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This lecture

• Image space noise correlation using sampler

• Rendering setup

• Sample optimization before rendering

• Scene aware optimization
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Reminders
Correlated sampling & image perception
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Correlated sampling

• Sample correlation can be used to reduce Monte Carlo error per pixel

• Use smoothness of the function to distribute samples

• Uniformly distribute Monte Carlo samples

• Generally based on error upper bound (KH-inequality)

• Correlation rely on knowledge/assumption about the integration problem

• Use the random process only for sub-part of the problem
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Perception based error

• Mathematical error (MSE, RelMSE) consider all pixel independently

• Measure the quality of the per pixel estimation

• Image perception is more important

• All pixel seen at the same time

• They are not independent

• We are more sensitive to some frequency than other

• High frequency are naturally filterer by the eye
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Motivation
Perceptual error distribution
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Image dithering
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Image dithering
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White if (input > dither)

Black else



Image dithering
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Threshold



Image dithering
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Threshold



Image dithering
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Threshold



Image dithering
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Noise filtering

• Denoising BN image produce less error

• Our eye works as a low pass filter
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Better perceptually and numerically!
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Dithering for rendering

Consider a rendering where all pixel are simulated independently

• A pixel value only depend on the sample of that pixel

• Works for forward rendering (pathtracing, direct lightning, …)

• Doesn’t work for backward, mixed rendering (BDPT, … as light traced samples contribute to all pixel)

• Close pixel render similar function (smooth scene)

• Samples can be interpreted as sequence

• Generalize to good sample sequence (Rank1, PMJ02, Sobol, …)

• Is it possible to optimize the sample distribution to improve rendering ?

• For mean squared error ? No

• For perception ? Yes
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Dithering for rendering

• Can we correlate pixel integration on image plane ?
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Dithering for rendering

What is the desired correlation ?

• Negative correlation is the best correlation

• It’s based on HVS sensitivity to low frequency

• High frequency/negative correlation are “blurred” by human eye

• Positive correlation create artifacts

• Less noise but some color splat

• Uniform correlation over the image plane

• Having multiple correlation or quality make them visually unpleasant

• This looks unnatural
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Blue-noise Dithered Sampling
[Georgiev & Fajardo 2016]
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Blue noise error distribution
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white-noise pixel error distribution blue-noise pixel error distribution



Blue noise error distribution

Realistic Image Synthesis - Monte Carlo Integration 19

Stratified sampling



Objectif

• Having similar samples will result in close rendering value

• Function is smooth

• To get as much different value we want as much different samples as possible

• While keeping good per pixel quality

• We expect a correlation between sample distribution and estimate distribution
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Sampling with dither masks
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Stratified sampling

1. Create sampling pattern

2. For each pixel

a. Look-up value from dither mask (tiled over the image)

b. Use value to offset sample pattern



Sampling with dither masks
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1. Create sampling pattern

2. For each pixel

a. Look-up value from dither mask (tiled over the image)

b. Use value to offset sample pattern

Stratified sampling



Sampling with dither masks
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1. Create sampling pattern

2. For each pixel

a. Look-up value from dither mask (tiled over the image)

b. Use value to offset sample pattern

Stratified sampling



Sampling with dither masks
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1. Create sampling pattern

2. For each pixel

a. Look-up value from dither mask (tiled over the image)

b. Use value to offset sample pattern

Stratified sampling



Sampling with dither masks

• Dithered sampling ensure similar offset will result in similar sample-set

• Similar samples will produce similar rendering if the functions are similar

• Shift can be added directly inside the renderer 

• Dither mask is a new input to the renderer

• Negative pixel correlation

• Shift map should be as different as possible

• Shift map should be “unbiased”

• It’s difficult to optimize it using SGD based method
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Simulated annealing

• Optimize shift map by swapping pixels

• Initialize with random shift map

• Try swapping pixel to improve some energy

• Iterate

• The dither mask can be optimize on a small scale and tile over the image plan

• Need a toroidal optimization

• Can create some visual artifact as the noise pattern repeat
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Simulated annealing
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Simulated annealing

Realistic Image Synthesis - Monte Carlo Integration 28

Pseudo code



Simulated annealing
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Pseudo code



Live demo
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Simulated annealing
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The sum over every pixel can be simplified

• Spatial gaussian support can be restricted to few pixel

• It is possible to optimize different region of the tile at the same time

• Quality will depend on the approximation of the gaussian



Simulated annealing
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Simulated annealing is an importance optimization algorithm

• Works on discreet set (Set of pixel)

• Energy function requires only a point-wise evaluation (no derivative)

• Can converge to the optimal solution under some conditions

• Slow optimization in general

• Difficult to parallelize on a massive scale



Dither mask construction
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1. Generate random dither mask

2. Simulated annealing by random pixel swapping
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Sampling with dither masks
1. Create sampling pattern

2. For each pixel

a. Look-up value from dither mask (tiled over the image)

b. Use value to offset sample pattern (surface, direct sampling, …)

Realistic Image Synthesis - Monte Carlo Integration 34

0 1 0 1 0 1 0 1 0 1



Sampling with dither masks
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blue-noise dithered sampling [1 spp]

Traditional random dithered sampling [1 spp]



Sampling with dither masks
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1 sample per pixel



Sampling with dither masks
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4 sample per pixel



Sampling with dither masks
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9 sample per pixel



Sampling with dither masks
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• Connection between halftoning and MC sampling

• Blue correlation > white decorrelation

• Simple, fast method

• Showed 1D and 2D sampling

• Limitations

• Improvement only when pixel integrals are correlated

• Occasional mask tiling artifacts

• Higher dimensions more difficult

• Remapping of the samples limit quality



A LOW-DISCREPANCY SAMPLER THAT DISTRIBUTES MONTE 
CARLO ERRORS AS A BLUE NOISE IN SCREEN SPACE

[Heitz & al 2019]
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Objectives

• BNDS limitations

• Tradeoff between per-pixel sampling quality and error distribution 

• Can be worst than uncorrelated

• Rely on correlation between sample difference and rendering difference

• Improvements

• Directly optimize for rendering purpose

• Ensure worse case falls back to uncorrelated
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Sample stratification

• Use Owen’s Scrambling or Rank1 lattice

• Use a Scrambling Key instead of a shift vector

• Ensure good integration at each pixel
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Change the optimization space

• Change from sample space optimization to result space optimization

• Assume every pixel render the same integrand

• But all pixel use a different XOR keys or seed
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Change the optimization space

• Change from sample space optimization to result space optimization

• Assume every pixel render the same integrand

• But all pixel use a different XOR keys or seed
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Change the optimization space

• Change from sample space optimization to result space optimization

• Assume every pixel render the same integrand

• But all pixel use a different sample set
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Change the optimization space
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• Change from sample space optimization to result space optimization

• Assume every pixel render the same integrand

• But all pixel use a different sample set



Optimization setup
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• Optimize the distribution of XOR key

• Define a class of integrands 

• Oriented Heavisides define by θ and d

• D dimensional integrands
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𝜀𝑝 is a vector of signed integration error (𝑓 𝑥𝑝 − 𝐹) on a large 

set of integrand (typically 65 536 randomized integrands)

The optimization is also done using simulated annealing



Optimization setup
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• Optimize the distribution of XOR key

• Define a class of integrands 

• Oriented Heavisides define by θ and d

• D dimensional integrands

𝜀𝑝 is a vector of signed integration error (𝑓 𝑥𝑝 − 𝐹) on a large 

set of integrand (typically 65 536 randomized integrands)

The optimization is also done using simulated annealing
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Optimization setup
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• Optimize the distribution of XOR key

• Define a class of integrands 

• Oriented Heavisides define by θ and d

• D dimensional integrands

• Robust to other class of integrand

• Varying orientation

• Varying smoothness

• Varying shape



Optimization setup

• Rely on simple function

• Step function and linear function show properties from rendering (visibility)

• Act as a form of discrepancy measure

• Quality of the result depend on the choice of the function class

• Error vector can be simplified

• Store the distance norm between to sample set (1 value per pair)

• Works with progressive sampling

• It is possible to optimize the progressive sample set distribution

• Still limited by the dimensionality

Realistic Image Synthesis - Monte Carlo Integration 50



Results
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White noise Blue noise



Results
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White noise Blue noise



Results
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White noise Blue noise



Results
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White noise Blue noise



Results
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• Share limitations with BNDS !

• Can't handle high-dimensional integrands

• Not robust on complex integrands

• Still you should use this method rather than BNDS

• Can only do better, not worse



Distributing Monte Carlo Errors as a Blue Noise in Screen 
Space by Permuting Pixel Seeds Between Frames

[Heitz & al 2019]
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Objectives

• Previous works precompute a shift map or sample set distribution

• Not adaptive to the rendering

• Need one optimization per sample count/dimension

• Scene adaptive sample optimization at runtime

• Use existing sampler

• Can achieve higher quality

• Work at arbitrary sample count/dimensionality

• No precomputation
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Redefining the rendering process

• Integration space is often high dimensional an not smooth

• Modify the integration process to reduce dimensionality

• Operate on a smooth space
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• Change from Sample space to estimate space

• Construct the histogram of estimate and sample it

• The histogram is a discreet representation of the PDF of estimates

• Histogram is a 1D space independently to the sampling space
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Histogram of estimate

• How to construct the histogram of estimates ?

• For each pixel, render the image with a large number of independent rendering

• Rendering can be done with multiple samples

• It’s possible to use Low discrepancy sampler

• Each rendering can be determined by the seed of the random generator 
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Histogram of estimate

• Histogram naturally create a smooth space

• Sample set are ordered by rendering value (monotone function)

• Estimate the continuous estimate distribution

• Simple to construct

• Rendering with varying sample set

• Sorting operation based on luminance

• Once sorted just need to store the seed
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• Histogram are staircase function

• It is easily invertible

Histogram sampling
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0׬
1
𝐻−1 𝑢 𝑑𝑢 ≈ 𝐻−1(𝜉) with 𝜉~𝑈(0,1)

𝜉 can be generated with :
• Random uncorrelated generator
• A dither mask



Histogram sampling
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• Use the dithering mask value to select the corresponding seed

• List of estimate values sorted based on luminance



Histogram sampling
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• Use the dithering mask value to select the corresponding seed

• List of estimate values sorted based on luminance



• Use the dithering mask value to select the corresponding seed

• List of estimate values sorted based on luminance

Histogram sampling
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• In practice computing the histogram mean multiple rendering

• Simply average them

• Choosing 1 sample over 4 smartly can produce lower visual error

• Trade off pixel quality and noise distribution

• Work in high dimensional cases

• Works for all multiple samples per pixel

• Can use Low discrepancy sampler

Histogram sampling
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Practical algorithm

• Construct the histogram locally

• Split the image space in small blocs

• Use optimal transport to map frame 

values and dither mask

• Can be combined in a temporal 

algorithm to avoid re-rendering 

• Use the powerful properties of sorting

• Sorting naturally create a correlated 

and smooth space
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Temporal algorithm
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Temporal algorithm
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Temporal algorithm
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Temporal algorithm
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Temporal algorithm
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Temporal algorithm
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Pseudocode

Per bloc :

• Sort the dither mask and rendering values

• Assign in order the seed that produced the i-th value 

to the position of the i-th dithering value

• Render the next frame
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Results
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White noise [Heitz 2019]



Results
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[Georgiev & Fajardo 2016] [Heitz 2019]



Results
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White noise [Heitz 2019]



Results
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[Georgiev & Fajardo 2016] [Heitz 2019]



Results

• Really high quality result in best case

• Scene specific sample distribution

• Works for complex rendering setup

• Low overhead

• Need to render every frames with the same seeds

• Break on edges/texture with significantly worse visual quality

• Can be improved with some segmentation map but increase cost significantly
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Scalable Multi-Class Sampling via 
Filtered Sliced Optimal Transport
[Salaun & al 2022]
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Objectives

• Previous works used arbitrary energy minimization

• Need provably good energy is needed

• Lack of theoretical understanding

• This work propose

• Theorical framework explaining why blue noise error distribution is a good choice

• General energy term derived from Monte Carlo error

• An optimization strategy for arbitrary perception metric
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Error distribution as sample optimization

• For single pixel it’s possible to measure sampling quality with discrepancy

• Use error upper bound based on sampling quality

and function variation

• This equation is not differentiable and slow to evaluate

• It is possible to define a similar bound using a differentiable metric (Wasserstein distance)

• Based on Lipschitz inequality

• This can be used to optimize pointset [Paulin et al. 2020]
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Wasserstein distance

The Wasserstein distance is define by the optimal transport plan minimizing the cost of moving the 

distribution 𝑋 to the target distribution 𝜇

• The cost is the total mass displaced per unit distance

• Thinking about 2 piles of sand : Where each sand grain should go to minimize displacement cost ?
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𝑊 𝑋, 𝜇• Costly to evaluate even with discreet 

distribution



Sliced Wasserstein distance 

• Full dimensional Wasserstein distance is often to costly to be used

• Instead we can use an upper bound using the sliced version

• This integral over all direction can be solved using

Monte Carlo estimation
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Sliced Wasserstein distance 

• For each slice we need to solve the optimal transport plan

• 1D optimal transport between 2 discreet distribution has a simple solution

• Also work with discretization in semi discreet case
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Solving the 1D optimal transport only require sorting points



Sliced Wasserstein distance derivatives

• It is possible to compute the derivatives of the Sliced 

Wasserstein distance

• For all sliced, the derivative is the vector for each point to 

the associated target
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Sliced Wasserstein distance derivatives
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• It is possible to compute the derivatives of the Sliced 

Wasserstein distance

• For all sliced, the derivative is the vector for each point to 

the associated target



Sliced Wasserstein distance derivatives
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• It is possible to compute the derivatives of the Sliced 

Wasserstein distance

• For all sliced, the derivative is the vector for each point to 

the associated target



Sliced Wasserstein distance derivatives
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• It is possible to compute the derivatives of the Sliced 

Wasserstein distance

• For all sliced, the derivative is the vector for each point to 

the associated target

• Finally use a simple Gradient based optimization to 

optimize the pointset

• The gradient are noisy but will get smoothed over 

iterations



Sliced optimal transport sampling algorithm

• Randomly regenerate U at each step to avoid 

overfit to random points

• It’s possible to use advanced gradient descent

• Possible to average multiple projection at 

each step and parallelize it

• Relatively fast convergence but still 

an optimization task
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Example



Multi class rendering
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Multi class rendering
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Multi class rendering

• Our eye see pixel together 

• The samples of multiple pixel are seen together

• Need a commune optimization

• One sample contribute to multiple pixel integration (into our eye)

• Some have more contribution than others

• Contrary to previous work we consider pixel integration not independent

• Samples from multiple pixel can be seen as a single sampling sequence

• Lot of conflicting objectives
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Multi class rendering
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Error distribution as sample optimization

• It is possible to define a Multi-class error bound

• Sum of weighted contribution of neighboring pixels

• All samples of the image contributes to every other pixel 

• It make sample contribution non binary

• Samples may contribute to the integration with varying factors

• We introduce Filtering into the Wasserstein distance

• End up to a barycentric optimization
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Filtered Wasserstein distance

Single optimization for multiple objectives
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problems



Filtered Wasserstein distance

Single optimization for multiple objectives
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Results
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Results

• This is the first gradient based optimization that produce blue noise error distribution

• The blue noise property is a consequence of the minimization of the L1 error bound

• It mean BN is the expected property because of the perceptual kernel we choose

• An other kernel could result in other correlation

• The method can be extended to more complex perception models

• We used the same gaussian as other work for comparison

• Optimization is slow even using a SGD based optimizer

• The reason is the important cost of computing Wasserstein distance

• Need to average lot of Wasserstein distance per step to get noise reduction
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Temporal extension

It’s possible to model the perception in space and time
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Temporal extension
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It’s possible to model the perception in space and time



Realistic Image Synthesis - Monte Carlo Integration 102

White Noise

0.014 pRelMSE (1.00x)

Wolfe et al. [2022]

0.010 pRelMSE (0.72x)

Korać et al. [2023]

0.077 pRelMSE (0.55x)
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White Noise

0.014 pRelMSE (1.00x)

Korać et al. [2023]

0.077 pRelMSE (0.55x)



Temporal extension

• TODO

Realistic Image Synthesis - Monte Carlo Integration 104

White Noise

0.0065 pRelMSE (1.00x)
Wolfe et al. [2022]

0.0043 pRelMSE (0.66x)

Korać et al. [2023]

0.0031 pRelMSE (0.48x)



Results

• TODO

Realistic Image Synthesis - Monte Carlo Integration 105

White Noise

0.0065 pRelMSE (1.00x)

Korać et al. [2023]

0.0031 pRelMSE (0.48x)



Temporal extension

• Extension to temporal domain result in Blue noise error distribution

• Blue noise property is only visible when frames are average or see in an animation

• Each frame individually looks like uncorrelated noise

• Result from the energy that aim only for temporal optimization not single frames

• Could be improve with reprojection and scene dependent information

• All the samples works for multiple scene

• No reprojection is done

• Lot of improvement is possible
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Blue noise error and denoising
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Blue noise error and denoising

• All previous method focus on image perception as raw rendering

• Noise perception only work on noisy rendering

• Denoising also benefit from high frequency noise

• Simple blur follow exactly the same equations

• Generally analytic filtering works

• Neural based denoising require specific attention
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Analytic denoising

• Denoising is often composted of low pass filters

• Even when using bilateral filters

• More generally blue noise error distribution create a good sampling 

distribution for groups of pixel

• More information locally
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Neural based denoising

• Neural based denoiser I now the state of the art

• High efficiency and order of magnitude higher quality

• Can be guided with G-buffers

• Blue noise distribution works with Neural based denoiser

• If the network is trained on this type of noise

• Reduce randomness and better guide information to the denoiser

• Particularly true with kernel prediction network

• Denoiser train on Blue noise achieve high error is denoising uncorrelated noise

• Need to ensure Blue noise distribution is actually achieved
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White Noise Blue Noise

1 spp
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Noisy Input Denoised Image*

*using a simple Unet

1 spp

Noisy Input Denoised Image*
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White Noise sampling Blue Noise sampling

White Noise denoiser* Blue Noise denoiser* *simple Unet
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Blue noise error and denoising

• Blue noise error distribution improve rendering

• For real time and offline rendering

• Adapt sampling for denoising

• Each problem need tailored algorithm

• There is no perfect algorithm

• Match strengths and weakness with your problem

• Low Blue noise quality can be still better than no correlation at all

Realistic Image Synthesis - Monte Carlo Integration 115



Summary
What have we learned today?
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Summary

• Blue noise error distribution is an important axis of improvement 

• Simply include the perception into the sampling process

• Good coordination with denoising

• Require few conditions

• Smooth integrand in screen space

• Low dimension for apriori method

• Temporal stability for a posteriori
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