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Overview of MC GI methods
• General idea

– Generate samples from lights and camera

– Connect them and transport illumination along paths

• Path Tracing (with Next Event Estimation)
– For each pixel, generate random path from camera

– At each vertex, generate one light sample on lights and connect 

• BiDir-Path Tracing
– For each pixel, generate random paths from camera and from lights

– Connect them (in all possible ways) and transport light

• Instant Radiosity/Global Illumination
– In preprocessing, generate fixed set of samples from lights (VPLs)

– During rendering, directly connect to all of them and transport light

• Lightcuts
– Do not connect to all VPLs, but use importance sampling

– Create a hierarchical structure to efficiently select VPLs



Realistic Image Synthesis SS24 – Virtual Point Light (VPL) Methods Philipp Slusallek

Reuse of Light Paths
• Bidirectional path tracing

– Starts a new light path for every eye sample

– Many new path being traced

– No correlation between samples → noise

• Idea: Reuse light samples
– Generate random light samples

in a preprocessing pass

– Each light sample becomes a

Virtual Point Light (VPL) illuminating

the entire scene (and not just one pixel)

– Significantly reduces light samples

and required tracing of rays

– Generates correlated errors

across entire image

– Not unbiased -- but consistent
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Instant Radiosity [Siggraph97]
• Trace few (dozens of) rays from light sources

– These corresponds to the light paths from BiDir path tracing

– Each contains a fraction of the energy of a light source

• Use them to generate ‘virtual point lights’ (VPLs)
– VPLs placed at every hit point along the path

• Termination via Russian Roulette (or fixed path length (biased))

– Trace shadow rays to all of them during rendering 

– Contains both direct and indirect diffuse illumination

• Inherently smooth, except for

sharp shadow boundaries
– Shadow artifacts in case of few VPLs

– But converges consistently
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Instant Radiosity: Remarks
• Approximation of illumination

– VPLs provide an approximation of the light distribution in a scene

– Converges to real distribution with larger number of VPLs

• Dealing with non-diffuse surfaces
– Consider BRDF when reflecting “photons” and during illumination

– OK for mostly diffuse: Highly glossy surfaces would reveal VPLs

and would require very large numbers of VPLs for glossy interactions

• Shadow ray can be traced coherently
– Select VPLs in a coherent way (e.g., by clustering)

– Shoot packets of rays to VPL clusters
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Instant Radiosity: 1/r2 Bias

• Illumination Singularity 
– Scene would be way to bright near a VPL

• Illumination can become arbitrarily large (1/r2)

• Would be averaged out eventually with more VPLs

• But may need arbitrary large number of VPLs

– Possible Solution
• Limit contribution such that it will not be too bright

– Limit the 1/r2 term by some constant b

• → Introduces bias: too dark, specifically in corners

• Bias Compensation [Kollig&Keller’06]
– Add back missing contribution through MC sampling

– Continue the eye paths randomly
• Check bias: 1/r2-b

• If non-negative: Scale contribution by (1/r2-b)/(1/r2)

– Optimization
• Limit ray length to critical region: r < 1/sqrt(b)

Also see: Simon Brown (http://sjbrown.co.uk/2011/05/09/virtual-point-light-bias-compensation/
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Instant Global Illumination
• Idea: Use coherent form of bi-directional path tracing

– How can we cut corners without too many artifacts

– Speed up the computation
• Ensure that shadow rays are coherent for packet ray tracing

• Require no communication between rays 

– Combine advantages of several different algorithms
• Instant Radiosity: smooth diffuse lighting

• Ray Tracing: reflections, refractions, visibility testing

• Interleaved Sampling (ILS): better quality, easy to parallelize

• Discontinuity Buffer: removes ILS artifacts

– Limitations of compute clusters (but similar on GPUs)
• Cannot communicate between nodes (too high latency)

• Streaming computations

– Master sends stream of jobs to clients

– They eventually return the results –

while already working on the next job(s)

– Achieves almost perfect speedup (pipelining)

[Interactive Global Illumination, Wald, Kollig, et al., EGWR 2002]
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More Samples, (Almost) For Free
• IR: Way to few samples for good results

– Hard shadow borders

• Idea
– Use different sets of VPLs for different pixels

• E.g.: 9 sets of VPLs 

– Every 3x3th pixel uses same set of VPLs

• Better quality:
– 9 times as many VPL

per image than without

• Easily parallelizable
• Each node computes pixels with

– same VPL id

– Nicely scales with #nodes

• But: Massive aliasing
– Can obviously see 2D grid …

– Could be avoided if all samples are

used within a pixel (supersampling)

– but we aim at speed here!

1 2 3 1 2

4 5 6 4 5

7 8 9 7 8

1 2 3 1 2

4 5 6 4 5
VPL sets used per pixel



Realistic Image Synthesis SS24 – Virtual Point Light (VPL) Methods Philipp Slusallek

Remove Aliasing
• Idea: Discontinuity Buffer [Keller, Kollig]

– Filter irradiance among neighboring pixels
• Use the same filter width (3x3)

• Smoothing/removal of ILS-artifacts

• Like irradiance caching, but more stable

• Only filter in smooth regions
– Must detect discontinuities

– Criterion: normal & distance
• Ignore pixels that differ too much

• Problem: Clients don’t have

access to neighboring pixels!
– Filtering has to run on the server

– High server load 

• Server has to get additional data
– Normal, irradiance, distance

– High network bandwidth !

• A lesser issue on GPUs, but still …

1 2 3 1 2

4 5 6 4 5

7 8 9 7 8

1 2 3 1 2

4 5 6 4 5
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Finally, Add QMC
• Use Randomized Quasi Monte Carlo [Keller et al.]

– Used for generating the VPLs

– Faster convergence, especially for small sampling rates

– Can be combined easily with interleaved sampling

• Plus: ‘Technical’ advantages of QMC
– Fast random number generation (table lookup + bit-ops)

– Can reproduce any sequence of samples based on single seed value
• Can easily synchronize different clients on same data

• Each client can reproduce the sample set of any other client

– Avoid ‘jumping’ of VPLs:
• Just start with same seed every frame

– For progressive convergence, just advance the seed value…
• QMC sequences perfectly combine into the future…
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Summary
• Base ingredient

– Instant Radiosity + Ray Tracing 

– Plus fast caustic photon maps

• Combine with Interleaved Sampling
– Better quality

– Parallelizable

• Remove artifacts with Disco-Buffer
– Faster convergence

– Better parallelizability

• Use randomized QMC
– Low sampling rates, parallelizability

• Result: Definitely not perfect
– But not too bad for only ~20 rays/pixel !
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Remaining Issues
• Missing scalability

– Render nodes each compute some tiles of the entire image
• Dynamically selected at runtime (load balancing)

– All data must be send to master for filtering
• Colors, normals, depths

– Approach limited by network bandwidth

• Filtering on the clients?
– Would require information from neighboring pixes

– All clients would need to compute all VPLs
• Not great, but doable

• They often did compute multiple sets anyway

– Because of dynamic load balancing

• Filtering overhead was too costly
– Repeatedly test and sum up blocks of 3x3 pixels
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Scalable IGI
• Approach

– Assign tiles of pixels to clients
• Must include border for filtering

• Overhead is ~10% for 40x40 pixels

– Trace ray in interleaved coherent packets
• Use SIMD across pixels with the same VPLs

– Filtering of tile can be done on client
• Constant time filtering using running sums

• Add/subtract only at border of domain

• Must only send final color

– Low-cost antialiasing
• Nx supersampling: Assign VPLs into N groups

• Trace different primary ray for every group

• Connect this hit point to VPLs of group 

and average (again interleaved sampling)

– RQMC sampling of light sources

– SIMD shader interface

IGI with 50 Mio polygons
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Results
• Performance

– Faster by 2.5-3x

– Almost perfect scalability (> 20 fps) plus good use of coherence

Equal compute time images comparing old and new scalable approach
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Bidirectional Instant Radiosity
• Idea [Segovia, EGSR 06]

– Generate VPLs where they matter

– Each VPL should have equal

contribution to the image

• Bidirectional Approach
– Generate “VPLs” from light AND camera

– N/2 samples each

– Estimate illumination at reverse VPLs

using Instant Global Illumination
• Shoot some paths each (e.g. ~5)

• Gather light from forward/light VPLs

• Reverse VPLs act as proxies

– Estimate importance of each VPL using 

M (e.g. 10) paths from camera (length 2)

– Resample VPLs (e.g. select 10%)

according to contribution to camera with few samples (e.g. 5)

– Estimate accurate pdf for VPLs using more camera path (e.g. 50)

– Use selected VPLs during rendering with importance sampling

200 selected VPLs



Realistic Image Synthesis SS24 – Virtual Point Light (VPL) Methods Philipp Slusallek

Results
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Results
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Dealing With Many Lights [EGSR'03]
• Problem

– Efficiency drops severely in highly occluded environments
• Think: Large building with many (illuminated) rooms 

– Probability of light being visible is low
• Must generate many VPLs to get a good statistics, at all

• Must send many shadow rays to VPLs that are almost certainly occluded

• Idea
– Ignore any lights that do not contribute illumination

– Avoid computing from lights, would load data for entire (huge) scene

• Solution
– Estimate importance of lights using path tracing (1 path per pixel)

• From points to lights: Stops rays at walls, only touches visible geometry

• Gives ~2 million samples (HD), could also average over last few frames

– Use importance sampling to distribute VPLs from lights

• Issues
– Average is over entire image (might miss lights illuminating small area)

– Can cause temporal aliasing (flickering) due to randomness of VPLs
• Somewhat offset by deterministic QMC sampling (mostly same VPLs/light)
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Estimate Importance of Lights
• Example: “Shirley10” – 10x10 rooms connected by doors

– Path traced image hardly recognizable ...
• But: Estimate correct up to a few percent

– Used for importance sampling of lights

Estimate (1 sample/pix) Real scene (10x10 rooms, 

1 light each)
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• Goals:
− Efficient, accurate complex illumination

− In realistic and complex environments

Environment map lighting & indirect

Time 111s

Textured area lights & indirect

Time 98s

(640x480, anti-aliased, glossy materials)

Lightcuts
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Motivation
• Hierarchies in Global Illumination

– Only used in FE methods so far

– Can greatly improved performance
• Take advantage of 1/N² power fall-off

• Group together light from distant objects & handles it together

• Can reduce computational complexity from O(N²) to O(N)

• Question: How to use them in MC-style algorithms
– Key idea: Sample points generated from lights and from camera

– Could group them hierarchically, if generated in advance

– Could handle illumination of a group as one sample

– Allows adaptive/progressive refinement

– Key issues:
• How to group: Must have criteria for grouping (e.g. by “similarity”)

• When to refine: Must have an efficient “oracle” 



Realistic Image Synthesis SS24 – Virtual Point Light (VPL) Methods Philipp Slusallek

Lightcuts Problem

Visible

surface

• Many light samples
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Lightcuts Problem
• Complex visibility
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Lightcuts Problem

Camera

• Material properties with complex reflection
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Key Concepts
• Light Cluster

– Approximate many lights by a single brighter light 

(the representative light)
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Clustering of Light Samples
• Sources of (many) light samples

– Point lights

– Sampled area lights

– Sampled HDR environment lighting

– Generated secondary lighting samples (VPLs in IGI)

• General idea
– Group light samples into binary tree

– Leafs are the input light samples

– Inner nodes combine illumination 

from their children 
• Choose a representative location

from among children

• Combine and bound attributes

– Illumination uses a cut through the tree
• Adaptively combines far away lights into one

• Samples the integral evenly given bounds on 

power contribution, solid angle, visibility, and angular falloff
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Criteria for Clustering
• Contribution from a cluster

– Given terms for material (M), geometry (G), visibility (V) and the

intensity (I) of the (clustered) child light samples

– Illumination from the cluster is then given as 

• Approximation
– However, this is too costly and is approximated as by a 

representative light sample j

– All properties are taken from representative, except light intensity

– Create a full cluster up to a single root node

• Issue
– Must have some way to bound the error of the approximation

𝐿𝐶 =

𝑖∈𝐶

𝑀𝑖 𝑥𝑖 , 𝜔𝑜 𝐺𝑖 𝑥𝑖 𝑉𝑖 𝑥𝑖 𝐼𝑖

෨𝐿𝐶 ≈ 𝑀𝑗 𝑥𝑗 , 𝜔𝑜 𝐺𝑗 𝑥𝑗 𝑉𝑗 𝑥𝑗 ሚ𝐼𝑗 ሚ𝐼𝑗 =

𝑖∈𝐶

𝐼𝑖
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Building the Light Tree
• Lights are split into types: Omni, oriented, and directional lights

• Build a tree for each (but conceptually one big tree)

• Directional lights are handled as point lights on a unit sphere

• Each cluster stores

• Links to two children

• Representative light (randomly chosen among children, ~ intensity)

• Total intensity 𝐼𝐶 (sum over all children)

• Axis aligned bounding box

• Oriented bounding cone (for oriented lights)

• Greedy bottom-up build:

• In each step create cluster that minimizes total cost

• Cost model: 𝐼𝐶(𝛼𝐶
2 + 𝑐2 1 − cos𝛽𝐶

2)

• 𝛼𝐶 : Diagonal length of bounding box

• 𝛽𝐶: Half angle of bounding cone (of light directions)

• 𝑐: Constant for relative scaling of spatial/directional data

• Set to half the scenes Bbox for oriented lights, zero otherwise
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Choosing a Cut
• General Approach

– Set the cut to be the root node

– Choose the node from the cut

with worst error

– Refine this node
• Replacing it with its two children

– Terminate if relative error 

is below 1%
• Can be computed because we

have approximated illumination

due to existing cut

• Criterion due to Weber's law

– Relative perception

• In the paper they use 2% 

without artifacts
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Illumination Equation

result = Mi Gi Vi Ii∑
lights
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Illumination Equation

result = Mi Gi Vi Ii∑
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Illumination Equation

result = Mi Gi Vi Ii∑
lights
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Cluster Approximation

Cluster

result = Mi Gi Vi Ii∑
lights
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Cluster Error Bound

Bound each term
– Visibility <= 1 (trivial)

– Intensity is known

– Bound material and 

geometric terms using 

cluster bounding volume

ub == upper bound

Cluster

error ≤ 𝑀ub𝐺ub𝑉ub 

lights

𝐼𝑖
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Lightcuts (128s) Reference (1096s)

Kitchen, 388K polygons, 4608 lights (72 area sources)
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Lightcuts (128s) Reference (1096s)

Error Error x16

Kitchen, 388K polygons, 4608 lights (72 area sources)
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Combined Illumination

Lightcuts 128s

4 608 Lights

(Area lights only)

Lightcuts 290s

59 672 Lights

(Area + Sun/sky + Indirect)
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Combined Illumination

Lightcuts 128s

4 608 Lights

(Area lights only)

Avg. 259 shadow rays / pixel

Lightcuts 290s

59 672 Lights

(Area + Sun/sky + Indirect)

Avg. 478 shadow rays / pixel

(only 54 to area lights)
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Extended Versions of Lightcuts
• Reconstruction Cuts

– Operates in image space

– Starts Lightcuts at coarse pixel grid (e.g. 16x16 pixels)

– Interpolates either colors or lighting info, or resamples

– Refines pixel grid where necessary (based on material, shadow info)

• Multi-Dimensional Lightcuts
– Realizes that antialiasing, motion blur, etc. require many samples per pixel

– Inefficient if Lightcut is recomputed for each of them

– Instead build hierarchy of pixel samples and VPLs

– Needs clever error bounds

– Traverse simultaneously, subdividing either cut based on cost function
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