

Bidirectional path tracing

It's difficult to find small lights or the camera. So why not start from both sides?

Pascal Grittmann, Corentin Salaün

Motivation

Why is it necessary / beneficial to trace bidirectionally?

Forward path tracing

- Efficient at uniform / diffuse illumination and large scenes
- Very bad at focused indirect illumination

Path Tracing

Light Tracing

Bidirectional path tracing

- Exceptional performance on focused indirect illumination
- But: Not great for large scenes

Bidirectional path tracing

Bidirectional sampling techniques

Lafortune et al., Bidirectional Path Tracing, [CompuGraphics`93]
Veach \& Guibas, Bidirectional Estimators for Light Transport, [EGRW'94, Siggraph'95]

For (almost) every effect there is a well-suited technique

Light tracing

Forward path tracing + next event

Bidir. connection

So, bidirectional path tracing combines them all

Light tracing

The simplest bidirectional technique

What do we compute?

- Let's assume we sampled a path from the light source into the scene
- What do we do with it? How do we get a (correct) pixel value estimate from it?

vs

$$
L_{o}=L_{e}+\int_{\Omega} L_{i} f \cos \theta_{i} d \omega_{i}
$$

Starting simple: 2-bounce irradiance

- Irradiance at a point x in the scene:

$$
E(x)=\int_{\Omega} L_{i}\left(x, \omega_{x}\right) \cos \theta_{x} d \omega_{x}
$$

- For paths of length 2:

$$
E(x)=\int_{\Omega}\left(\int_{\Omega} L_{e}\left(z, \omega_{y}\right) f\left(y, \omega_{x}, \omega_{y}\right) \cos \theta_{y} d \omega_{y}\right) \cos \theta_{x} d \omega_{x}
$$

First, write it as a surface integral

$$
E(x)=\int_{\Omega}\left(\int_{\Omega} L_{e}\left(z, \omega_{y}\right) f\left(y, \omega_{x}, \omega_{y}\right) \cos \theta_{y} d \omega_{y}\right) \cos \theta_{x} d \omega_{x}
$$

$$
E(x)=\int_{\mathrm{A}}\left(\int_{\mathrm{A}} L_{e}\left(z, \omega_{y}\right) f\left(y, \omega_{x}, \omega_{y}\right) \cos \theta_{y} V(y, z) \frac{\cos \theta(z \rightarrow y)}{\|z-y\|^{2}} d z \cos \theta_{x} V(x, y) \frac{\cos \theta(y \rightarrow x)}{\|y-x\|^{2}} d y\right.
$$

Shading cosines and Jacobian cosines

- Note the distinction between the rendering equation cosines
- $\cos \theta_{x}-$ w.r.t. the shading normal n_{s}
- And the geometry cosines from the Jacobians
- $\cos \theta(x \rightarrow y)$-w.r.t. the actual surface normal n_{g}

$$
E(x)=\int_{\mathrm{A}}\left(\int_{\mathrm{A}} L_{e}\left(z, \omega_{y}\right) f\left(y, \omega_{x}, \omega_{y}\right) \cos \theta_{y} V(y, z) \frac{\cos \theta(z \rightarrow y)}{\|z-y\|^{2}} d z\right) \cos \theta_{x} V(x, y) \frac{\cos \theta(y \rightarrow x)}{\|y-x\|^{2}} d y
$$

Reverse order of integrals

- Fubini's theorem:
- Our integrand is positive, integral value is finite \Rightarrow integration order arbitrary

Integral formulation for light tracing

$$
E(x)=\int_{\mathrm{A}} \int_{\mathrm{A}} L_{e}\left(z, \omega_{y}\right) f\left(y, \omega_{x}, \omega_{y}\right) \cos \theta_{y} V(y, z) \frac{\cos \theta(z \rightarrow y)}{\|z-y\|^{2}} \cos \theta_{x} V(x, y) \frac{\cos \theta(y \rightarrow x)}{\|y-x\|^{2}} d y d z
$$

- Back to the hemisphere, but at the other end

$$
\left.E(x)=\int_{\mathrm{A}} \int_{\Omega} L_{e}\left(z, \omega_{y}\right) f\left(y, \omega_{x}, \omega_{y}\right) \cos \theta_{y} V y<z\right) \frac{\cos \theta(z \rightarrow y)}{\| z\left\langle\|^{2}\right.} \cos \theta_{x} V(x, y) \frac{\cos \theta(y \rightarrow x)}{\|y-x\|^{2}} \frac{\| z)<\sqrt{2} \|^{2}}{\cos \theta(y \rightarrow z)} d \overleftarrow{\omega}_{z} d z
$$

- Simplified \& reordered

$$
E(x)=\int_{\mathrm{A}} \int_{\Omega} L_{e}\left(z, \omega_{y}\right) \cos \theta(z \rightarrow y) f\left(y, \omega_{x}, \omega_{y}\right) \frac{\cos \theta_{y}}{\cos \theta(y \rightarrow z)} \cos \theta(y \rightarrow x) V(x, y) \frac{\cos \theta_{x}}{\|y-x\|^{2}} d \overleftarrow{\omega}_{z} d z
$$

Understanding the result

- Sample z on light and direction $\overleftarrow{\omega}_{z}=-\omega_{y}$, evaluate emission and Jacobian
- Trace ray to find y, evaluate BSDF, correct discrepancy between shading normal and geometry
- Connect to x (deterministic), evaluate visibility, geometry term

$$
E(x)=\int_{\mathrm{A}} \int_{\Omega} L_{e}\left(z, \omega_{y}\right) \cos \theta(z \rightarrow y) f\left(y, \omega_{x}, \omega_{y}\right) \frac{\cos \theta_{y}}{\cos \theta(y \rightarrow z)} \cos \theta(y \rightarrow x) V(x, y) \frac{\cos \theta_{x}}{\|y-x\|^{2}} d \overleftarrow{\omega}_{z} d z
$$

Including the correct cosines

- If the shading normal and geometry normal align, some cosines cancel out

$$
E(x)=\int_{\mathrm{A}} \int_{\Omega} L_{e}\left(z, \omega_{y}\right) \cos \theta(z \rightarrow y) f\left(y, \omega_{x}, \omega_{y}\right) \frac{\cos \theta,}{\cos \theta(y-z)} \cos \theta(y \rightarrow x) V(x, y) \frac{\cos \theta_{x}}{\|y-x\|^{2}} d \overleftarrow{\omega}_{z} d z
$$

- But careful! Doesn't hold with normal mapping, smooth shading, ...

Correct result

Erroneously canceled cosine terms

Correct image

Non-symmetric BSDFs

- Refraction is not symmetric
- Must be careful to compute the correct terms!
- See Veach 1997, Chapter 5

$$
L_{t}=\frac{\eta_{t}^{2}}{\eta_{i}^{2}} L_{i}
$$

Erroneously assuming symmetric BSDF

Extension to paths of length k

- Same steps, just more integrals $\int_{A} \int_{\Omega} \ldots \int_{\Omega} f\left(x_{1} \ldots x_{k}\right) d \overleftarrow{\omega}_{2} \ldots d \overleftarrow{\omega}_{k} d x_{k}$

Visibility, cosine, and squared distance (from Jacobian) at shading point
After connecting x_{2} to x_{1}

The camera model

- We're not computing irradiance at a point, but a pixel value

Surface integral for the camera model

- With light tracing, we sample the sensor point implicitly:
- We "arrived" at x_{2} in the scene
- We connect to x_{1} on the aperture (deterministic if pinhole, else sampled)
$\rightarrow \omega, q$ are implicit via this combination of surface points

$$
I_{i}=\int_{S} \int_{L} h_{i}(q) W\left(q, x_{1}, \omega\right) L_{i}\left(x_{1}, \omega\right) d x_{1} d q
$$

- Nothing special: change of variables \rightarrow multiply by Jacobian

$$
I_{i}=\int_{A} \int_{L} h_{i}(q) W\left(q, x_{1}, \omega\right) L_{i}\left(x_{1}, \omega\right) \frac{d q}{d x_{2}} d x_{1} d x_{2}
$$

Jacobian for a pinhole camera

- We derive it in two steps, by separating into product:

$$
\frac{d q}{d x_{2}}=\frac{d q}{d \omega} \frac{d \omega}{d x_{2}}
$$

Hemisphere \rightarrow surface Jacobian

$$
\frac{d q}{d \omega}=\frac{\cos \theta}{\left\|q-x_{1}\right\|^{2}}
$$

Good old surface \rightarrow hemisphere Jacobian $\quad \frac{d \omega}{d x_{2}}=\frac{\left\|x_{2}-x_{1}\right\|^{2}}{\cos \theta\left(x_{2} \rightarrow x_{1}\right)}$

Substituting $\quad \cos \theta=\frac{f}{\left\|q-x_{1}\right\|}$

$$
\Rightarrow \frac{d q}{d \omega}=\frac{\cos ^{3} \theta}{f}
$$

$$
\frac{d q}{d x_{2}}=\frac{\cos ^{3} \theta}{f} \frac{\left\|x_{2}-x_{1}\right\|^{2}}{\cos \theta\left(x_{2} \rightarrow x_{1}\right)}
$$

Integral formulation for a light tracer

- Same as for irradiance, except:
- Integrate over aperture L (if not a pinhole)
- Multiply by Jacobian for hemisphere \rightarrow sensor: $\frac{d q}{d \omega}$

Pixel filter and sensor response (camera model)

The light tracer estimator for path of length k

- Sample x_{k} on the light, sample direction
- Trace ray to find x_{k-1}, sample direction from there
- Repeat until x_{2} was found
- Sample x_{1} on the camera aperture, connect with shadow ray (to compute $V\left(x_{1}, x_{2}\right)$)
- Log contribution in whatever pixel(s) i contain(s) the sensor point q

$$
\frac{L_{e} \cos \theta\left(x_{k} \rightarrow x_{k-1}\right)}{p\left(x_{k}\right) p\left(x_{k} \rightarrow x_{k-1}\right)}\left(\prod_{i=2}^{k-1} \frac{f\left(x_{i+1}, x_{i}, x_{i-1}\right) \frac{\cos \theta_{x_{i}}}{\cos \theta\left(x_{i} \rightarrow x_{i+1}\right)} \cos \theta\left(x_{i} \rightarrow x_{i-1}\right)}{p\left(x_{i} \rightarrow x_{i-1}\right)}\right) \frac{V\left(x_{1}, x_{2}\right) \frac{\cos \theta_{x_{1}}}{\left\|x_{2}-x_{1}\right\|^{2}} h_{i}(q) W\left(q, x_{1}, \omega\right) \frac{\cos ^{3} \theta}{f}}{p\left(x_{1}\right)}
$$

Now we can render with pure light tracing

Light tracing

Path tracing

The path integral

A common ground for bidirectional techniques

We want to combine forward and backward sampling

- Need a common integral formulation / integration domain
- Why?
- MIS is only possible if we have a consistent domain!
- Also: notational convenience

The path integral

Value of pixel i

> Surface integrals (one per vertex)

Sum over all path lengths

Sampling directions via points on a surface

1. Sample a point y on the surface (e.g., light source)
2. Compute

$$
p(\omega)=p(y) \frac{\|y-x\|^{2}}{\cos \theta}
$$

Previously on RIS

The light tracer as a path integral estimator

- Light tracing samples a path of length k with the product PDF

- By mapping the directions $x_{i} \rightarrow x_{i-1}$ to surface points, we can define a product surface density

$$
p_{L T}(x)=p\left(x_{k}\right)\left(\prod_{i=2}^{k} p\left(x_{i} \rightarrow x_{i-1}\right) \frac{\cos \theta\left(x_{i-1} \rightarrow x_{i}\right)}{\left\|x_{i-1}-x_{i}\right\|^{2}}\right) p\left(x_{1}\right)
$$

Forward path tracing as a path integral estimator

- Similarly, forward path tracing generates path samples with PDF

$$
p_{P T}(x)=p\left(x_{1}\right) p(q)\left|J_{c a m}\left(x_{2}\right)\right| \prod_{i=2}^{k-1} p\left(x_{i} \rightarrow x_{i+1}\right) \frac{\cos \theta\left(x_{i+1} \rightarrow x_{i}\right)}{\left\|x_{i}-x_{i+1}\right\|^{2}}
$$

Integral transformation = sample transformation

- The path integral estimator with that forward path PDF is:

- Same as a rendering equation estimator with direction PDFs:

$$
\frac{f_{i}(x)}{p_{P T}(x)}=\frac{h_{i}(q) W\left(q, x_{1}, \omega\right)\left(\prod_{j=2}^{k-1} f\left(x_{j-1}, x_{j}, x_{j+1}\right) \cos \theta_{x_{j}}\right) L_{e}}{p\left(x_{1}\right) p(q) \prod_{i=2}^{k-1} p\left(x_{i} \rightarrow x_{i+1}\right)}
$$

Bidirectional connections

Tracing and connecting paths from both ends

- Multiple techniques possible
- Path of length k is sampled by tracing t rays from the camera and $k-t$ from the light

The path PDF for connections

$$
\begin{aligned}
p_{\mathrm{c}, t}(\overline{\mathrm{x}}) & =p\left(\overline{\mathrm{y}}_{t}\right) p\left(\overline{\mathrm{z}}_{s}\right) \\
p\left(\overline{\mathrm{y}}_{t}\right) & =p\left(y_{1}\right) p(q)\left|J_{\mathrm{cam}}\right|\left(\prod_{i=2}^{t-1} p\left(y_{i} \rightarrow y_{i+1}\right) \frac{\cos \theta\left(y_{i+i} \rightarrow y_{i}\right)}{\left\|y_{i}-y_{i+1}\right\|^{2}}\right) \\
p\left(\overline{\mathrm{z}}_{s}\right) & =p\left(z_{1}\right)\left(\prod_{i=1}^{s-1} p\left(z_{i} \rightarrow z_{i+1}\right) \frac{\cos \theta\left(z_{i+1} \rightarrow z_{i}\right)}{\left\|z_{i}-z_{i+1}\right\|^{2}}\right) .
\end{aligned}
$$

MIS

Let's combine these techniques

Each technique estimates the full integral

Recap: MIS

Estimated with technique 1
Estimated with technique 2
$F_{M I S}=\sum_{t} \frac{1}{n_{t}} \sum_{i=1}^{n_{t}} w_{t}\left(x_{t, i}\right) \frac{f\left(x_{t, i}\right)}{p_{t}\left(x_{t, i}\right)} \quad \approx \sum_{t} \int w_{t}(x) f(x) d x \quad=\int f(x) d x \quad\left(\right.$ if $\left.\sum_{t} w_{t}(x)=1\right)$

Recap: Balance heuristic

$$
w_{t}(x)=\frac{n_{t} p_{t}(x)}{\sum_{t^{\prime}} n_{t^{\prime}} p_{t^{\prime}}(x)}
$$

All PDFs must be in the same domain

Evaluating the balance heuristic

- The biggest challenge of a BDPT implementation
- Need to gather all PDFs and make sure that all are correctly converted to compatible domains

Example: Weight of LT for path of length 3 (i.e., direct illum.)

$$
w_{L T}=\frac{p_{L T}}{p_{L T}+p_{P T}+p_{N E E}}
$$

PDFs are products of many local sampling decisions with different Jacobians. Challenging to get right.

$$
\begin{aligned}
& p_{L T}(x)=p\left(x_{3}\right) p\left(x_{3} \rightarrow x_{2}\right) \frac{\cos \theta\left(x_{2} \rightarrow x_{3}\right)}{\left\|x_{2}-x_{3}\right\|^{2}} p\left(x_{1}\right) \\
& p_{P T}(x)=p\left(x_{1}\right) p(q)\left|J_{\text {cam }}\left(x_{2}\right)\right| p\left(x_{2} \rightarrow x_{3}\right) \frac{\cos \theta\left(x_{3} \rightarrow x_{2}\right)}{\left\|x_{2}-x_{3}\right\|^{2}} \\
& p_{N E E}(x)=p\left(x_{1}\right) p(q)\left|J_{\text {cam }}\left(x_{2}\right)\right| p\left(x_{3}\right)
\end{aligned}
$$

Products of PDFs are dangerous

$$
p_{L T}(x)=p\left(x_{3}\right) p\left(x_{3} \rightarrow x_{2}\right) \frac{\cos \theta\left(x_{2} \rightarrow x_{3}\right)}{\left\|x_{2}-x_{3}\right\|^{2}} p\left(x_{1}\right)
$$

If these are high $\rightarrow p_{L T}(x)$ can be extremely huge
E.g., series of highly glossy scattering events.

So we compute ratios instead

$$
\begin{gathered}
w_{L T}=\frac{p_{L T}}{p_{L T}+p_{P T}+p_{N E E}}=\left(1+\frac{p_{P T}}{p_{L T}}+\frac{p_{N E E}}{p_{L T}}\right)^{-1} \\
\frac{p_{P T}}{p_{L T}}=\frac{p(q)\left|J_{c a m}\left(x_{2}\right)\right|}{p\left(x_{3} \rightarrow x_{2}\right) \frac{\cos \theta\left(x_{2} \rightarrow x_{3}\right)}{\left\|x_{2}-x_{3}\right\|^{2}}} \frac{p\left(x_{2} \rightarrow x_{3}\right) \frac{\cos \theta\left(x_{3} \rightarrow x_{2}\right)}{\left\|x_{2}-x_{3}\right\|^{2}}}{p\left(x_{3}\right)} \\
\text { PDF to sample } x_{2} \\
\frac{p_{P T}}{p_{L T}}=\frac{p(q)\left|J_{C a m}\left(x_{2}\right)\right|}{p\left(x_{3} \rightarrow x_{2}\right) \cos \theta\left(x_{2} \rightarrow x_{3}\right)} \\
\text { PDF to sample } x_{3}
\end{gathered}
$$

Numerically much better. And many common ratios across techniques!

MIS weighted techniques

MIS weighted techniques

Implementation

There are many ways of doing it - here's one

Reusing computations

- Tracing one full path per technique is expensive:
- Number of techniques grows quadratically with the path length!
- Instead: trace one set of subpaths and reuse components
- Exception: next event uses a separate light sample (specialized techniques available)

Progressive rendering with two passes

- Pass 1: Trace n light paths and store them
- At every vertex except the first:
- Connect to the camera - aka light tracing
- Pass 2: Trace 1 camera path per pixel
- At every vertex except the first:
- Connect to one (or more) stored light vertices
- Connect to one (or more) random point(s) on a light - aka next event estimation
- Check if this is a light source, add contribution if so

Technical details

- Compute pdf of infinite light in surface area
- Sampling a distant disc with radius as large as the scene and a Dirac direction distribution
- Efficiently compute the pdf for MIS without redundancy
- Take advantage of prefix/suffix change between techniques
- Dirac delta distribution
- Can be avoided in many case with analytic simplification
- Non-symmetrical scattering
- Many other technical details need to be implemented
- PBRT book give some good insight on solutions (online book)

Much design freedom

- How to store light paths?
- Which paths to store?
- How many light paths?
- How many camera paths per pixel?
- How to select light vertices for connection? At random? By pairing deterministic paths?
- How many connections to use?
- Trace camera paths first and then light paths

Limitations and challenges

How to improve this basic recipe and make it practical?

Specular - diffuse - specular (SDS) paths

- Photon Mapping / VCM to the rescue \rightarrow upcoming lectures

BDPT

VCM

Wasted computation

- Light paths might not be visible
- Light paths might not be needed
- Redundancy in MIS techniques
- Possible solutions:
- Path guiding \rightarrow upcoming lecture
- Markov chain Monte Carlo \rightarrow upcoming lecture
- Optimizing sample counts \rightarrow https://graphics.cg.uni-saarland.de/publications/grittmann-sig2022.html

Summary

- Trace paths from both ends

$$
I_{i}=\sum_{k=2}^{\infty} \int_{A} \ldots \int_{A} f_{i}(x) d x_{1} \ldots d x_{k}
$$

- Combine in various ways, reuse subpaths for efficiency
- Each combination technique: A correct estimator for the pixel values
- Combine techniques via MIS
- Path integral (aka iterated surface integral) as the common domain for MIS

