ADVANCED SAMPLING

Realistic Image Synthesis SS2024

Gurprit Singh

Volumetric Processes:

Absorption

Scattering

Transmittance

Phase Functions

Last week

Volumetric Rendering Equation Volumetric Path Tracing Woodcock Tracking

Volumetric Rendering Equation

$$L(\mathbf{x}, \vec{\omega}) = T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega} + \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_a(\mathbf{x}_z) d\mathbf{x}_s) + \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}_s) d\mathbf{x}_s$$

 $\mathbf{x}_t) L_e(\mathbf{x}_t, \vec{\omega}) dt$

 $\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}_t, \vec{\omega}') d\omega' dt$

Realistic Image Synthesis SS2024

Recall: Monte Carlo Integration

$$I = \int_{D} f(x) \, \mathrm{d}x$$
$$\approx \int_{D} f(x) \, \mathbf{S}(x) \, \mathrm{d}x$$
$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - \mathbf{x}_{k})$$

How to generate the locations x_k^2

- for (int k = 0; k < num; k++)
 - samples(k).x = randf(); samples(k).y = randf();
- Trivially extends to higher dimensions Trivially progressive and memory-less **X** Big gaps **X** Clumping

Recall: Fourier Theory

Input Image

Power Spectrum

Image courtesy: Laurent Belcour

Recall: Fourier theory

Fourier transform:

Sampling function:

 $\hat{f}(\vec{\omega}) = \int_{D} f(\vec{x}) e^{-2\pi i (\vec{\omega} \cdot \vec{x} \cdot \vec{x})} dx d\vec{x}$

Samples

Power spectrum

Many sample set realizations

Expected power spectrum

Samples

$$\frac{1}{N}\sum_{k=1}^{N}\delta(|\vec{x}-\vec{x}_{k}|) \quad \mathbf{E}\left[\left|\frac{1}{N}\sum_{k=1}^{N}\mathbf{e}^{-2\pi i \left(\vec{\omega}\cdot\vec{x}_{k}\right)}\right.\right]\right]$$

Realistic Image Synthesis SS2024


```
procedure powerSpectrum(samples, spectrumWidth, spectrumHeight)
  int N = samples.size()
  for u: 0 \rightarrow \text{spectrumWidth}
    for v: 0 \rightarrow \text{spectrumHeight}
    double real = 0, imag = 0;
    //compute the real and imaginary fourier coefficients
    for(int k=0;k<N;k++){</pre>
      real += cos(2 * \pi * (u * samples[k].x + v * samples[k].y));
      imag += sin(2 * \pi * (u * samples[k].x + v * samples[k].y));
  return power;
```



```
procedure powerSpectrum(samples, spectrumWidth, spectrumHeight)
  int N = samples.size()
  for u: 0 \rightarrow \text{spectrumWidth}
    for v: 0 \rightarrow \text{spectrumHeight}
    double real = 0, imag = 0;
    //compute the real and imaginary fourier coefficients
    for(int k=0;k<N;k++){</pre>
      real += cos(2 * \pi * (u * samples[k].x + v * samples[k].y));
      imag += sin(2 * \pi * (u * samples[k].x + v * samples[k].y));
    power[u * spectrumWidth + v] = (real*real + imag * imag) / N;
  return power;
```


//power spectrum is the magnitude square value of the coefficients

Regular Sampling

for (uint i = 0; i < numX; i++)</pre> for (uint j = 0; j < numY; j++)</pre> samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

✓ Extends to higher dimensions, but... **X** Curse of dimensionality **X** Aliasing

Regular Sampling

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;}

Jittered/Stratified Sampling

for (uint i = 0; i < numX; i++)
 for (uint j = 0; j < numY; j++)
 {
 samples(i,j).x = (i + randf())/numX;
 samples(i,j).y = (j + randf())/numY;
}</pre>

✓ Provably cannot increase variance
 ✓ Extends to higher dimensions, but...
 X Curse of dimensionality
 X Not progressive

Jittered Sampling

Radial mean

Radial mean

Monte Carlo (16 random samples)

Realistic Image Synthesis SS2024

Monte Carlo (16 jittered samples)

Stratifying in Higher Dimensions

- Stratification requires $O(N^d)$ samples
- e.g. pixel (2D) + lens (2D) + time (1D) = 5D
 - splitting 2 times in $5D = 2^5 = 32$ samples
 - splitting 3 times in $5D = 3^5 = 243$ samples!
- Inconvenient for large *d*
- cannot select sample count with fine granularity

Uncorrelated Jitter [Cook et al. 84]

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens
- 1D jittered (t) for time
- combine dimensions in random order

Depth of Field (4D)

Reference

Random Sampling

Uncorrelated Jitter

Realistic Image Synthesis SS2024

Image source: PBRTe2 [Pharr & Humphreys 2010]

Uncorrelated Jitter -> Latin Hypercube

Stratify samples in each dimension separately

- for 5D: 5 separate 1D jittered point sets
- combine dimensions in random order

Uncorrelated Jitter \rightarrow Latin Hypercube

- for 5D: 5 separate 1D jittered point sets
- combine dimensions in random order

N-Rooks = 2D Latin Hypercube [Shirley 91]

Stratify samples in each dimension separately

- for **2D**: **2** separate 1D jittered point sets
- combine dimensions in random order

[Shirley 91]

Realistic Image Synthesis SS2024

Image source: Michael Magge

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
 for (uint i = 0; i < numS; i++)
 samples(d,i) = (i + randf())/numS;</pre>

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
 for (uint i = 0; i < numS; i++)
 samples(d,i) = (i + randf())/numS;</pre>

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
 for (uint i = 0; i < numS; i++)
 samples(d,i) = (i + randf())/numS;</pre>

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
 for (uint i = 0; i < numS; i++)
 samples(d,i) = (i + randf())/numS;</pre>

UNIVERSITÄT DES SAARLANDES
N-Rooks Sampling

Samples

Expected power spectrum

Radial mean

Kenneth Chiu, Peter Shirley, and Changyaw Wang. "Multijittered sampling." In Graphics Gems IV, pp. 370–374. Academic Press, May 1994.

– combine N-Rooks and Jittered stratification constraints

// initialize float cellSize = 1.0 / (resX*resY); for (uint i = 0; i < resX; i++)</pre> for (uint j = 0; j < resY; j++) samples(i,j).x = i/resX + (j+randf()) / (resX*resY); samples(i,j).y = j/resY + (i+randf()) / (resX*resY); }

// shuffle x coordinates within each column of cells for (uint i = 0; i < resX; i++)</pre> for (uint j = resY-1; j >= 1; j--) swap(samples(i, j).x, samples(i, randi(0, j)).x);

// shuffle y coordinates within each row of cells for (unsigned j = 0; j < resY; j++)</pre> for (unsigned i = resX-1; i >= 1; i swap(samples(i, j).y, samples(ra

Samples

Expected power spectrum

Radial mean

N-Rooks Sampling

Samples

Expected power spectrum

Radial mean

Jittered Sampling

Radial mean

Poisson-Disk/Blue-Noise Sampling

Enforce a minimum distance between points **Poisson-Disk Sampling:**

- Mark A. Z. Dippé and Erling Henry Wold. "Antialiasing through stochastic sampling." ACM SIGGRAPH, 1985.
- Robert L. Cook. "Stochastic sampling in computer graphics." ACM Transactions on Graphics, 1986.
- Ares Lagae and Philip Dutré. "A comparison of methods for generating Poisson disk distributions." *Computer Graphics Forum*, 2008.

Random Dart Throwing

Random Dart Throwing

Random Dart Throwing

Poisson Disk Sampling

Samples

Expected power spectrum

Radial mean

Blue-Noise Sampling (Relaxation-based)

- 1. Initialize sample positions (e.g. random)
- 2. Use an iterative relaxation to move samples away from each other.

Lloyd-Relaxation Method

CCVT Sampling [Balzer et al. 2009]

CCVT Sampling [Balzer et al. 2009]

Samples

Expected power spectrum

Radial mean

Poisson Disk Sampling

Samples

Expected power spectrum

Radial mean

Low-Discrepancy Sampling

Deterministic sets of points specially crafted to be evenly distributed (have low discrepancy).

Entire field of study called Quasi-Monte Carlo (QMC)

The Van der Corput Sequence

Radical Inverse Φ_h in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/3
5	101	.101 = 5/3
6	110	.011 = 3/3
7	111	.111 = 7/3

Realistic Image Synthesis SS2024

Halton and Hammersley Points

- Halton: Radical inverse with different base for each dimension:
- $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$ - The bases should all be relatively prime.
- Incremental/progressive generation of samples
- **Hammersley**: Same as Halton, but first dimension is k/N:
- Not incremental, need to know sample count, N, in advance

The Hammersley Sequence

The Hammersley Sequence

1 sample in each "elementary interval"

The Hammersley Sequence

The Hammersley Sequence

1 sample in each "elementary interval"

The Hammersley Sequence

1 sample in each "elementary interval"

The Hammersley Sequence

1 sample in each "elementary interval"

Monte Carlo (16 random samples)

Realistic Image Synthesis SS2024

Monte Carlo (16 jittered samples)

Scrambled Low-Discrepancy Sampling

More info on QMC in Rendering

S. Premoze, A. Keller, and M. Raab. *Advanced (Quasi-) Monte Carlo Methods for Image Synthesis.* In SIGGRAPH 2012 courses.

How can we predict error from these?

Realistic Image Synthesis SS2024

Realistic Image Synthesis SS2024

Part 2: Formal Treatment of MSE, Bias and Variance

Frequency

Convergence rate for Random Samples

Increasing Samples

Variance

Convergence rate for Random Samples

Increasing Samples

Convergence rate for Jittered Samples

Increasing Samples

Convergence rate Jittered vs Poisson Disk

Increasing Samples

Convergence rate Jittered vs Poisson Disk

Increasing Samples

Samples and function in Fourier Domain

Realistic Image Synthesis SS2024

Convolution

Realistic Image Synthesis SS2024

Source: vdumoulin-github

Sampling in Primal Domain is **Convolution in Fourier Domain**

 $f(x) \mathbf{S}(x)$

Realistic Image Synthesis SS2024

Fredo Durand [2011]

Sampling in Primal Domain is **Convolution in Fourier Domain**

Fredo Durand [2011]

Aliasing in Reconstruction

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2024

-

Aliasing in Reconstruction

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2024

Error in Monte Carlo Integration

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2024

Aliasing (Reconstruction) vs. Error (Integration)

Integration in the Fourier Domain

Integration is the DC term in the Fourier Domain

Spatial Domain:

Fourier Domain:

Realistic Image Synthesis SS2024

 $I = \int_D f(x) dx$

 $\hat{f}(0)$

Monte Carlo Estimator in Spatial Domain

 $\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$

Monte Carlo Estimator in Spatial Domain

$$ilde{\mu}_N = \int_D f(x) \mathbf{S}(x) \mathbf{S}(x) \mathbf{S}(x) \mathbf{S}(x) \mathbf{S}(x)$$

x)dx

Monte Carlo Estimator in Fourier Domain

$$\tilde{\mu}_{N} = \int_{D} f(x) \mathbf{S}(x) dx = \boxed{\int_{\Omega} \hat{f}^{*}(\omega) \hat{\mathbf{S}}(\omega) d\omega}$$
$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_{k})$$

Realistic Image Synthesis SS2024

Monte Carlo Estimator in Fourier Domain

Realistic Image Synthesis SS2024

How to Formulate Error in Fourier Domain?

 $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Error in Spatial Domain

 $I = \hat{f}(0)$

True Integral

Realistic Image Synthesis SS2024

 $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Monte Carlo Estimator

Error in Spatial Domain

 $I = \hat{f}(0)$

 $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$

Error in Fourier Domain

 $I = \hat{f}(0)$

 $I - \tilde{\mu}_N = \int_D f(x)$

 $I - \tilde{\mu}_N = \hat{f}(0)$

$$\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega)$$

$$f(x)dx - \int_D f(x)\mathbf{S}(x)dx$$

$$) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

Fredo Durand [2011]

Error in Fourier Domain

121

$Error = Bias^2 + Variance$

Properties of Error

- Bias:
- Variance:

Realistic Image Synthesis SS2024

Subr and Kautz [2013]

Bias in the Monte Carlo Estimator

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$ $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle d\omega$

Subr and Kautz [2013]

$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) -$

To obtain an unbiased estimator:

$$\int_{\Omega} \hat{f}^*(\omega) \left< \hat{\mathbf{S}}(\omega) \right> d\omega$$

Subr and Kautz [2013]

$\langle \mathbf{\hat{S}}(\omega) \rangle = 0$

for frequencies other than zero

How to obtain $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$?

Complex form in Amplitude and Phase

Pauly et al. [2000] Ramamoorthi et al. [2012]

- Homogenization allows representation of error only in terms of variance
- We can take any sampling pattern and homogenize it to make the Monte Carlo estimator unbiased.

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

where,

 $P_{f}(\omega) = |\hat{f}^{*}(\omega)|^{2}$ Power Spectrum

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

This is a general form, both for homogenised as well as non-homogenised sampling patterns

Subr and Kautz [2013]

143

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

For purely random samples: $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

where

$$P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$$

Realistic Image Synthesis SS2024

 $\int P_f(\omega) \langle P_S(\omega) \rangle d\omega$ Ω

Fredo Durand [2011]

Variance using Homogenized Samples

Homogenizing any sampling pattern makes $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega}$$

where, $P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$

 $\int_{\Omega} P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$

Pilleboue et al. [2015]

Variance using Homogenized Samples

 $\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$

Variance in terms of n-dimensional Power Spectra

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

1 $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ \mathbf{T}

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega}$$

In polar coordinates:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^{\sigma}$$

Realistic Image Synthesis SS2024

Variance in the Polar Coordinates

 $\int_{\Omega} P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$

 $\int_{\mathbf{S}^{d-1}}^{\infty} \int_{\mathbf{S}^{d-1}} \frac{P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}{\int_{\mathbf{S}^{d-1}}^{\infty} \frac{P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega}$$

In polar coordinates:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^{\sigma}$$

Realistic Image Synthesis SS2024

Variance in the Polar Coordinates

 $\int_{\Omega} P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$

 $\int_{\mathbf{S}^{d-1}}^{\infty} \int_{\mathbf{S}^{d-1}} \frac{P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}{\int_{\mathbf{S}^{d-1}}^{\infty} \frac{P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}$

Variance for Isotropic Power Spectra

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^0$$

For isotropic power spectra:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^d)$$

Realistic Image Synthesis SS2024

 $\int_{S^{d-1}} \frac{P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}{|\mathbf{s}|^{d-1}}$

 $^{d-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d
ho$

151

Variance for Isotropic Power Spectra

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^0$$

For isotropic power spectra:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^d)$$

Realistic Image Synthesis SS2024

 $\int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \left\langle P_{\mathbf{S}}(\rho \mathbf{n}) \right\rangle d\mathbf{n} \, d\rho$

 $^{d-1}$) $\int_{0}^{\infty} \tilde{P}_{f}(\rho) \langle \tilde{P}_{S}(\rho) \rangle d\rho$

Variance in terms of 1-dimensional Power Spectra

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1})$$

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d
ho$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

For given number of Samples

Realistic Image Synthesis SS2024

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

Sampling Radial Power Spectrum

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

For given number of Samples

Realistic Image Synthesis SS2024

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

Sampling Radial Power Spectrum

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

 $^{l-1} \int_{0}^{\infty} \tilde{P}_{f}(\rho) \langle \tilde{P}_{\mathbf{S}}(\rho) \rangle d\rho$

For given number of Samples

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1})$$

Integrand Radial Power Spectrum

Realistic Image Synthesis SS2024

 $^{l-1})\int_{0}^{0}\tilde{P}_{f}(\rho)\langle\tilde{P}_{S}(\rho)\rangle\,d\rho$

For given number of Samples

Spatial Distribution vs Radial Mean Power Spectra

Jitter

Poisson Disk

Realistic Image Synthesis SS2024

For 2-dimensions

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-3})$

Pilleboue et al. [2015]

For 2-dimensions

Worst Case	Best Case
$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-3})$

Pilleboue et al. [2015]

Realistic Image Synthesis SS2024

Low Frequency Region

Variance for Low Sample Count

Realistic Image Synthesis SS2024

Variance for Increasing Sample Count

Experimental Verification

Convergence rate

Increasing Samples

Convergence rate

Increasing Samples

Disk Function as Worst Case

Disk Function as Worst Case

Gaussian as Best Case

Ambient Occlusion Examples

Random vs Jittered

96 Secondary Rays

MSE: 4.74 x 10e-3

MSE: 8.56 x 10e-4

96 Secondary Rays

MSE: 4.24 x 10e-4

Realistic Image Synthesis SS2024

CCVT vs. Poisson Disk

MSE: 6.95 x 10e-4

Convergence rates

Jittered vs Poisson Disk

What are the benefits of this analysis

- would converge faster.
- samples

• For offline rendering, analysis tells which samplers

• For real time rendering, blue noise samples are more effective in reducing variance for a given number of

Acknowledgements

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Kartic Subr

*Wojciech Jarosz Gurprit Singh

Render the Possibilities

*First part of slides are from Wojciech Jarosz

