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Why use Spectral Raytracing?

• Physical plausibility

• Precise

• Correct wavelength dependent IORs

• Dispersion for free

• Blackbody curves

• Energy analysis
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Why NOT use Spectral Raytracing?

• Asset pipeline requires preprocessing

• Spectral data not as common as RGB data

• Stylized rendering is difficult

• Can get complicated

02.06.2022 Spectral Raytracing 4



Spectral 
Renderer

• Manuka (Weta Digital)

• Thea Render (Altair)

• Mitsuba (Tizian & Jakob et al.)

• ART (Tobler & Wilkie et al.)

© Weta Digital
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Spectral Properties
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Electromagnetic Spectrum

• 𝜆 =
𝑣

𝑓
=

𝑐

𝑛𝑓

• 𝑣 Speed of light in medium
• Vacuum 𝑣 = 𝑐 = 299792458 Τ𝑚 𝑠

• 𝑛 Refractive index of medium
• Vacuum 𝑛 = 1

• 𝑓 Frequency

• 𝜆 Wavelength
• Usually given in nanometer

• Nonlinear as wavelength depends on surrounding medium
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Visible Spectrum
• ~380𝑛𝑚 − ~750𝑛𝑚
• Range visible by the human perception
• Wavelength around the size of bacteria, but normally scenes are given in larger scales
• This makes it possible to neglect a lot of wave-specific effects

• Especially ⇒ no interference or diffraction 
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Wavelength Dependency

©Wikipedia

𝑛2

𝑛1

• Reflection & refraction on a medium interface 
is wavelength dependent

• Equally true for conductive and dielectric 
interfaces

• Light bundle split into the composing parts is 
called dispersion
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Sellmeier Equation

• 𝑛2 𝜆 = 1 + σ𝑖
𝐵𝑖𝜆

2

𝜆2−𝐶𝑖

• Material can be characterized with simple coefficients instead of a lookup 
table

• Developed 1872 by Wilhelm Sellmeier

• Alternatively, Cauchy’s equation can be used

• E.g., BK7:

• 𝑛2 𝜆 = 1 +
1.03961212 𝜆2

𝜆2−0.00600069897
+

0.231792344 𝜆2

𝜆2−0.0200179144
+

1.01046945 𝜆2

𝜆2−103.560653
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Rendering Equation
Also called Light Transport Equation…
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Rendering Equation

• 𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + 𝛺׬ 𝑓 𝑥, 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝑥, 𝜔𝑖 cos 𝜃 ⅆ𝜔𝑖

• 𝐿𝑜 𝑥,𝜔𝑜 - Outgoing radiance

• 𝐿𝑒 𝑥, 𝜔𝑜 - Emitting term

• 𝐿𝑖 𝑥, 𝜔𝑖 - Incoming radiance

• 𝑓 𝑥,𝜔𝑖 , 𝜔𝑜 - BSDF

• Integral over hemisphere

• No wavelengths to be found
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RGB Rendering Equation

•

𝐿𝑜,𝑅
𝐿𝑜,𝐺
𝐿𝑜,𝐵

𝑥, 𝜔𝑜 =

𝐿𝑒,𝑅
𝐿𝑒,𝐺
𝐿𝑒,𝐵

𝑥, 𝜔𝑜 +ඳ

𝛺

𝑓𝑅
𝑓𝐺
𝑓𝐵

𝑥, 𝜔𝑖 , 𝜔𝑜

𝐿𝑖,𝑅
𝐿𝑖,𝐺
𝐿𝑖,𝐵

𝑥,𝜔𝑖 cos 𝜃 ⅆ𝜔𝑖

• Three values associated with one ray

• R,G,B ≠ wavelength

• Not physical, but practical
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Spectral Rendering Equation

• Do not use RGB but wavelengths

• Associate each ray with a wavelength 𝜆

• 𝐿𝑜 𝑥, 𝜔𝑜, 𝜆 = 𝐿𝑒 𝑥,𝜔𝑜, 𝜆 + 𝛺׬ 𝑓 𝑥, 𝜔𝑖 , 𝜔𝑜, 𝜆 𝐿𝑖 𝑥, 𝜔𝑖 , 𝜆 cos 𝜃 ⅆ𝜔𝑖
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©Hannes Grobe/AWI
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Fluorescence

• Emission of photon with 𝜆𝑜 after absorbing photon of different 
wavelength 𝜆𝑖

• Rule of thumb: 𝜆𝑜 > 𝜆𝑖
• Exceptions exists!

• Common case: Ultraviolet light triggers visible light
• Render with extended visible spectrum, but display only visible part 

• All photon absorption and follow-up emission takes time

• ⇒Phosphorescence

𝜆𝑜

𝜆𝑖
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Phosphorescence

• Same as fluorescence but time is spent between emission at 𝑡𝑜 and 
absorption at 𝑡𝑖

• This is the case for every emission & absorption event!
• BUT: Δ𝑡 = 𝑡𝑜 − 𝑡𝑖 ≪ 𝜖 for many practical materials

• 𝜖 depends on the problem case, but we can argue rendering is not 
quantum mechanics, therefore set 𝜖 high.

• If Δ𝑡 ≪ 𝜖 we call it fluorescence, phosphorescence otherwise

Δ𝑡

𝜆𝑖

𝜆𝑜
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Fluorescence Rendering Equation

• Incoming wavelength 𝜆𝑖
• Outgoing wavelength 𝜆𝑜
• Extend integration by spectral dimension

• 𝐿𝑜 𝑥, 𝜔𝑜, 𝜆𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 , 𝜆𝑜 + 𝜆׬ 𝛺׬ 𝑓 𝑥, 𝜔𝑖 , 𝜔𝑜 , 𝜆𝑖 , 𝜆𝑜 𝐿𝑖 𝑥, 𝜔𝑖 , 𝜆𝑖 cos 𝜃 ⅆ𝜔𝑖ⅆ𝜆𝑖

02.06.2022 Spectral Raytracing 18



Phosphorescence Render Equation

• Incoming time 𝑡𝑖
• Outgoing time 𝑡𝑜
• Extend by time domain

• 𝐿𝑜 𝑥, 𝜔𝑜, 𝜆𝑜, 𝑡𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜, 𝜆𝑜, 𝑡𝑜 + 0׬
𝑡𝑜
𝛺׬𝜆׬ 𝑓 𝑥, 𝜔𝑖 , 𝜔𝑜, 𝜆𝑖 , 𝜆𝑜, 𝑡𝑖 , 𝑡𝑜 𝐿𝑖 𝑥, 𝜔𝑖 , 𝜆𝑖 , 𝑡𝑖 cos 𝜃 ⅆ𝜔𝑖 ⅆ𝜆𝑖 ⅆ𝑡𝑖

• Very impractical

• Many materials have a very insignificant Δ𝑡 = 𝑡0 − 𝑡1 ≪ 𝜖
• Handling fluorescent as a special case is important
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Display
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Display spectral images

• Common monitors are only capable of displaying RGB

• We need a map from 𝜆 → 𝑅𝐺𝐵

• Already exists as a standard!

• After mapping to RGB, tone mapping must be applied
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CIE XYZ Mapping

• Based on CIE 1931 color space or its successors

• The resulting CIE XYZ triplet can be transformed to sRGB or other 
color spaces

• The three-color matching curves are given as measured data

𝑋 = න
𝜆

𝐿 𝜆 ҧ𝑥 𝜆 ⅆ𝜆

𝑌 = න
𝜆

𝐿 𝜆 ത𝑦 𝜆 ⅆ𝜆

𝑍 = න
𝜆

𝐿 𝜆 ҧ𝑧 𝜆 ⅆ𝜆
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Energy Visualization

• Energy of a single photon in Joule: 𝐸𝑝 =
ℎ𝑐

𝜆
• ℎ - Planck’s constant 

• 𝑐 - Speed of light

• 𝜆 - Wavelength at vacuum

• Total energy at sensor:

• 𝐸 = 𝜆׬
𝐿 𝜆 ℎ𝑐

𝜆
ⅆ𝜆

• Electronvolts might be used instead of Joule
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Spectral Sampling
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Camera Wavelength Sampling

• Estimator: 𝐼 =
1

𝑁
σ𝑖=1
𝑁 𝐿(𝑋𝑖,𝜆𝑖)

𝑝(𝑋𝑖,𝜆𝑖)

• Uniform sampling within the visible spectrum?

• Not the best solution as the scene consists of inhomogeneous set of 
colors

• Alternatively, use data known at the start of the rendering process!
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Response - Camera Wavelength Sampling

• Construct histogram based on the camera response curve and the CIE 
color matching curve

• Sample the resulting histogram

• Does not adapt to scene

11

Camera response curve Normalized matching curve
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SPD - Camera Wavelength Sampling
• Same as before, but take SPD(Spectral power distribution) of lights into account

• Will not work for scenes containing fluorescent materials

• Keeping track of the relative power is crucial. Local normalization of SPDs does not work. The SPDs must be normalized globally

• SPD can not be spatial varying, else use average

11

Camera response curve Normalized matching curve

Spectral power distributions

1

1

1
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Light Wavelength Sampling

• Sample using the respective SPD

• SPD can be spatial and temporal varying

1
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Fluorescent Sampling

• Sample outgoing wavelength based on BSDF/Medium

• Only sample wavelengths if its fluorescent!
• Changing wavelength can be costly, and quite a lot of materials in scenes are 

not fluorescent at all!

• In practice the wavelength is sampled independently from the 
direction 𝑝 𝜔, 𝜆 = 𝑝 𝜆 𝑝(𝜔)
• A combined approach might be more efficient, but also more complex to 

implement

• Common methods use a discrete re-radiation matrix
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Re-radiation Matrix

• Diagonal entries represent non-
fluorescent probability

• A standard piecewise-constant 1D 
sampler can be used to randomly 
select 𝜆𝑜 based on 𝜆𝑖 𝜆

𝑜
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Hero Wavelength Sampling*

* Wilkie, A., Nawaz, S., Droske, M., Weidlich, A. and Hanika, J. (2014), Hero Wavelength Spectral Sampling. Computer Graphics Forum, 
33: 123-131. https://doi.org/10.1111/cgf.12419
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General Idea

• Associate each path a wavelength package of size 𝐶

• 𝐼 =
1

𝑁

1

𝐶
σ𝑖=1
𝑁 σ𝑗=1

𝐶 𝐿(𝑋𝑖,𝜆𝑖
𝑗
)

𝑝(𝑋𝑖,𝜆𝑖
𝑗
)

• 𝑝 𝑋𝑖 , 𝜆𝑖
𝑗
= σ𝑘=1

𝐶
𝑝 𝜆𝑖

𝑘 𝑝(𝑋𝑖|𝜆𝑖
𝑘)

𝐶
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The Hero

• One wavelength is the hero

• Only this hero wavelength is used to sample the actual path
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HWS: Sample Method

• Randomly select 𝜆𝐻 ~ 𝑝(𝜆𝐻)

• Set other wavelengths in the current package according to:

• 𝜆𝑖 = 𝜆𝐻 − 𝜆𝑚𝑖𝑛 +
𝑖

𝐶
𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛 𝐦𝐨𝐝 𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛 + 𝜆𝑚𝑖𝑛

• As shifting is a deterministic operation we can simplify:

• 𝑝 𝑋𝑖 , 𝜆𝑖
𝑗
= 𝑝 𝜆𝑖

𝐻 𝑝(𝑋𝑖|𝜆𝑖
𝐻)

𝜆𝑚𝑖𝑛 𝜆𝑚𝑎𝑥𝜆3 𝜆𝐻 𝜆1 𝜆2
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HWS: Multiple Importance Sampling

• Each wavelength could have been picked as the hero wavelength as 
well

• 𝐼 =
1

𝑁
σ𝑖
𝑁σ𝑗

𝐶𝑤𝑗(𝑋𝑖 , 𝜆𝑖
𝑗
)
𝐿(𝑋𝑖,𝜆𝑖

𝑗
)

𝑝(𝑋𝑖,𝜆𝑖
𝑗
)

• Using balance heuristic

• 𝑤𝑗 𝑋𝑖 , 𝜆𝑖
𝑗
= σ𝑘

𝐶 𝑝 𝜆𝑖
𝐻 𝑝(𝑋𝑖|𝜆𝑖

𝐻)

𝑝 𝜆𝑖
𝑘 𝑝(𝑋𝑖|𝜆𝑖

𝑘)
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HWS: Delta Response & Singularities

• A ray might hit a material with a delta response, e.g., perfect glass
• The IOR is wavelength dependent and so is the outgoing direction

• The pdf for other wavelengths would be zero

• Solve by setting all weights except the hero wavelength to zero 

𝜆𝐻

𝜆2

𝜆3

𝜆1
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Results

Hero Wavelength SamplingSingle Wavelength Sampling
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HWS Problems

• Shifting is agnostic to wavelength probability
• Let's pick each wavelength according to 𝜆𝑖 ~ 𝑝(𝜆𝑖)

• But still use only one wavelength as the hero

• Continuous Multiple Importance Sampling* allows us to combine everything 
together

• Fluorescent paths have wavelengths per vertex but have no impact on 
the actual HWS approach
• They are integrated in the path pdf

• Bidirectional approaches do get very complicated

* Rex West, Iliyan Georgiev, Adrien Gruson, and Toshiya Hachisuka. 2020. Continuous multiple importance sampling. ACM Trans. Graph. 39, 4, Article 136 (July 2020), 12 pages. 
DOI:https://doi.org/10.1145/3386569.3392436
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Spectral Upsampling
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Spectral Upsampling

• RGB -> Spectrum
• Why still use RGB?

• Many assets are still RGB
• Artists don’t want to work with spectrums
• Color more intuitive than curves

• Mapping from Spectral to RGB has the signature ℝ∞ → ℝ3

• Not injective
• Therefore, RGB to Spectral ℝ3 → ℝ∞ not unique

• Use cases:
• Emission
• Reflection/Albedo
• IOR (→ Sellmeier Eq.)
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Emissive Spectrum

• ~ Power/Radiance at a given wavelength

• Unbounded but positive

• Common to be real measured data
• ⇒ Noisy

• Blackbody curves

• Standard Illuminants
• D65, D50, F4, …

• Colored light
• Multiply reflective/albedo curve with 

emissive curve
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Reflective/Albedo Spectrum

• ~ Reflection/Absorption at a given wavelength

• Usually bound to 0, 1

• White would be just a constant 1

• But no unique way to define - for example - blue?

Blue
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Problem Definition

• We want to construct a function 𝑓(𝜆) given a RGB triplet

• The function shall be smooth

• The function shall be continuous in a given range

• RGB (1,1,1) shall be the standard illuminant of the color space 
• sRGB → D65

• Mapping from RGB to spectral and back should be as precise as 
possible
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Optimization

• argmin
𝑓

𝑏 − 𝑇 𝜆׬ 𝑓 𝜆 𝑊 𝜆 𝑥𝑦𝑧 𝜆 ⅆ𝜆

• 𝑇 - Transform matrix to map from CIE XYZ to RGB

• 𝑏 - RGB value we optimize for

• 𝑓(𝜆) - Function we optimize for

• 𝑊(𝜆) - SPD of whitepoint (e.g., sRGB → D65)

• 𝑥𝑦𝑧(𝜆) - CIE 1931 color matching functions

• The conditions are given implicitly by fixing the base for 𝑓(𝜆)
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Base function

• Jakob & Hanika* picked:
• 𝑓 𝜆 = 𝑆(𝑐0𝜆

2 + 𝑐1𝜆 + 𝑐2)

• 𝑆 𝑥 =
1

2
+

𝑥

2 1+𝑥2
being a sigmoid function

• The solver optimizes the three coefficients 𝑐0, 𝑐1 and 𝑐2
• Mapping a RGB triplet returns another triplet!

• Memory efficient
• Fast to calculate
• In-place replacement

• Other possible functions:
• Gaussian mixture models
• Polynomials
• Moment based approach (see EGSR 2021)
• Etc…

* Wenzel Jakob and Johannes Hanika. 2019. A Low-Dimensional Function Space for Efficient Spectral Upsampling. In Computer Graphics Forum (Proceedings of Eurographics) 38(2).
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Runtime Preprocessing

• Optimization on the fly is not an option

• Pre-calculate some reference points 
inside the CIE horseshoe
• This is done once for a color space

• Use interpolation for points in-between

• Requires closest neighbor search and 
interpolation for each RGB triplet
• This can be done as a scene preprocess step

• Using only 𝑓 𝜆 in BSDF evaluation
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Problems

• Interpolation between coefficients not as same as interpolating 
between RGB values
• Have a look at the Jacobian of 𝑓(𝜆)

• Black is not easy to represent
• 𝑓 𝜆 = 0 ∀𝜆 would be black but no possible combination of 𝑐0, 𝑐1, 𝑐2 exists to 

make it possible
• Handle this as a special case

• Quality of mapping proportional to the size of precalculated reference 
points

• Mapping depends on the color space
• You need an optimized dataset for each color space you use
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Conclusion
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What did we talk about?

• Inclusion of spectra into the rendering equation

• Using and sampling of wavelengths in a raytracer

• Handling of fluorescence BSDFs

• Mapping a spectrum to RGB

• Mapping RGB to spectrum
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What did we NOT talk about?

• History

• Actual fluorescence BSDF models

• HWS + Bidirectional methods

• Spectral differentials
• Like ray differentials, but spectral

• Stylized rendering
• Yes, it’s possible

• More recent research
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More realism?

• Add phosphorescence

• Add polarization

• Use wave characteristic effects

• Go outside the visible spectrum and display it!

02.06.2022 Spectral Raytracing 56


