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Last week
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Volumetric Processes:

Absorption

Scattering

Transmittance

Phase Functions

Volumetric Rendering Equation

Volumetric Path Tracing

Woodcock Tracking
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Volumetric Rendering Equation
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Recall: Monte Carlo Integration
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How to generate the 
locations    ?
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Independent Random Sampling

9

Trivially extends to higher dimensions

Trivially progressive and memory-less

✘Big gaps

✘Clumping

for (int k = 0; k < num; k++)
{

samples(k).x = randf();
samples(k).y = randf();

}
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Recall: Fourier Theory
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Power SpectrumInput Image

Image courtesy: Laurent Belcour

https://belcour.github.io/blog/course/2016/08/25/siggraph-course-part1.html
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Recall: Fourier theory
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Fourier transform:

Sampling function:
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Independent Random Sampling
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Samples Power spectrum
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Independent Random Sampling
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Many sample set realizations Expected power spectrum
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Independent Random Sampling
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Samples Expected power spectrum Radial meanDC Peak
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Source code: Power spectrum
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Source code: Power spectrum
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Source code: Power spectrum
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Source code: Power spectrum
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Regular Sampling
for (uint i = 0; i < numX; i++)

for (uint j = 0; j < numY; j++)
{

samples(i,j).x = (i + 0.5)/numX;
samples(i,j).y = (j + 0.5)/numY;

}

21

Extends to higher dimensions, but…

✘Curse of dimensionality

✘Aliasing
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Regular Sampling
for (uint i = 0; i < numX; i++)

for (uint j = 0; j < numY; j++)
{

samples(i,j).x = (i + 0.5)/numX;
samples(i,j).y = (j + 0.5)/numY;

}
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Jittered/Stratified Sampling
for (uint i = 0; i < numX; i++)

for (uint j = 0; j < numY; j++)
{

samples(i,j).x = (i + randf())/numX;
samples(i,j).y = (j + randf())/numY;

}

24

Provably cannot increase variance

Extends to higher dimensions, but…

✘Curse of dimensionality

✘Not progressive
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Jittered Sampling
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Samples Expected power spectrum Radial mean
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Independent Random Sampling
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Samples Expected power spectrum Radial mean
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Monte Carlo (16 random samples)
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Monte Carlo (16 jittered samples)
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Stratifying in Higher Dimensions
Stratification requires O(Nd) samples

- e.g. pixel (2D) + lens (2D) + time (1D) = 5D

• splitting 2 times in 5D = 25 = 32 samples

• splitting 3 times in 5D = 35 = 243 samples!

Inconvenient for large d

- cannot select sample count with fine granularity

30
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Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel

- 2D jittered (u,v) for lens

- 1D jittered (t) for time

- combine dimensions
in random order

Uncorrelated Jitter [Cook et al. 84]
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Image source: PBRTe2 [Pharr & Humphreys 2010]Realistic Image Synthesis SS2024
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Depth of Field (4D)
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Reference Random Sampling Uncorrelated Jitter

Image source: PBRTe2 [Pharr & Humphreys 2010]
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Stratify samples in each dimension separately

- for 5D: 5 separate 1D jittered point sets

- combine dimensions
in random order

Uncorrelated Jitter ➔ Latin Hypercube

34

x1 x2 x3 x4

x

y1 y2 y3 y4

y

u1 u2 u3 u4

u

v1 v2 v3 v4

v

t1 t2 t3 t4

t

Realistic Image Synthesis SS2024



Realistic Image Synthesis SS2024

Stratify samples in each dimension separately

- for 5D: 5 separate 1D jittered point sets

- combine dimensions
in random order

Uncorrelated Jitter ➔ Latin Hypercube

35
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Stratify samples in each dimension separately

- for 2D: 2 separate 1D jittered point sets

- combine dimensions
in random order

N-Rooks = 2D Latin Hypercube [Shirley 91]
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Latin Hypercube (N-Rooks) Sampling
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Realistic Image Synthesis SS2024 Image source: Michael Maggs, CC BY-SA 2.5

[Shirley 91]

https://commons.wikimedia.org/w/index.php?curid=3318748
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// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling

38Initialize
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Latin Hypercube (N-Rooks) Sampling

39Shuffle rows

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));
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// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling

40Shuffle rows
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Latin Hypercube (N-Rooks) Sampling

41Shuffle columns

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));
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Latin Hypercube (N-Rooks) Sampling
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// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));
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Latin Hypercube (N-Rooks) Sampling

43

Realistic Image Synthesis SS2024



Realistic Image Synthesis SS2024

Latin Hypercube (N-Rooks) Sampling
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Latin Hypercube (N-Rooks) Sampling
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Evenly distributed in each 
individual dimension

Unevenly distributed in 
n-dimensions
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N-Rooks Sampling
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Samples Expected power spectrum Radial mean
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Multi-Jittered Sampling
Kenneth Chiu, Peter Shirley, and Changyaw Wang. “Multi-
jittered sampling.” In Graphics Gems IV, pp. 370–374. 
Academic Press, May 1994.

– combine N-Rooks and Jittered stratification constraints

47
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Multi-Jittered Sampling
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Multi-Jittered Sampling
// initialize
float cellSize = 1.0 / (resX*resY);
for (uint i = 0; i < resX; i++)

for (uint j = 0; j < resY; j++)
{

samples(i,j).x = i/resX + (j+randf()) / (resX*resY);
samples(i,j).y = j/resY + (i+randf()) / (resX*resY);

}

// shuffle x coordinates within each column of cells
for (uint i = 0; i < resX; i++)

for (uint j = resY-1; j >= 1; j--)
swap(samples(i, j).x, samples(i, randi(0, j)).x);

// shuffle y coordinates within each row of cells
for (unsigned j = 0; j < resY; j++)

for (unsigned i = resX-1; i >= 1; i--)
swap(samples(i, j).y, samples(randi(0, i), j).y);
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Multi-Jittered Sampling

50
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Shuffle x-coordsInitialize
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Multi-Jittered Sampling
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Shuffle x-coords
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Multi-Jittered Sampling
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Shuffle x-coords
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Multi-Jittered Sampling
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Shuffle x-coords



Realistic Image Synthesis SS2024

Multi-Jittered Sampling
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Shuffle x-coordsShuffle y-coords
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Multi-Jittered Sampling
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Shuffle y-coords
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Multi-Jittered Sampling
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Shuffle y-coords
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Multi-Jittered Sampling
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Shuffle y-coords
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Multi-Jittered Sampling
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Shuffle y-coords
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Evenly distributed in each 
individual dimension

Evenly distributed in 2D!
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Multi-Jittered Sampling
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Samples Expected power spectrum Radial mean
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N-Rooks Sampling
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Samples Radial meanExpected power spectrum
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Jittered Sampling
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Samples Radial meanExpected power spectrum
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Poisson-Disk/Blue-Noise Sampling
Enforce a minimum distance between points

Poisson-Disk Sampling:

- Mark A. Z. Dippé and Erling Henry Wold. “Antialiasing through 
stochastic sampling.” ACM SIGGRAPH, 1985.

- Robert L. Cook. “Stochastic sampling in computer graphics.” ACM 
Transactions on Graphics, 1986.

- Ares Lagae and Philip Dutré. “A comparison of methods for generating 
Poisson disk distributions.” Computer Graphics Forum, 2008.
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Random Dart Throwing
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Random Dart Throwing
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Random Dart Throwing
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Poisson Disk Sampling

71
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Samples Radial meanExpected power spectrum
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Blue-Noise Sampling (Relaxation-based)
1. Initialize sample positions (e.g. random)

2. Use an iterative relaxation to move samples away from 
each other.

72
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Lloyd-Relaxation Method

73
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CCVT Sampling [Balzer et al. 2009]
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CCVT Sampling [Balzer et al. 2009]
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Samples Radial meanExpected power spectrum
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Poisson Disk Sampling
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Samples Radial meanExpected power spectrum
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Low-Discrepancy Sampling
Deterministic sets of points specially crafted to be evenly 
distributed (have low discrepancy).

Entire field of study called Quasi-Monte Carlo (QMC)

77
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The Van der Corput Sequence
Radical Inverse Φb in base 2

Subsequent points “fall into 
biggest holes”

80

Realistic Image Synthesis SS2024

k Base 2 Φb

1 1 .1 = 1/2

2 10 .01 = 1/4

3 11 .11 = 3/4

4 100 .001 = 1/8

5 101 .101 = 5/8

6 110 .011 = 3/8

7 111 .111 = 7/8

...
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Halton: Radical inverse with different base for each dimension:

- The bases should all be relatively prime.

- Incremental/progressive generation of samples

Hammersley: Same as Halton, but first dimension is k/N:

- Not incremental, need to know sample count, N, in advance

Halton and Hammersley Points

82
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The Hammersley Sequence

83
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1 sample in each “elementary interval”
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The Hammersley Sequence

84

Realistic Image Synthesis SS2024

1 sample in each “elementary interval”
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The Hammersley Sequence
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1 sample in each “elementary interval”



Realistic Image Synthesis SS2024

The Hammersley Sequence
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1 sample in each “elementary interval”
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The Hammersley Sequence
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1 sample in each “elementary interval”
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The Hammersley Sequence
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1 sample in each “elementary interval”
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Monte Carlo (16 random samples)
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Monte Carlo (16 jittered samples)
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Scrambled Low-Discrepancy Sampling

91
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More info on QMC in Rendering
S. Premoze, A. Keller, and M. Raab.
Advanced (Quasi-) Monte Carlo Methods for Image Synthesis. In 
SIGGRAPH 2012 courses.

93
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How can we predict error from these?
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Samples’ Radial Spectrum

Integrand Radial Spectrum

P
o

w
e

r

Frequency

Part 2: Formal Treatment of 

MSE, Bias and Variance
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Convergence rate for 

Random Samples

96

…

Increasing Samples
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…

Increasing Samples
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Convergence rate for 

Random Samples
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…

Increasing Samples
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Convergence rate for 

Jittered Samples



Realistic Image Synthesis SS2024

99

…

Increasing Samples
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Convergence rate 

Jittered vs Poisson Disk
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…

Increasing Samples
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Convergence rate 

Jittered vs Poisson Disk
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Samples and function in 

Fourier Domain

102

Spatial Domain Fourier Domain

0 w-w

0 w-w
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Convolution

104
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Source: vdumoulin-github

https://github.com/vdumoulin/conv_arithmetic


Realistic Image Synthesis SS2024

Sampling in Primal Domain is 

Convolution in Fourier Domain

105

Fredo Durand [2011]
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Sampling in Primal Domain is 

Convolution in Fourier Domain
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*

0 w-w0

Fredo Durand [2011]
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Aliasing in Reconstruction
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Aliasing in Reconstruction
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Error in Monte Carlo Integration
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Error in 

Integration
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Aliasing (Reconstruction) vs. 

Error (Integration)

110

0 w-w

Fredo Durand [2011]

Belcour et al. [2013]

Error in 

Integration
Aliasing

C C
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Integration in the Fourier Domain

111
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Integration is the DC term 

in the Fourier Domain
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Spatial Domain:

Fourier Domain:
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Monte Carlo Estimator in Spatial 

Domain
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Monte Carlo Estimator in Spatial 

Domain

114



Realistic Image Synthesis SS2024

Monte Carlo Estimator in Fourier 

Domain
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Monte Carlo Estimator in Fourier 

Domain
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How to Formulate Error in Fourier 

Domain ?

117

Fredo Durand [2011]
0 w-w

Error in 

Integration

C
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Error in Spatial Domain

118

Monte Carlo Estimator

True Integral
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Error in Spatial Domain
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Error in Fourier Domain
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Fredo Durand [2011]
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Error in Fourier Domain
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Error in 

Integration

0 w-w

Fredo Durand [2011]
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122
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Properties of Error

• Bias:  Expected value of the Error 

• Variance: 

123

Subr and Kautz [2013]
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Bias in the 

Monte Carlo Estimator
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Bias in Fourier Domain
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Error:
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Bias:

Bias in Fourier Domain
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Error:
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Bias in Fourier Domain

127
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Bias in Fourier Domain

128

Subr and Kautz [2013]
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Bias in Fourier Domain

129

To obtain an unbiased estimator: 

for frequencies other than zero

Subr and Kautz [2013]
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How to obtain                ?   

130
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Complex form in 

Amplitude and Phase

Amplitude Phase
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Phase change due to 

Random Shift

132

Real

Imag

For a given frequency       
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Real

Imag

Phase change due to 

Random Shift

Pauly et al. [2000]

Ramamoorthi et al. [2012]

For a given frequency       
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Real

Imag

Phase change due to 

Random Shift

For a given frequency       
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Real

Imag
Multiple realizations

Phase change due to 

Random Shift

For a given frequency       
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• Homogenization allows representation of error only in 

terms of variance 

• We can take any sampling pattern and homogenize it 

to make the Monte Carlo estimator unbiased.
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Variance in the Fourier domain
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Variance in the Fourier domain
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Error:
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Variance in the Fourier domain

139
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Variance in the Fourier domain

140
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Variance in the Fourier domain

141



Realistic Image Synthesis SS2024

Variance in the Fourier domain

142

where,

Power Spectrum 
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Variance in the Fourier domain

143

Subr and Kautz [2013]

This is a general form, both for homogenised as well as 

non-homogenised sampling patterns
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Variance in the Fourier domain

144
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For purely random samples:

where,

Fredo Durand [2011]

Variance in the Fourier domain



Realistic Image Synthesis SS2024

146

Variance using 

Homogenized Samples

Homogenizing any sampling pattern makes

Pilleboue et al. [2015]

where,
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Variance using 

Homogenized Samples
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Variance in terms of 

n-dimensional Power Spectra
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Variance in the Polar Coordinates

In polar coordinates:
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Variance in the Polar Coordinates

In polar coordinates:
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Variance for Isotropic Power 

Spectra

For isotropic power spectra:
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Variance for Isotropic Power 

Spectra

For isotropic power spectra:
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Variance in terms of 

1-dimensional Power Spectra
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Variance: Integral over 

Product of Power Spectra

For given number of Samples

Sampling Radial Power Spectrum

Integrand Radial Power Spectrum
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Variance: Integral over 

Product of Power Spectra

For given number of Samples

Sampling Radial Power Spectrum

Integrand Radial Power Spectrum
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Variance: Integral over 

Product of Power Spectra

For given number of Samples

Sampling Radial Power Spectrum

Integrand Radial Power Spectrum
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Variance: Integral over 

Product of Power Spectra

For given number of Samples

Sampling Radial Power Spectrum

Integrand Radial Power Spectrum

157
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Spatial Distribution vs 

Radial Mean Power Spectra
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Samplers Worst Case Best Case

Random

Jitter

Poisson Disk

CCVT

Pilleboue et al. [2015]

For 2-dimensions
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Pilleboue et al. [2015]

For 2-dimensions

Samplers Worst Case Best Case

Random

Jitter

Poisson Disk

CCVT
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Low Frequency Region
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Zoom-in
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Variance for Low Sample Count
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Zoom-in
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Variance for Increasing 

Sample Count
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Zoom-in
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Experimental Verification

164
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Convergence rate

165
Increasing Samples
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…

Increasing Samples

V
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n
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Convergence rate
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Disk Function as Worst Case

167
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Disk Function as Worst Case

168



Realistic Image Synthesis SS2024

Gaussian as Best Case
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Ambient Occlusion Examples

170
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Random vs Jittered

171

96 Secondary Rays

MSE: 8.56 x 10e-4MSE: 4.74 x 10e-3
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CCVT vs. Poisson Disk

172

96 Secondary Rays

MSE: 4.24 x 10e-4 MSE: 6.95 x 10e-4
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Convergence rates

173
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Jittered vs Poisson Disk
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Variance
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What are the benefits of this analysis 

? 

175

• For offline rendering, analysis tells which samplers 

would converge faster.

• For real time rendering, blue noise samples are more 

effective in reducing variance for a given number of 

samples
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Fourier Analysis of Numerical Integration in Monte Carlo Rendering

*First part of slides are from Wojciech Jarosz 
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