
Correlated error distribution

Corentin Salaun

Realistic Image Synthesis - Monte Carlo Integration 1

This lecture

• Image space noise correlation using sampler

• Rendering setup

• Sample optimization before rendering

• Scene aware optimization

Realistic Image Synthesis - Monte Carlo Integration 2

Reminders
Correlated sampling & image perception

Realistic Image Synthesis - Monte Carlo Integration 3

Correlated sampling

• Sample correlation can be used to reduce Monte Carlo error per pixel

• Use smoothness of the function to distribute samples

• Uniformly distribute Monte Carlo samples

• Generally based on error upper bound (KH-inequality)

• Correlation rely on knowledge/assumption about the integration problem

• Use the random process only for sub-part of the problem

Realistic Image Synthesis - Monte Carlo Integration 4

Perception based error

• Mathematical error (MSE, RelMSE) consider all pixel independently

• Measure the quality of the per pixel estimation

• Image perception is more important

• All pixel seen at the same time

• They are not independent

• We are more sensitive to some frequency than other

• High frequency are naturally filterer by the eye

Realistic Image Synthesis - Monte Carlo Integration 5

Motivation
Perceptual error distribution

Realistic Image Synthesis - Monte Carlo Integration 6

Image dithering

Realistic Image Synthesis - Monte Carlo Integration 7

White

Black

Image dithering

Realistic Image Synthesis - Monte Carlo Integration 8

White if (input > dither)

Black else

Image dithering

Realistic Image Synthesis - Monte Carlo Integration 9

Threshold

Image dithering

Realistic Image Synthesis - Monte Carlo Integration 10

Threshold

Image dithering

Realistic Image Synthesis - Monte Carlo Integration 11

Threshold

Image dithering

Realistic Image Synthesis - Monte Carlo Integration 12

Noise filtering

• Denoising BN image produce less error

• Our eye works as a low pass filter

Realistic Image Synthesis - Monte Carlo Integration 13

Better perceptually and numerically!

KernelWhite Noise Blue Noise Kernel Blurred ImageBlurred
Image

* =

= =

SpectrumPower SpectrumPower

= *

x
x

Dithering for rendering

Consider a rendering where all pixel are simulated independently

• A pixel value only depend on the sample of that pixel

• Works for forward rendering (pathtracing, direct lightning, …)

• Doesn’t work for backward, mixed rendering (BDPT, … as light traced samples contribute to all pixel)

• Close pixel render similar function (smooth scene)

• Samples can be interpreted as sequence

• Generalize to good sample sequence (Rank1, PMJ02, Sobol, …)

• Is it possible to optimize the sample distribution to improve rendering ?

• For mean squared error ? No

• For perception ? Yes

Realistic Image Synthesis - Monte Carlo Integration 14

Dithering for rendering

• Can we correlate pixel integration on image plane ?

Realistic Image Synthesis - Monte Carlo Integration 15

Positive correlation No correlation Negative correlation

Dithering for rendering

What is the desired correlation ?

• Negative correlation is the best correlation

• It’s based on HVS sensitivity to low frequency

• High frequency/negative correlation are “blurred” by human eye

• Positive correlation create artifacts

• Less noise but some color splat

• Uniform correlation over the image plane

• Having multiple correlation or quality make them visually unpleasant

• This looks unnatural

Realistic Image Synthesis - Monte Carlo Integration 16

Blue-noise Dithered Sampling
[Georgiev & Fajardo 2016]

Realistic Image Synthesis - Monte Carlo Integration 17

Blue noise error distribution

Realistic Image Synthesis - Monte Carlo Integration 18

white-noise pixel error distribution blue-noise pixel error distribution

Blue noise error distribution

Realistic Image Synthesis - Monte Carlo Integration 19

Stratified sampling

Objectif

• Having similar samples will result in close rendering value

• Function is smooth

• To get as much different value we want as much different samples as possible

• While keeping good per pixel quality

• We expect a correlation between sample distribution and estimate distribution

Realistic Image Synthesis - Monte Carlo Integration 20

Sampling with dither masks

Realistic Image Synthesis - Monte Carlo Integration 21

Stratified sampling

1. Create sampling pattern

2. For each pixel

a. Look-up value from dither mask (tiled over the image)

b. Use value to offset sample pattern

Sampling with dither masks

Realistic Image Synthesis - Monte Carlo Integration 22

1. Create sampling pattern

2. For each pixel

a. Look-up value from dither mask (tiled over the image)

b. Use value to offset sample pattern

Stratified sampling

Sampling with dither masks

Realistic Image Synthesis - Monte Carlo Integration 23

1. Create sampling pattern

2. For each pixel

a. Look-up value from dither mask (tiled over the image)

b. Use value to offset sample pattern

Stratified sampling

Sampling with dither masks

Realistic Image Synthesis - Monte Carlo Integration 24

1. Create sampling pattern

2. For each pixel

a. Look-up value from dither mask (tiled over the image)

b. Use value to offset sample pattern

Stratified sampling

Sampling with dither masks

• Dithered sampling ensure similar offset will result in similar sample-set

• Similar samples will produce similar rendering if the functions are similar

• Shift can be added directly inside the renderer

• Dither mask is a new input to the renderer

• Negative pixel correlation

• Shift map should be as different as possible

• Shift map should be “unbiased”

• It’s difficult to optimize it using SGD based method

Realistic Image Synthesis - Monte Carlo Integration 25

Simulated annealing

• Optimize shift map by swapping pixels

• Initialize with random shift map

• Try swapping pixel to improve some energy

• Iterate

• The dither mask can be optimize on a small scale and tile over the image plan

• Need a toroidal optimization

• Can create some visual artifact as the noise pattern repeat

Realistic Image Synthesis - Monte Carlo Integration 26

Simulated annealing

Realistic Image Synthesis - Monte Carlo Integration 27

= ෍

𝑝≠𝑞

𝐸 𝑝, 𝑞 = ෍

𝑝≠𝑞

𝑒
−

𝑖𝑝−𝑖𝑞
2

𝜎𝑖
2

 𝑒
−

𝑠𝑝−𝑠𝑞
𝑑/2

𝜎𝑠
2

pixels

pixel distance sample distance

sample-space
Gaussian

image-space
Gaussian

𝐸 𝐼

Pseudo code Energy term

Simulated annealing

Realistic Image Synthesis - Monte Carlo Integration 28

Pseudo code

Simulated annealing

Realistic Image Synthesis - Monte Carlo Integration 29

Pseudo code

Live demo

Realistic Image Synthesis - Monte Carlo Integration 30

Simulated annealing

Realistic Image Synthesis - Monte Carlo Integration 31

= ෍

𝑝≠𝑞

𝐸 𝑝, 𝑞 = ෍

𝑝≠𝑞

𝑒
−

𝑖𝑝−𝑖𝑞
2

𝜎𝑖
2

 𝑒
−

𝑠𝑝−𝑠𝑞
𝑑/2

𝜎𝑠
2

pixels
sample-space

Gaussian
image-space

Gaussian

𝐸 𝐼

Energy term

The sum over every pixel can be simplified

• Spatial gaussian support can be restricted to few pixel

• It is possible to optimize different region of the tile at the same time

• Quality will depend on the approximation of the gaussian

Simulated annealing

Realistic Image Synthesis - Monte Carlo Integration 32

Simulated annealing is an importance optimization algorithm

• Works on discreet set (Set of pixel)

• Energy function requires only a point-wise evaluation (no derivative)

• Can converge to the optimal solution under some conditions

• Slow optimization in general

• Difficult to parallelize on a massive scale

Dither mask construction

Realistic Image Synthesis - Monte Carlo Integration 33

1. Generate random dither mask

2. Simulated annealing by random pixel swapping

= ෍

𝑝≠𝑞

𝐸 𝑝, 𝑞 = ෍

𝑝≠𝑞

𝑒
−

𝑖𝑝−𝑖𝑞
2

𝜎𝑖
2

 𝑒
−

𝑠𝑝−𝑠𝑞
𝑑/2

𝜎𝑠
2

pixels

pixel distance sample distance

sample-space
Gaussian

image-space
Gaussian

𝐸 𝑀

m
as

k
Fo

u
ri

er
 s

p
ec

.

Sampling with dither masks
1. Create sampling pattern

2. For each pixel

a. Look-up value from dither mask (tiled over the image)

b. Use value to offset sample pattern (surface, direct sampling, …)

Realistic Image Synthesis - Monte Carlo Integration 34

0 1 0 1 0 1 0 1 0 1

Sampling with dither masks

Realistic Image Synthesis - Monte Carlo Integration 35

blue-noise dithered sampling [1 spp]

Traditional random dithered sampling [1 spp]

Sampling with dither masks

Realistic Image Synthesis - Monte Carlo Integration 36

1 sample per pixel

Sampling with dither masks

Realistic Image Synthesis - Monte Carlo Integration 37

4 sample per pixel

Sampling with dither masks

Realistic Image Synthesis - Monte Carlo Integration 38

9 sample per pixel

Sampling with dither masks

Realistic Image Synthesis - Monte Carlo Integration 39

• Connection between halftoning and MC sampling

• Blue correlation > white decorrelation

• Simple, fast method

• Showed 1D and 2D sampling

• Limitations

• Improvement only when pixel integrals are correlated

• Occasional mask tiling artifacts

• Higher dimensions more difficult

• Remapping of the samples limit quality

A LOW-DISCREPANCY SAMPLER THAT DISTRIBUTES MONTE
CARLO ERRORS AS A BLUE NOISE IN SCREEN SPACE

[Heitz & al 2019]

Realistic Image Synthesis - Monte Carlo Integration 40

Objectives

• BNDS limitations

• Tradeoff between per-pixel sampling quality and error distribution

• Can be worst than uncorrelated

• Rely on correlation between sample difference and rendering difference

• Improvements

• Directly optimize for rendering purpose

• Ensure worse case falls back to uncorrelated

Realistic Image Synthesis - Monte Carlo Integration 41

Sample stratification

• Use Owen’s Scrambling or Rank1 lattice

• Use a Scrambling Key instead of a shift vector

• Ensure good integration at each pixel

Realistic Image Synthesis - Monte Carlo Integration 42

Change the optimization space

• Change from sample space optimization to result space optimization

• Assume every pixel render the same integrand

• But all pixel use a different XOR keys or seed

Realistic Image Synthesis - Monte Carlo Integration 43

Change the optimization space

• Change from sample space optimization to result space optimization

• Assume every pixel render the same integrand

• But all pixel use a different XOR keys or seed

Realistic Image Synthesis - Monte Carlo Integration 44

Change the optimization space

• Change from sample space optimization to result space optimization

• Assume every pixel render the same integrand

• But all pixel use a different sample set

Realistic Image Synthesis - Monte Carlo Integration 45

= ෍

𝑝≠𝑞

𝐸 𝑝, 𝑞 = ෍

𝑝≠𝑞

𝑒
−

𝑖𝑝−𝑖𝑞
2

𝜎𝑖
2

 𝑒
−

𝑠𝑝−𝑠𝑞
𝑑/2

𝜎𝑠
2

pixels

pixel distance sample distance

sample-space
Gaussian

image-space
Gaussian

𝐸 𝑀

Change the optimization space

Realistic Image Synthesis - Monte Carlo Integration 46

= ෍

𝑝≠𝑞

𝐸 𝑝, 𝑞 = ෍

𝑝≠𝑞

𝑒
−

𝑖𝑝−𝑖𝑞
2

𝜎𝑖
2

 𝑒
−

𝑠𝑝−𝑠𝑞
𝑑/2

𝜎𝑠
2

pixels

pixel distance sample distance

sample-space
Gaussian

image-space
Gaussian

𝐸 𝑀 = ෍

𝑝≠𝑞

𝐸 𝑝, 𝑞 = ෍

𝑝≠𝑞

𝑒
−

𝑖𝑝−𝑖𝑞
2

𝜎𝑖
2


𝜀𝑝−𝜀𝑞

2

pixels

pixel distance

Rendering error
image-space

Gaussian

𝐸 𝑀

• Change from sample space optimization to result space optimization

• Assume every pixel render the same integrand

• But all pixel use a different sample set

Optimization setup

Realistic Image Synthesis - Monte Carlo Integration 47

• Optimize the distribution of XOR key

• Define a class of integrands

• Oriented Heavisides define by θ and d

• D dimensional integrands

= ෍

𝑝≠𝑞

𝐸 𝑝, 𝑞 = ෍

𝑝≠𝑞

𝑒
−

𝑖𝑝−𝑖𝑞
2

𝜎𝑖
2


𝜀𝑝−𝜀𝑞

2

pixels

pixel distance

Rendering error
image-space

Gaussian

𝐸 𝑀

𝜀𝑝 is a vector of signed integration error (𝑓 𝑥𝑝 − 𝐹) on a large

set of integrand (typically 65 536 randomized integrands)

The optimization is also done using simulated annealing

Optimization setup

Realistic Image Synthesis - Monte Carlo Integration 48

• Optimize the distribution of XOR key

• Define a class of integrands

• Oriented Heavisides define by θ and d

• D dimensional integrands

𝜀𝑝 is a vector of signed integration error (𝑓 𝑥𝑝 − 𝐹) on a large

set of integrand (typically 65 536 randomized integrands)

The optimization is also done using simulated annealing

= ෍

𝑝≠𝑞

𝐸 𝑝, 𝑞 = ෍

𝑝≠𝑞

𝑒
−

𝑖𝑝−𝑖𝑞
2

𝜎𝑖
2


𝜀𝑝−𝜀𝑞

2

pixels

pixel distance

Rendering error
image-space

Gaussian

𝐸 𝑀

Optimization setup

Realistic Image Synthesis - Monte Carlo Integration 49

• Optimize the distribution of XOR key

• Define a class of integrands

• Oriented Heavisides define by θ and d

• D dimensional integrands

• Robust to other class of integrand

• Varying orientation

• Varying smoothness

• Varying shape

Optimization setup

• Rely on simple function

• Step function and linear function show properties from rendering (visibility)

• Act as a form of discrepancy measure

• Quality of the result depend on the choice of the function class

• Error vector can be simplified

• Store the distance norm between to sample set (1 value per pair)

• Works with progressive sampling

• It is possible to optimize the progressive sample set distribution

• Still limited by the dimensionality

Realistic Image Synthesis - Monte Carlo Integration 50

Results

Realistic Image Synthesis - Monte Carlo Integration 51

White noise Blue noise

Results

Realistic Image Synthesis - Monte Carlo Integration 52

White noise Blue noise

Results

Realistic Image Synthesis - Monte Carlo Integration 53

White noise Blue noise

Results

Realistic Image Synthesis - Monte Carlo Integration 54

White noise Blue noise

Results

Realistic Image Synthesis - Monte Carlo Integration 55

• Share limitations with BNDS !

• Can't handle high-dimensional integrands

• Not robust on complex integrands

• Still you should use this method rather than BNDS

• Can only do better, not worse

Distributing Monte Carlo Errors as a Blue Noise in Screen
Space by Permuting Pixel Seeds Between Frames

[Heitz & al 2019]

Realistic Image Synthesis - Monte Carlo Integration 56

Objectives

• Previous works precompute a shift map or sample set distribution

• Not adaptive to the rendering

• Need one optimization per sample count/dimension

• Scene adaptive sample optimization at runtime

• Use existing sampler

• Can achieve higher quality

• Work at arbitrary sample count/dimensionality

• No precomputation

Realistic Image Synthesis - Monte Carlo Integration 57

Redefining the rendering process

• Integration space is often high dimensional an not smooth

• Modify the integration process to reduce dimensionality

• Operate on a smooth space

Realistic Image Synthesis - Monte Carlo Integration 58

• Change from Sample space to estimate space

• Construct the histogram of estimate and sample it

• The histogram is a discreet representation of the PDF of estimates

• Histogram is a 1D space independently to the sampling space

න
𝛺

𝑓 𝑥 𝑑𝑥 = න
0

1

𝐻−1 𝑢 𝑑𝑢

Histogram of estimate

• How to construct the histogram of estimates ?

• For each pixel, render the image with a large number of independent rendering

• Rendering can be done with multiple samples

• It’s possible to use Low discrepancy sampler

• Each rendering can be determined by the seed of the random generator

Realistic Image Synthesis - Monte Carlo Integration 59

Histogram of estimate

• Histogram naturally create a smooth space

• Sample set are ordered by rendering value (monotone function)

• Estimate the continuous estimate distribution

• Simple to construct

• Rendering with varying sample set

• Sorting operation based on luminance

• Once sorted just need to store the seed

Realistic Image Synthesis - Monte Carlo Integration 60

• Histogram are staircase function

• It is easily invertible

Histogram sampling

Realistic Image Synthesis - Monte Carlo Integration 61

0׬
1
𝐻−1 𝑢 𝑑𝑢 ≈ 𝐻−1(𝜉) with 𝜉~𝑈(0,1)

𝜉 can be generated with :
• Random uncorrelated generator
• A dither mask

Histogram sampling

Realistic Image Synthesis - Monte Carlo Integration 62

• Use the dithering mask value to select the corresponding seed

• List of estimate values sorted based on luminance

Histogram sampling

Realistic Image Synthesis - Monte Carlo Integration 63

• Use the dithering mask value to select the corresponding seed

• List of estimate values sorted based on luminance

• Use the dithering mask value to select the corresponding seed

• List of estimate values sorted based on luminance

Histogram sampling

Realistic Image Synthesis - Monte Carlo Integration 64

• In practice computing the histogram mean multiple rendering

• Simply average them

• Choosing 1 sample over 4 smartly can produce lower visual error

• Trade off pixel quality and noise distribution

• Work in high dimensional cases

• Works for all multiple samples per pixel

• Can use Low discrepancy sampler

Histogram sampling

Realistic Image Synthesis - Monte Carlo Integration 65

Practical algorithm

• Construct the histogram locally

• Split the image space in small blocs

• Use optimal transport to map frame

values and dither mask

• Can be combined in a temporal

algorithm to avoid re-rendering

• Use the powerful properties of sorting

• Sorting naturally create a correlated

and smooth space

Realistic Image Synthesis - Monte Carlo Integration 66

Temporal algorithm

Realistic Image Synthesis - Monte Carlo Integration 67

Temporal algorithm

Realistic Image Synthesis - Monte Carlo Integration 68

Temporal algorithm

Realistic Image Synthesis - Monte Carlo Integration 69

Temporal algorithm

Realistic Image Synthesis - Monte Carlo Integration 70

Temporal algorithm

Realistic Image Synthesis - Monte Carlo Integration 71

Temporal algorithm

Realistic Image Synthesis - Monte Carlo Integration 72

Pseudocode

Per bloc :

• Sort the dither mask and rendering values

• Assign in order the seed that produced the i-th value

to the position of the i-th dithering value

• Render the next frame

Realistic Image Synthesis - Monte Carlo Integration 73

Results

Realistic Image Synthesis - Monte Carlo Integration 75

White noise [Heitz 2019]

Results

Realistic Image Synthesis - Monte Carlo Integration 76

[Georgiev & Fajardo 2016] [Heitz 2019]

Results

Realistic Image Synthesis - Monte Carlo Integration 77

White noise [Heitz 2019]

Results

Realistic Image Synthesis - Monte Carlo Integration 78

[Georgiev & Fajardo 2016] [Heitz 2019]

Results

• Really high quality result in best case

• Scene specific sample distribution

• Works for complex rendering setup

• Low overhead

• Need to render every frames with the same seeds

• Break on edges/texture with significantly worse visual quality

• Can be improved with some segmentation map but increase cost significantly

Realistic Image Synthesis - Monte Carlo Integration 79

Scalable Multi-Class Sampling via
Filtered Sliced Optimal Transport
[Salaun & al 2022]

Realistic Image Synthesis - Monte Carlo Integration 80

Objectives

• Previous works used arbitrary energy minimization

• Need provably good energy is needed

• Lack of theoretical understanding

• This work propose

• Theorical framework explaining why blue noise error distribution is a good choice

• General energy term derived from Monte Carlo error

• An optimization strategy for arbitrary perception metric

Realistic Image Synthesis - Monte Carlo Integration 81

Error distribution as sample optimization

• For single pixel it’s possible to measure sampling quality with discrepancy

• Use error upper bound based on sampling quality

and function variation

• This equation is not differentiable and slow to evaluate

• It is possible to define a similar bound using a differentiable metric (Wasserstein distance)

• Based on Lipschitz inequality

• This can be used to optimize pointset [Paulin et al. 2020]

Realistic Image Synthesis - Monte Carlo Integration 82

Wasserstein distance

The Wasserstein distance is define by the optimal transport plan minimizing the cost of moving the

distribution 𝑋 to the target distribution 𝜇

• The cost is the total mass displaced per unit distance

• Thinking about 2 piles of sand : Where each sand grain should go to minimize displacement cost ?

Realistic Image Synthesis - Monte Carlo Integration 83

𝑊 𝑋, 𝜇• Costly to evaluate even with discreet

distribution

Sliced Wasserstein distance

• Full dimensional Wasserstein distance is often to costly to be used

• Instead we can use an upper bound using the sliced version

• This integral over all direction can be solved using

Monte Carlo estimation

Realistic Image Synthesis - Monte Carlo Integration 84

𝑆𝑊 𝑋,𝑈 = න
𝑆𝑑−1

𝑊 𝑋𝜃, 𝑈𝜃 𝑑𝜃

Sliced Wasserstein distance

• For each slice we need to solve the optimal transport plan

• 1D optimal transport between 2 discreet distribution has a simple solution

• Also work with discretization in semi discreet case

Realistic Image Synthesis - Monte Carlo Integration 85

Solving the 1D optimal transport only require sorting points

Sliced Wasserstein distance derivatives

• It is possible to compute the derivatives of the Sliced

Wasserstein distance

• For all sliced, the derivative is the vector for each point to

the associated target

Realistic Image Synthesis - Monte Carlo Integration 86

Sliced Wasserstein distance derivatives

Realistic Image Synthesis - Monte Carlo Integration 87

• It is possible to compute the derivatives of the Sliced

Wasserstein distance

• For all sliced, the derivative is the vector for each point to

the associated target

Sliced Wasserstein distance derivatives

Realistic Image Synthesis - Monte Carlo Integration 88

• It is possible to compute the derivatives of the Sliced

Wasserstein distance

• For all sliced, the derivative is the vector for each point to

the associated target

Sliced Wasserstein distance derivatives

Realistic Image Synthesis - Monte Carlo Integration 89

• It is possible to compute the derivatives of the Sliced

Wasserstein distance

• For all sliced, the derivative is the vector for each point to

the associated target

• Finally use a simple Gradient based optimization to

optimize the pointset

• The gradient are noisy but will get smoothed over

iterations

Sliced optimal transport sampling algorithm

• Randomly regenerate U at each step to avoid

overfit to random points

• It’s possible to use advanced gradient descent

• Possible to average multiple projection at

each step and parallelize it

• Relatively fast convergence but still

an optimization task

Realistic Image Synthesis - Monte Carlo Integration 90

Example

Multi class rendering

Realistic Image Synthesis - Monte Carlo Integration 91

Multi class rendering

Realistic Image Synthesis - Monte Carlo Integration 92

Multi class rendering

• Our eye see pixel together

• The samples of multiple pixel are seen together

• Need a commune optimization

• One sample contribute to multiple pixel integration (into our eye)

• Some have more contribution than others

• Contrary to previous work we consider pixel integration not independent

• Samples from multiple pixel can be seen as a single sampling sequence

• Lot of conflicting objectives

Realistic Image Synthesis - Monte Carlo Integration 93

Multi class rendering

Realistic Image Synthesis - Monte Carlo Integration 94

Error distribution as sample optimization

• It is possible to define a Multi-class error bound

• Sum of weighted contribution of neighboring pixels

• All samples of the image contributes to every other pixel

• It make sample contribution non binary

• Samples may contribute to the integration with varying factors

• We introduce Filtering into the Wasserstein distance

• End up to a barycentric optimization

Realistic Image Synthesis - Monte Carlo Integration 95

𝜀𝑤(𝑋) = 𝑄𝑤 𝑋 − 𝐼𝑤

෍

𝑝

𝜀𝑤𝑝
𝑋 ≤ 𝐿𝑓෍

𝑝

𝐵1 𝑋, 𝑤𝑝, 𝑈 = 𝐿𝑜𝑠𝑠 𝐵1 𝑋,𝑤𝑝, 𝑈 = න
ℝ

𝑊 𝑋𝑤>𝑧, 𝑈𝑤>𝑧 𝑑𝑧

𝑄𝑤 𝑋 =
1

𝑁
෍

𝑥𝑖∈𝑋

𝑤 𝑥𝑖 𝑓 𝑥𝑖 ≈ 𝐼𝑤

image-space
Gaussian

Filtered Wasserstein distance

Single optimization for multiple objectives

Realistic Image Synthesis - Monte Carlo Integration 96

𝐵1 𝑋,𝑤𝑝, 𝑈 = න
ℝ

𝑊 𝑋𝑤>𝑧, 𝑈𝑤>𝑧 𝑑𝑧

Decompose a complex optimization into many small

problems

Filtered Wasserstein distance

Single optimization for multiple objectives

Realistic Image Synthesis - Monte Carlo Integration 97

𝐵1 𝑋,𝑤𝑝, 𝑈 = න
ℝ

𝑊 𝑋𝑤>𝑧, 𝑈𝑤>𝑧 𝑑𝑧

Decompose a complex optimization into many small

problems

Results

Realistic Image Synthesis - Monte Carlo Integration 98White Noise Sampling Blue Noise Sampling

1 spp

Results

• This is the first gradient based optimization that produce blue noise error distribution

• The blue noise property is a consequence of the minimization of the L1 error bound

• It mean BN is the expected property because of the perceptual kernel we choose

• An other kernel could result in other correlation

• The method can be extended to more complex perception models

• We used the same gaussian as other work for comparison

• Optimization is slow even using a SGD based optimizer

• The reason is the important cost of computing Wasserstein distance

• Need to average lot of Wasserstein distance per step to get noise reduction

Realistic Image Synthesis - Monte Carlo Integration 99

Temporal extension

It’s possible to model the perception in space and time

Realistic Image Synthesis - Monte Carlo Integration 100

|
Rendered Frames Reference Frames

()- ||
2

2

∗

Spatial Kernel

Temporal extension

Realistic Image Synthesis - Monte Carlo Integration 101

Rendered Frames Reference Frames

()- ||
2

2

∗

Spatial KernelTemporal
Kernel

∗|
It’s possible to model the perception in space and time

Realistic Image Synthesis - Monte Carlo Integration 102

White Noise

0.014 pRelMSE (1.00x)

Wolfe et al. [2022]

0.010 pRelMSE (0.72x)

Korać et al. [2023]

0.077 pRelMSE (0.55x)

Realistic Image Synthesis - Monte Carlo Integration 103

White Noise

0.014 pRelMSE (1.00x)

Korać et al. [2023]

0.077 pRelMSE (0.55x)

Temporal extension

• TODO

Realistic Image Synthesis - Monte Carlo Integration 104

White Noise

0.0065 pRelMSE (1.00x)
Wolfe et al. [2022]

0.0043 pRelMSE (0.66x)

Korać et al. [2023]

0.0031 pRelMSE (0.48x)

Results

• TODO

Realistic Image Synthesis - Monte Carlo Integration 105

White Noise

0.0065 pRelMSE (1.00x)

Korać et al. [2023]

0.0031 pRelMSE (0.48x)

Temporal extension

• Extension to temporal domain result in Blue noise error distribution

• Blue noise property is only visible when frames are average or see in an animation

• Each frame individually looks like uncorrelated noise

• Result from the energy that aim only for temporal optimization not single frames

• Could be improve with reprojection and scene dependent information

• All the samples works for multiple scene

• No reprojection is done

• Lot of improvement is possible

Realistic Image Synthesis - Monte Carlo Integration 106

Blue noise error and denoising

Realistic Image Synthesis - Monte Carlo Integration 107

Blue noise error and denoising

• All previous method focus on image perception as raw rendering

• Noise perception only work on noisy rendering

• Denoising also benefit from high frequency noise

• Simple blur follow exactly the same equations

• Generally analytic filtering works

• Neural based denoising require specific attention

Realistic Image Synthesis - Monte Carlo Integration 108

Analytic denoising

• Denoising is often composted of low pass filters

• Even when using bilateral filters

• More generally blue noise error distribution create a good sampling

distribution for groups of pixel

• More information locally

Realistic Image Synthesis - Monte Carlo Integration 109

KernelWhite Noise Blue Noise Kernel Blurred ImageBlurred
Image

* =

= =

= *

x
x

Neural based denoising

• Neural based denoiser I now the state of the art

• High efficiency and order of magnitude higher quality

• Can be guided with G-buffers

• Blue noise distribution works with Neural based denoiser

• If the network is trained on this type of noise

• Reduce randomness and better guide information to the denoiser

• Particularly true with kernel prediction network

• Denoiser train on Blue noise achieve high error is denoising uncorrelated noise

• Need to ensure Blue noise distribution is actually achieved

Realistic Image Synthesis - Monte Carlo Integration 110

White Noise Blue Noise

1 spp

Realistic Image Synthesis - Monte Carlo Integration 111

Realistic Image Synthesis - Monte Carlo Integration 112

Noisy Input Denoised Image*

*using a simple Unet

1 spp

Noisy Input Denoised Image*

Realistic Image Synthesis - Monte Carlo Integration 113

White Noise sampling Blue Noise sampling

White Noise denoiser* Blue Noise denoiser* *simple Unet

Realistic Image Synthesis - Monte Carlo Integration 114

White Noise Blue Noise

Noisy Input Denoised Image Noisy Input Denoised Image

Blue noise error and denoising

• Blue noise error distribution improve rendering

• For real time and offline rendering

• Adapt sampling for denoising

• Each problem need tailored algorithm

• There is no perfect algorithm

• Match strengths and weakness with your problem

• Low Blue noise quality can be still better than no correlation at all

Realistic Image Synthesis - Monte Carlo Integration 115

Summary
What have we learned today?

Realistic Image Synthesis - Monte Carlo Integration 116

Summary

• Blue noise error distribution is an important axis of improvement

• Simply include the perception into the sampling process

• Good coordination with denoising

• Require few conditions

• Smooth integrand in screen space

• Low dimension for apriori method

• Temporal stability for a posteriori

Realistic Image Synthesis - Monte Carlo Integration 117

	Slide 1: Correlated error distribution
	Slide 2: This lecture
	Slide 3: Reminders
	Slide 4: Correlated sampling
	Slide 5: Perception based error
	Slide 6: Motivation
	Slide 7: Image dithering
	Slide 8: Image dithering
	Slide 9: Image dithering
	Slide 10: Image dithering
	Slide 11: Image dithering
	Slide 12: Image dithering
	Slide 13: Noise filtering
	Slide 14: Dithering for rendering
	Slide 15: Dithering for rendering
	Slide 16: Dithering for rendering
	Slide 17: Blue-noise Dithered Sampling
	Slide 18: Blue noise error distribution
	Slide 19: Blue noise error distribution
	Slide 20: Objectif
	Slide 21: Sampling with dither masks
	Slide 22: Sampling with dither masks
	Slide 23: Sampling with dither masks
	Slide 24: Sampling with dither masks
	Slide 25: Sampling with dither masks
	Slide 26: Simulated annealing
	Slide 27: Simulated annealing
	Slide 28: Simulated annealing
	Slide 29: Simulated annealing
	Slide 30: Live demo
	Slide 31: Simulated annealing
	Slide 32: Simulated annealing
	Slide 33: Dither mask construction
	Slide 34: Sampling with dither masks
	Slide 35: Sampling with dither masks
	Slide 36: Sampling with dither masks
	Slide 37: Sampling with dither masks
	Slide 38: Sampling with dither masks
	Slide 39: Sampling with dither masks
	Slide 40: A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a Blue Noise in Screen Space
	Slide 41: Objectives
	Slide 42: Sample stratification
	Slide 43: Change the optimization space
	Slide 44: Change the optimization space
	Slide 45: Change the optimization space
	Slide 46: Change the optimization space
	Slide 47: Optimization setup
	Slide 48: Optimization setup
	Slide 49: Optimization setup
	Slide 50: Optimization setup
	Slide 51: Results
	Slide 52: Results
	Slide 53: Results
	Slide 54: Results
	Slide 55: Results
	Slide 56: Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames
	Slide 57: Objectives
	Slide 58: Redefining the rendering process
	Slide 59: Histogram of estimate
	Slide 60: Histogram of estimate
	Slide 61: Histogram sampling
	Slide 62: Histogram sampling
	Slide 63: Histogram sampling
	Slide 64: Histogram sampling
	Slide 65: Histogram sampling
	Slide 66: Practical algorithm
	Slide 67: Temporal algorithm
	Slide 68: Temporal algorithm
	Slide 69: Temporal algorithm
	Slide 70: Temporal algorithm
	Slide 71: Temporal algorithm
	Slide 72: Temporal algorithm
	Slide 73: Pseudocode
	Slide 75: Results
	Slide 76: Results
	Slide 77: Results
	Slide 78: Results
	Slide 79: Results
	Slide 80: Scalable Multi-Class Sampling via Filtered Sliced Optimal Transport
	Slide 81: Objectives
	Slide 82: Error distribution as sample optimization
	Slide 83: Wasserstein distance
	Slide 84: Sliced Wasserstein distance
	Slide 85: Sliced Wasserstein distance
	Slide 86: Sliced Wasserstein distance derivatives
	Slide 87: Sliced Wasserstein distance derivatives
	Slide 88: Sliced Wasserstein distance derivatives
	Slide 89: Sliced Wasserstein distance derivatives
	Slide 90: Sliced optimal transport sampling algorithm
	Slide 91: Multi class rendering
	Slide 92: Multi class rendering
	Slide 93: Multi class rendering
	Slide 94: Multi class rendering
	Slide 95: Error distribution as sample optimization
	Slide 96: Filtered Wasserstein distance
	Slide 97: Filtered Wasserstein distance
	Slide 98: Results
	Slide 99: Results
	Slide 100: Temporal extension
	Slide 101: Temporal extension
	Slide 102
	Slide 103
	Slide 104: Temporal extension
	Slide 105: Results
	Slide 106: Temporal extension
	Slide 107: Blue noise error and denoising
	Slide 108: Blue noise error and denoising
	Slide 109: Analytic denoising
	Slide 110: Neural based denoising
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115: Blue noise error and denoising
	Slide 116: Summary
	Slide 117: Summary

