/1] #152 [E/I: 0/1] #179 [E/I: 0/1]	sele
	mul scatter #268 [E/I: 0/1] #259 [E/I: 0/1]	mul #256 [E/I: 0/1] mul [s] #253 [E/I: 0/1]		#182 [E/I: 0/3] scatter #206 [E/I: 0/1] #203 [E/I: 0/1] #	mul #200 [E/I: 0/1]	#176 [E/I
8/1] scatter mul mul [S] #318 [E/I: 0/1] #315 [E/I: 0/1] mul #319 [E/I: 0/1] #309 [E/I: 0/1]				mul #230 [E/I: 0/3] #227 [E/I: 0/1]		
mul mul #321 [E/I: 0/1] #306 [E/I: 0/2] mul #342 [E/I: 0/3] #339 [E/I: 0/1]	mul #250 [E/I: 0/2] #286 [E/I: 0/3] \$catter #283 [E/I: 0/1]	select #280 [E/I: 0/1]	mul [s] #365 [E/I: 0/1]			
mul #214 [E/I: 0/1] mul				scatter #205 [E/I: 0/1] #181 [E/I: 0/3] #208 [E/I: 0/1] scatter #157 [E/I: 0/1]	mul *199 [E/I: 0/1] scatter #178 [E/I: 0/1] #151 [E/I: 0/1] #154 [E/I: 0/1]	
mul #187 [E/I: 0/1] #187 [E/I: 0/1] #164 [E/I: 0/1] add #169 [E/I: 0/1] select #172 [E/I: 0/2] #193 [E/I: 0/2] #145 [E/I: 0/2]	mul [E/I: 0/1] add mul [E/I: 0/1] select	mul #136 [E/I: 0/1]		mul #163.[E/T. 0/1] #160 [E/I: 0/1] #28 [E/J 0/2] #25 [E/I: 0/1]	scatter #130 [E/I: 0/1] #22 [E/I: 0/1]	sele #127 [E/: scatter #16 [E/I: 0/1] #13 [E/:
#232	mul [E/I: 0/1]	select #76 [E/I: 0/2] #94 [E/I: 0/1] #91 [E/I: 0/1] mul mul		wil #40 [E/I: θ/1]	scatter #61 [E/I: 0/1] #67 [E/I: 0/1] #64 [E/I: 0/1]	select #58 [E/I: 0/1] #37 [E/I: 0/3] scatter scatter
0/1] mul #320 [E/I: 0/1] #305 [E/I: 0/2]	mul #267 [E/I: 0/1] #264 #267 [E/I: 0/1] \$catter #261 [E/I: 0/1] \$select #258 [E/I: 0/1] \$catter #258 [E/I: 0/1] \$catter	mul #248 [E/I: 0/3] #247 [E/I: 0/1] #246 [E/I: 0/ #255 [E/I: 0/1] #252 [E/I: 0/1]	1]	#115 [E/1: 0/1] # scatter #226 [E/1: 0/1]	112 [E/I: 0/1] scatter #109 [E/I: 0/1] #85 [E/I: 0/1] #106 [E/I: 0/1]	#82 [E/I: 0/1]
#304 [E/1: 0/1] #304 [E/1: 0/3] #305 [E/1: 0/1] #302 [E/1: 0/1] #304 [E/1: 0/1] #304 [E/1: 0/1] #302 [E/1: 0/1] #301 0/1] #341 [E/1: 0/3] #338 [E/1: 0/1] #338 [E/1: 0/1]	[1/1. 0/1] #300 [1/1. 0/1] #200 [1/1. 0/1]					
mul [s] #420 [E/I: 0/1]		Select #391 [E/I: 0/	1]			
0/3] scatter #340 [E/I: 0/1]						
mul #307 [E/I: 0/2]	mul #287 [E/I: 0/3]		select #393 [E/I: 0/1]			
mul #290 [E/I: 0/1]	mul #266 [E/I: 0/1] scatter #284 [E/I: 0/1]	mul [s] #257 [E/I: 0/1]	mul #231 [E/I: 0/3]	scatter #228 [E/I: 0/1]		
mul #322 [E/I: 0/1]	mul #269 [E/I: 0/1]		scatter #207 [E/I: 0/1] #213 [E/I: 0/1] #210 [E/I: 0/1]	select #204 [E/I: 0/1] mul #183 [E/I: 0/3] #180 [E/I: 0/1] #180 [E/I: 0/1]	mul #153 [E/I: 0/1]	
al unio				scatter		

- Precautions must be taken to ensure correctness
- Symbolically differentiating a Monte Carlo estimator path tracer does not always work! —

- Precautions must be taken to ensure correctness
- Symbolically differentiating a Monte Carlo estimator path tracer does not always work! ____
- **Example 1:** Distributional parameters

Estimate
$$\int_{0}^{\infty} f(\lambda, x) \, \mathrm{d}x$$
 (with λ given)

- Draw $x \sim \text{Exp}[\lambda]$
- $f \leftarrow f(\lambda, x)$
- $p \leftarrow \lambda e^{-\lambda x}$ # This is the pdf of $Exp[\lambda]$
- Return f/p

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 1:** Distributional parameters

Estimate
$$\int_{0}^{\infty} f(\lambda, x) \, \mathrm{d}x$$
 (with λ given)

(Single-sample) Monte Carlo estimator:

- Draw $x \sim \text{Exp}[\lambda]$
- $f \leftarrow f(\lambda, x)$
- $p \leftarrow \lambda e^{-\lambda x}$ # This is the pdf of Exp[λ]
- Return f/p

Estimate
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \int_0^\infty f(\lambda, x) \,\mathrm{d}x = \int_0^\infty \frac{\partial f}{\partial \lambda}(\lambda, x) \,\mathrm{d}x$$

(Single-sample) Monte Carlo estimator:

Draw $x \sim \text{Exp}[\lambda]$

•
$$f' \leftarrow \frac{\partial f}{\partial \lambda}(\lambda, x)$$

•
$$p \leftarrow \lambda e^{-\lambda x}$$

Return f'/p

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 1:** Distributional parameters

Estimate
$$\int_{0}^{\infty} f(\lambda, x) \, \mathrm{d}x$$
 (with λ given)

(Single-sample) Monte Carlo estimator:

- Draw $x \sim \text{Exp}[\lambda]$
- $f \leftarrow f(\lambda, x)$
- $p \leftarrow \lambda e^{-\lambda x}$ # This is the pdf of $Exp[\lambda]$
- Return *f*/*p*

Estimate
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \int_0^\infty f(\lambda, x) \,\mathrm{d}x = \int_0^\infty \frac{\partial f}{\partial \lambda}(\lambda, x) \,\mathrm{d}x$$

(Single-sample) Monte Carlo estimator:

Draw $x \sim \text{Exp}[\lambda]$ x has zero gradient

•
$$f' \leftarrow \frac{\partial f}{\partial \lambda}(\lambda, x)$$

- $p \leftarrow \lambda e^{-\lambda x}$ p is NOT differentiated
- Return f'/p

- Precautions must be taken to ensure correctness
- Symbolically differentiating a Monte Carlo estimator path tracer does not always work! ____
- **Example 1:** Distributional parameters, with $\xi = e^{-\lambda x}$ Estimate $\int_{-\infty}^{\infty} f(\lambda, x) dx = \int_{-\infty}^{1} \frac{f(\lambda, x)}{d\xi} d\xi$

$$J_0 \qquad J_0 \qquad \lambda\xi$$

(Single-sample) Monte Carlo estimator:

- Draw $\xi \sim U[0,1)$
- $x \leftarrow -\log(\xi)/\lambda$ # $x \sim Exp(\lambda)$
- $f \leftarrow f(\lambda, x)$

•
$$p \leftarrow \lambda e^{-\lambda x}$$
 # $p = \lambda \xi$

Return f/p

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 1:** Distributional parameters, with $\xi = e^{-\lambda x}$ Estimate $\int_{0}^{\infty} f(\lambda, x) \, \mathrm{d}x = \int_{0}^{1} \frac{f(\lambda, x)}{\lambda \xi} \, \mathrm{d}\xi$
- (Single-sample) Monte Carlo estimator:
- Draw $\xi \sim U[0,1)$
- $x \leftarrow -\log(\xi)/\lambda$ # $x \sim Exp(\lambda)$
- $f \leftarrow f(\lambda, x)$

•
$$p \leftarrow \lambda e^{-\lambda x}$$
 # $p = \lambda \xi$

Return f/p

Estimate
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \int_0^\infty f(\lambda, x) \,\mathrm{d}x = \int_0^1 \frac{\partial}{\partial\lambda} \frac{f(\lambda, x)}{\lambda\xi} \,\mathrm{d}\xi$$

- Draw $\xi \sim U[0,1)$
- $x \leftarrow -\log(\xi)/\lambda$
- $f \leftarrow f(\lambda, x)$
- $p \leftarrow \lambda e^{-\lambda x}$ # $p = \lambda \xi$
- Return $\partial(f/p)/\partial\lambda$

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 1:** Distributional parameters, with $\xi = e^{-\lambda x}$ Estimate $\int_{0}^{\infty} f(\lambda, x) \, \mathrm{d}x = \int_{0}^{1} \frac{f(\lambda, x)}{\lambda \xi} \, \mathrm{d}\xi$
- (Single-sample) Monte Carlo estimator:
- Draw $\xi \sim U[0,1)$
- $x \leftarrow -\log(\xi)/\lambda$ # $x \sim Exp(\lambda)$
- $f \leftarrow f(\lambda, x)$

•
$$p \leftarrow \lambda e^{-\lambda x}$$
 # $p = \lambda \xi$

Return f/p

Estimate
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \int_0^\infty f(\lambda, x) \,\mathrm{d}x = \int_0^1 \frac{\partial}{\partial\lambda} \frac{f(\lambda, x)}{\lambda\xi} \,\mathrm{d}\xi$$

- Draw $\xi \sim U[0,1)$
- $x \leftarrow -\log(\xi)/\lambda$ x has nonzero gradient
- $f \leftarrow f(\lambda, x)$
- $p \leftarrow \lambda e^{-\lambda x}$ # $p = \lambda \xi$
- Return $\frac{\partial (f/p)}{\partial \lambda} f$ and p are both differentiated

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 1:** Distributional parameters

Estimate
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \int_0^\infty f(\lambda, x) \,\mathrm{d}x = \int_0^\infty \frac{\partial f}{\partial \lambda}(\lambda, x) \,\mathrm{d}x$$

(Single-sample) Monte Carlo estimator:

- Draw $x \sim \text{Exp}[\lambda]$ x has zero gradient • $f' \leftarrow \frac{\partial f}{\partial \lambda}(\lambda, x)$
- $p \leftarrow \lambda e^{-\lambda x}$ p is NOT differentiated
- Return f'/p

Estimate
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \int_0^\infty f(\lambda, x) \,\mathrm{d}x = \int_0^1 \frac{\partial}{\partial\lambda} \frac{f(\lambda, x)}{\lambda\xi} \,\mathrm{d}\xi$$

- Draw $\xi \sim U[0,1)$
- $x \leftarrow -\log(\xi)/\lambda$ x has nonzero gradient
- $f \leftarrow f(\lambda, x)$
- $p \leftarrow \lambda e^{-\lambda x}$ # $p = \lambda \xi$
- Return $\partial(f/p)/\partial\lambda$ f and p are both differentiated

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 1:** Distributional parameters

Estimate
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \int_0^\infty f(\lambda, x) \,\mathrm{d}x = \int_0^\infty \frac{\partial f}{\partial \lambda}(\lambda, x) \,\mathrm{d}x$$

(Single-sample) Monte Carlo estimator:

Draw $x \sim \text{Exp}[\lambda]$ x has zero gradient

•
$$f' \leftarrow \frac{\partial f}{\partial \lambda}(\lambda, x)$$

- $p \leftarrow \lambda e^{-\lambda x}$ *p* is NOT differentiated
- Return f'/p

Whether to differentiate the sampling and the *pdf* should be **consistent**!

Estimate
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \int_0^\infty f(\lambda, x) \,\mathrm{d}x = \int_0^1 \frac{\partial}{\partial\lambda} \frac{f(\lambda, x)}{\lambda\xi} \,\mathrm{d}\xi$$

(Single-sample) Monte Carlo estimator:

- Draw $\xi \sim U[0,1)$
- $x \leftarrow -\log(\xi)/\lambda$ x has nonzero gradient
- $f \leftarrow f(\lambda, x)$
- $p \leftarrow \lambda e^{-\lambda x}$ # $p = \lambda \xi$

Return $\partial (f/p)/\partial \lambda$ f and p are both differentiated •

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 2:** Discontinuities Estimate $\int_{0}^{1} (x with <math>0$

- Draw $X \sim U[0, 1)$
- Return X

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 2:** Discontinuities Estimate $\int_{0}^{1} (x with <math>0$

(Single-sample) Monte Carlo estimator:

- Draw $X \sim U[0, 1)$
- Return X

Ground-truth:

$$\int_{0}^{1} (x$$

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 2:** Discontinuities Estimate $\int_{0}^{1} (x with <math>0$

(Single-sample) Monte Carlo estimator:

- Draw $X \sim U[0, 1)$
- Return X

Ground-truth:

$$\int_{0}^{1} (x$$

Estimate
$$\frac{d}{dp} \int_{0}^{1} (x with $0$$$

(Single-sample) Monte Carlo estimator: • Draw $X \sim U[0, 1)$

- Return d(X

Ground-truth:

$$\frac{d}{dp} \int_0^1 (x$$

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 2:** Discontinuities Estimate $\int_{0}^{1} (x with <math>0$

(Single-sample) Monte Carlo estimator:

- Draw $X \sim U[0, 1)$
- Return X

Ground-truth:

$$\int_{0}^{1} (x$$

Estimate
$$\frac{d}{dp} \int_{0}^{1} (x with $0$$$

(Single-sample) Monte Carlo estimator: • Draw $X \sim U[0, 1)$

- Return d(X < p? 1: 0.5)/dp Zero! (constant)

Ground-truth:

$$\frac{d}{dp} \int_0^1 (x$$

- Precautions must be taken to ensure correctness
 - Symbolically differentiating a Monte Carlo estimator path tracer does not always work!
- **Example 2:** Discontinuities Estimate $\int_{0}^{1} (x with <math>0$

(Single-sample) Monte Carlo estimator:

- Draw $X \sim U[0, 1)$
- Return X

Ground-truth:

$$\int_{0}^{1} (x$$

Estimate
$$\frac{d}{dp} \int_{0}^{1} (x with $0$$$

(Single-sample) Monte Carlo estimator: • Draw $X \sim U[0, 1)$

- Return d(X < p? 1: 0.5)/dp Zero! (constant)

Ground-truth: $\frac{d}{dp} \int_{0}^{1} (x$

More on this example later

COURSE OUTLINE

Basics

COURSE OUTLINE

Basics

State-of-the-art theories and algorithms

COURSE OUTLINE

Basics

State-of-the-art theories and algorithms

Implementation details

PHYSICS-BASED DIFFERENTIABLE RENDERING: A COMPREHENSIVE INTRODUCTION

e (vpposite Platform)

BASICS

DIFFERENTIATING (RENDERING) PROGRAMS

- a crash course on automatic differentiation
- differentiating discontinuities in rendering
- discussions & limitations

auto scatter_contrib = Vector3{0, 0, 0}; auto scatter_bsdf = Vector3{0, 0, 0}; const auto &bsdf_shape = scene.shapes[bsdf_isect.shape_id]; auto dir = bsdf_point.position - p; auto dist_sq = length_squared(dir); auto wo = dir / sqrt(dist_sq); auto pdf_bsdf = bsdf_pdf(material, shading_point, wi, wo, min_rough); if (dist_sq > 1e-20f && pdf_bsdf > 1e-20f) { auto bsdf_val = bsdf(material, shading_point, wi, wo, min_rough); if (bsdf_shape.light_id >= 0) { const auto &light = scene.area_lights[bsdf_shape.light_id]; if (light.two_sided || dot(-wo, bsdf_point.shading_frame.n) > auto light_contrib = light.intensity; auto light_pmf = scene.light_pmf[bsdf_shape.light_id]; auto light_area = scene.light_areas[bsdf_shape.light_id]; auto inv_area = 1 / light_area; auto geometry_term = fabs(dot(wo, bsdf_point.geom_normal) auto pdf_nee = (light_pmf * inv_area) / geometry_term; auto mis_weight = Real(1 / (1 + square((double)pdf_nee / scatter_contrib = (mis_weight / pdf_bsdf) * bsdf_val * lig

> scatter_bsdf = bsdf_val / pdf_bsdf; next_throughput = throughput * scatter_bsdf;

automatic differentiation v.s. symbolic differentiation

function f(x): result = x for i = 1 to 8: result = exp(result) return result

automatic differentiation v.s. symbolic differentiation

function f(x): result = x for i = 1 to 8: result = exp(result) return result

symbolic differentiation (37 exponents):

automatic differentiation v.s. symbolic differentiation

function f(x): result = xfor i = 1 to 8: result = exp(result) return result

symbolic differentiation (37 exponents):

$$\frac{df(x)}{dx} = e^{x+e^{e^{e^{e^{e^{e^{x}}}}}+e^{e^{e^{e^{e^{x}}}}+e^{e^{e^{e^{e^{x}}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}}+e^{e^{e^{x}}}}+e^{e^{e^{x}}}}+e^{e^{e^{x}}}+e^{e^{e^{x}}}}+e^{e^{e^{x}}}+e^{e^{x}}}+e^{e^{e^{x}}}+e^{e^{x}}}+e^{e^{x}}}+e^{e^{x}}}$$

forward-mode automatic differentiation (8 exponents):

key idea: chain rules, but applied in a smart way

y = f(x)z = g(y)

key idea: chain rules, but applied in a smart way

y = f(x)z = g(y)

MENTAL MODEL: COMPUTATIONAL GRAPH

can be factored out and be only computed once!

REVERSE-MODE AUTOMATIC DIFFERENTIATION PRODUCES EFFICIENT GRADIENTS

gradient complexity: number of edges * constant

same as directly computing the function ("cheap gradient principle")

TRANSFORMING LOOPS WITH REVERSE MODE

remember every intermediate values in t

 also works for recursion
 unbounded memory usage

function f(x): result = x for i = 1 to 8: result = exp(result) return result

remember every intermediate values in the forward pass, then run the loop backward

function d_f(x): result = x results = [] for i = 1 to 8: results.push(result) result = exp(result)

for i = 8 to 1: d_results = d_result * exp(results[i]) return result

SOURCE TRANSFORM V.S. TAPING

• a spectrum: how much is done at compile time -similar to (tracing) JIT v.s. static compile

source transform

function f(x):

. . .

function d f(x): $\bullet \bullet \bullet$ • • • • • •

DIFFERENTIATING CONDITIONALS

if (hit the red triangle) return red elif (hit the blue triangle) return blue else return white

DIFFERENTIATING CONDITIONALS

if (hit the red triangle) return red elif (hit the blue triangle) return blue else return white

derivative of color w.r.t. triangle vertex is 0

DIFFERENTIATING CONDITIONALS

if (hit the red triangle) return red elif (hit the blue triangle) return blue else return white

 derivative of color w.r.t. triangle vertex is 0 -or is it?

RENDERING = COMPUTING INTEGRALS

pixel color is defined by the average color over an area aka anti-aliasing

pixel filter support

RENDERING = COMPUTING INTEGRALS

pixel color is defined by the average color over an area aka anti-aliasing camera aperture shutter time (motion blur)

pixel filter support

area light

(defocus blur)

global illumination

- wavelength
- participating media
 - and more!

THE RENDERING INTEGRALS ARE DIFFERENTIABLE!

-the average color changes continuously as triangles move

• While the *integrand* is discontinuous, the *integral* is differentiable!

if (hit the red triangle) return red elif (hit the blue triangle) return blue else return white

RENDERING = SAMPLING INTEGRALS

We evaluate these integrals by sampling them

DIFFERENTIATING INTEGRAL SAMPLES GIVES WRONG DERIVATIVES

Realistic Imas Synthesis SS2024

$\frac{\partial}{\partial p} = 0$

more blue, less white

LET'S DERIVE THE DERIVATIVES IN 1D

Realistic Image Synthesis SS2024

(the blue area) $\int_{x=0}^{x=1} x < p?1:0.5$

LET'S DERIVE THE DERIVATIVES IN 1D

derivative w.r.t. p = У this purple infinitesimal area (0.5 dp) X

(the blue area) **r** x=1 x < p ? 1 : 0.5 x = 0

Realistic Image Synthesis SS2024

LET'S DERIVE THE DERIVATIVES IN 1D

Trick: move the discontinuities to the integral boundaries (the blue area) rx=1 $\int_{x=0} x$ $= \int_{x=0}^{x=p} 1 + \int_{x=p}^{x=1} 0.5$

LET'S DERIVE THE DERIVATIVES IN 1D

Trick: move the discontinuities to the integral boundaries (the blue area) **r** x=1 x < p ? 1 : 0.5 $J_{\chi=0}$ $= \int_{x=0}^{x=p} 1 + \int_{x=n}^{x=1} 0.5$

DISCONTINUITY DERIVATIVES = DIFFERENCES AT DISCONTINUITIES

(derivative of blue area w.r.t. p)

 $\frac{\partial}{\partial p} \left(\int_{x=0}^{x=p} 1 + \int_{x=p}^{x=1} 0.5 \right)$ = 1 - 0.5

DISCONTINUITY DERIVATIVES = DIFFERENCES AT DISCONTINUITIES

"the Leibniz's integral rule"

Realistic Image Synthesis SS2024

DISCONTINUITY DERIVATIVES = DIFFERENCES AT DISCONTINUITIES

$\frac{\partial}{\partial p} \int \mathbf{b} = \int$

"the Leibniz's integral rule"

Realistic Image Synthesis SS2024

interior derivative

boundary derivative

GENERALIZE TO 2D

Reynolds transport theorem [Reynolds 1903]

interior derivative

boundary derivative **Realistic Image Synthesis SS2024**

GENERALIZE TO 2D

Reynolds transport theorem [Reynolds 1903]

interior derivative

boundary derivative **Realistic Image Synthesis SS2024**

DERIVING THE 2D BOUNDARY DERIVATIVE

boundary derivative = infinitesimal volume change w.r.t. parameter

Realistic Image Synthesis SS2024

DERIVING THE 2D BOUNDARY DERIVATIVE

boundary derivative = infinitesimal volume change w.r.t. parameter

DES SAARLANDES

3D view around the purple sample

Realistic Image Synthesis SS2024

DERIVING THE 2D BOUNDARY DERIVATIVE

DES SAARLANDES

THE INFINITESIMAL BOUNDARY VOLUME

Realistic Image Synthesis SS2024

width length

red - blue.

RENDERING = COMPUTING INTEGRALS

Realistic Image Synthesis SS2024

. . .

While the *integrand* is discontinuous, the *integral* is differentiable! -the average color changes continuously as triangles move

pixel filter support

RECAP

DIFFERENTIATING INTEGRAL SAMPLES GIVES WRONG DERIVATIVES

more blue, less white

Realistic Imas Synthesis SS2024

KEY IDEA: EXPLICITLY INTEGRATE THE BOUNDARIES

more blue, less white

Realistic Image Synthesis S2024

RECAP

Reynolds transport theorem [Reynolds 1903]

interior derivative

boundary derivative **Realistic Image Synthesis SS2024**

DISCUSSION

- Ray tracing vs rasterization
- Approximated solutions
- Geometry representation
- Limitations

The boundary sampling is not very compatible with z-buffer rendering

Ray tracing is not significantly slower than rasterization The interior derivatives can be computed using rasterization

from Gruen 2020 1080p, ~19M triangles raster: 2.7 ms **raytrace**: 8.6 ms (2.5 ms for animation)

- Ray tracing is not significantly slower than rasterization
- The interior derivatives can be computed using rasterization
- Visibility queries may not be the main bottleneck

from Gruen 2020 1080p, ~19M triangles raster: 2.7 ms raytrace: 8.6 ms (2.5 ms for animation)

slower than rasterization e computed using rasterization ne main bottleneck

~10k faces, 256x256 (Titan Xp) **PyTorch3D** (raster) 220ms **redner** (raytrace) 60ms (BVH 20ms, forward 7ms, backward 27ms)

23823 vertices, 44702 faces

initial

target

- 1024x1024 at 2 spp (Titan Xp) forward + backward
 - Ray tracing + edge sampling: 0.05—0.1 sec
 - PyTorch3D: 0.15 sec

23823 vertices, 44702 faces

initial

Realistic Image Synthesis SS2024

Low

edge sampling optimization video (1 view over 20)

23823 vertices, 44702 faces

initial

Realistic Image Synthesis SS2024

Low

edge sampling optimization video (1 view over 20)

23823 vertices, 44702 faces

initial

Realistic Image Synthesis SS2024

PyTorch3D optimization video (1 view over 20)

23823 vertices, 44702 faces

initial

Realistic Image Synthesis SS2024

PyTorch3D optimization video (1 view over 20)

Optimization results after 5000 iterations (with identical settings)

optimized (ray tracing)

Realistic Image Synthesis SS2024

Low

target

optimized (PyTorch3D)

High

APPROXIMATED SOLUTION

- converges to the integral.
- Two other kinds of approximation:
- OpenDR 2014, Kato 2018, ...)
- Change the rendering model (Rhodin 2015, SoftRas 2019, PyTorch3D 2020...)

• Our boundary integral is correct, i.e., when the number of samples grows it

- Keep the rendering model, approximate the derivatives (de La Gorce 2011,

Realistic Image Synthesis SS2024

GEOMETRY REPRESENTATION

Need boundary extraction — easier for meshes, harder for implicit representations and fractals

DES SAARLANDES

Realistic Image Synthesis SS2024

fractal

images courtesy of Carlson et al., Vladsinger, Agarwal et al., Pso, Solkoll, Zottie, Drummyfish

SDF

Non-differentiability of parallel edges of two separate triangles –can be resolved by applying a small perturbation to the vertices

- Non-differentiability of parallel edges of two separate triangles -can be resolved by applying a small perturbation to the vertices
- Interpenetration

need to extract this edge

- Non-differentiability of parallel edges of two separate triangles -can be resolved by applying a small perturbation to the vertices
- Interpenetration
- If/else conditions in procedural shaders (bitmap texture is 100% fine)

Ω. Shader Inputs n++ 108 109 110 111 112 p=fract(p) 113 114 if(neighbors[me] 115 -116 if(n==0) return C(fract(p)); 117 if(neighbors[u]&&neighbors[d]) 118 120 float o = T(p,0.); if(neighbors[I])o+=EL(p+vec2(.175,0),0.); if(neighbors[r])o+=EL(p-vec2(.175,0),2.); return o; (neighbors[I]&&neighbors[r]) 126. float o = T(p, 1.);if(neighbors[u])o+=EL(p-vec2(0,.25),1.) if(neighbors[d])o+=EL(p+vec2(0,.25),3.) return o; if(neighbors[u]&&!neighbors[d]&&!neighbors[I]&&!neighbors[r]) float o = EL(p-vec2(0,.3),1.);if(neighbors[dl]) o+=CL(p-vec2(.175),7.); if(neighbors[dr]) o+=CL(p-vec2(-.175,.175),5.); 140 return o; 142 143 144 if(neighbors[d]&&!neighbors[u]&&!neighbors[l]&&!neighbors[r]) 145 -146 float o = EL(p+vec2(0,.3),3.);147 (f/mainhhamaTull) = . OL (maxima) (175 175) 1). (s 🗸 ? Compiled in 0.1 secs (analyze) 3778 chars

Realistic Image Synthesis SS20 https://www.shadertoy.com/view/wl2yDc

- Non-differentiability of parallel edges of two separate triangles -can be resolved by applying a small perturbation to the vertices
- Interpenetration
- If/else conditions in procedural shaders (bitmap texture is 100% fine)
- Local minimum

Kawaguchi and Kaelbling 2019

William 1983

Realistic Image Synthesis SS2024

PHYSICS-BASED DIFFERENTIABLE RENDERING: A COMPREHENSIVE INTRODUCTION

e (vpposite Platform)

THEORY & ALGORITHMS

DIFFERENTIABLE RENDERING THEORY & ALGORITHMS

• Warm-up: differential irradiance

DIFFERENTIABLE RENDERING THEORY & ALGORITHMS

- Warm-up: differential irradiance
- Differential radiative transfer

Differentiable path tracing with edge sampling

DIFFERENTIABLE RENDERING THEORY & ALGORITHMS

- Warm-up: differential irradiance
- Differentiable path tracing with edge sampling Differential radiative transfer
- Another way of dealing with discontinuities Radiative backpropagation

DIFFERENTIABLE RENDERING THEORY & ALGORITHMS

- Warm-up: differential irradiance
- Differentiable path tracing with edge sampling Differential radiative transfer
- Another way of dealing with discontinuities Radiative backpropagation
- Path-space differentiable rendering

Irradiance at \mathbf{x} : $E = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

 $f_E(\boldsymbol{\omega})$ $\int_{\mathbb{I}^2} \widetilde{L_i(\omega)} \cos\theta \, \mathrm{d}\sigma(\omega)$ **J µ**2

Irradiance at \mathbf{x} : $E = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

 $f_E(\boldsymbol{\omega})$ $\int_{\mathbb{I}^2} \widetilde{L_i(\omega)} \cos\theta \, \mathrm{d}\sigma(\omega)$ **J µ**2

π : emitter size

Irradiance at **x**: $E = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

 $f_E(\boldsymbol{\omega})$ $L_{i}(\boldsymbol{\omega}) \cos\theta d\sigma(\boldsymbol{\omega})$ **J µ**2

π : emitter size

Low

Irradiance at **x**: $E = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$E = \int_{\mathbb{H}^2} \underbrace{I_i(\boldsymbol{\omega}) \cos \theta \, \mathrm{d}\sigma(\boldsymbol{\omega})}_{\mathbb{H}^2} \xrightarrow{\text{Reynolds}} \frac{\mathrm{d}E}{\mathrm{d}\pi}$$

$$E = \int_{\mathbb{H}^2} \underbrace{I_i(\boldsymbol{\omega}) \cos \theta \, \mathrm{d}\sigma(\boldsymbol{\omega})}_{\mathbb{H}^2} \xrightarrow{\text{Reynolds}} \frac{\mathrm{d}E}{\mathrm{d}\pi}$$

$$E = \int_{\mathbb{H}^2} \underbrace{f_E(\boldsymbol{\omega})}_{L_i(\boldsymbol{\omega}) \cos \theta} d\sigma(\boldsymbol{\omega}) \xrightarrow{\text{Reynolds}} \frac{dE}{d\pi}$$

$$E = \int_{\mathbb{H}^2} \underbrace{f_E(\boldsymbol{\omega})}_{L_i(\boldsymbol{\omega}) \cos \theta} d\sigma(\boldsymbol{\omega}) \xrightarrow{\text{Reynolds}} \frac{dE}{d\pi}$$

$$\pi: \text{ emitter size} \qquad f_E(\omega) \qquad \text{Scalar normal "velocity" of } \omega \\ V_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ V_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar normal "velocity" of } \omega \\ U_{\partial \mathbb{H}^2}(\omega) = \left\langle \mathbf{n}(\omega), \frac{\mathrm{d}\omega}{\mathrm{d}\pi} \right\rangle \qquad \text{Scalar nor$$

π : emitter size

Low

$$E = \int_{\mathbb{H}^2} \underbrace{f_E(\boldsymbol{\omega})}_{L_i(\boldsymbol{\omega}) \cos \theta} d\sigma(\boldsymbol{\omega}) \xrightarrow{\text{Reynolds}} \frac{dE}{d\pi}$$

π : emitter size

Low

$$E = \int_{\mathbb{H}^2} \underbrace{f_E(\boldsymbol{\omega})}_{L_i(\boldsymbol{\omega}) \cos \theta} d\sigma(\boldsymbol{\omega}) \xrightarrow{\text{Reynolds}} \frac{dE}{d\pi}$$

 $f_E(\boldsymbol{\omega})$

n +

$$V_{\partial \mathbb{H}^2}(\boldsymbol{\omega}) = \left\langle \mathbf{n}(\boldsymbol{\omega}), \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}\boldsymbol{\pi}} \right\rangle$$

independent of the parameterization of $\partial \mathbb{H}^2$

Difference of the integrand f_E across the boundary

 $\mathbf{J}_{\partial \mathbb{H}^2}$

High

Boundary integral

$$V_{\partial \mathbb{H}^2}(\boldsymbol{\omega}) \Delta f_E(\boldsymbol{\omega}) \mathrm{d}\ell(\boldsymbol{\omega})$$

$$= \int_{\mathbb{H}^2} \frac{\mathrm{d}f_E}{\mathrm{d}\pi}(\boldsymbol{\omega}) \,\mathrm{d}\sigma(\boldsymbol{\omega}) +$$

π : emitter size

Low

$$E = \int_{\mathbb{H}^2} \underbrace{I_i(\boldsymbol{\omega}) \underbrace{\cos \theta}_i d\sigma(\boldsymbol{\omega})}_{\mathbb{H}^2} \xrightarrow{\text{Reynolds}} \frac{dE}{d\pi}$$

Realistic Im

$$f_{E}(\boldsymbol{\omega})$$

Scalar normal "velocity" of ω

$$V_{\partial \mathbb{H}^2}(\boldsymbol{\omega}) = \left\langle \mathbf{n}(\boldsymbol{\omega}), \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}\boldsymbol{\pi}} \right\rangle$$

independent of the parameterization of $\partial \mathbb{H}^2$

Difference of the integrand f_E across the boundary

$$\Delta f_E(\boldsymbol{\omega}) = f_E^{-}(\boldsymbol{\omega}) - f_E^{+}(\boldsymbol{\omega})$$

High

 $= \int_{\mathbb{H}^2} \frac{\mathrm{d}f_E}{\mathrm{d}\pi}(\boldsymbol{\omega}) \,\mathrm{d}\sigma(\boldsymbol{\omega}) +$

Boundary integral

$$V_{\partial\mathbb{H}^2}(\boldsymbol{\omega})\,\Delta f_E(\boldsymbol{\omega})\,\mathrm{d}M^2$$

π : emitter size

$$E = \int_{\mathbb{H}^2} \underbrace{f_E(\boldsymbol{\omega})}_{L_i(\boldsymbol{\omega}) \cos \theta} d\sigma(\boldsymbol{\omega}) \xrightarrow{\text{Reynolds}} \left[\frac{dE}{d\pi} \right]_{\mathbb{H}^2}$$

DIFFERENTIAL RENDERING EQUATION

Boundary integral Interior integral $= \int_{\mathbb{H}^2} \frac{\Im E}{\mathrm{d}\pi}(\boldsymbol{\omega}) \,\mathrm{d}\sigma(\boldsymbol{\omega}) + \int_{\mathbb{H}^2} \frac{\Im E}{\mathrm{d}\pi}(\boldsymbol{\omega}) \,\mathrm{d}\sigma(\boldsymbol{\omega}) \,\mathrm{d}\sigma(\boldsymbol{\omega}) \,\mathrm{d}\sigma(\boldsymbol{\omega}) + \int_{\mathbb{H}^2} \frac{\Im E}{\mathrm{d}\pi}(\boldsymbol{\omega}) \,\mathrm{d}\sigma(\boldsymbol{\omega}) \,\mathrm{d}$ $V_{\partial \mathbb{H}^2}(\boldsymbol{\omega}) \Delta f_E(\boldsymbol{\omega}) \mathrm{d}\ell(\boldsymbol{\omega})$ $\mathbf{J}_{\partial \mathbb{H}^2}$

DIFFERENTIAL RENDERING EQUATION

$$E = \int_{\mathbb{H}^2} \underbrace{I_i(\boldsymbol{\omega}) \cos \theta \, \mathrm{d}\sigma(\boldsymbol{\omega})}_{\mathbb{H}^2} \xrightarrow{\text{Reynolds}} \frac{\mathrm{d}E}{\mathrm{d}\pi}$$

This can be generalized easily to obtain the differential rendering equation:

Rendering
equation
$$L(\boldsymbol{\omega}_{o}) = \int_{\mathbb{S}^{2}} \underbrace{f_{RE}(\boldsymbol{\omega}_{i})}_{L_{i}(\boldsymbol{\omega}_{i})f_{s}(\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})} d\sigma(\boldsymbol{\omega}_{i}) + L_{e}(\boldsymbol{\omega}_{o}) \qquad f_{s}: \text{cosine-weighted BSDF}$$

Interior integral **Boundary integral** $\frac{E}{\tau} = \int_{\mathbb{H}^2} \frac{\mathrm{d}f_E}{\mathrm{d}\pi}(\boldsymbol{\omega}) \,\mathrm{d}\sigma(\boldsymbol{\omega}) + \int_{\partial\mathbb{H}^2} V_{\partial\mathbb{H}^2}(\boldsymbol{\omega}) \,\Delta f_E(\boldsymbol{\omega}) \,\mathrm{d}\ell(\boldsymbol{\omega})$

DIFFERENTIAL RENDERING EQUATION

$$E = \int_{\mathbb{H}^2} \underbrace{I_i(\boldsymbol{\omega}) \cos \theta}_{\text{H}^2} d\sigma(\boldsymbol{\omega}) \xrightarrow{\text{Reynolds}} \frac{dE}{d\pi}$$

This can be generalized easily to obtain the differential rendering equation:

Interior integral **Boundary integral** $\frac{F}{\tau} = \int_{\mathbb{H}^2} \frac{\mathrm{d}f_E}{\mathrm{d}\pi}(\boldsymbol{\omega}) \,\mathrm{d}\sigma(\boldsymbol{\omega}) + \int_{\partial\mathbb{H}^2} V_{\partial\mathbb{H}^2}(\boldsymbol{\omega}) \,\Delta f_E(\boldsymbol{\omega}) \,\mathrm{d}\ell(\boldsymbol{\omega})$

Assumptions:

Continuous BSDFs

Realistic Image Synthesis SS2024

No zero-measure (point and directional) lights

No perfectly specular surfaces

DIFFERENTIAL RENDERING EQUATION

Assumptions:

No zero-measure (point and directional) lights

(which can create hard shadow boundaries)

No perfectly specular surfaces

(which can create virtual images of other objects)

Realistic Image Synthesis SS2024

Continuous BSDFs

DIFFERENTIAL RENDERING EQUATION

Hard-to-detect discontinuities

Assumptions:

No zero-measure (point and directional) lights

(which can create hard shadow boundaries)

No perfectly specular surfaces

(which can create virtual images of other objects)

Continuous BSDFs

These limitations are largely practical and can be easily mitigated

Realistic Image Synthesis SS2024

DIFFERENTIAL RENDERING EQUATION

Hard-to-detect

discontinuities

Boundary edges

(Topological) boundary of an object

Boundary edges

(Topological) boundary of an object

Surface-normal discontinuities (e.g., face edges)

Realistic Image Synthesis SS2024

Sharp edges

Boundary edges

(Topological) boundary of an object

Surface-normal discontinuities (e.g., face edges)

Sharp edges

Silhouette edges

View-dependent object silhouettes

Rendering
equation
$$L(\boldsymbol{\omega}_{o}) = \int_{\mathbb{S}^{2}} \underbrace{f_{RE}(\boldsymbol{\omega}_{i})}{f_{s}(\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})L_{i}(\boldsymbol{\omega}_{i})}$$

Interior integral

Differential rendering equation
$$\frac{\mathrm{d}}{\mathrm{d}\pi}L(\boldsymbol{\omega}_{\mathrm{o}}) = \int_{\mathbb{S}^2} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\sigma(\boldsymbol{\omega}_{\mathrm{i}}) + \int_{\partial\mathbb{S}^2} V_{\partial\mathbb{S}^2}(\boldsymbol{\omega}_{\mathrm{i}}) \,\Delta f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\ell(\boldsymbol{\omega}_{\mathrm{i}}) + \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{\mathrm{o}})$$

Path tracing can be generalized to estimate L and $dL/d\pi$ jointly

) $d\sigma(\boldsymbol{\omega}_{i}) + L_{e}(\boldsymbol{\omega}_{o})$

Boundary integral

Path tracing can be generalized to estimate L and $dL/d\pi$ jointly

$$d\sigma(\boldsymbol{\omega}_{i}) + L_{e}(\boldsymbol{\omega}_{o})$$

Boundary integral

$$+ \int_{\partial S^2} V_{\partial S^2}(\boldsymbol{\omega}_i) \Delta f_{RE}(\boldsymbol{\omega}_i) d\mathcal{L}(\boldsymbol{\omega}_i) + \frac{d}{d\pi} L_e(\boldsymbol{\omega}_0)$$
g

Path tracing can be generalized to estimate L and $dL/d\pi$ jointly

$$d\sigma(\boldsymbol{\omega}_{i}) + L_{e}(\boldsymbol{\omega}_{o})$$

Boundary integral

$$\int_{\partial S^2} V_{\partial S^2}(\boldsymbol{\omega}_i) \Delta f_{RE}(\boldsymbol{\omega}_i) d\ell(\boldsymbol{\omega}_i) + \frac{d}{d\pi} L_e(\boldsymbol{\omega}_o)$$
In the second second

Differentiable Monte Carlo Ray Tracing through Edge Sampling

Tzu-Mao Li, Miika Aittala, Frédo Durand, Jaakko Lehtinen

SIGGRAPH Asia 2018

dPT($\mathbf{x}, \boldsymbol{\omega}_{o}$): # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_i, \dot{L}_i) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0})] L_{i} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0}) \dot{L}_{i}}{L}$ $p_{i.1}$ sample $\boldsymbol{\omega}_{i,2} \in \partial \mathbb{S}^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial \mathbb{S}^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ $P_{i,2}$ return $\left(L + L_e(\mathbf{x}, \boldsymbol{\omega}_o), \dot{L} + \frac{d}{d\pi}L_e(\mathbf{x}, \boldsymbol{\omega}_o)\right)$

Rendering equation

$$L(\boldsymbol{\omega}_{o}) = \int_{\mathbb{S}^{2}} \underbrace{f_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) L_{i}(\boldsymbol{\omega}_{i})}_{f_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) L_{i}(\boldsymbol{\omega}_{i})} d\sigma(\boldsymbol{\omega}_{i}) + L_{e}$$

$$\frac{\mathrm{d}}{\mathrm{d}\pi} L(\boldsymbol{\omega}_{\mathrm{o}}) = \int_{\mathbb{S}^2} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\sigma(\boldsymbol{\omega}_{\mathrm{i}})$$

+
$$\int_{\partial S^2} V_{\partial S^2}(\boldsymbol{\omega}_i) \Delta f_{RE}(\boldsymbol{\omega}_i) d\ell(\boldsymbol{\omega}_i)$$

+ $\frac{d}{d\pi} L_e(\boldsymbol{\omega}_0)$

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{o})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow rayIntersect(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{i,1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0})] L_{i} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0}) \dot{L}_{i}}{L_{i} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0}) \dot{L}_{i}}$ $p_{i,1}$ sample $\omega_{i,2} \in \partial \mathbb{S}^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial \mathbb{S}^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

$$L(\boldsymbol{\omega}_{o}) = \int_{\mathbb{S}^{2}} \underbrace{f_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) L_{i}(\boldsymbol{\omega}_{i}) d\sigma(\boldsymbol{\omega}_{i})}_{\mathbb{S}^{2}} + L_{e}$$

Standard PT w/ symbolic differentiation

$$\frac{\mathrm{d}}{\mathrm{d}\pi} L(\boldsymbol{\omega}_{\mathrm{o}}) = \int_{\mathbb{S}^2} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\sigma(\boldsymbol{\omega}_{\mathrm{i}})$$

$$+ \int_{\partial \mathbb{S}^2} V_{\partial \mathbb{S}^2}(\boldsymbol{\omega}_i) \, \Delta f_{\text{RE}}(\boldsymbol{\omega}_i) \, \mathrm{d}\ell(\boldsymbol{\omega}_i)$$

$$+ \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{\mathrm{o}})$$

$$\begin{aligned} \mathrm{dPT}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{o}}): & \text{\# Estimate } L(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{o}}) \text{ and } \frac{\mathrm{d}}{\mathrm{d}\pi} [L(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{o}})] \text{ jointly} \\ & \text{sample } \boldsymbol{\omega}_{\mathrm{i},1} \in \mathbb{S}^{2} \text{ with probability } p_{\mathrm{i},1} \\ & \mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}) \\ & (L_{\mathrm{i}}, \dot{L}_{\mathrm{i}}) \leftarrow \mathrm{dPT}(\mathbf{y}, -\boldsymbol{\omega}_{\mathrm{i},1}) \\ & L \leftarrow \frac{f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) L_{\mathrm{i}}}{p_{\mathrm{i},1}} \\ & \dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{p_{\mathrm{i},1}} \\ & \text{sample } \boldsymbol{\omega}_{\mathrm{i},2} \in \partial \mathbb{S}^{2} \text{ with probability } p_{\mathrm{i},2} \\ & \dot{L} \leftarrow \dot{L} + \frac{V_{\partial \mathbb{S}^{2}}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},2}) f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},2}, \boldsymbol{\omega}_{\mathrm{o}}) \Delta L_{\mathrm{i}}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},2})}{p_{\mathrm{i},2}} \\ & \text{return } \left(L + L_{\mathrm{e}}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{o}}), \dot{L} + \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{o}})\right) \end{aligned}$$

$$L(\boldsymbol{\omega}_{o}) = \int_{\mathbb{S}^{2}} \underbrace{f_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) L_{i}(\boldsymbol{\omega}_{i}) d\sigma(\boldsymbol{\omega}_{i})}_{\mathbb{S}^{2}} + L_{e}$$

andard PT / symbolic erentiation

$$\frac{\mathrm{d}}{\mathrm{d}\pi} L(\boldsymbol{\omega}_{\mathrm{o}}) = \int_{\mathbb{S}^2} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\sigma(\boldsymbol{\omega}_{\mathrm{i}})$$

$$+ \int_{\partial \mathbb{S}^2} V_{\partial \mathbb{S}^2}(\boldsymbol{\omega}_i) \, \Delta f_{\text{RE}}(\boldsymbol{\omega}_i) \, \mathrm{d}\ell(\boldsymbol{\omega}_i)$$

$$+ \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{\mathrm{o}})$$

dPT($\mathbf{x}, \boldsymbol{\omega}_{o}$): # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{i,1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0})] L_{i} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0}) \dot{L}_{i}}{L_{i}}$ $p_{i,1}$ sample $\boldsymbol{\omega}_{i,2} \in \partial \mathbb{S}^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial \mathbb{S}^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

$$L(\boldsymbol{\omega}_{o}) = \int_{\mathbb{S}^{2}} \underbrace{f_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) L_{i}(\boldsymbol{\omega}_{i}) d\sigma(\boldsymbol{\omega}_{i})}_{\mathbb{S}^{2}} + L_{e}$$

Standard PT w/ symbolic differentiation

$$\frac{\mathrm{d}}{\mathrm{d}\pi} L(\boldsymbol{\omega}_{\mathrm{o}}) = \int_{\mathbb{S}^2} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\sigma(\boldsymbol{\omega}_{\mathrm{i}})$$

$$+ \int_{\partial \mathbb{S}^2} V_{\partial \mathbb{S}^2}(\boldsymbol{\omega}_i) \, \Delta f_{\text{RE}}(\boldsymbol{\omega}_i) \, \mathrm{d}\ell(\boldsymbol{\omega}_i)$$

$$+ \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{\mathrm{o}})$$

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{0})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{0})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{0})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow rayIntersect(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{i,1}$ $\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x},\boldsymbol{\omega}_{\mathrm{i},1},\boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x},\boldsymbol{\omega}_{\mathrm{i},1},\boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}$ $p_{i,1}$ sample $\boldsymbol{\omega}_{i,2} \in \partial \mathbb{S}^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial S^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

$$L(\boldsymbol{\omega}_{o}) = \int_{\mathbb{S}^{2}} \underbrace{f_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) L_{i}(\boldsymbol{\omega}_{i}) d\sigma(\boldsymbol{\omega}_{i})}_{\mathbb{S}^{2}} + L_{e}$$

Standard PT w/ symbolic differentiation

$$\frac{\mathrm{d}}{\mathrm{d}\pi} L(\boldsymbol{\omega}_{\mathrm{o}}) = \int_{\mathbb{S}^2} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\sigma(\boldsymbol{\omega}_{\mathrm{i}})$$

$$+ \int_{\partial \mathbb{S}^2} V_{\partial \mathbb{S}^2}(\boldsymbol{\omega}_i) \, \Delta f_{\text{RE}}(\boldsymbol{\omega}_i) \, \mathrm{d}\ell(\boldsymbol{\omega}_i)$$

$$+ \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{\mathrm{o}})$$

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{0})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{0})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{0})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ Sta $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ w/ diffe $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}$ $p_{i.1}$ sample $\boldsymbol{\omega}_{i,2} \in \partial \mathbb{S}^2$ with probability $p_{i,2}$ Мо $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial S^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{2}$ edge $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

Rendering equation

$$L(\omega_{o}) = \int_{\mathbb{S}^{2}} f_{s}(\omega_{i}, \omega_{o}) L_{i}(\omega_{i}) d\sigma(\omega_{i}) + L_{e}$$
Differential rendering equation

$$\frac{d}{d\pi}L(\omega_{o}) = \int_{\mathbb{S}^{2}} \frac{d}{d\pi} f_{RE}(\omega_{i}) d\sigma(\omega_{i})$$

$$+ \int_{\partial \mathbb{S}^{2}} V_{\partial \mathbb{S}^{2}}(\omega_{i}) \Delta f_{RE}(\omega_{i}) d\ell(\omega_{i})$$

$$+ \frac{d}{d\pi}L_{e}(\omega_{o})$$

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{0})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{0})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{0})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_i, \dot{L}_i) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ Sta $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ W/diffe $p_{i,1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}$ $p_{i,1}$ sample $\omega_{i,2} \in \partial S^2$ with probability $p_{i,2}$ Мо $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial S^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ edge $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

Rendering equation

$$L(\omega_{o}) = \int_{\mathbb{S}^{2}} f_{s}(\omega_{i}, \omega_{o}) L_{i}(\omega_{i}) d\sigma(\omega_{i}) + L_{e}$$
Differential rendering equation

$$\frac{d}{d\pi}L(\omega_{o}) = \int_{\mathbb{S}^{2}} \frac{d}{d\pi} f_{RE}(\omega_{i}) d\sigma(\omega_{i})$$

$$+ \int_{\partial \mathbb{S}^{2}} V_{\partial \mathbb{S}^{2}}(\omega_{i}) \Delta f_{RE}(\omega_{i}) d\ell(\omega_{i})$$

$$+ \frac{d}{d\pi}L_{e}(\omega_{o})$$

$$\begin{aligned} \mathrm{dPT}(\mathbf{x}, \boldsymbol{\omega}_{0}): & \# \operatorname{Estimate} L(\mathbf{x}, \boldsymbol{\omega}_{0}) \operatorname{and} \frac{\mathrm{d}}{\mathrm{d}\pi} [L(\mathbf{x}, \boldsymbol{\omega}_{0})] \operatorname{jointly} \\ & \text{sample} \, \boldsymbol{\omega}_{i,1} \in \mathbb{S}^{2} \operatorname{with} \operatorname{probability} p_{i,1} \\ & \mathbf{y} \leftarrow \operatorname{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1}) \\ & (L_{i}, \dot{L}_{i}) \leftarrow \operatorname{dPT}(\mathbf{y}, -\boldsymbol{\omega}_{i,1}) \\ & L \leftarrow \frac{f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0}) L_{i}}{p_{i,1}} \\ & L \leftarrow \frac{f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0}) L_{i}}{p_{i,1}} \\ & L \leftarrow \frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0})] L_{i} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0}) \dot{L}_{i} \\ & p_{i,1} \\ & \frac{\mathrm{d}}{\mathrm{d}\pi} L(\boldsymbol{\omega}_{0}) = \int_{\mathbb{S}^{2}} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{i}) \, \mathrm{d}\sigma(\boldsymbol{\omega}_{i}) \\ & + \int_{\mathrm{d}^{2}} L(\boldsymbol{\omega}_{0}) \, \mathrm{d}f_{\mathrm{RE}}(\boldsymbol{\omega}_{0}) \, \mathrm{d}f_{\mathrm{RE}}(\boldsymbol{\omega}_{0}) \, \mathrm{d}f_{\mathrm{RE}}(\boldsymbol{\omega}_{0}) \, \mathrm{d}f_{\mathrm{RE}}(\boldsymbol{\omega}_{0}) \\ & \frac{\mathrm{d}}{\mathrm{d}\pi} L(\boldsymbol{\omega}_{0}) = \int_{\mathbb{S}^{2}} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{0}) \, \mathrm{d}\sigma(\boldsymbol{\omega}_{0}) \\ & + \int_{\mathrm{d}^{2}} V_{\mathrm{d}\mathbb{S}^{2}}(\boldsymbol{\omega}_{0}) \, \mathrm{d}f_{\mathrm{RE}}(\boldsymbol{\omega}_{0}) \, \mathrm{d}f_{\mathrm{RE}}(\boldsymbol{\omega}_{0}) \, \mathrm{d}f_{\mathrm{RE}}(\boldsymbol{\omega}_{0}) \, \mathrm{d}f_{\mathrm{RE}}(\boldsymbol{\omega}_{0}) \\ & \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{0}) \\ & \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{0}) \\ & \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{0}) \\ & \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{0}) \end{array}$$

dPT($\mathbf{x}, \boldsymbol{\omega}_{o}$): # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow rayIntersect(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_i, \dot{L}_i) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ Sta $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ W/diffe $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}$ $p_{i,1}$ sample $\omega_{i,2} \in \partial S^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial S^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{\Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}$ Mo edge $p_{i,2}$ $- \Delta f_{\rm RE}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$ (assuming f_s to be continuous)

Rendering equation

$$L(\omega_{o}) = \int_{\mathbb{S}^{2}} f_{s}(\omega_{i}, \omega_{o}) L_{i}(\omega_{i}) d\sigma(\omega_{i}) + L_{e}$$
Differential rendering equation

$$\frac{d}{d\pi}L(\omega_{o}) = \int_{\mathbb{S}^{2}} \frac{d}{d\pi} f_{RE}(\omega_{i}) d\sigma(\omega_{i})$$

$$+ \int_{\partial \mathbb{S}^{2}} V_{\partial \mathbb{S}^{2}}(\omega_{i}) \Delta f_{RE}(\omega_{i}) d\ell(\omega_{i})$$

$$+ \frac{d}{d\pi}L_{e}(\omega_{o})$$

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{o})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_i, \dot{L}_i) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}$ $p_{i,1}$ sample $\omega_{i,2} \in \partial S^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial S^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

- A new sampling procedure introduced by Li et al. [2018]
- **Key:** determining ∂S^2 , the discontinuity points of ΔL_i (w.r.t. incident direction ω_i)

Monte Carlo edge sampling

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{o})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L}$ $p_{i,1}$ sample $\boldsymbol{\omega}_{i,2} \in \partial \mathbb{S}^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial S^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{2}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

- A new sampling procedure introduced by Li et al. [2018]
- **Key:** determining ∂S^2 , the discontinuity points of ΔL_i (w.r.t. incident direction ω_i)

- For polygonal meshes, ∂S^2 can involve:
- Boundary edges (associated with only one face)
- Face edges (when not using smooth shading)
- Silhouette edges (shared by a front and a back face)

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{o})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L}$ $p_{i,1}$ sample $\boldsymbol{\omega}_{i,2} \in \partial \mathbb{S}^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial S^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

- A new sampling procedure introduced by Li et al. [2018]
- **Key:** determining ∂S^2 , the discontinuity points of ΔL_i (w.r.t. incident direction ω_i)

- For polygonal meshes, ∂S^2 can involve:
- Boundary edges (associated with only one face) Face edges (when not using smooth shading)
- Silhouette edges (shared by a front and a back face)
- Requires traversing a 6D BVH
- Expensive for complex scenes

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{o})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L}$ $p_{i,1}$ sample $\boldsymbol{\omega}_{i,2} \in \partial \mathbb{S}^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial S^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

- A new sampling procedure introduced by Li et al. [2018]
- **Key:** determining ∂S^2 , the discontinuity points of ΔL_i (w.r.t. incident direction ω_i)

- For polygonal meshes, ∂S^2 can involve:
- Boundary edges (associated with only one face) Face edges (when not using smooth shading)
- Silhouette edges (shared by a front and a back face)
- Requires traversing a 6D BVH
- Expensive for complex scenes
- To be addressed later!

COMPUTING ΔL_{i}

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{o})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_i, \dot{L}_i) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L}$ $p_{i,1}$ sample $\omega_{i,2} \in \partial S^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial \mathbb{S}^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

X

COMPUTING ΔL_{i}

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{o})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}$ $p_{i,1}$ sample $\omega_{i,2} \in \partial S^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial \mathbb{S}^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

COMPUTING ΔL_{i}

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{o})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow \text{rayIntersect}(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{i,1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L}$ $p_{i,1}$ sample $\omega_{i,2} \in \partial S^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial \mathbb{S}^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

$$\Delta L_{i}(\mathbf{x},\boldsymbol{\omega}_{i,2}) = \pm \left[L(\mathbf{y}_{1},-\boldsymbol{\omega}_{i,2}) - L(\mathbf{y}_{2},-\boldsymbol{\omega}_{i,2}) \right]$$

Radiance values $L(\mathbf{y}_1, -\boldsymbol{\omega}_{i,2})$ and $L(\mathbf{y}_2, -\boldsymbol{\omega}_{i,2})$ can be computed by tracing additional "side" paths

dPT($\mathbf{x}, \boldsymbol{\omega}_{o}$): # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{o})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{o})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow rayIntersect(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}$ $p_{i,1}$ sample $\boldsymbol{\omega}_{i,2} \in \partial \mathbb{S}^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial \mathbb{S}^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{2}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

Realistic Image Synthesis SS2024

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{0})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{0})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{0})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow rayIntersect(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0})] L_{i} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0}) \dot{L}_{i}}{L_{i} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_{0}) \dot{L}_{i}}$ $p_{i,1}$ sample $\omega_{i,2} \in \partial S^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial S^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{2}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

Standard PT w/ symbolic differentiation

Monte Carlo edge sampling

 $dPT(\mathbf{x}, \boldsymbol{\omega}_{0})$: # Estimate $L(\mathbf{x}, \boldsymbol{\omega}_{0})$ and $\frac{d}{d\pi}[L(\mathbf{x}, \boldsymbol{\omega}_{0})]$ jointly sample $\boldsymbol{\omega}_{i,1} \in \mathbb{S}^2$ with probability $p_{i,1}$ $\mathbf{y} \leftarrow rayIntersect(\mathbf{x}, \boldsymbol{\omega}_{i,1})$ $(L_{i}, \dot{L}_{i}) \leftarrow dPT(\mathbf{y}, -\boldsymbol{\omega}_{i,1})$ $L \leftarrow \frac{f_s(\mathbf{x}, \boldsymbol{\omega}_{i,1}, \boldsymbol{\omega}_o) L_i}{L}$ $p_{\mathrm{i},1}$ $\dot{L} \leftarrow \frac{\frac{\mathrm{d}}{\mathrm{d}\pi} [f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}})] L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}{L_{\mathrm{i}} + f_{s}(\mathbf{x}, \boldsymbol{\omega}_{\mathrm{i},1}, \boldsymbol{\omega}_{\mathrm{o}}) \dot{L}_{\mathrm{i}}}$ $p_{i,1}$ sample $\omega_{i,2} \in \partial S^2$ with probability $p_{i,2}$ $\dot{L} \leftarrow \dot{L} + \frac{V_{\partial S^2}(\mathbf{x}, \boldsymbol{\omega}_{i,2}) f_s(\mathbf{x}, \boldsymbol{\omega}_{i,2}, \boldsymbol{\omega}_o) \Delta L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}{L_i(\mathbf{x}, \boldsymbol{\omega}_{i,2})}$ $p_{i,2}$ return $\left(L + L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}), \dot{L} + \frac{d}{d\pi}L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})\right)$

Standard PT w/ symbolic differentiation

Monte Carlo edge sampling

DIFFERENTIAL RADIATIVE TRANSFER

University, igkioule@andrew.cmu.edu; Ravi Ramamcorthi, University of Califo:nia, San Diego, ravir@cs.ucsd.edu; Shuang Zhao, University of California, Irvine, siz@ics.ici.edu Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions(@acm.org. @ 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. 0730-C301/2019/11-ART227 \$15.00

https://doi.org/10.1145/3355089.3356522

A fundamental task of physics-based light transport simulation is to compute the radiant power (generally measured using radiance) at certain 3D locations and directions in a virtual scene, e.g., those corresponding to radiometric sensors. Such forward evaluations of light transport have been a focus of research efforts in computer graphics since the field's inception. These efforts have resulted in mature forward rendering algorithms, including Monte Carlo techniques, that can efficiently and accurately simulate complex light transport effects such as interreflections and subsurface scattering. Mathematically, it is convenient to be capable of evaluating not only a given function but also its various transformations. One such

ACM Trans. Graph., Vol. 38, No. 5, Article 227. Publication date: November 2019.

A Differential Theory of Radiative Transfer

Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, Shuang Zhao

SIGGRAPH Asia 2019

Realistic Image Synthesis SS2024

Transport Collision operator operator $L = K_T K_C L + Q$

Radiative transfer equation (RTE) in operator form

DIFFERENTIATING THE RTE

Realistic Image Synthesis SS2024

$L = K_T K_C L + Q$

$\partial_{\pi}L = \partial_{\pi}(K_{T}K_{C}L) + \partial_{\pi}Q$

DIFFERENTIATING THE RTE

UNIVERSITÄT DES SAARLANDES

$K_T K_C L + Q$ $\partial_{\pi}L = \partial_{\pi}(K_{T}K_{C}L) + \partial_{\pi}Q$

Differentiating individual operators

Realistic Image Synthesis SS2024

DIFFERENTIATING THE COLLISION OPERATOR

RTE: $L = K_T K_c L + Q$

 $f(\boldsymbol{\omega}_i) \mathrm{d}\boldsymbol{\omega}_i = ?$ ∂_{π}

Requires differentiating a spherical integral

Realistic Image Synthesis SS2024

DIFFERENTIATING THE COLLISION OPERATOR

$$(KcL)(\boldsymbol{\omega}) = \sigma_s \int_{\mathbb{S}^2} f_p(\boldsymbol{\omega}_i, \boldsymbol{\omega}) L(\boldsymbol{\omega}_i) d\boldsymbol{\omega}_i$$

 $\pi \int_{\mathbb{S}^2} f(\boldsymbol{\omega}_i) \mathrm{d}\boldsymbol{\omega}_i$ ∂_{π}

Realistic Image Synthesis SS2024

DIFFERENTIATING THE COLLISION OPERATOR

$$(KcL)(\boldsymbol{\omega}) = \sigma_s \int_{\mathbb{S}^2} f_p(\boldsymbol{\omega}_i, \boldsymbol{\omega}) L(\boldsymbol{\omega}_i) d\boldsymbol{\omega}_i$$

$$\partial_{\pi} \int_{\mathbb{S}^{2}} f(\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i} = \int_{\mathbb{S}^{2}} \partial_{\pi} f(\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i} + \int_{\partial \mathbb{S}^{2}} \left\langle \boldsymbol{n}, \frac{\partial \boldsymbol{\omega}_{i}}{\partial \pi} \right\rangle \Delta f(\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i}$$

Interior integral Boundary integral

By applying Reynolds transport theorem

(largely identical to the differentiation of the rendering equation)

OTHER TERMS IN THE RTE

Transport operator

Source

Realistic Image Synthesis SS2024

$L = K_T K_C L + Q$

$(K_T K_c L)(x, \omega) = \int_0^{\nu} T(x', x) (K_c L)(x', \omega) d\tau$ Transmittance

$Q = T(x_0, x) L_s(x_0, \omega)$

OTHER TERMS IN THE RTE

Transport operator (can be differentiated using Leibniz's rule)

Realistic Image Synthesis SS2024

$L = K_T K_C L + Q$

$(K_T K_c L)(x, \omega) = \int_0^{\nu} T(x', x) (K_c L)(x', \omega) d\tau$ Transmittance

$Q = T(x_0, x) L_s(x_0, \omega)$

DIFFERENTIAL RADIATIVE TRANSFER EQUATION

 $+T(\mathbf{x}_{0},\mathbf{x})\left[-\left(\Sigma_{t}(\mathbf{x},\omega,D)+\dot{D}\sigma_{t}(\mathbf{x}_{0})\right)L_{s}(\mathbf{x}_{0},\omega)+\dot{L}_{s}(\mathbf{x}_{0},\omega)+\dot{D}\sigma_{s}(\mathbf{x}_{0})L^{ins}(\mathbf{x}_{0},\omega)\right],$ where Σ_t is defined in Eq. (17), \underline{j}^{ins} follows Eq. (22), and $\underline{j}_s = \underline{j}_s^r + \underline{j}_s^e$ with \underline{j}_s^r given by Eq. (29)

DIFFERENTIAL RTE, OPERATOR FORM

 $L = K_T K_C L + Q$ $\partial_{\pi}L = \partial_{\pi}(K_{T}K_{c}L) + \partial_{\pi}Q$

DIFFERENTIAL RTE, OPERATOR FORM

$\begin{pmatrix} \partial_{\pi}L \\ L \end{pmatrix} = \begin{pmatrix} K_T K_C & K_* \\ 0 & K_T K_C \end{pmatrix} \begin{pmatrix} \partial_{\pi}L \\ L \end{pmatrix} + \begin{pmatrix} \partial_{\pi}Q \\ Q \end{pmatrix}$

Differential radiative transfer equation

 $L = K_T K_C L + Q$ $\partial_{\pi}L = \partial_{\pi}(K_{T}K_{C}L) + \partial_{\pi}Q$

DIFFERENTIAL RTE, OPERATOR FORM

$\begin{pmatrix} \partial_{\pi}L \\ L \end{pmatrix} = \begin{pmatrix} K_T K_C & K_* \\ 0 & K_T K_C \end{pmatrix} \begin{pmatrix} \partial_{\pi}L \\ L \end{pmatrix} + \begin{pmatrix} \partial_{\pi}Q \\ 0 \end{pmatrix}$

Differential radiative transfer equation

 $L = K_T K_C L + Q$ $\partial_{\pi}L = \partial_{\pi}(K_{T}K_{C}L) + \partial_{\pi}Q$

Captures the boundary integrals

SIGNIFICANCE OF THE BOUNDARY INTEGRAL

Original image

SIGNIFICANCE OF THE BOUNDARY INTEGRAL

Original image

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2024

Negative

Derivative image

Positive

Derivative image (w/o boundary integral)

SIGNIFICANCE OF THE BOUNDARY INTEGRAL

·

Negative

Original image

Realistic Image Synthesis SS2024

Derivative image

Positive

Derivative image (w/o boundary integral)

DIFFERENTIABLE VOLUMETRIC PATH TRACING

DIFFERENTIABLE VOLUMETRIC PATH TRACING

INVERSE-RENDERING RESULTS

- Scene configurations
- Participating media
- Changing geometry
- Optimization
- Using only image loss (L2)

INVERSE-RENDERING RESULTS

Apple in a box

Parameters Apple position

Cube roughness

Target

Optimization process

Realistic Image Synthesis SS2024

INVERSE-RENDERING RESULTS

Apple in a box

Parameters Apple position

Cube roughness

Target

Optimization process

Realistic Image Synthesis SS2024

Non-line-of-sight inverse rendering

Medium orientation (parameter)

Medium optical density (parameter)

Realistic Image Synthesis SS2024

DIFFERENTIAL RADIATIVE TRANSFER

* * * * * * * * * * * * * * * *

Non-line-of-sight inverse rendering

Optimization process

Different view

Non-line-of-sight inverse rendering

Optimization process

Different view

Design-inspired inverse rendering

Design-inspired inverse rendering

Target

Optimization process

DIFFERENTIAL RADIATIVE TRANSFER

Design-inspired inverse rendering

Target

Optimization process

DIFFERENTIAL RADIATIVE TRANSFER

CHALLENGES

Rendering equation
$$L(\boldsymbol{\omega}_{o}) = \int_{\mathbb{S}^{2}} \underbrace{f_{RE}(\boldsymbol{\omega}_{i})}_{L_{i}(\boldsymbol{\omega}_{i})f_{s}(\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})} d\sigma(\boldsymbol{\omega}_{i}) + L_{e}(\boldsymbol{\omega}_{o})$$

Interior integral

Differential rendering equation

$$\frac{\mathrm{d}}{\mathrm{d}\pi}L(\boldsymbol{\omega}_{\mathrm{o}}) = \int_{\mathbb{S}^2} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\sigma(\boldsymbol{\omega}_{\mathrm{i}}) + \int_{\partial\mathbb{S}^2} V_{\partial\mathbb{S}^2}(\boldsymbol{\omega}_{\mathrm{i}}) \,\Delta f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\ell(\boldsymbol{\omega}_{\mathrm{i}}) + \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{\mathrm{o}})$$

Boundary integral

CHALLENGES

Rendering
equation
$$L(\boldsymbol{\omega}_{o}) = \int_{\mathbb{S}^{2}} \underbrace{f_{\text{RE}}(\boldsymbol{\omega}_{i})}_{L_{i}(\boldsymbol{\omega}_{i})f_{s}(\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})} d\sigma(\boldsymbol{\omega}_{i}) + L_{e}(\boldsymbol{\omega}_{o})$$

Interior integral Bound

Differential $\frac{\mathrm{d}}{\mathrm{d}\pi}L(\boldsymbol{\omega}_{\mathrm{o}}) = \int_{\mathbb{S}^2} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\sigma(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\sigma(\boldsymbol{\omega}$

- Complex scenes
 - Discontinuity points (e.g., ∂S^2) can be expensive to detect

Boundary integral

$$(\boldsymbol{\omega}_{i}) + \int_{\partial \mathbb{S}^{2}} V_{\partial \mathbb{S}^{2}}(\boldsymbol{\omega}_{i}) \Delta f_{\text{RE}}(\boldsymbol{\omega}_{i}) \, \mathrm{d}\boldsymbol{\ell}(\boldsymbol{\omega}_{i}) + \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{\mathrm{o}})$$

DIFFERENTIAL RADIATIVE TRANSFER

CHALLENGES

Rendering
equation
$$L(\boldsymbol{\omega}_{o}) = \int_{\mathbb{S}^{2}} \underbrace{L_{i}(\boldsymbol{\omega}_{i})f_{s}(\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})}_{\text{Interior integral}} d\sigma(\boldsymbol{\omega}_{i}) + L_{e}(\boldsymbol{\omega}_{o})$$

Differential rendering equation
$$\frac{\mathrm{d}}{\mathrm{d}\pi}L(\boldsymbol{\omega}_{\mathrm{o}}) = \int_{\mathbb{S}^2} \frac{\mathrm{d}}{\mathrm{d}\pi} f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\sigma(\boldsymbol{\omega}_{\mathrm{i}}) + \int_{\partial\mathbb{S}^2} V_{\partial\mathbb{S}^2}(\boldsymbol{\omega}_{\mathrm{i}}) \,\Delta f_{\mathrm{RE}}(\boldsymbol{\omega}_{\mathrm{i}}) \,\mathrm{d}\ell(\boldsymbol{\omega}_{\mathrm{i}}) + \frac{\mathrm{d}}{\mathrm{d}\pi} L_{\mathrm{e}}(\boldsymbol{\omega}_{\mathrm{o}})$$

- Complex scenes
- Discontinuity points (e.g., ∂S^2) can be expensive to detect
- Scaling out to millions of parameters

dary integral

DIFFERENTIAL RADIATIVE TRANSFER

ANOTHER WAY OF DEALING WITH EDGES

edges, which has been a bottleneck in previous work and tends to produce high-variance gradients when important edges are found with insufficient Authors' addresses: Guillaume Loubet, École Polytechnique Fécérale de Lausanne (EPFL), gloubet.research@gmail.com; Nico.as Holzschuch, Inria, Univ. Grenoble-Alpes, CNRS, LJK, nicolas.holzschuch@inria.fr; Wenzel Jakob, École Polytechnique Fédérale

entiation. Importantly, our approach does not rely on sampling silhouette

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full estation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, cr republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. @ 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. 0730-C301/2019/11-ART228 \$15.00

https://doi.org/10.1145/3355089.3356510

de Lausanne (EPFL), wenzel.jakob@epfl.ch;

1 INTRODUCTION

3355089.3356510

Physically based rendering algorithms generate photorealistic images by simulating the flow of light through a detailed mathematical representation of a virtual scene. Historically a one-way transformation from scene to rendered image, the emergence of a new class of differentiable rendering algorithms has enabled the use of rendering in an inverse sense, to find a scene that maximizes a user-specified objective function. One particular choice of objective leads to inverse rendering, whose goal is the acquisition of 3D shape and material properties from photographs of real-world objects, alleviating the tedious task of modeling photorealistic content by hand. Other kinds of objective functions hold significant untapped potential in areas

ACM Trans. Graph., Vol. 38, No. 5, Article 228. Publication date: November 2019.

Reparameterizing Discontinuous Integrals for Differentiable Rendering

Guillaume Loubet, Nicolas Holzschuch, Wenzel Jakob

SIGGRAPH Asia 2019

MOVING DISCONTINUITIES

Scene parameter X_i —

MOVING DISCONTINUITIES

Scene parameter X_i —

MOVING DISCONTINUITIES

Cannot differentiate standard Monte Carlo estimates

Realistic Image Synthesis SS2024

Scene parameter X_i ____

EDGE SAMPLING

EDGE SAMPLING

EDGE SAMPLING

We currently don't have good acceleration data structures for this operation.

Non-differentiable Monte Carlo estimates

Differentiable Monte Carlo estimates

Non-differentiable Monte Carlo estimates

Differentiable Monte Carlo estimates

Non-differentiable Monte Carlo estimates

Differentiable Monte Carlo estimates

Non-differentiable Monte Carlo estimates

Differentiable Monte Carlo estimates

Realistic Image Synthesis SS2024

changes of variables

RE-PARAMETER ZATION

Ours

Ours

Realistic Image Synthesis SS2024

Reference (Finite differences)

Without changes of variables

Glossy reflection

Shadows

Refraction

Realistic Image Synthesis SS2024

RE-PARAMETER ZATION

FAST INTEGRATION

Dealing with discontinuities is not enough.

Want to propagate derivative information through complex simulations with **millions** of differentiable parameters.

DIFFERENTIAL MONTE CARLO

"Monte-Carlo calculation of derivatives of functionals" from the solution of the transfer equation according to the parameters of the system"

G. A. Mikhailov, Novosibirsk, July 1966

вычисление методом монте-карло производных функционалов ОТ РЕШЕНИЯ УРАВНЕНИЯ ПЕРЕНОСА ПО ПАРАМЕТРАМ СИСТЕМ

Г. А. МИХАЙЛОВ

(Новосибирск)

§ 1. Оценка функционалов от решения уравнения переноса методом Монте-Карло. Метод зависимых испытаний

Интегральное уравнение переноса (см., например, [1]) можно записать в виде

$$F(x) = \int_{\mathbf{x}} k(x' \to x) F(x') dx' + f(x), \qquad (1)$$

или

F = KF + f

где X — фазовое пространство координат и скоростей, F(x) — плотность столкновений в точке $x \in X$; $k(x' \rightarrow x)$ — плотность «первичных» столкновений в точке x от «одного» столкновения в точке x'; $x, x' \in X, f(x)$ — плотность источников.

Мы будем предполагать, что решение уравнения (1) можно представить в виде ряда Неймана

"Monte Carlo Analysis of Reactivity" Coefficients in Fast Reactors, General Theory and Applications"

L.B. Miller, Argonne Natl. Laboratory, **March 1967**

Realistic Image Synthesis SS2024

 $L_o(\mathbf{x},\omega) = L_e(\mathbf{x},\omega) + \int_{S^2} L_i(\mathbf{x},\omega') f_s(\mathbf{x},\omega,\omega') \cos\theta \,\mathrm{d}\omega'$

 $L_o(\mathbf{x},\omega) = L_e(\mathbf{x},\omega) + \int_{S^2} L_i(\mathbf{x},\omega') f_s(\mathbf{x},\omega,\omega') \cos\theta \,\mathrm{d}\omega'$

 $L_o(\mathbf{x},\omega) = L_e(\mathbf{x},\omega) + \int_{S^2} L_i(\mathbf{x},\omega') f_s(\mathbf{x},\omega,\omega') \cos\theta \,\mathrm{d}\omega'$

 $L_o(\mathbf{x},\omega) = L_e(\mathbf{x},\omega) + \int_{S^2} L_i(\mathbf{x},\omega') f_s(\mathbf{x},\omega,\omega') \cos\theta \,\mathrm{d}\omega'$

Realistic Image Synthesis SS2024

derivative wrt. scene parameters

Realistic Image Synthesis SS2024

 $\partial_{\mathbf{X}} L_{o}(\mathbf{x},\omega) = \partial_{\mathbf{X}} L_{e}(\mathbf{x},\omega) + \int_{S^{2}} L_{i}(\mathbf{x},\omega') f_{s}(\mathbf{x},\omega,\omega') \cos\theta \,\mathrm{d}\omega'$

derivative wrt. scene parameters

Realistic Image Synthesis SS2024

 $\partial_{\mathbf{X}} L_o(\mathbf{x},\omega) = \partial_{\mathbf{X}} L_e(\mathbf{x},\omega) + \int_{\mathbf{C}^2} L_i(\mathbf{x},\omega') f_s(\mathbf{x},\omega,\omega') \cos\theta \,\mathrm{d}\omega'$

 $\partial_{\mathbf{X}} L_0(\mathbf{x}, \omega) = \partial_{\mathbf{X}} L_e(\mathbf{x}, \omega)$ + $\int_{S^2} L_i(\mathbf{x}, \omega') \partial_{\mathbf{x}} f_s(\mathbf{x}, \omega, \omega')$

OO UNIVERSITÄT DES SAARLANDES

DIFFERENTIATING THE RENDERING EQN

DES SAARLANDES **Realistic Image Synthesis SS2024**

 $+ \int_{S^2} \left[\begin{array}{c} L_i(\mathbf{x},\omega') \partial_{\mathbf{x}} f_s(\mathbf{x},\omega,\omega') \\ + \partial_{\mathbf{x}} L_i(\mathbf{x},\omega') f_s(\mathbf{x},\omega,\omega') \right] \cos\theta \, \mathrm{d}\omega'$

DIFFERENTIATING THE RENDERING EQN

Differential radiance is "emitted" by scene objects with differentiable parameters

TL;DR $L_i(\mathbf{x}, \omega') f_s(\mathbf{x}, \omega, \omega') \cos \theta d\omega'$

DIFFERENTIATING THE RENDERING EQN

Differential radiance is "emitted" by scene objects with differentiable parameters

Realistic Image Synthesis SS2024

Derivative wrt. parameters

Derivative wrt. objective

Derivative wrt. parameters

De

Derivative wrt. objective

Derivative wrt. objective

Derivative wrt. parameters

Derivative wrt. objective

Derivative wrt. parameters

Derivative wrt. objective

Derivative wrt. parameters

Derivative wrt. objective

WHAT'S WRONG WITH THIS?

1MPix rendering & 1M parameters:

WHAT'S WRONG WITH THIS?

Realistic Image Synthesis SS2024

1MPix rendering & 1M parameters:

$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{1000000 \times 1000000}$ (~3.6 TiB)

Forward mode

$\mathbf{y} = \mathbf{x}_0 \cdot \mathbf{x}_1 + \mathbf{x}_2$

Realistic Image Synthesis SS2024

Forward mode

$\mathbf{y} = \mathbf{x}_0 \cdot \mathbf{x}_1 + \mathbf{x}_2$

Gradient

Realistic Image Synthesis SS2024

Forward mode

$\mathbf{y} = \mathbf{x}_0 \cdot \mathbf{x}_1 + \mathbf{x}_2$

float derivative;

Gradient

$\mathbf{y} = \mathbf{x}_0 \cdot \mathbf{x}_1 + \mathbf{x}_2$

Reverse mode

$\mathbf{y} = \mathbf{x}_0 \cdot \mathbf{x}_1 + \mathbf{x}_2$

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2024

Autodiff-based differentiable rendering

Realistic Image Synthesis SS2024

Autodiff-based differentiable rendering

Vector explosion By GKR/3RA freepik

RADIATIVE BACKPROPAGATION

UNIVERSITÄT DES SAARLANDES

Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering

Merlin Nimier-David, Sébastien Speierer, Benoit Ruîz, Wenzel Jakob

SIGGRAPH 2020

MOTIVATION: ADJOINT SENSITIVITY METHOD

For problems with a time dimension (ODEs, ..)

Pontryagin et al. 1962

THE MATHEMATICAL THEORY 0 F OPTIMAL PROCESSES L. S. PONTRYAGIN, V. G. BOLTYANSKII, R. V. GAMKRELIDZE, E. F. MISHCHENKO Recipients of the 1962 Lenin Prize for Science and Technology Authorized Translation from the Russian Translator: K. N. TRIROGOFF Editor: L. W. NEUSTADT Aerospace Corporation El Segundo, California INTERSCIENCE PUBLISHERS a division of JOHN WILEY & SONS New York . London . Sydney

MOTIVATION: ADJOINT SENSITIVITY METHOD

For problems with a time dimension (ODEs, ..)

Pontryagin et al. **1962**

THE MATHEMATICAL THEORY 0 F OPTIMAL PROCESSES L. S. PONTRYAGIN, V. G. BOLTYANSKII, R. V. GAMKRELIDZE, E. F. MISHCHENKO Recipients of the 1962 Lenin Prize for Science and Technology Authorized Translation from the Russian Translator: K. N. TRIROGOFF Editor: L. W. NEUSTADT Aerospace Corporation El Segundo, California INTERSCIENCE PUBLISHERS a division of JOHN WILEY & SONS New York . London . Sydney

MOTIVATION: ADJOINT SENSITIVITY METHOD

For problems with a time dimension (ODEs, ..)

Pontryagin et al. **1962**

THE MATHEMATICAL THEORY 0 F OPTIMAL PROCESSES L. S. PONTRYAGIN, V. G. BOLTYANSKII, R. V. GAMKRELIDZE, E. F. MISHCHENKO Recipients of the 1962 Lenin Prize for Science and Technology Authorized Translation from the Russian Translator: K. N. TRIROGOFF Editor: L. W. NEUSTADT Aerospace Corporation El Segundo, California INTERSCIENCE PUBLISHERS a division of JOHN WILEY & SONS New York . London . Sydney

"ADJOINT" – THAT SOUNDS FAMILIAR!

Bidirectional Estimators for Light Transport Veach & Guibas, **1994**

 $\langle \mathbf{O}\mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{a}, \mathbf{O}\mathbf{b} \rangle$

(Underlying principle: self-adjoint operators)

Derivatives projected into the scene

Gradients

Gradients

Gradients

Normal rendering

Normal rendering

- Transporting from sensor/light may yield lower variance.

Normal rendering

- Transporting from sensor/light may yield lower variance.

Normal rendering

- Transporting from sensor/light may yield lower variance.

Differentiable rendering

Normal rendering

- Transporting from sensor/light may yield lower variance.

Differentiable rendering

Normal rendering

- Transporting from sensor/light may yield lower variance.

Differentiable rendering

- Transporting from objects is completely impractical.

Surface texture optimization

Initial state

Target state

Realistic Image Synthesis SS2024

RADIATIVE BACKPROPACATION

Optimized texture

Target

Optimized texture

Target

Surface BSDF optimization

Surface BSDF optimization

Ours (biased I+II)

Ours

Realistic Image Synthesis SS2024

RADIATIVE BACKPROPAGATION

Volume density optimization

Mitsuba 2 (AD-based)

Realistic Image Synthesis SS2024

Radiative Backprop. (biased I + II)

Target

RADIATIVE BACKPROPAGATION

Volume density optimization

Mitsuba 2 (AD-based)

Realistic Image Synthesis SS2024

Radiative Backprop. (biased I + II)

Target

RADIATIVE BACKPROPAGATION

Volume density optimization

DES SAARLANDES

Relative speedups vs autodiff-based

TL;DR

- Radiative Backpropagation is "just" another kind of light transport simulation with weird sensors and emitters.
- Orders of magnitude faster (up to ~1000 × in our experiments)
- Lifts memory limitations entirely
- Only need to differentiate BSDFs etc. ("easy")
- Can build on decades of research targeting such problems!

SHUANG ZHAO ASSISTANT PROFESSOR University of California, Irvine

JNIVERSITÄT SAARLANDES

WENZEL JAKOB ASSISTANT PROFESSOR EPFL, Lausanne, Switzerland

TZU-MAO LI OSTDOCTORAL RESEARCHER MIT CSAIL, Cambridge

SHUANG ZHAO ASSISTANT PROFESSOR University of California, Irvine

JNIVERSITÄT SAARLANDES

WENZEL JAKOB ASSISTANT PROFESSOR EPFL, Lausanne, Switzerland

TZU-MAO LI OSTDOCTORAL RESEARCHER MIT CSAIL, Cambridge

SHUANG ZHAO ASSISTANT PROFESSOR University of California, Irvine

JNIVERSITÄT SAARLANDES

WENZEL JAKOB ASSISTANT PROFESSOR EPFL, Lausanne, Switzerland

TZU-MAO LI OSTDOCTORAL RESEARCHER MIT CSAIL, Cambridge

SHUANG ZHAO ASSISTANT PROFESSOR University of California, Irvine

JNIVERSITÄT SAARLANDES

WENZEL JAKOB ASSISTANT PROFESSOR EPFL, Lausanne, Switzerland

TZU-MAO LI OSTDOCTORAL RESEARCHER MIT CSAIL, Cambridge

