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Overview

 Today
— Progressive Photon Mapping (PPM)
« Basic Approach
» Probabilistic Approach
— Combining Photon Mapping and Bidirectional Path Tracing
* Vertex connection and merging

* Next lecture
— Radar / Spectral
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rogressive Photon Mapping
Hachisuka et al. (2008)

Progressive Photon Mapping

Hachisuka Shinji Ogaki Henrik Wann Jensen

San Diego The University of Nottingham UC San Diego

Path tracing Bidirectional path tracing Metropolis light transport Photon mapping Progressive photon mapp

Figure 1: A glass lamp illuminates a wall and generates a complex caustics lighting pattern on the wall. This type of illumination is difficult
to simulate with Monte Carlo ray tracing methods such as path tracing, bidirectional path tracing, and Metwpolis light transport. The
lighting seen through the lamp is particularly difficult for these methods. Photon mapping is significantly better at capturing the caustics
lighting seen through the lamp, but the final quality is limited by the memory available for the photon map and it lacks the fine detail in the
illmination. Progr e photon mapping provides an image with substantially less noise in the same render time as the Monte Carlo ray
tracing methods and the final quality is not limited by the available memory.
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Progressive Photon Mapping

First algorithm for computing all types of
light transport with arbitrary accuracy
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Progressive Photon Mapping

® New formulation of photon mapping

® Robust for any light path including SDS path

® Arbitrary accuracy using finite memory
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Progressive Photon Mapping

® Multi-pass method

® |nitial pass:
points generation for radiance estimates

® Refinement pass:




24

Key ldea

® progressive radiance estimation
® New density estimation algorithm

® Converges to the correct value




Progressive Photon Mapping
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Progressive Photon Mapping - Initial Pass
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Progressive Photon Mapping - Initial Pass
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Progressive Photon Mapping - Initial Pass
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Progressive Photon Mapping - 1st Refinement Pass
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Progressive Photon Mapping - 1st Refinement Pass
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Progressive Photon Mapping - 1st Refinement Pass
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Progressive Photon Mapping - 2nd Refinement Pass
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Progressive Photon Mapping - 2nd Refinement Pass
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Progressive Photon Mapping - Rendering




Radius Reduction
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Radius Reduction

= lteration 2



Radius Reduction
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L ocations with Statistics
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Radius Reduction
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Stochastic PPM

Hachi
Isuka & Jensen (2009)
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= Glossy reflections

< Depth of field
Motion blur



Stochastic PPM

Trace Eye Rays

Trace Photons

Reduce Radius




Stochastic PPM

Trace Eye Rays

Trace Photons

Reduce Radius







Progressive Photon Mapping:
A Probabilistic Approach

Claude Knaus and Matthias Zwicker

University of Bern
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Our Probabilistic Approach

* New derivation using probabillistic perspective
* No local statistics

* Parallelization

* Convergence analysis

* Arbitrary radiance estimation kernels

* Easy to generalize



Radiance Estimation
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Bias X 1




Averaged Image Averaged Radiance Estimate



Averaged Radiance Estimates

Noise Bias

Noise per iteration Bias per iteration
Bias of average
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Averaging + Radius Reduction

Noise Bias
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Radius Sequence
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Asymptotic Convergence

Noise of average o 1/ N* Bias of average o< 1/N14
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No Statistics Needed

PPM Radius Update Rule Our Radius Sequence
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Local Statistics No Local Statistics!



Radius Sequence (Explicit)

Reference Radius
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Our Algorithm

Local Reference Radius

Trace Eye Ray
Photon Mapper

Trace Photons
Trace Eye Rays

r- ¢ F/Bla i

Estimate Radiance

Average Images




Script

I <— 71| Global Reference Radius

Photon Mapper

Average Images
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Stochastic PPM Our method 20x Difference
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Scene courtesy of Toshiya Hachisuka



Arbitrary Kernels

Box Gaussian SIGGRAPH






Stochastic Effects

Scene courtesy of Toshiya Hachisuka



Participating Media
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Participating Media
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1 iteration
2 million photons
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100 iterations
200 million photons




1000 iterations
2 billion photons




Conclusions

* Probabillistic analysis

* Asymptotic convergence
* No local statistics

* Parallelization

* Arbitrary kernels

* Participating media
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Combining Photon Mapping
and Bidirectional Path Tracing
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Bidirectional path tracing
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BPT vs PM )\ T

Unidirectional sampling Vertex connection Density estimation

Bidirectional path tracing Photon mapping
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Problem statement 0\ /AT

» BPT & PM: different solutions to the same problem
» If we ignore bias in PM

» Want to combine
» Best of both
» Automatically

Problem: Different mathematical frameworks
» BPT: Monte Carlo integration
» PM: Density estimation

5A2013.5IGGRAPH.ORG



Overview "NV ocraerinsincons

Problem: Different mathematical frameworks

© Solution: Cast both in the same framework
» Path integral framework [Veach 1997]
» Multiple importance sampling

» New insight
b= [r@a® A
& '. .4)9\>
_ fJ(X) ) [
() = p(X)
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Combination "NV ocraerinsincons

» Multiple importance sampling [Veach and Guibas 1995]
» Balance heuristic for n techniques

W@ = ol . b s
! k=1DPr(X) \ /

» Need to:
1) Find a common definition of a path
» In a common space

2) Derive path probability density function (pdf)
» With common units

5A2013.5IGGRAPH.ORG



Bidirectional path sampling B\ /A

® [ight vertex
@® Camera vertex

SA2013.5I6GRAPH.ORG



Bidirectional path sampling "NV ecrsonssincon:

® |ight vertex
@® Camera vertex
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Bidirectional path tracing Photon mapping
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Bidirectional path sampling "NV ecrsonssincon:

® |ight vertex
@® Camera vertex
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Bidirectional path tracing Photon mapping
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Vertex merging [Georgiev et al. 2012] PNV scruerinsincons

® [ ight vertex
@® Camera vertex

X1
—;—
0' '
X3
X2
Vertex connection RATIIER MeppIig
prc®) = p(o)p(Xo = 1) pyu @) = p(Xo)p(Xo = X1) PRIxPXK] I r)
p(X3)p(X3 = X3) p(x3)p (X3 = X7)
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Sampling technique summary

1“ SIGGRAPHASIAZ@13

® [ight vertex
@® Camera vertex

Xp

X3 X, X1
[ ]

________ °

X3 X, ) X1

SA2013.5I6GRAPH.ORG

Unidirectional AV

Vertex connection 4 ways

Photon mapping 5 ways

Total 11 ways

SPONSORED BY €@ €2



Technigue comparison 0\ /AT

= Diffuse light
M Diffuse surface
M Mirror surface

nling
Roughly equal total number of rays per image!
10k paths/pixel 10k paths/pixel 1.2 billion paths/pixel

SA2013.5IGGRAPH.ORG SPONSORED BY @ €22




Technigue comparison 0\ AV

mm Diffuse light
M Diffuse surface

Xo Xp Xo

P —
I o TN I o TN
Zryoy A N2 ST 7oy \

X1
Vertex connection Unidirectional Vertex
(VC) sampling (US) merging (VM)

Roughly equal sampling densities

N . bvc
Pus = Pvm —100’000
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Combined algorithm 0\ /AT

Stage 1: Light sub-path sampling

a) Trace sub-paths b) Connect to eye c) Build search structure

Stage 2: Eye sub-path sampling

a) Vertex connection b) Vertex merging c) Continue sub-path



Bidirectional path tracing (30 rhin)
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Combined algorithm (30 min)
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Caroinsel algoritnem (30 rnin)
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Additional material 0\ /AT

» A path space extension for robust light transport simulation
[Hachisuka et al. 2012]

» Paper, supplemental analysis [http://cs.au.dk/~toshiya/]

» Light transport simulation with vertex connection & merging
[Georgiev et al. 2012]

» Paper, tech. report, image comparisons [http://www.iliyan.com]



Wrap up

» Two approaches
» Same result

» Error convergence

© BPT O(N~°5)
© PPM: 0(N~033)

& Combined: 0(N~%>)
» Remaining challenges

VCM
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