

Bidirectional path tracing

It's difficult to find small lights or the camera. So why not start from both sides?

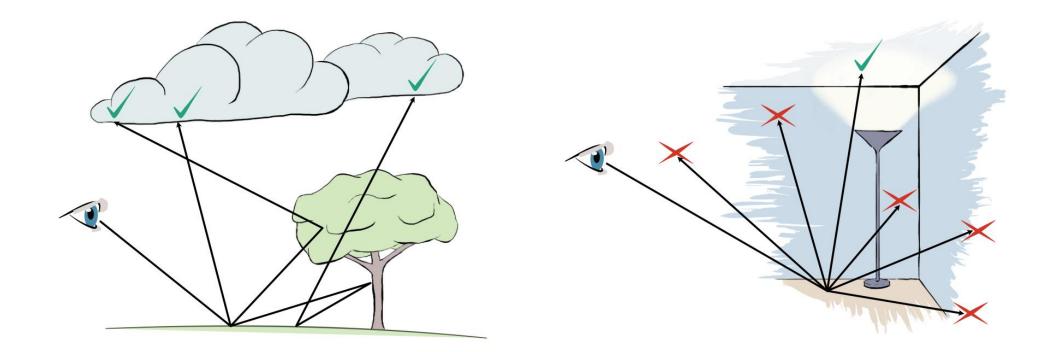
Pascal Grittmann, Corentin Salaün

Motivation

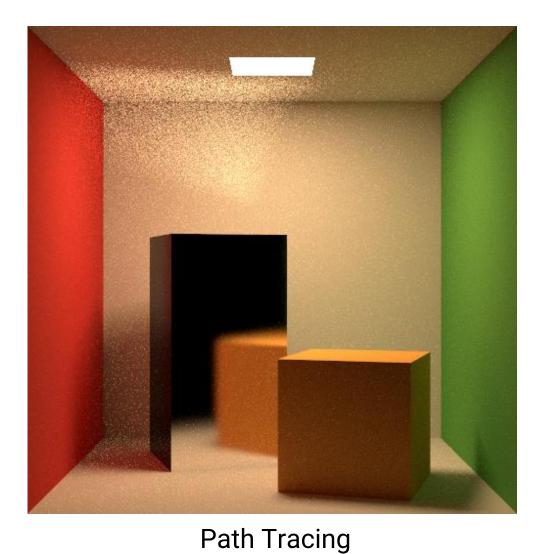
Why is it necessary / beneficial to trace bidirectionally?

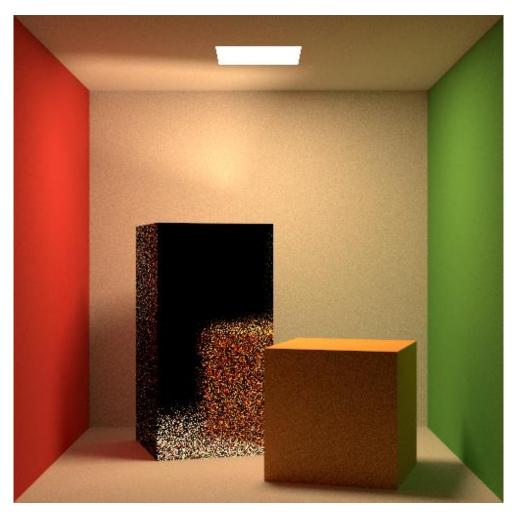
Forward path tracing

- Efficient at uniform / diffuse illumination and large scenes
- Very bad at focused indirect illumination







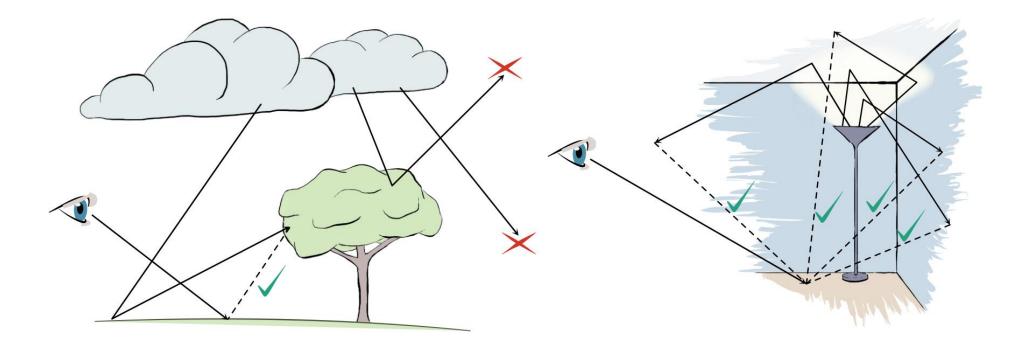


Light Tracing

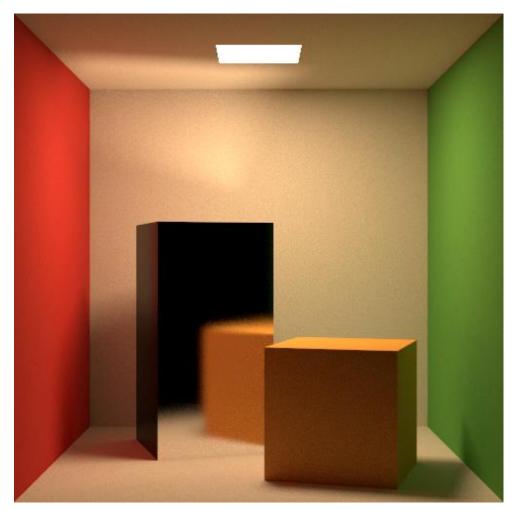
RIS - Bidirectional path tracing

Bidirectional path tracing

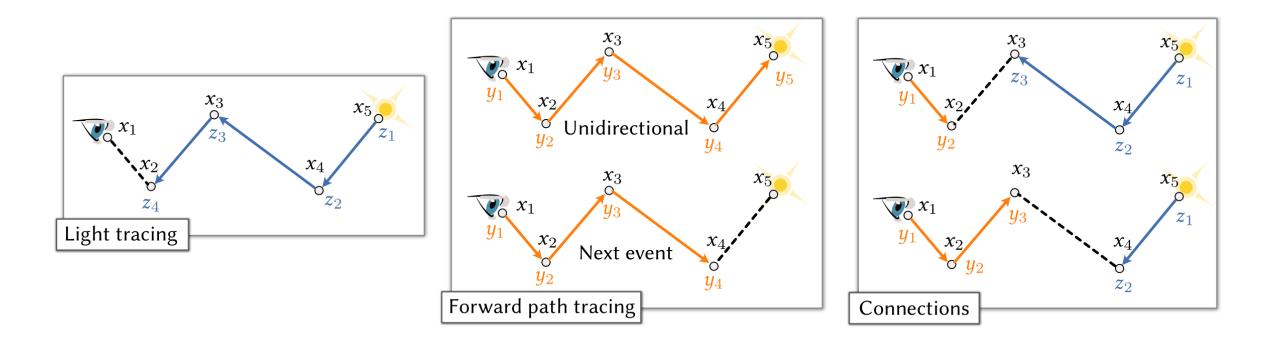
- Exceptional performance on focused indirect illumination
- But: Not great for large scenes



Bidirectional path tracing



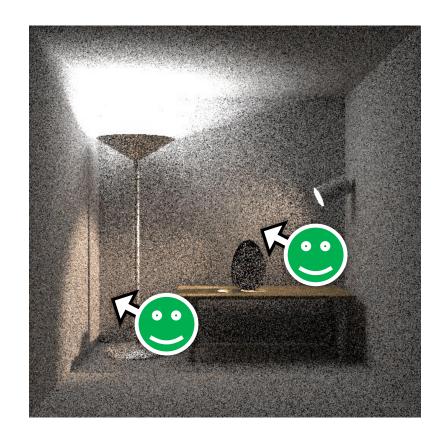
Bidirectional sampling techniques

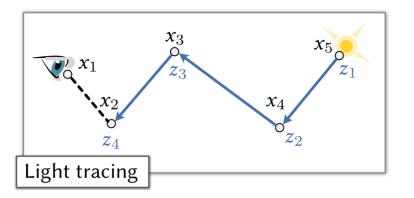


Lafortune et al., Bidirectional Path Tracing, [CompuGraphics`93] **Veach & Guibas**, Bidirectional Estimators for Light Transport, [EGRW´94, Siggraph´95]

For (almost) every effect there is a well-suited technique

So, bidirectional path tracing combines them all





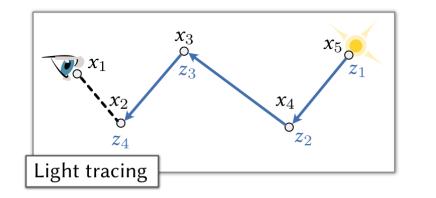
Light tracing

The simplest bidirectional technique

What do we compute?

- Let's assume we sampled a path from the light source into the scene
- What do we do with it? How do we get a (correct) pixel value estimate from it?

VS



$$L_o = L_e + \int_{\Omega} L_i f \cos \theta_i \, d\omega_i$$

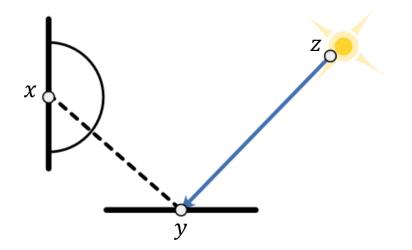
Starting simple: 2-bounce irradiance

• Irradiance at a point *x* in the scene:

$$E(x) = \int_{\Omega} L_i(x, \omega_x) \cos \theta_x \, d\omega_x$$

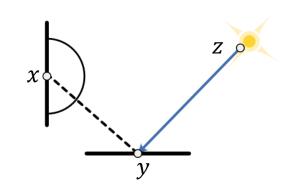
• For paths of length 2:

$$E(x) = \int_{\Omega} \left(\int_{\Omega} L_e(z, \omega_y) f(y, \omega_x, \omega_y) \cos \theta_y \, d\omega_y \right) \cos \theta_x \, d\omega_x$$



First, write it as a surface integral

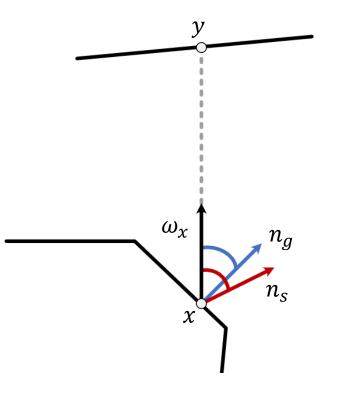
$$E(x) = \int_{\Omega} \left(\int_{\Omega} L_e(z, \omega_y) f(y, \omega_x, \omega_y) \cos \theta_y \, d\omega_y \right) \cos \theta_x \, d\omega_x$$



$$E(x) = \int_{A} \left(\int_{A} L_e(z, \omega_y) f(y, \omega_x, \omega_y) \cos \theta_y V(y, z) \frac{\cos \theta(z \to y)}{\|z - y\|^2} dz \right) \cos \theta_x \frac{V(x, y) \frac{\cos \theta(y \to x)}{\|y - x\|^2} dy}{\|y - x\|^2} dy$$

Shading cosines and Jacobian cosines

- Note the distinction between the rendering equation cosines
 - $\cos \theta_x$ w.r.t. the shading normal n_s
- And the geometry cosines from the Jacobians
 - $\cos \theta(x \rightarrow y)$ w.r.t. the actual surface normal n_g



$$E(x) = \int_{A} \left(\int_{A} L_{e}(z, \omega_{y}) f(y, \omega_{x}, \omega_{y}) \cos \theta_{y} V(y, z) \frac{\cos \theta(z \to y)}{\|z - y\|^{2}} dz \right) \cos \theta_{x} V(x, y) \frac{\cos \theta(y \to x)}{\|y - x\|^{2}} dy$$

Reverse order of integrals

- Fubini's theorem:
 - Our integrand is positive, integral value is finite \Rightarrow integration order arbitrary

$$E(x) = \int_{A} \left(\int_{A} L_{e}(z, \omega_{y}) f(y, \omega_{x}, \omega_{y}) \cos \theta_{y} V(y, z) \frac{\cos \theta(z \to y)}{\|z - y\|^{2}} dz \right) \cos \theta_{x} V(x, y) \frac{\cos \theta(y \to x)}{\|y - x\|^{2}} dy$$

$$\Leftrightarrow \quad E(x) = \int_{A} \int_{A} L_{e}(z, \omega_{y}) f(y, \omega_{x}, \omega_{y}) \cos \theta_{y} V(y, z) \frac{\cos \theta(z \to y)}{\|z - y\|^{2}} \cos \theta_{x} V(x, y) \frac{\cos \theta(y \to x)}{\|y - x\|^{2}} dy dz$$

Integral formulation for light tracing

$$E(x) = \int_{A} \int_{A} L_e(z, \omega_y) f(y, \omega_x, \omega_y) \cos \theta_y V(y, z) \frac{\cos \theta(z \to y)}{\|z - y\|^2} \cos \theta_x V(x, y) \frac{\cos \theta(y \to x)}{\|y - x\|^2} dy dz$$

• Back to the hemisphere, but at the other end

UNIVERSITÄT

SAARLANDES

DES

$$E(x) = \int_{A} \int_{\Omega} L_e(z, \omega_y) f(y, \omega_x, \omega_y) \cos \theta_y V(y, z) \frac{\cos \theta(z \to y)}{\|z - y\|^2} \cos \theta_x V(x, y) \frac{\cos \theta(y \to x)}{\|y - x\|^2} \frac{\|z - y\|^2}{\cos \theta(y \to z)} d\widetilde{\omega}_z dz$$

• Simplified & reordered

$$E(x) = \int_{A} \int_{\Omega} L_e(z, \omega_y) \cos \theta(z \to y) \ f(y, \omega_x, \omega_y) \frac{\cos \theta_y}{\cos \theta(y \to z)} \cos \theta(y \to x) V(x, y) \frac{\cos \theta_x}{\|y - x\|^2} d\overleftarrow{\omega}_z \ dz$$



Understanding the result

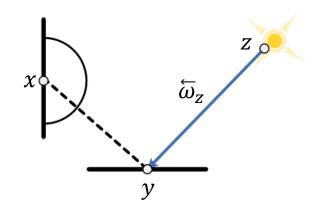
UNIVERSITÄT

SAARLANDES

DES

- Sample z on light and direction $\overleftarrow{\omega}_z = -\omega_y$, evaluate emission and Jacobian
- Trace ray to find y, evaluate BSDF, correct discrepancy between shading normal and geometry
- Connect to x (deterministic), evaluate visibility, geometry term

$$E(x) = \int_{A} \int_{\Omega} L_e(z, \omega_y) \cos \theta(z \to y) \ f(y, \omega_x, \omega_y) \frac{\cos \theta_y}{\cos \theta(y \to z)} \cos \theta(y \to x) V(x, y) \frac{\cos \theta_x}{\|y - x\|^2} d\widetilde{\omega}_z \ dz$$

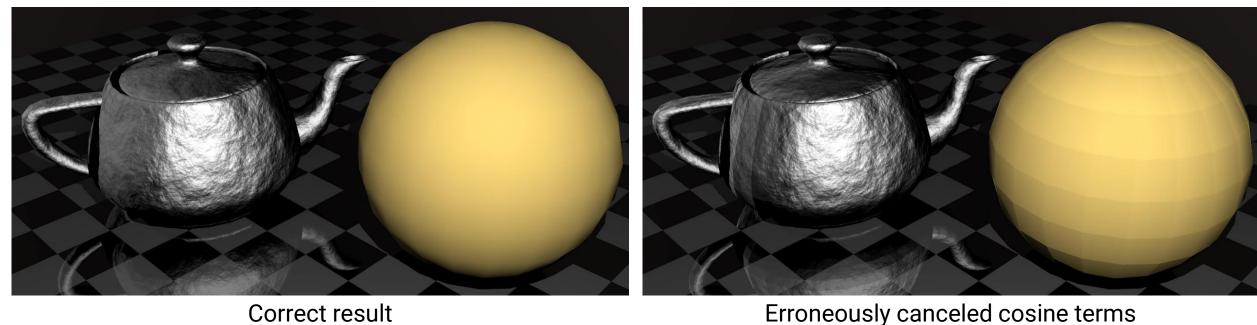


Including the correct cosines

• If the shading normal and geometry normal align, some cosines cancel out

$$E(x) = \int_{A} \int_{\Omega} L_e(z, \omega_y) \cos \theta(z \to y) f(y, \omega_x, \omega_y) \frac{\cos \theta_y}{\cos \theta(y \to z)} \cos \theta(y \to x) V(x, y) \frac{\cos \theta_x}{\|y - x\|^2} d\widetilde{\omega}_z dz$$

• But careful! Doesn't hold with normal mapping, smooth shading, ...



Correct result

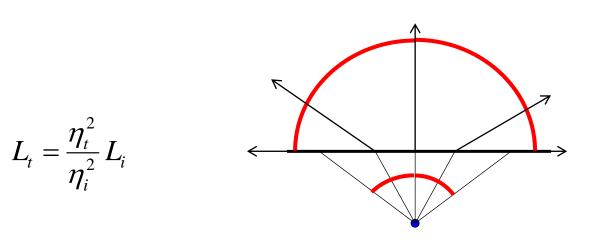
Saarland Informatics Campus

RIS - Bidirectional path tracing

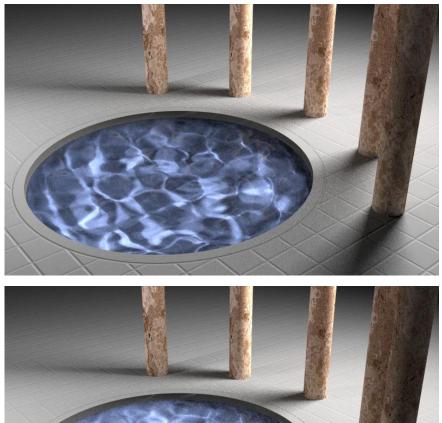
Non-symmetric BSDFs

- Refraction is not symmetric
- Must be careful to compute the correct terms!

• See Veach 1997, Chapter 5



Correct image



Erroneously assuming symmetric BSDF

RIS - Bidirectional path tracing

Extension to paths of length k

• Same steps, just more integrals

$$\int_{A} \int_{\Omega} \dots \int_{\Omega} f(x_1 \dots x_k) d\overleftarrow{\omega}_2 \dots d\overleftarrow{\omega}_k dx_k$$

$$f(x_{1} \dots x_{k}) = \underbrace{L_{e} \cos \theta(x_{k} \to x_{k-1})}_{\text{fight}} \left(\prod_{i=2}^{k-1} f(x_{i+1}, x_{i}, x_{i-1}) \frac{\cos \theta_{x_{i}}}{\cos \theta(x_{i} \to x_{i+1})} \cos \theta(x_{i} \to x_{i-1}) \right) V(x_{1}, x_{2}) \frac{\cos \theta_{x_{1}}}{\|x_{2} - x_{1}\|^{2}}$$

Emission and cosine (Jacobian)
After sampling point + dir on light
BSDF, cosine, geometry cosines (Jacobian)
After sampling dir at next hit point
Visibility, cosine, and squared distance (from Jacobian) at shading point
After connecting x_{2} to x_{1}

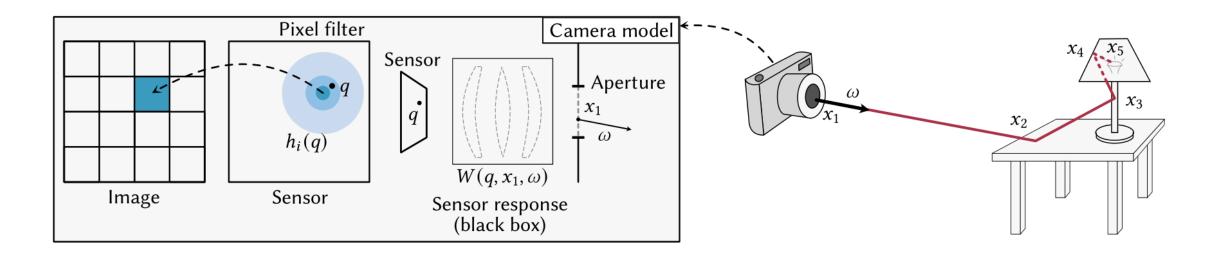
The camera model

• We're not computing irradiance at a point, but a pixel value

$$I_{i} = \int_{S} \int_{L} h_{i}(q) W(q, x_{1}, \omega) L_{i}(x_{1}, \omega) dx_{1} dq$$

Sensor Aperture Direction (usual)

Direction (usually implicitly defined by combination of q and x_1)



RIS - Bidirectional path tracing

Surface integral for the camera model

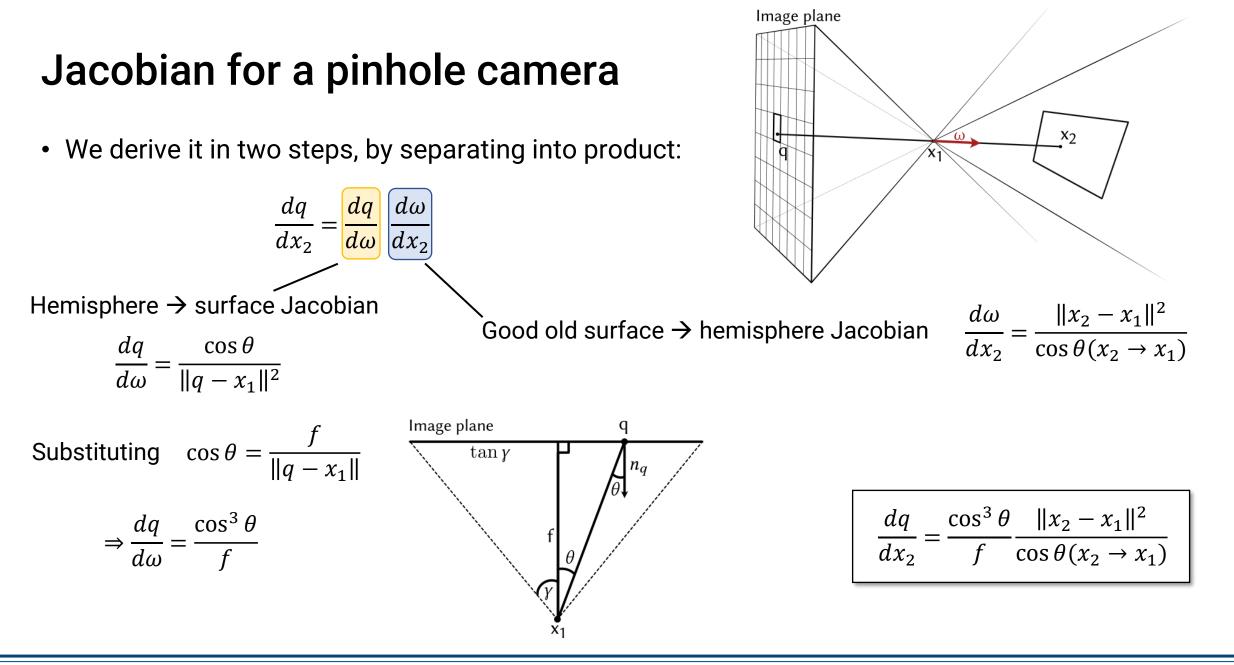
- With light tracing, we sample the sensor point implicitly:
 - We "arrived" at x_2 in the scene
 - We connect to x_1 on the aperture (deterministic if pinhole, else sampled)

 $\Rightarrow \omega, q$ are implicit via this combination of surface points

$$I_i = \int_S \int_L h_i(q) W(q, x_1, \omega) L_i(x_1, \omega) dx_1 dq$$

• Nothing special: change of variables \rightarrow multiply by Jacobian

$$I_i = \int_A \int_L h_i(q) W(q, x_1, \omega) L_i(x_1, \omega) \frac{dq}{dx_2} dx_1 dx_2$$



RIS - Bidirectional path tracing

Integral formulation for a light tracer

- Same as for irradiance, except:
 - Integrate over aperture *L* (if not a pinhole)

• Multiply by Jacobian for hemisphere
$$\rightarrow$$
 sensor: $\frac{dq}{d\omega}$

$$\int_{A} \int_{\Omega} \dots \int_{\Omega} \int_{L} h_{i}(q) W(q, x_{1}, \omega) f(x_{1} \dots x_{k}) \frac{\cos^{3} \theta}{f} dx_{1} d\overline{\omega}_{2} \dots d\overline{\omega}_{k} dx_{k}$$

$$\bigvee$$
Same as with irradiance before

Pixel filter and sensor response (camera model)

The light tracer estimator for path of length k

• Sample x_k on the light, sample direction

UNIVERSITÄT

AARLANDES

- Trace ray to find x_{k-1} , sample direction from there
- Repeat until x₂ was found
- Sample x_1 on the camera aperture, connect with shadow ray (to compute $V(x_1, x_2)$)
- Log contribution in whatever pixel(s) *i* contain(s) the sensor point *q*

$$\frac{L_e \cos \theta(x_k \to x_{k-1})}{p(x_k)p(x_k \to x_{k-1})} \left(\prod_{i=2}^{k-1} \frac{f(x_{i+1}, x_i, x_{i-1}) \frac{\cos \theta_{x_i}}{\cos \theta(x_i \to x_{i+1})} \cos \theta(x_i \to x_{i-1})}{p(x_i \to x_{i-1})} \right) \frac{V(x_1, x_2) \frac{\cos \theta_{x_1}}{\|x_2 - x_1\|^2} h_i(q) W(q, x_1, \omega) \frac{\cos^3 \theta}{f}}{p(x_1)}}{p(x_1)}$$

Now we can render with pure light tracing

Light tracing



Path tracing

RIS - Bidirectional path tracing

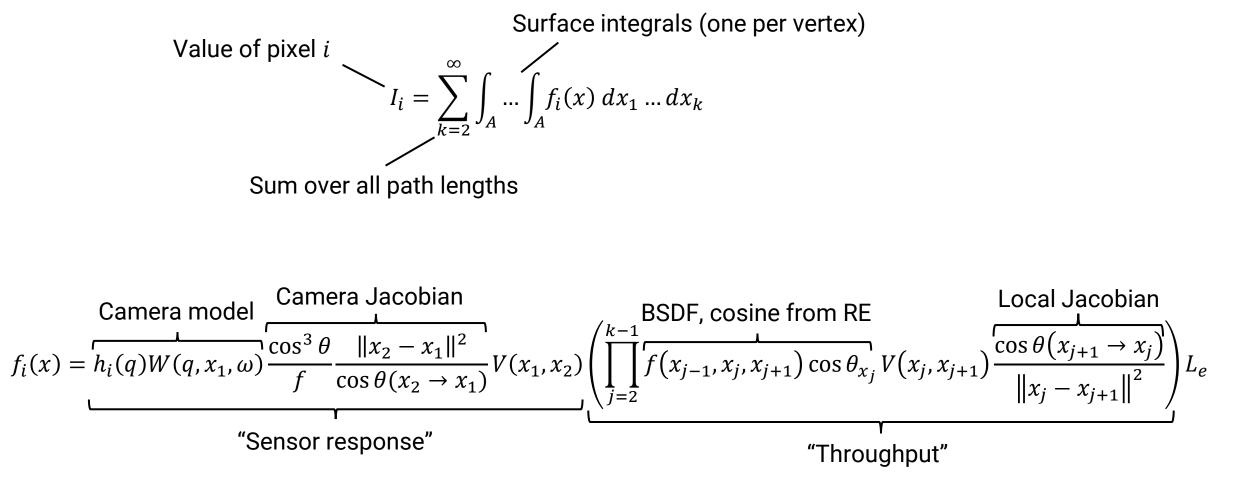
The path integral

A common ground for bidirectional techniques

We want to combine forward and backward sampling

- Need a common integral formulation / integration domain
- Why?
 - MIS is only possible if we have a consistent domain!
 - Also: notational convenience

The path integral



UNIVERSITÄT

SAARLANDES

DES

Sampling directions via points on a surface

- 1. Sample a point *y* on the surface (e.g., light source)
- 2. Compute

$$p(\omega) = p(y) \frac{\|y - x\|^2}{\cos \theta}$$

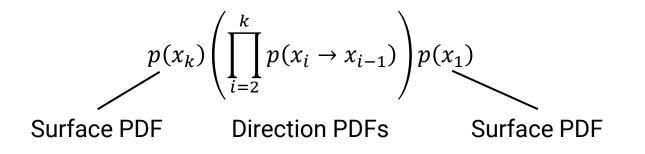
RIS - Bidirectional path tracing

a

ω

The light tracer as a path integral estimator

• Light tracing samples a path of length k with the product PDF



• By mapping the directions $x_i \rightarrow x_{i-1}$ to surface points, we can define a product surface density

$$p_{LT}(x) = p(x_k) \left(\prod_{i=2}^k p(x_i \to x_{i-1}) \frac{\cos \theta(x_{i-1} \to x_i)}{\|x_{i-1} - x_i\|^2} \right) p(x_1)$$

Forward path tracing as a path integral estimator

• Similarly, forward path tracing generates path samples with PDF

$$p_{PT}(x) = p(x_1)p(q)|J_{cam}(x_2)| \prod_{i=2}^{k-1} p(x_i \to x_{i+1}) \frac{\cos\theta(x_{i+1} \to x_i)}{\|x_i - x_{i+1}\|^2}$$

Integral transformation = sample transformation

• The path integral estimator with that forward path PDF is:

$$f_{i}(x) = h_{i}(q)W(q, x_{1}, \omega)|J_{com}(x_{2})|V(x_{1}, x_{2})\left(\prod_{j=2}^{k-1} f(x_{j-1}, x_{j}, x_{j+1}) \cos \theta_{x_{j}} V(x_{j}, x_{j+1}) \frac{\cos \theta(x_{j+1} \rightarrow x_{j})}{\|x_{j} - x_{j+1}\|^{2}}\right)L_{e}$$

$$p_{PT}(x) = p(x_{1})p(q)|J_{com}(x_{2})|\prod_{i=2}^{k-1} p(x_{i} \rightarrow x_{i+1}) \frac{\cos \theta(x_{i+1} \rightarrow x_{i})}{\|x_{i} - x_{i+1}\|^{2}}$$

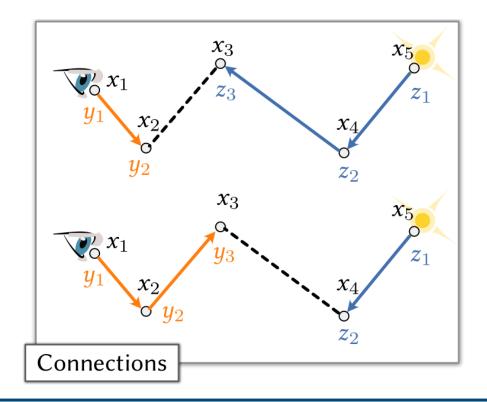
• Same as a rendering equation estimator with direction PDFs:

$$\frac{f_i(x)}{p_{PT}(x)} = \frac{h_i(q)W(q, x_1, \omega) \left(\prod_{j=2}^{k-1} f(x_{j-1}, x_j, x_{j+1}) \cos \theta_{x_j}\right) L_e}{p(x_1)p(q) \prod_{i=2}^{k-1} p(x_i \to x_{i+1})}$$

Bidirectional connections

Tracing and connecting paths from both ends

- Multiple techniques possible
- Path of length k is sampled by tracing t rays from the camera and k t from the light

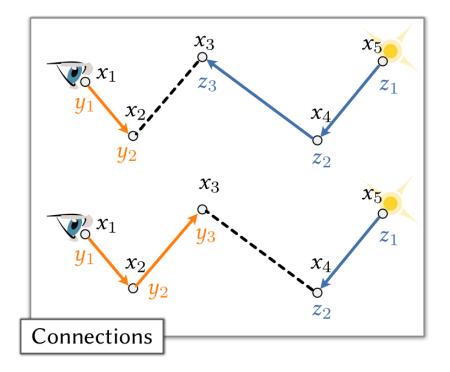


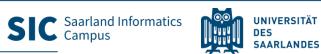
The path PDF for connections

$$p_{c,t}(\overline{\mathbf{x}}) = p(\overline{\mathbf{y}}_t)p(\overline{\mathbf{z}}_s)$$

$$p(\overline{\mathbf{y}}_t) = p(y_1)p(q)|J_{cam}| \left(\prod_{i=2}^{t-1} p(y_i \rightarrow y_{i+1}) \frac{\cos \theta(y_{i+i} \rightarrow y_i)}{\|y_i - y_{i+1}\|^2}\right)$$

$$p(\overline{\mathbf{z}}_s) = p(z_1) \left(\prod_{i=1}^{s-1} p(z_i \rightarrow z_{i+1}) \frac{\cos \theta(z_{i+1} \rightarrow z_i)}{\|z_i - z_{i+1}\|^2}\right).$$

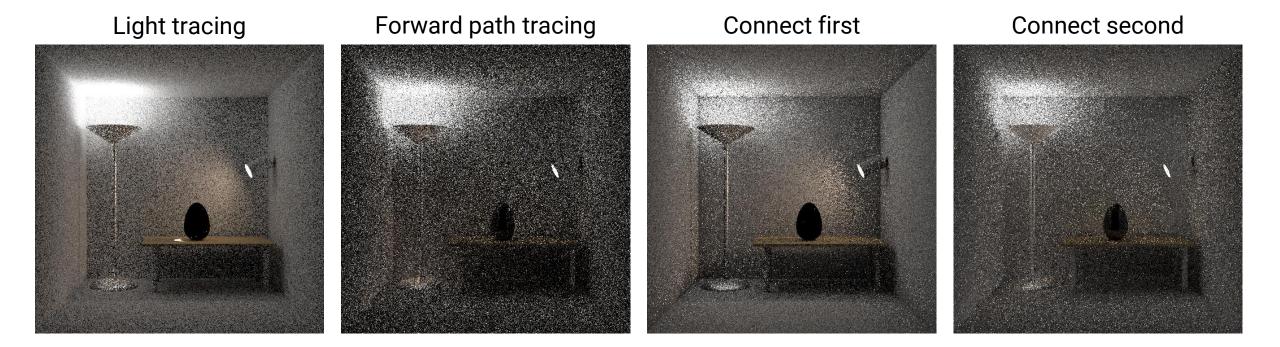




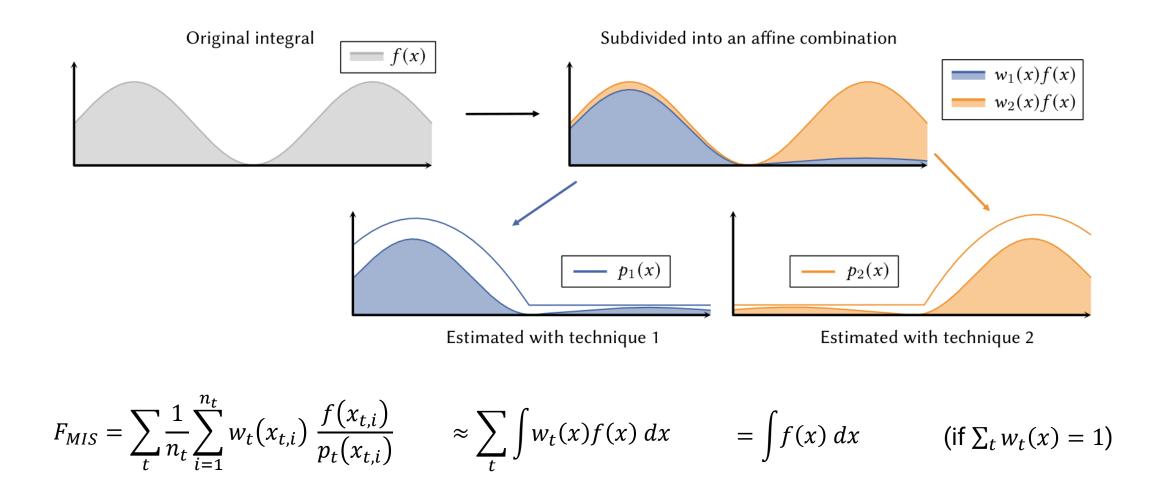
MIS

Let's combine these techniques

Each technique estimates the full integral



Recap: MIS



UNIVERSITÄT

SAARLANDES

DES

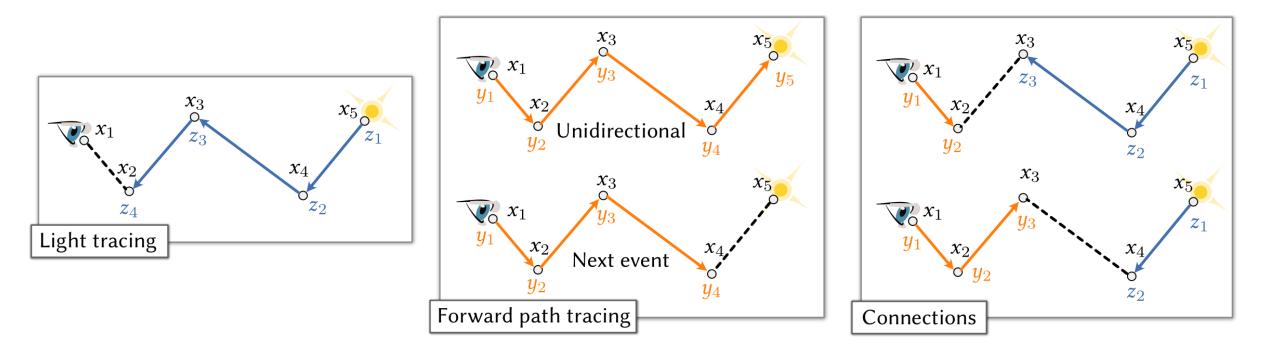
Recap: Balance heuristic

$$w_t(x) = \frac{n_t p_t(x)}{\sum_{t'} n_{t'} p_{t'}(x)}$$

All PDFs must be in the same domain

Evaluating the balance heuristic

- The biggest challenge of a BDPT implementation
- Need to gather all PDFs and make sure that all are correctly converted to compatible domains



Example: Weight of LT for path of length 3 (i.e., direct illum.)

$$w_{LT} = \frac{p_{LT}}{p_{LT} + p_{PT} + p_{NEE}}$$

PDFs are products of many local sampling decisions with different Jacobians. Challenging to get right.

$$p_{LT}(x) = p(x_3)p(x_3 \to x_2) \frac{\cos \theta(x_2 \to x_3)}{\|x_2 - x_3\|^2} p(x_1)$$

UNIVERSITÄT

SAARLANDES

$$p_{PT}(x) = p(x_1)p(q)|J_{cam}(x_2)| \ p(x_2 \to x_3) \frac{\cos\theta(x_3 \to x_2)}{\|x_2 - x_3\|^2}$$

 $p_{NEE}(x) = p(x_1)p(q)|J_{cam}(x_2)|p(x_3)$

Products of PDFs are dangerous

$$p_{LT}(x) = p(x_3)p(x_3 \to x_2) \frac{\cos \theta(x_2 \to x_3)}{\|x_2 - x_3\|^2} p(x_1)$$

If these are high $\rightarrow p_{LT}(x)$ can be extremely huge

E.g., series of highly glossy scattering events.

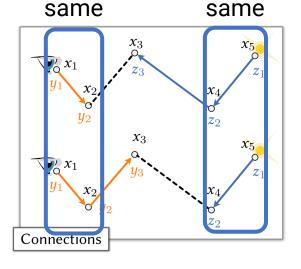
So we compute ratios instead

$$w_{LT} = \frac{p_{LT}}{p_{LT} + p_{PT} + p_{NEE}} = \left(1 + \frac{p_{PT}}{p_{LT}} + \frac{p_{NEE}}{p_{LT}}\right)^{-1}$$

$$\frac{p_{PT}}{p_{LT}} = \frac{p(q)|J_{cam}(x_2)|}{p(x_3 \to x_2)\frac{\cos \theta(x_2 \to x_3)}{\|x_2 - x_3\|^2}} \qquad \frac{p(x_2 \to x_3)\frac{\cos \theta(x_3 \to x_2)}{\|x_2 - x_3\|^2}}{p(x_3)}$$

$$PDF \text{ to sample } x_2 \qquad PDF \text{ to sample } x_3$$

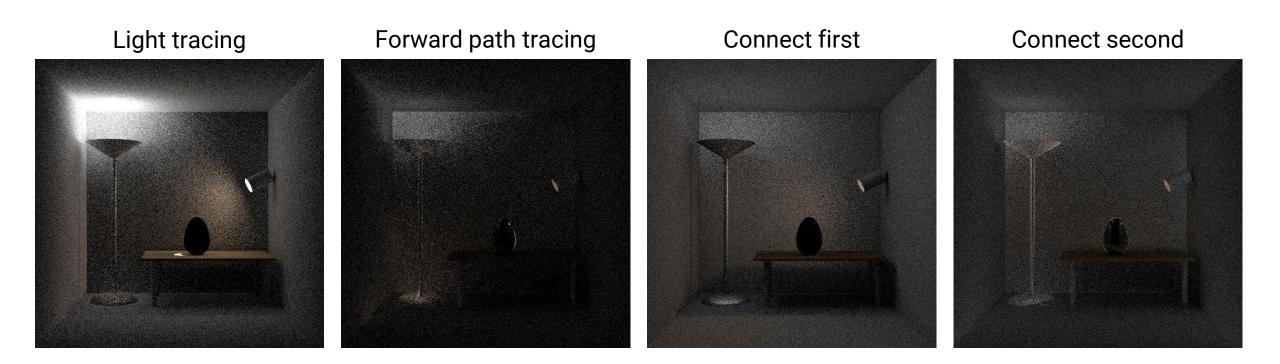
$$\frac{p_{PT}}{p_{LT}} = \frac{p(q)|J_{cam}(x_2)|}{p(x_3 \to x_2)\cos \theta(x_2 \to x_3)} \qquad \frac{p(x_2 \to x_3)\cos \theta(x_3 \to x_2)}{p(x_3)}$$



Numerically much better. And many common ratios across techniques!

UNIVERSITÄT DES SAARLANDES

MIS weighted techniques



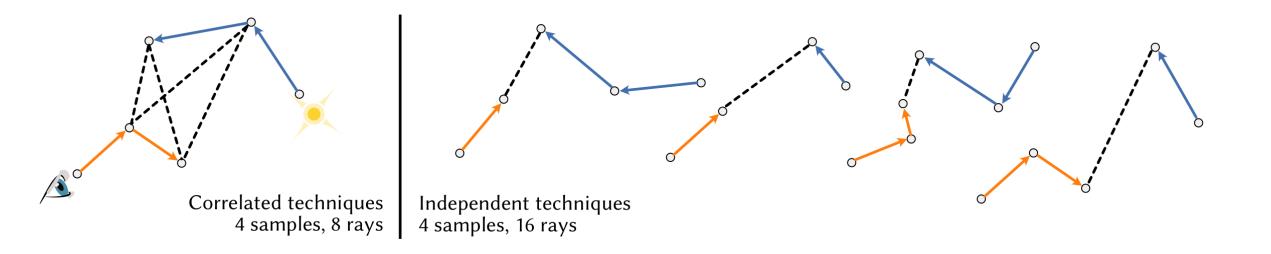
MIS weighted techniques

Implementation

There are many ways of doing it – here's one

Reusing computations

- Tracing one full path per technique is expensive:
 - Number of techniques grows quadratically with the path length!
- Instead: trace one set of subpaths and reuse components
- Exception: next event uses a separate light sample (specialized techniques available)



Progressive rendering with two passes

- Pass 1: Trace *n* light paths and store them
 - At every vertex except the first:
 - Connect to the camera aka light tracing
- Pass 2: Trace 1 camera path per pixel
 - At every vertex except the first:
 - Connect to one (or more) stored light vertices
 - Connect to one (or more) random point(s) on a light aka next event estimation
 - Check if this is a light source, add contribution if so

Technical details

- Compute pdf of infinite light in surface area
 - Sampling a distant disc with radius as large as the scene and a Dirac direction distribution
- Efficiently compute the pdf for MIS without redundancy
 - Take advantage of prefix/suffix change between techniques
- Dirac delta distribution
 - Can be avoided in many case with analytic simplification
- Non-symmetrical scattering

- Many other technical details need to be implemented
 - PBRT book give some good insight on solutions (online book)

UNIVERSITÄT DES SAARLANDES

Much design freedom

- How to store light paths?
- Which paths to store?
- How many light paths?
- How many camera paths per pixel?
- How to select light vertices for connection? At random? By pairing deterministic paths?
- How many connections to use?
- Trace camera paths first and then light paths

• ...

Limitations and challenges

How to improve this basic recipe and make it practical?

Specular – diffuse – specular (SDS) paths

- Photon Mapping / VCM to the rescue \rightarrow upcoming lectures

BDPT

VCM

Wasted computation

- Light paths might not be visible
- Light paths might not be needed
- Redundancy in MIS techniques
- Possible solutions:
 - Path guiding \rightarrow upcoming lecture
 - Markov chain Monte Carlo \rightarrow upcoming lecture
 - Optimizing sample counts → <u>https://graphics.cg.uni-saarland.de/publications/grittmann-sig2022.html</u>

Summary

- Trace paths from both ends
- Combine in various ways, reuse subpaths for efficiency
- Each combination technique: A correct estimator for the pixel values
- Combine techniques via MIS
- Path integral (aka iterated surface integral) as the common domain for MIS

