Gurprit Singh

Philipp Slusalek

Volume Rendering

Karol Myszkowski

Next career fair "next" on June 11, 2024 from 10:00 a.m. to 5:00 p.m.

The trade fair offers our students the opportunity to meet potential employers, make contacts and find out about career opportunities. Companies have the opportunity to offer internships, theses or entry-level positions.

Die Karrieremesse der UdS

DES

Volumetric Processes:

Absorption

Scattering

Transmittance

Phase Functions

Overview

Volumetric Rendering Equation Volumetric Path Tracing Woodcock Tracking

Fog

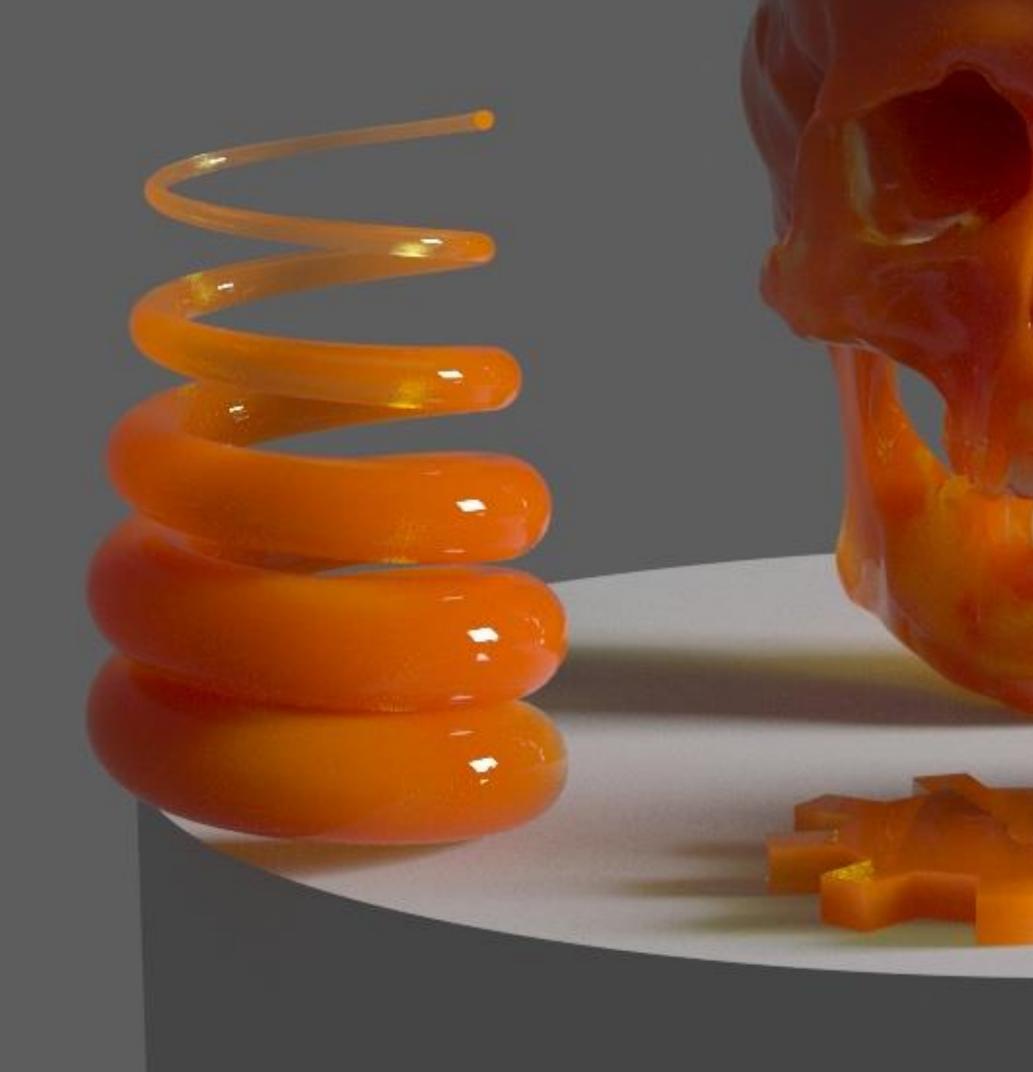
Brassai (Gyula Halasz) 1899-1984

Aerial View

Gurprit Singh

Fire

Harry Potter/Warner Brothers



Surface or Volume?

Corona Renderer / Chaos Czech a.s. / Chaos Group

Universe

lisamission.c

Defining Participating Media

Media properties are modeled as a probabilistic process

No need to consider individual interactions with particles (won't fit in the memory)

Defining Participating Media

Homoegeneous media:

- Infinite or bounded by a simple surface or simple shape

Defining Participating Media

Heterogeneous media (spatially varying coefficients):

- Procedurally e.g. using a noise function

- Simulation + volume discretization, e.g., voxel grid

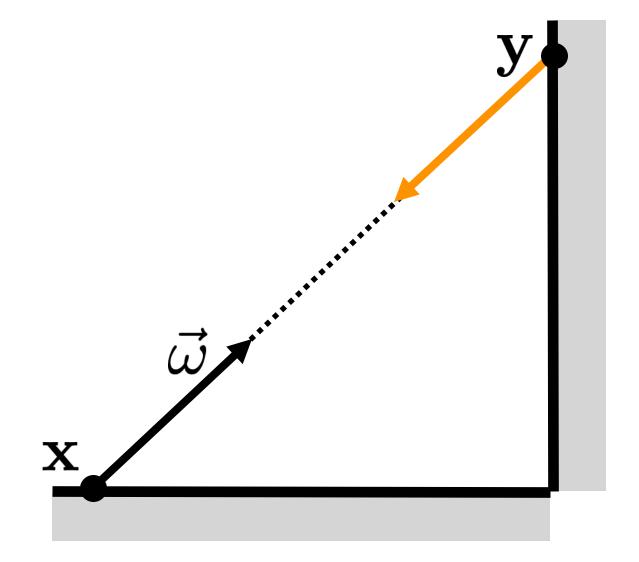
Radiance is the main quantity we are interested in for rendering.

In **vaccum**, light transport radiance remains constant along rays between surfaces

$$L_i(\mathbf{x}, \vec{\omega}) = L_o(\mathbf{y}, -\vec{\omega})$$

 $\mathbf{y} = \mathbf{r}(\mathbf{x}, \vec{\omega})$

Radiance



ray tracing function

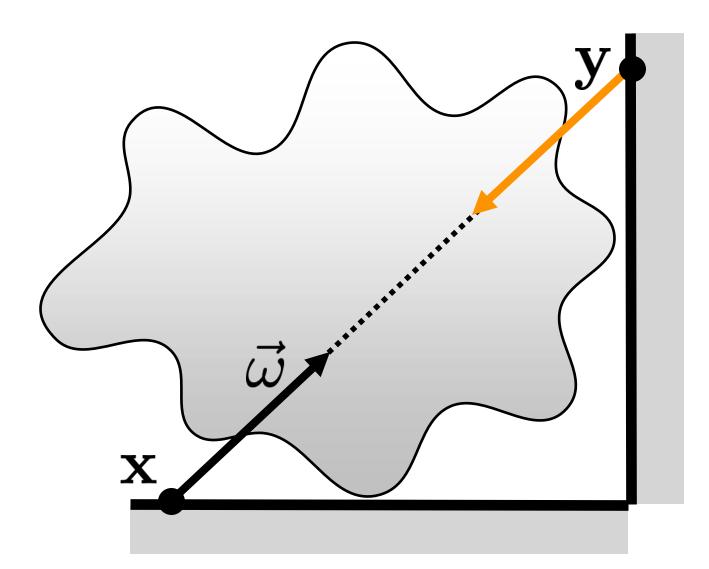
15

Realistic Image Synthesis SS2024

In participating media, radiance may change along rays between surfaces

$$L_i(\mathbf{x}, \vec{\omega}) \neq L_o(\mathbf{y}, -\mathbf{y})$$
$$\mathbf{y} = \mathbf{r}(\mathbf{x}, \vec{\omega})$$

Radiance

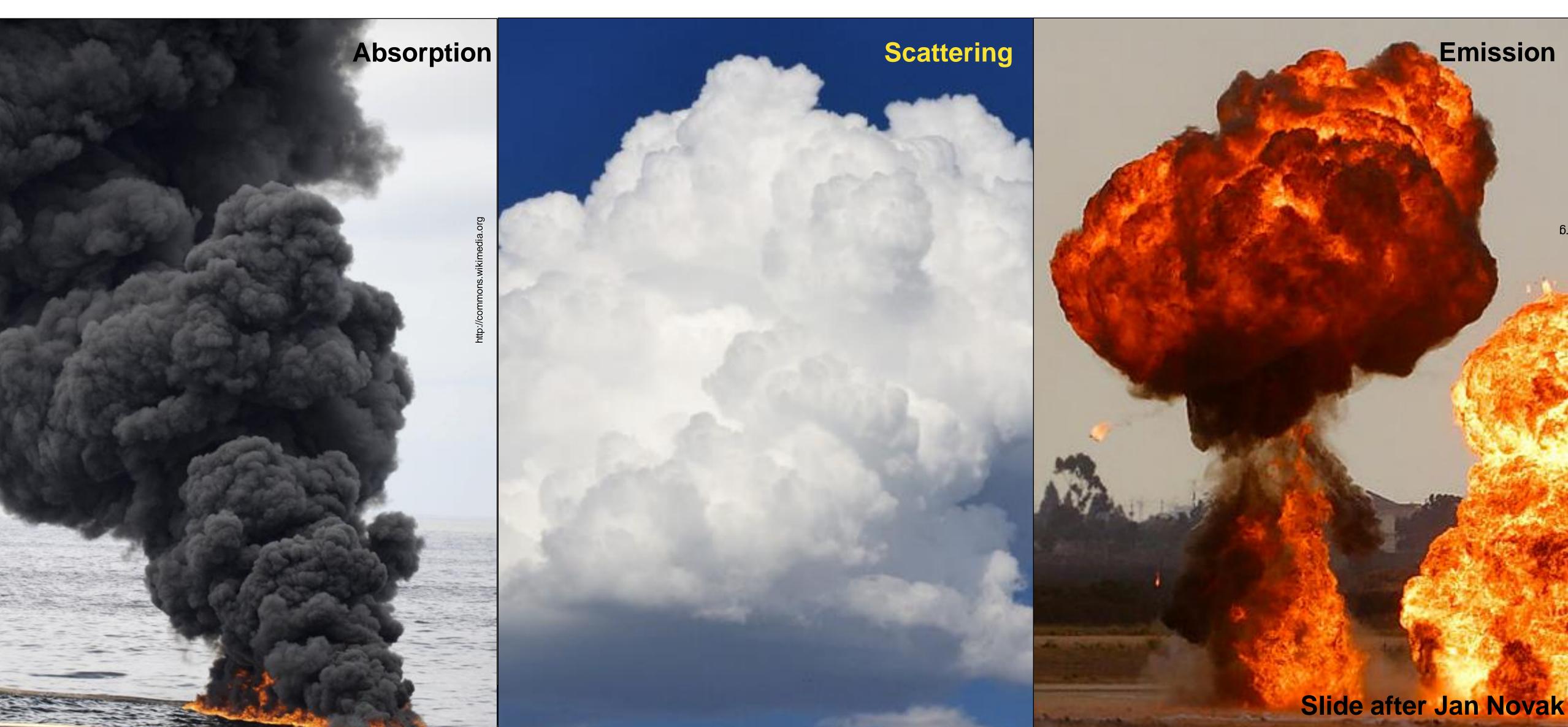


 $-ec{\omega})$

ray tracing function

16

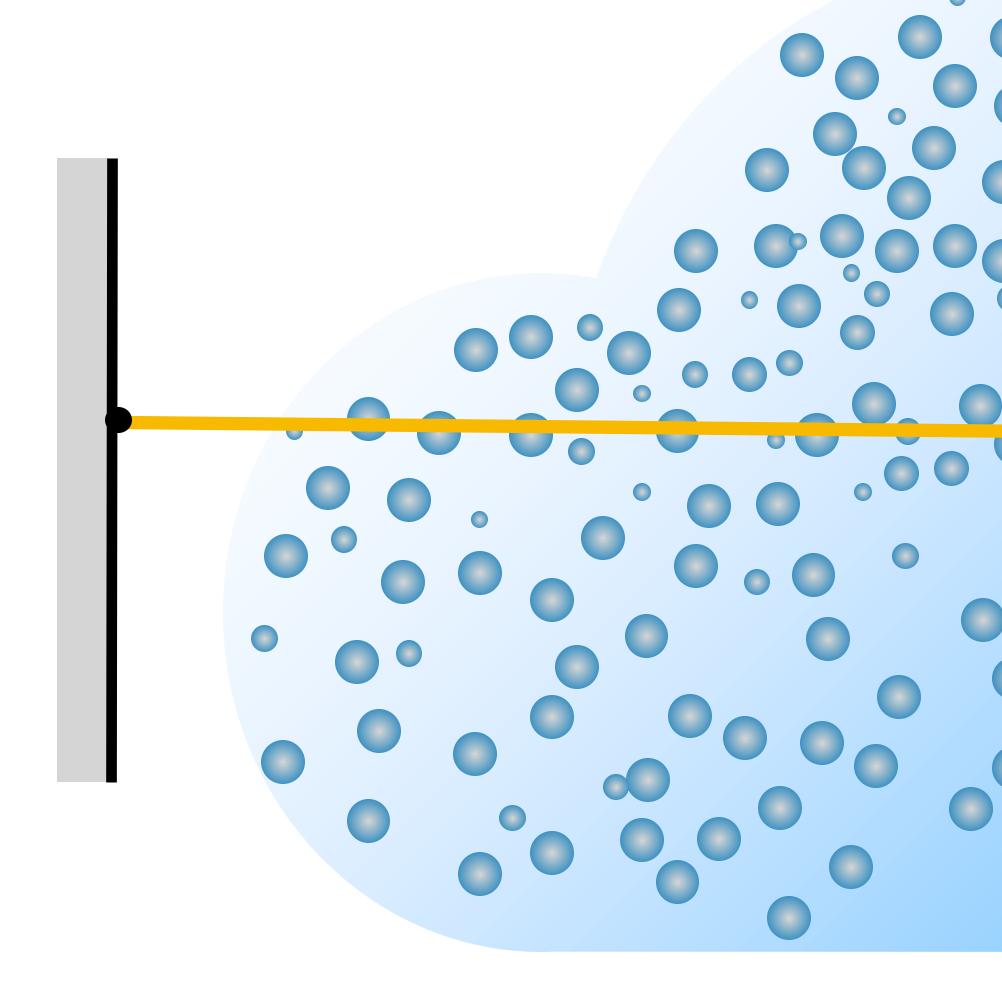
Volumetric Scattering Processes



Participating Media

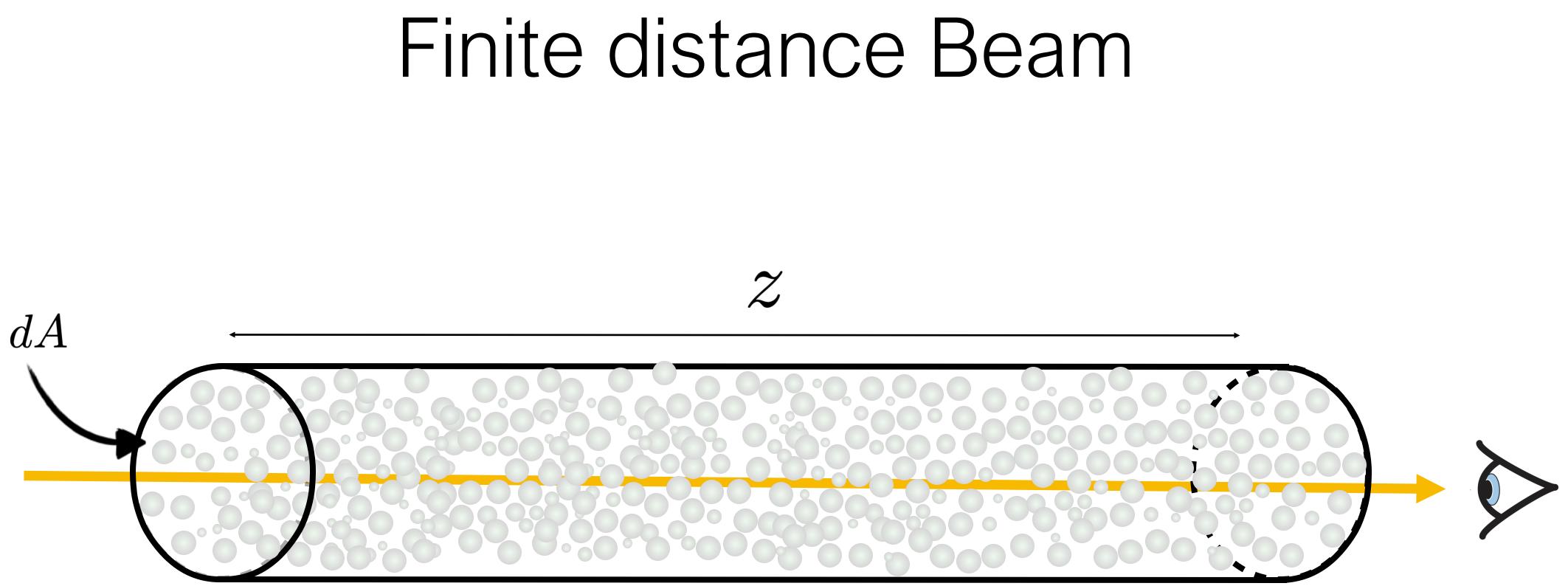
Participating Media

Participating Media



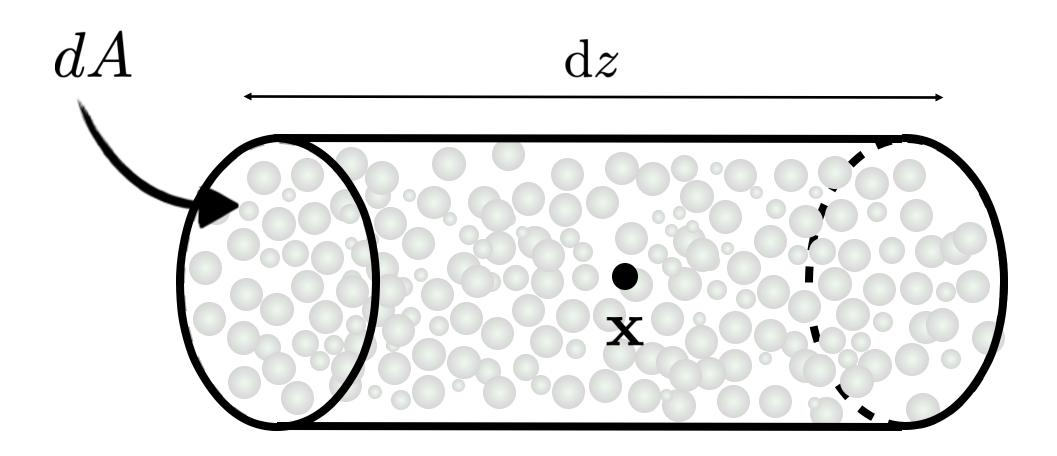
Realistic Image Synthesis SS2024

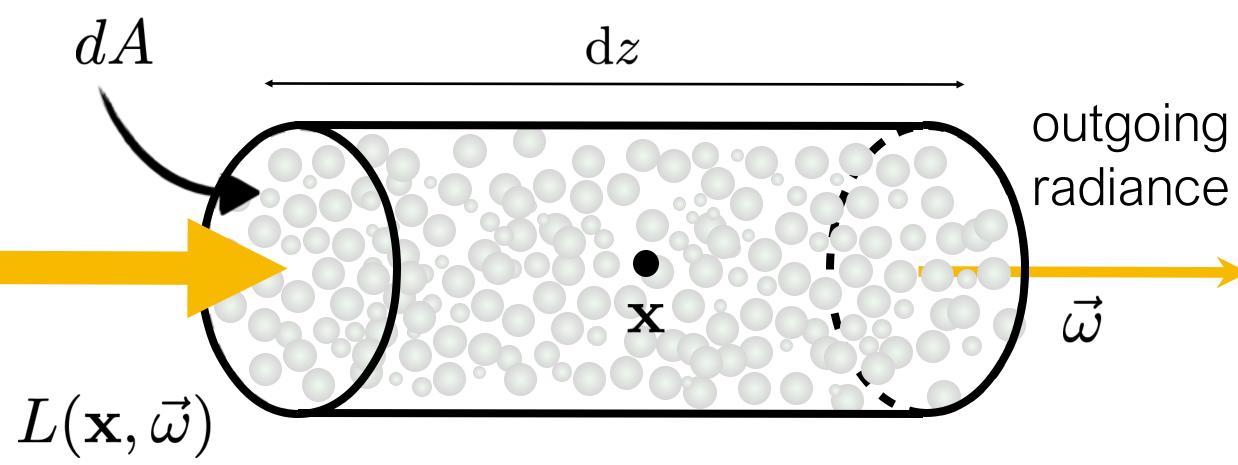
00



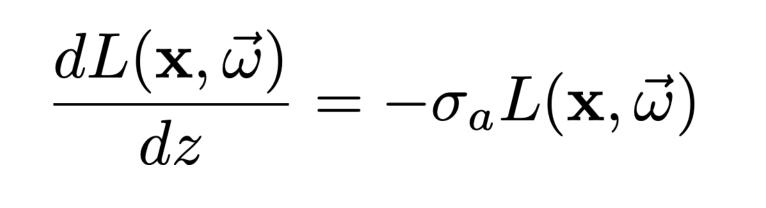
How much light is gained or lost during the travel through this differential beam due to the interactions with the medium?

Differential Beam

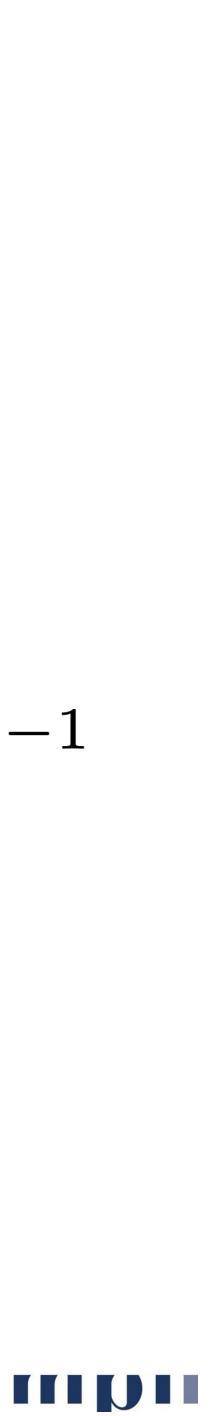


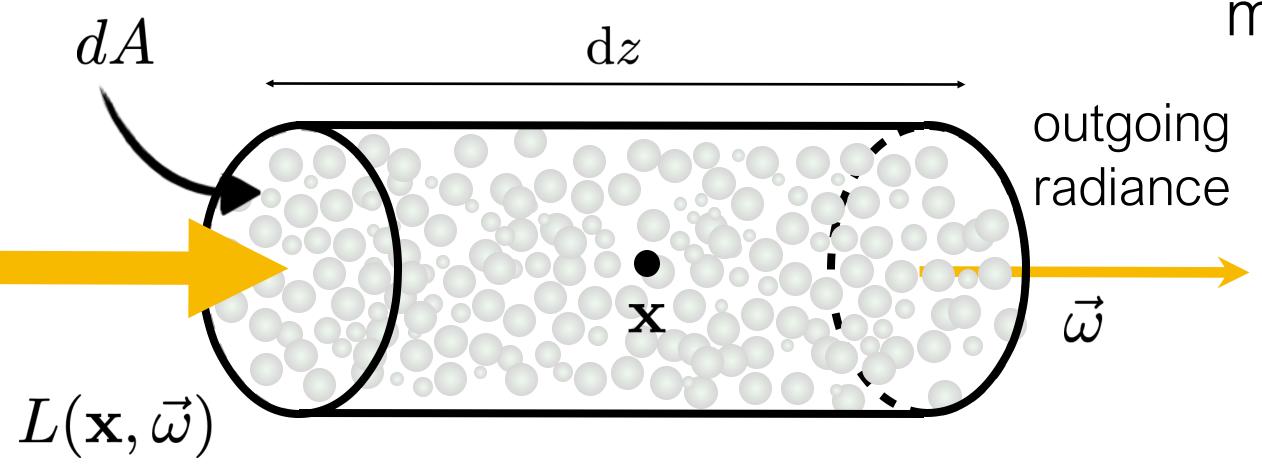


Absorption



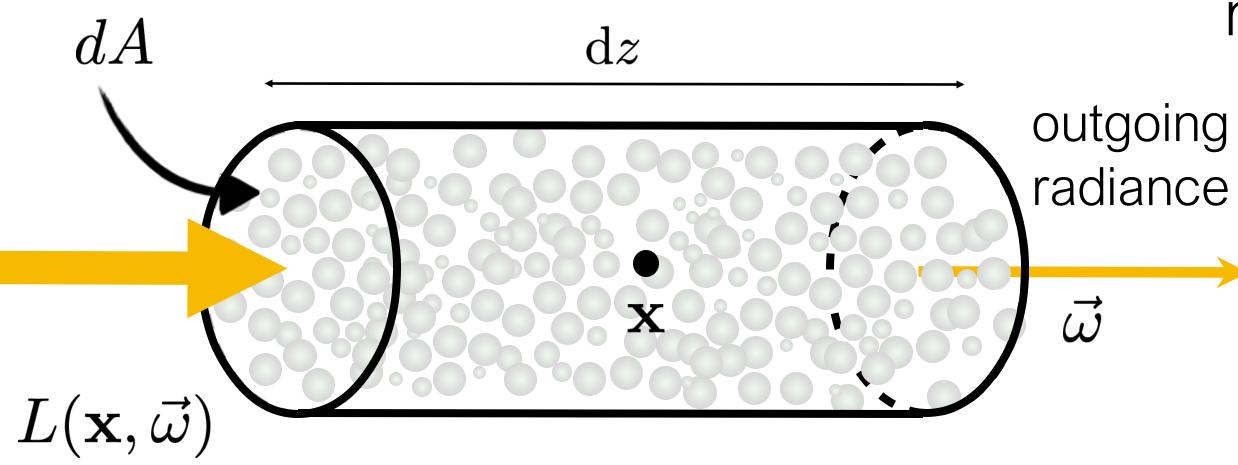
 σ_a : absorption coefficient $\,m^{-1}$





Absorption

Absorption described by medium's absorption cross-section σ_a

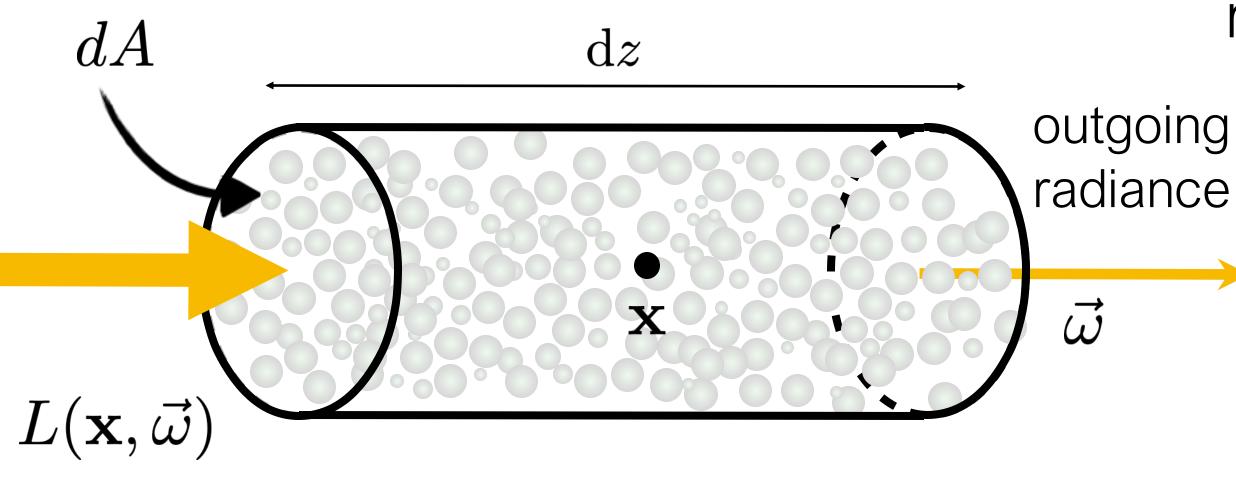


Absorption

Absorption described by medium's absorption cross-section σ_a

 $\sigma_a \in [0,\infty)$

30



Absorption

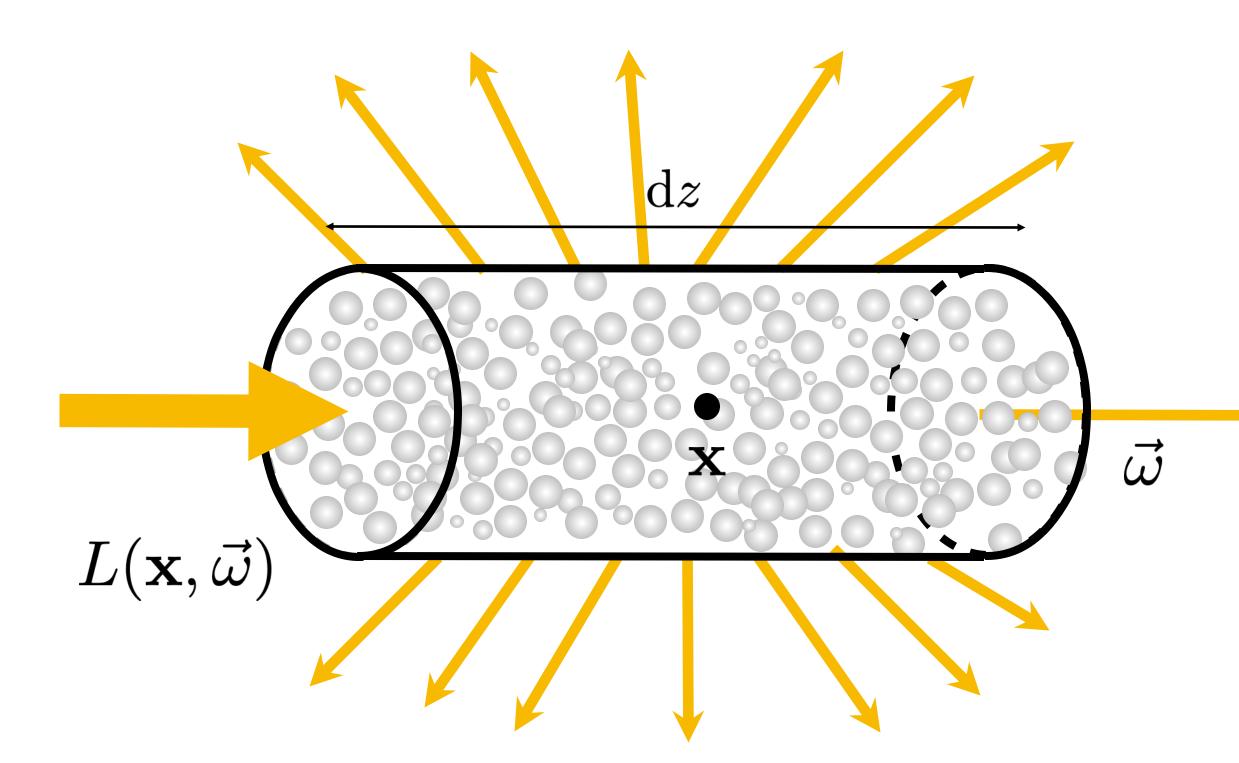
Absorption described by medium's absorption cross-section σ_a

$$\sigma_a \in [0,\infty)$$

It is the probability density that light is absorbed per unit distance travelled in the medium

It can vary as a position and direction

Out-Scattering



The probability of an out-scattering event occurring per unit distance is given by the scattering coefficient

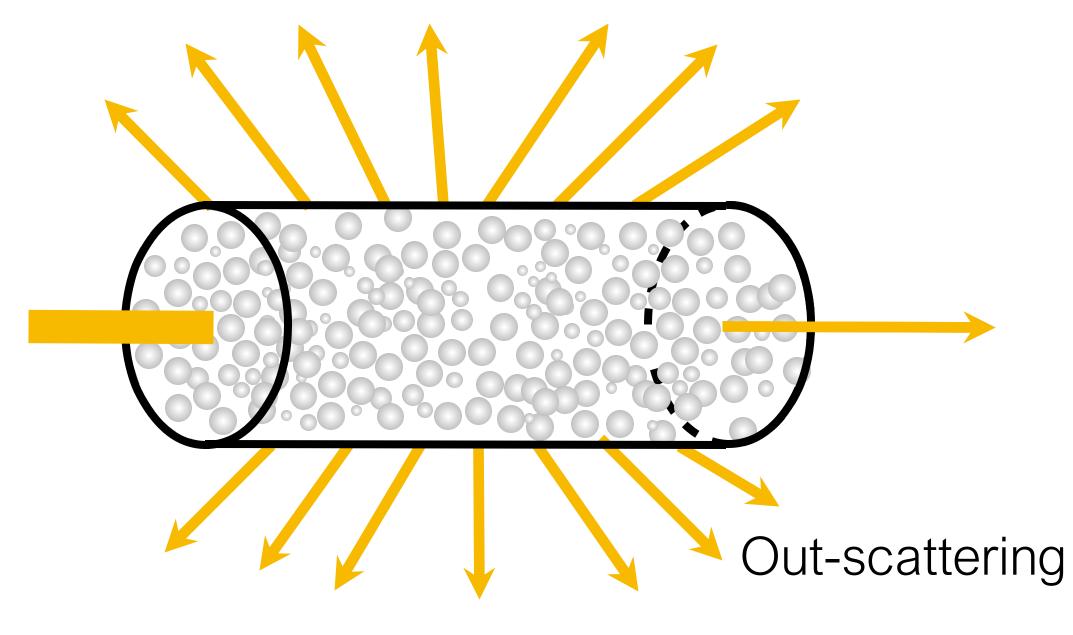
Realistic Image Synthesis SS2024

 $\frac{dL(\mathbf{x},\vec{\omega})}{dz} = -\sigma_s L(\mathbf{x},\vec{\omega})$

 σ_s : scattering coefficient

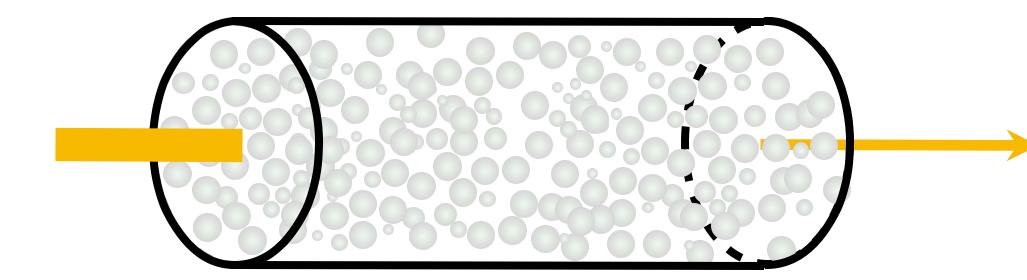
Attenuation / Extinction

Total reduction in radiance:



Realistic Image Synthesis SS2024

- σ_a : absorption coefficient
- σ_s : scattering coefficient

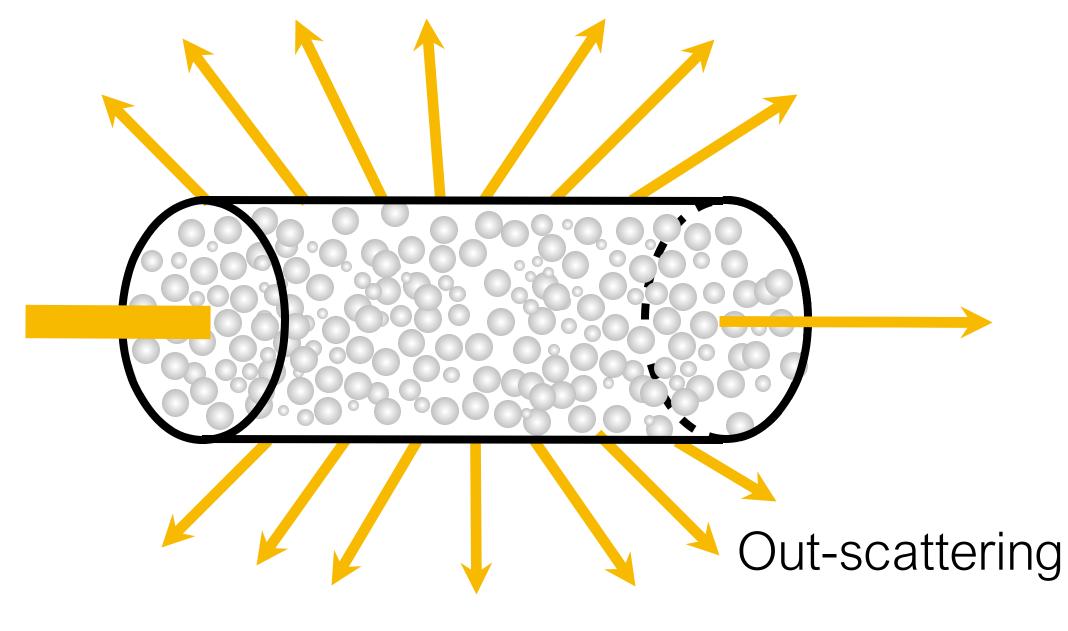


Absorption

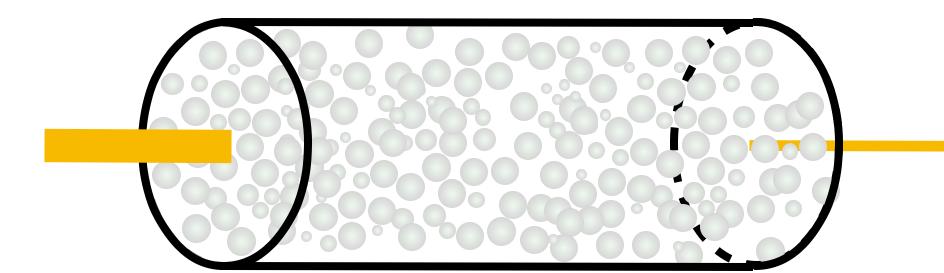
Attenuation / Extinction

Total reduction in radiance:

 $\sigma_t(\mathbf{x}, \vec{\omega}) = \sigma_a(\mathbf{x}, \vec{\omega}) + \sigma_s(\mathbf{x}, \vec{\omega})$

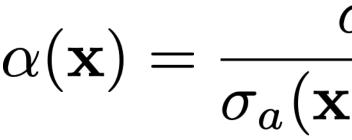


- σ_a : absorption coefficient
- σ_s : scattering coefficient
- σ_t : extinction coefficient



Absorption

39



Albedo

 $\alpha(\mathbf{x}) = \frac{\sigma_s(\mathbf{x})}{\sigma_a(\mathbf{x}) + \sigma_s(\mathbf{x})} = \frac{\sigma_s(\mathbf{x})}{\sigma_t(\mathbf{x})}$

- σ_s : scattering coefficient
- σ_t : extinction coefficient

$\alpha(\mathbf{x})$

Albedo

$$) = \frac{\sigma_s(\mathbf{x})}{\sigma_t(\mathbf{x})}$$

The albedo is always between 0 and 1

It describes the probability of scattering (versus absorption) at a scattering event

- σ_s : scattering coefficient
- σ_t : extinction coefficient

Mean-

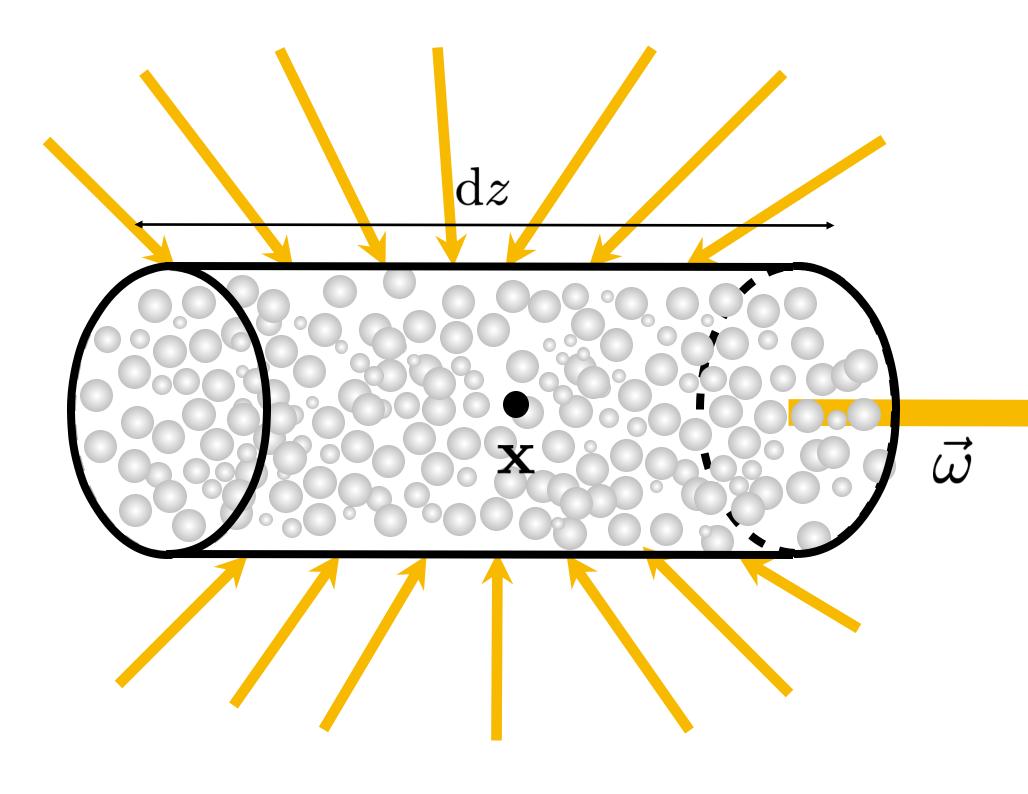
Realistic Image Synthesis SS2024

free path		
$rac{1}{\sigma_t}$		

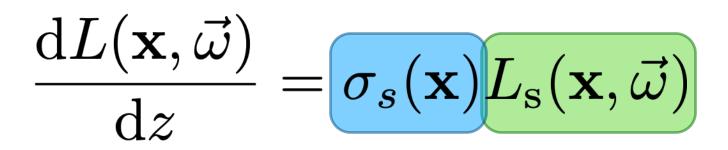
Mean free path gives the average distance travelled by the ray before interacting with a particle

 σ_t : extinction coefficient

In-Scattering



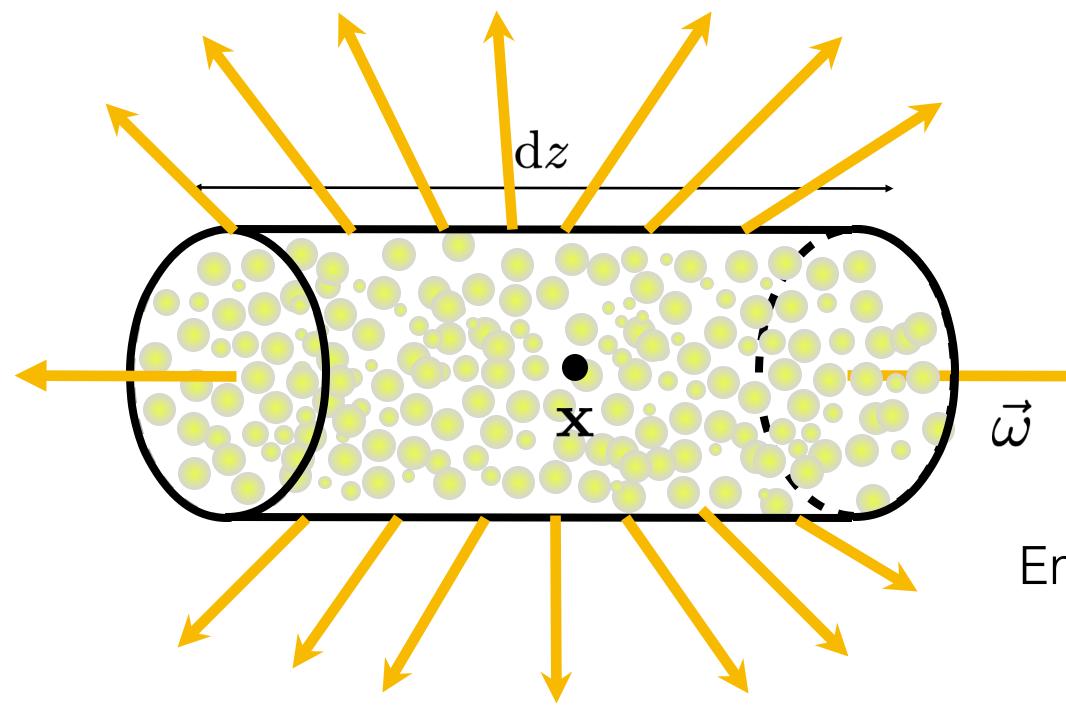
Realistic Image Synthesis SS2024



 $\sigma_s(\mathbf{x})$: scattering coefficient

In-scattered radiance

$$L_{\rm s}({f x},ec{\omega}) = \int_{S^2} f_{
m p}(ec{\omega},ec{\omega}') L({f x},ec{\omega}') d{f x})$$



Here we made a choice to represent differential output radiance as a product of emitted radiance and absorption coefficient.

Emission

$$\frac{\mathrm{d}L(\mathbf{x},\vec{\omega})}{\mathrm{d}z} = \sigma_a(\mathbf{x})L_\mathrm{e}(\mathbf{x},\vec{\omega})$$

 $L_e(\mathbf{x}, \vec{\omega})$: emitted radiance

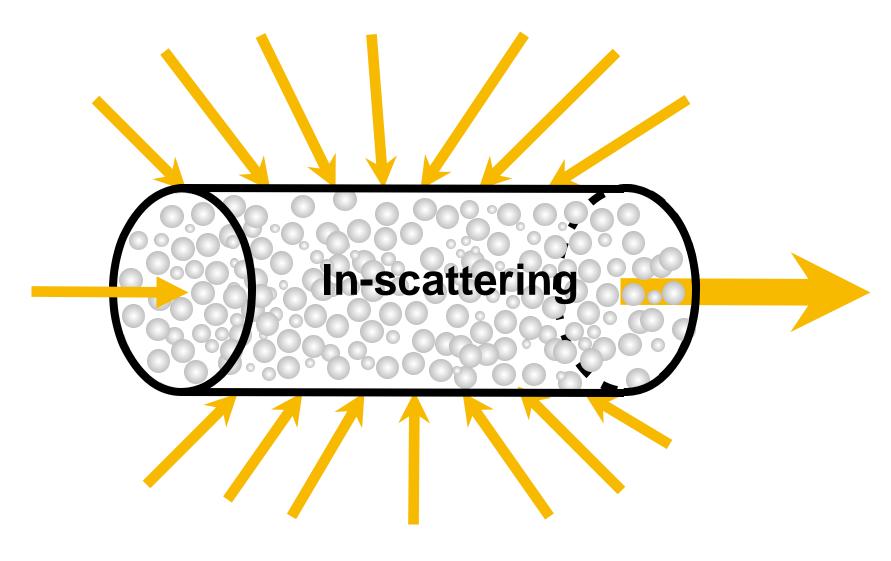
*sometimes modeled without the absorption coefficient term

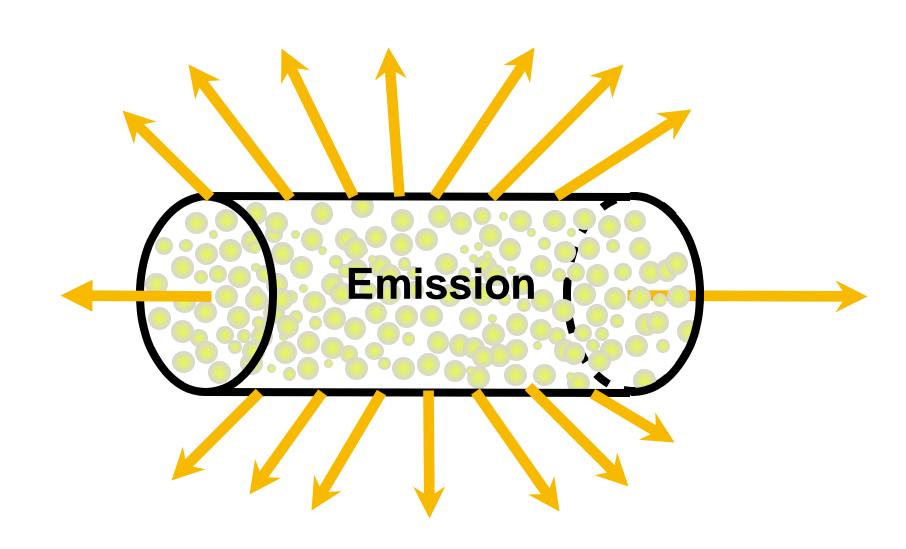
Emitted radiance does not depend on the incoming light L_i

45

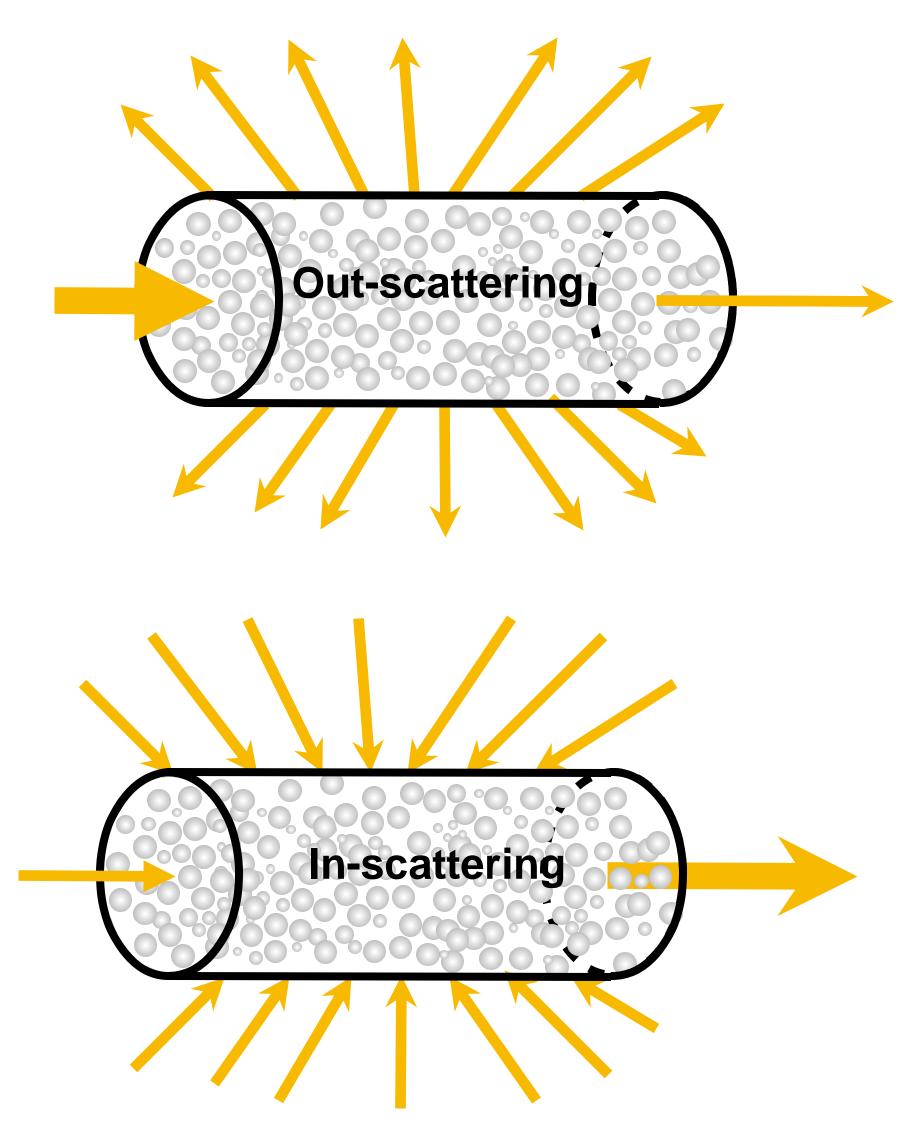
Radiative Transfer Equation

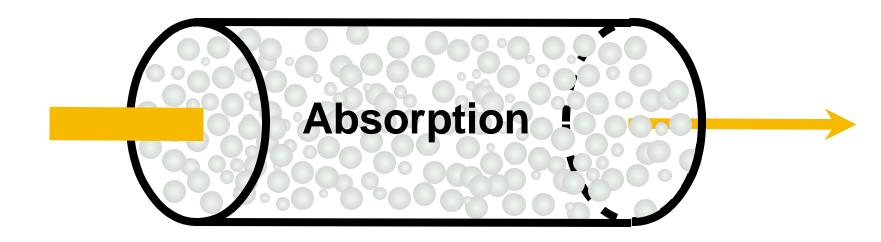
Radiative Transfer Equation (RTE)

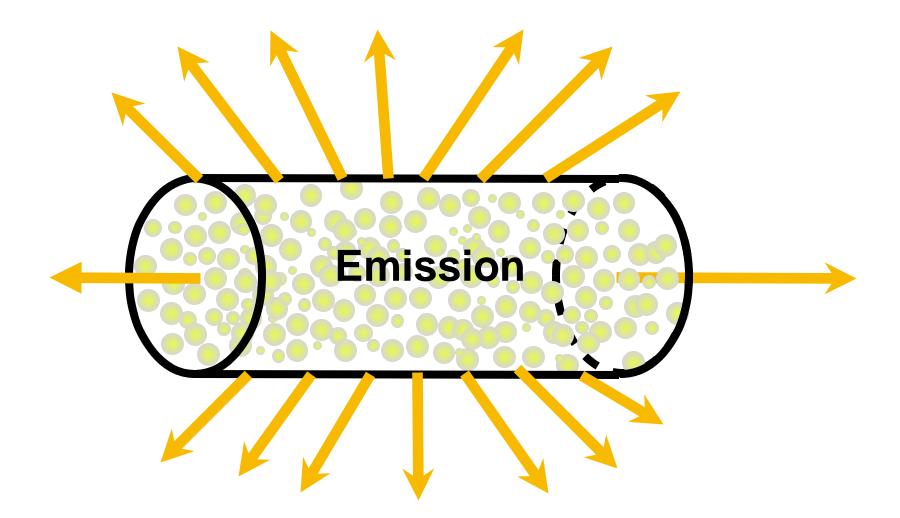




Radiative Transfer Equation (RTE)

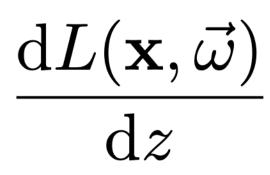






Radiative Transfer Equation (RTE)

Out-scattering



In-scattering

Realistic Image Synthesis SS2024

Absorption

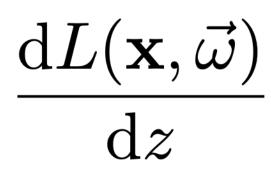
Losses

Gains



 $-\sigma_s(\mathbf{x})L(\mathbf{x},\vec{\omega})$

Out-scattering



 $\sigma_s(\mathbf{x})L_s(\mathbf{x},\vec{\omega})$

In-scattering

Realistic Image Synthesis SS2024

 $-\sigma_a(\mathbf{x})L(\mathbf{x},\vec{\omega})$

Absorption

Losses

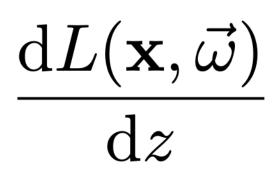
 $\sigma_a(\mathbf{x})L_e(\mathbf{x},\vec{\omega})$

Emission

Gains

Out-scattering

Absorption



Realistic Image Synthesis SS2024

$-\sigma_s(\mathbf{x})L(\mathbf{x},\vec{\omega}) - \sigma_a(\mathbf{x})L(\mathbf{x},\vec{\omega}) + \sigma_s(\mathbf{x})L_s(\mathbf{x},\vec{\omega}) + \sigma_a(\mathbf{x})L_e(\mathbf{x},\vec{\omega})$

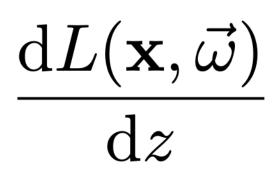
In-scattering

Emission

54

Out-scattering

Absorption



Realistic Image Synthesis SS2024

$-\sigma_s(\mathbf{x})L(\mathbf{x},\vec{\omega}) - \sigma_a(\mathbf{x})L(\mathbf{x},\vec{\omega}) + \sigma_s(\mathbf{x})L_s(\mathbf{x},\vec{\omega}) + \sigma_a(\mathbf{x})L_e(\mathbf{x},\vec{\omega})$

In-scattering

Emission

$\sigma_t(\mathbf{x}, \vec{\omega}) = \sigma_a(\mathbf{x}, \vec{\omega}) + \sigma_s(\mathbf{x}, \vec{\omega})$

55

Attenuation

 $\frac{\mathrm{d}L(\mathbf{x},\vec{\omega})}{\mathrm{d}z} = -\sigma_t(\mathbf{x})L(\mathbf{x},\vec{\omega}) + \sigma_s(\mathbf{x})L_s(\mathbf{x},\vec{\omega}) + \sigma_a(\mathbf{x})L_e(\mathbf{x},\vec{\omega})$

Realistic Image Synthesis SS2024

In-scattering

Emission

What about a beam with finite-length z?

Extinction Along a Finite Beam

$$egin{array}{ll} rac{\mathrm{d}L(\mathbf{x},ec{\omega})}{\mathrm{d}z} &= -\sigma_t(\mathbf{x})L(\mathbf{x},ec{\omega}) \ rac{\mathrm{d}L(\mathbf{x},ec{\omega})}{L(\mathbf{x},ec{\omega})} &= -\sigma_t(\mathbf{x})\mathrm{d}\mathbf{z} & // \ |\mathbf{r}| \end{array}$$

$$\log_e L_z - \log_e L_0 = -\sigma_t(\mathbf{x})z$$
$$\log_e \left(\frac{L_z}{L_0}\right) = -\sigma_t z \qquad \text{// Expo}$$
$$\frac{L_z}{L_0} = e^{-\sigma_t z}$$

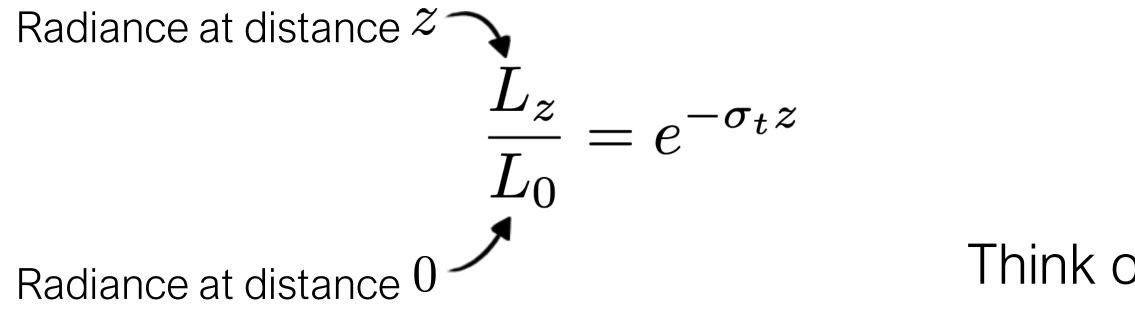
ntegrate along beam from 0 to Z

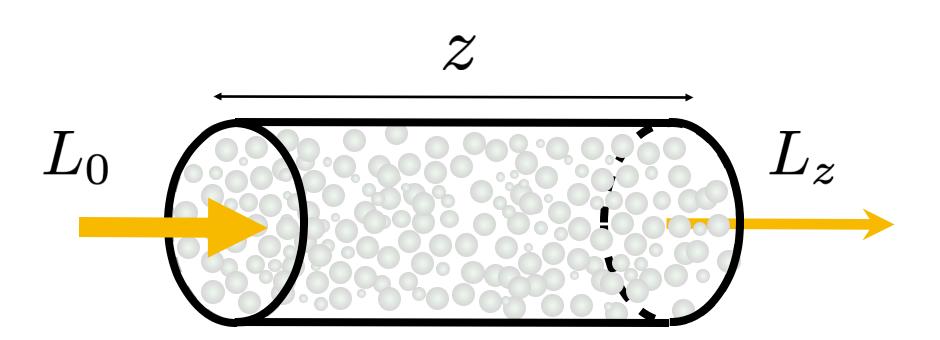
onentiate

57

Beer-Lambert Law

The fraction refers to as the *transmittance*





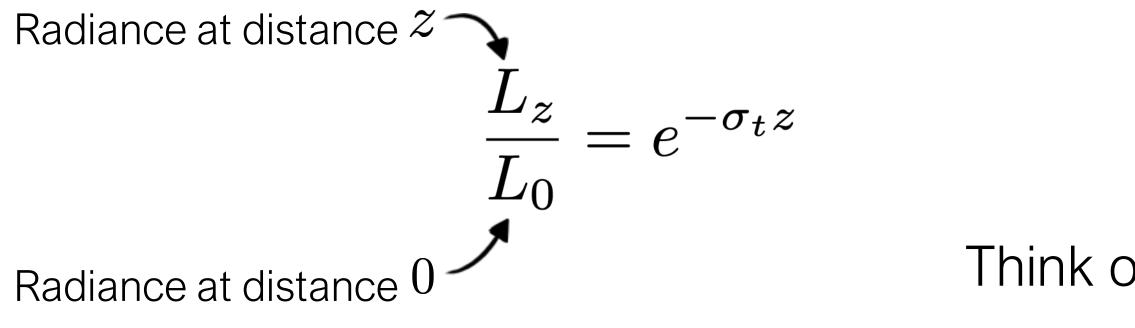
Think of this as fractional visibility loss between two points

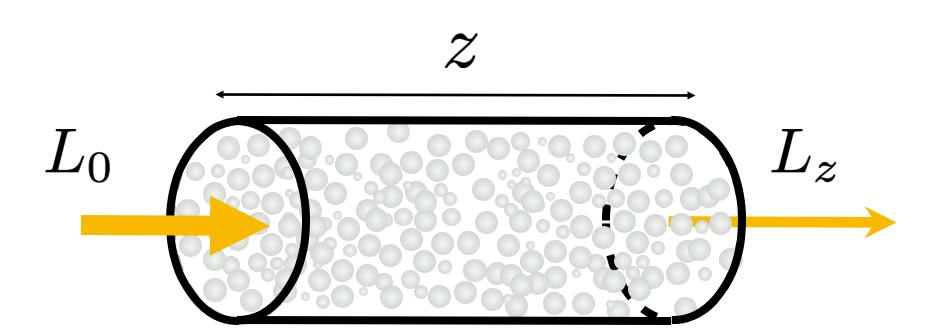
58

Beer-Lambert Law

Expresses the remaining radiance after traveling a finite distance through the medium with constant extinction coefficient

The fraction refers to as the *transmittance*





Think of this as fractional visibility loss between two points

59

Realistic Image Synthesis SS2024

 $L_o(\mathbf{x}, \vec{\omega})$

 \boldsymbol{z}

 $L_o(\mathbf{x}, \vec{\omega})$ X

 $T_r(\mathbf{x} \to \mathbf{y}) = e^{-\int_0^{||\mathbf{x} - \mathbf{y}||} \sigma_t(t) dt}$

Radiance at y

$T_r(\mathbf{x} \to \mathbf{x}') L_o(\mathbf{x}, \vec{\omega})$

 $L_o(\mathbf{x}, \vec{\omega})$

 $T_r(\mathbf{x} \to \mathbf{y}) = e^{-\int_0^{||\mathbf{x} - \mathbf{y}||} \sigma_t(t) dt}$

Radiance at \mathbf{y}

$T_r(\mathbf{x} \to \mathbf{x}') L_o(\mathbf{x}, \vec{\omega})$

 $L_o(\mathbf{x}, \vec{\omega})$

 $T_r(\mathbf{x} \to \mathbf{y}) = e^{-\int_0^{||\mathbf{x} - \mathbf{y}||} \sigma_t(t) dt}$

Beam Transmittance: Multiplicative

 $T_r(\mathbf{x} \to \mathbf{x}'') = T_r(\mathbf{x} \to \mathbf{x}')T_r(\mathbf{x}' \to \mathbf{x}'')$

 $L_o(\mathbf{x}, \vec{\omega})$

 $T_r(\mathbf{x} \to \mathbf{x}')$

 $T_r(\mathbf{x}' \to \mathbf{x}'')$

 \mathbf{x}'

In Homogeneous medium σ_t is a constant:

 $T_r(\mathbf{x} \to \mathbf{y})$

In Heterogeneous medium (spatially varying σ_t):

$$T_r(\mathbf{x} \to \mathbf{y}) = e^{-\int_0^{||\mathbf{x} - \mathbf{y}||} \sigma_t(t) dt}$$
 Optical thickness

$$\sigma = e^{-\sigma_t ||\mathbf{x} - \mathbf{y}||}$$

Attenuation

 $\frac{\mathrm{d}L(\mathbf{x},\vec{\omega})}{\mathrm{d}z} = -\sigma_t(\mathbf{x})L(\mathbf{x},\vec{\omega}) + \sigma_s(\mathbf{x})L_s(\mathbf{x},\vec{\omega}) + \sigma_a(\mathbf{x})L_e(\mathbf{x},\vec{\omega})$

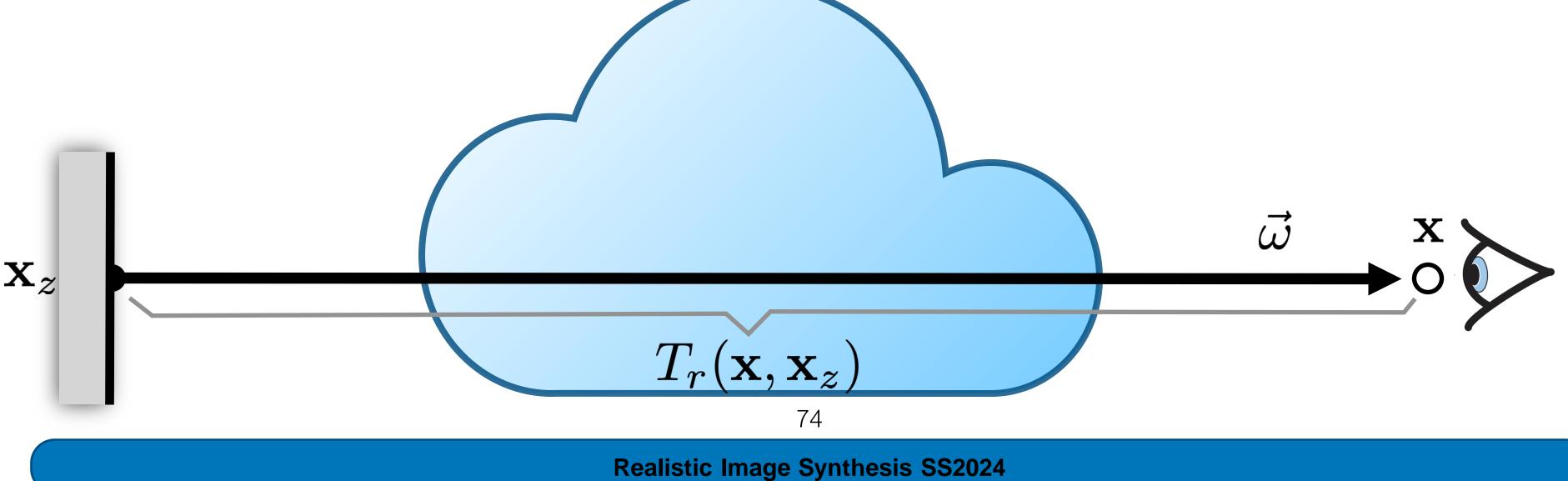
Realistic Image Synthesis SS2024

In-scattering

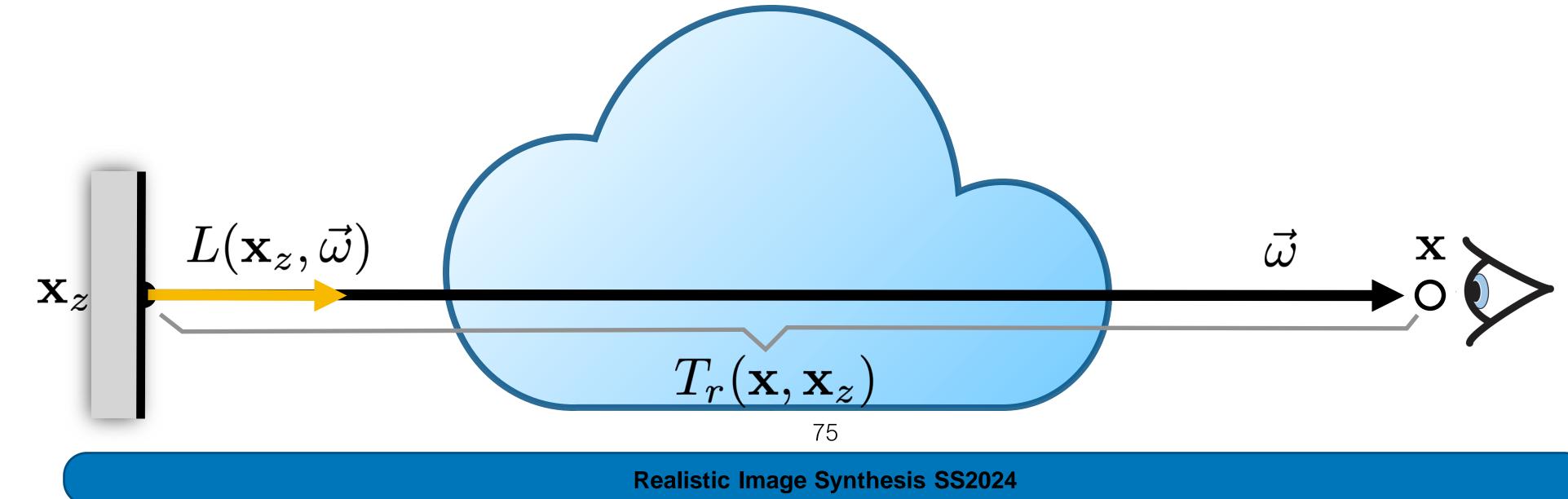
Emission

What about a beam with finite-length z?

$L(\mathbf{x},\vec{\omega}) = T_r(\mathbf{x},\mathbf{x}_z)L(\mathbf{x}_z,\vec{\omega})$

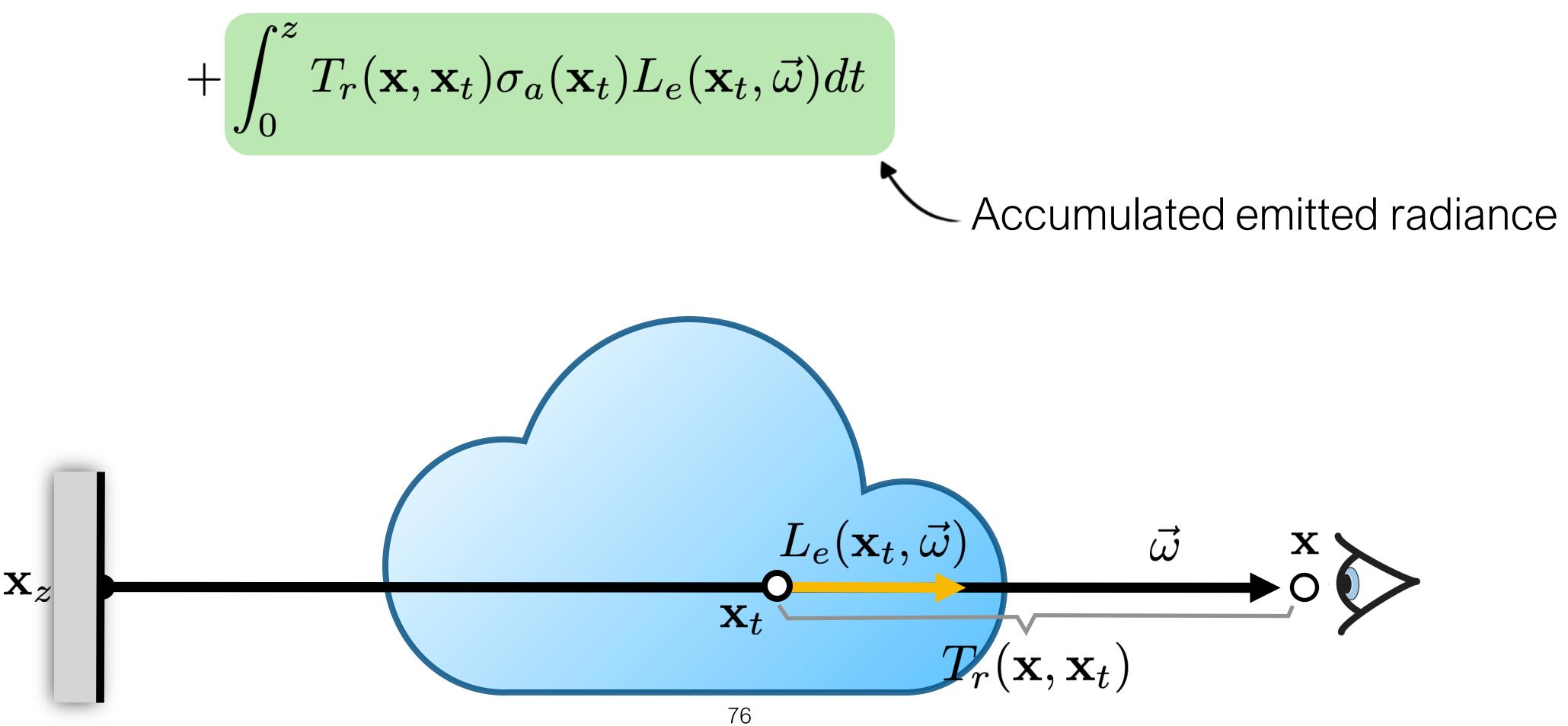


 $L(\mathbf{x},\vec{\omega}) = T_r(\mathbf{x},\mathbf{x}_z)L(\mathbf{x}_z,\vec{\omega})$



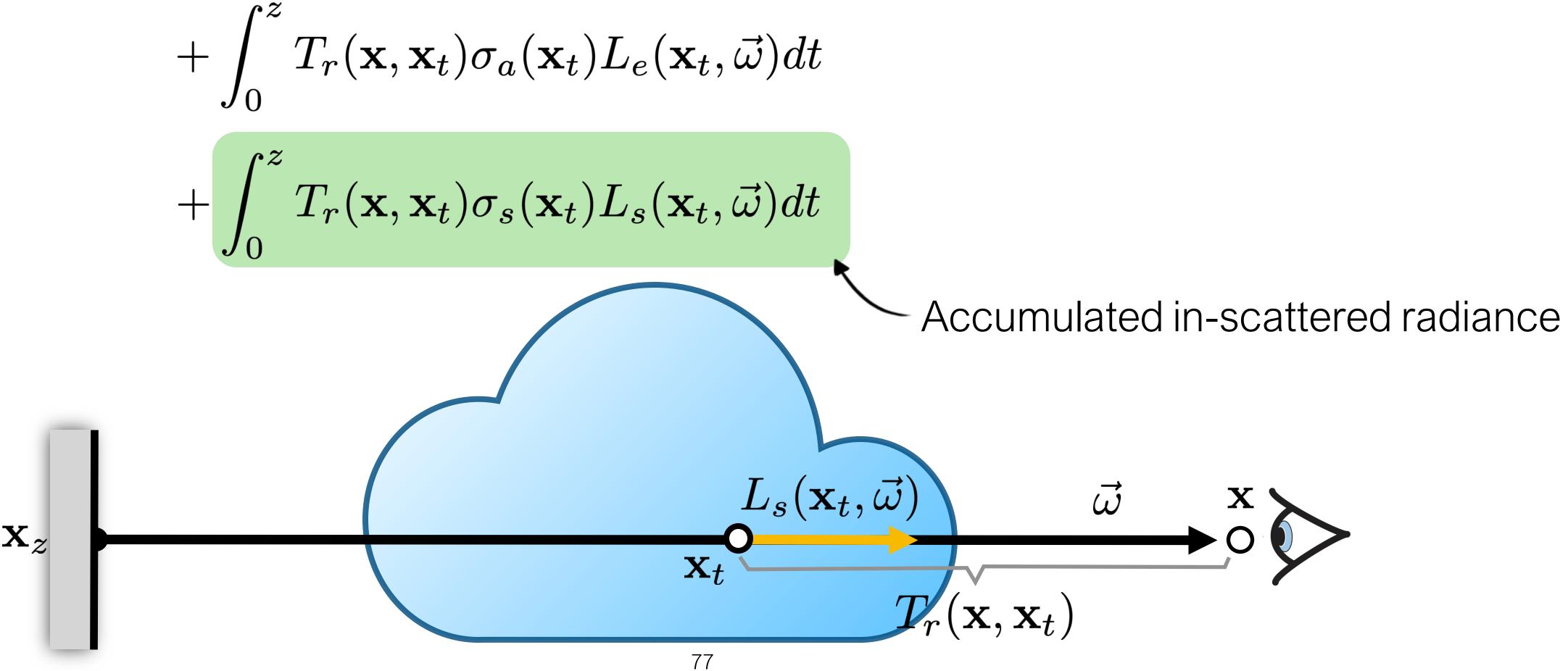
- Reduced (background) surface radiance

 $L(\mathbf{x},\vec{\omega}) = T_r(\mathbf{x},\mathbf{x}_z)L(\mathbf{x}_z,\vec{\omega})$



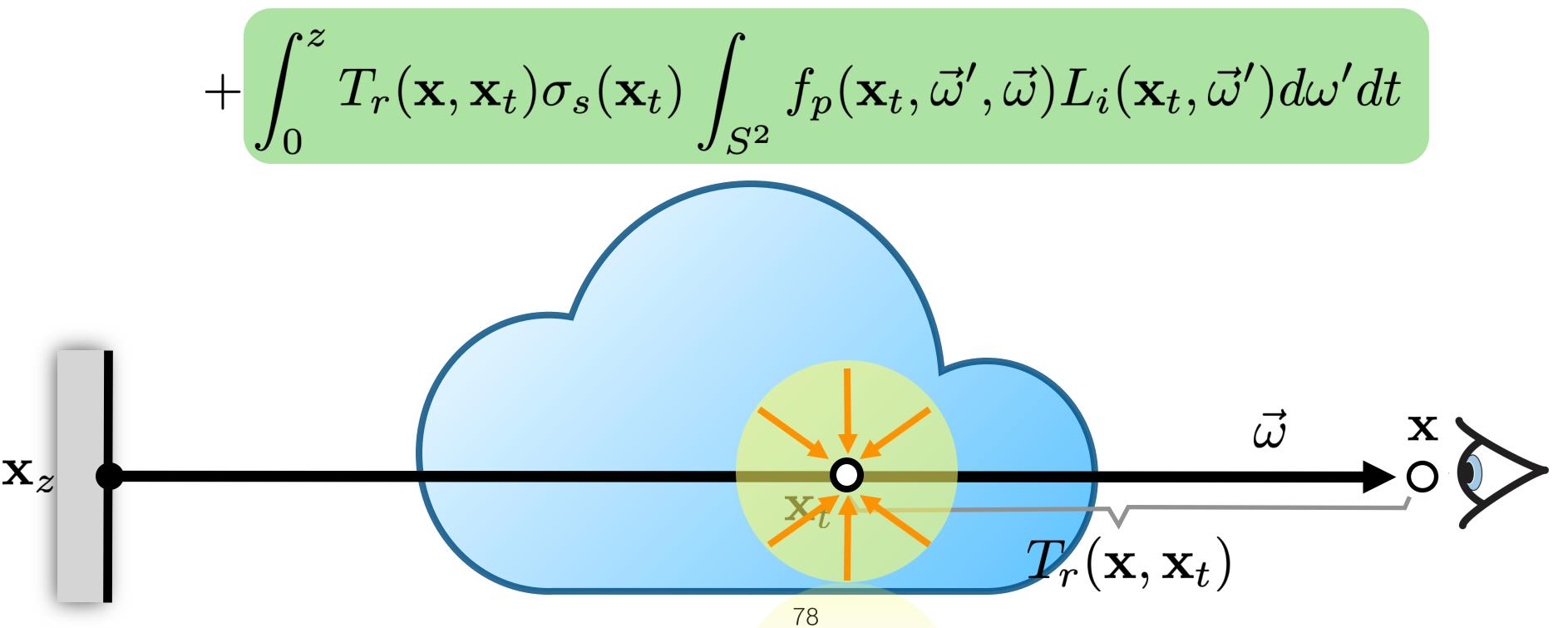
Realistic Image Synthesis SS2024

 $L(\mathbf{x},\vec{\omega}) = T_r(\mathbf{x},\mathbf{x}_z)L(\mathbf{x}_z,\vec{\omega})$



Realistic Image Synthesis SS2024

 $L(\mathbf{x},\vec{\omega}) = T_r(\mathbf{x},\mathbf{x}_z)L(\mathbf{x}_z,\vec{\omega})$ + $\int_{0}^{z} T_{r}(\mathbf{x}, \mathbf{x}_{t}) \sigma_{a}(\mathbf{x}_{t}) L_{e}(\mathbf{x}_{t}, \vec{\omega}) dt$



$$L(\mathbf{x}, \vec{\omega}) = T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega} + \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_a(\mathbf{x}_z) d\mathbf{x}_s) + \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}_s) d\mathbf{x}_s$$

 $\mathbf{x}_t L_e(\mathbf{x}_t, \vec{\omega}) dt$

 $\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}_t, \vec{\omega}') d\omega' dt$

Next career fair "next" on June 11, 2024 from 10:00 a.m. to 5:00 p.m.

The trade fair offers our students the opportunity to meet potential employers, make contacts and find out about career opportunities. Companies have the opportunity to offer internships, theses or entry-level positions.

Die Karrieremesse der UdS

80

DES

Scattering in Media

It describes the angular distribution of scattered radiation at a point;

It is the volumetric analog to the BSDF, but it is different from the BSDF.

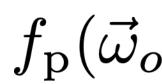
It has a normalization constant:

 $\int_{S^2} f_{\rm p}(\vec{\omega}, \vec{\omega}') \mathrm{d}\vec{\omega}' = 1 \quad \forall \vec{\omega}$

This constraint means that phase functions actually define probability distributions for scattering in a particular direction.

Phase Functions

Isotropic:



Uniform scattering, analogous to Lambertian BRDF

Realistic Image Synthesis SS2024

Phase Functions

$$(\omega_i, \vec{\omega}_i) = \frac{1}{4\pi}$$

Quantifying anisotropy by

$$g = \int_{S^2} f_{\rm p}(\mathbf{x}, \vec{\omega}, \vec{\omega}')$$

where

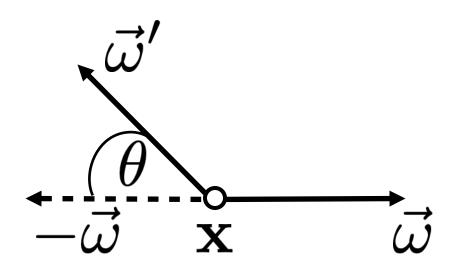
$$\cos\theta = -\vec{\omega}\cdot\vec{\omega}'$$

g = 0: isotropic scattering (on average)

- g > 0: forward scattering
- g < 0: backward scattering

Phase Functions

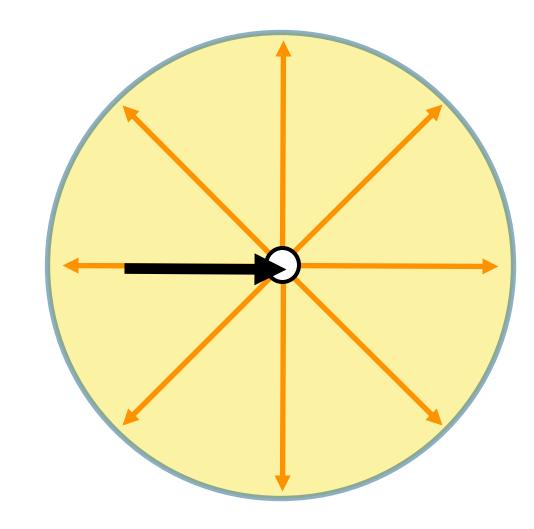
') $\cos\theta d\vec{\omega}'$



g is the asymmetry parameter

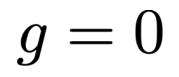
Realistic Image Synthesis SS2024

 $f_{\rm p}(\theta) = \frac{1}{4\pi} \frac{1}{(1+1)^2}$



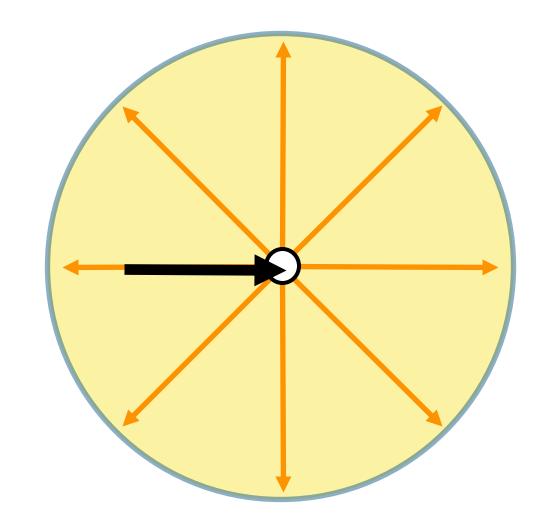
$$\frac{1-g^2}{+g^2+2g(\cos\theta))^{3/2}}$$

 $g \in [-1,1]$

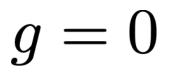


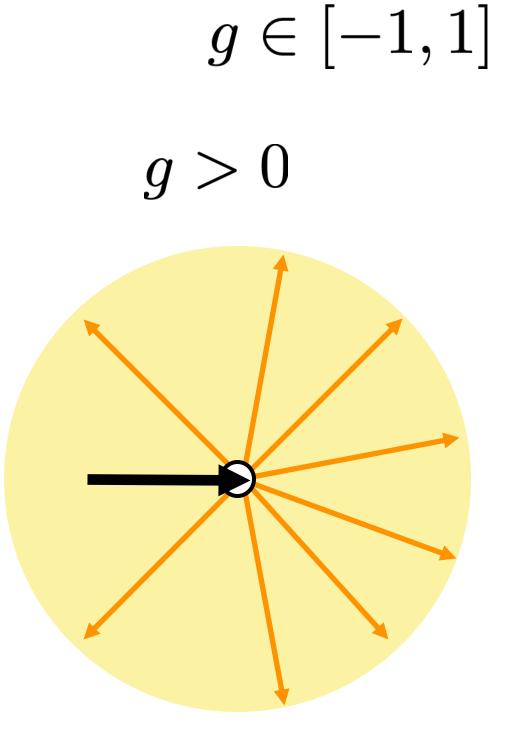


 $f_{\rm p}(\theta) = \frac{1}{4\pi} \frac{1}{(1+1)^2}$



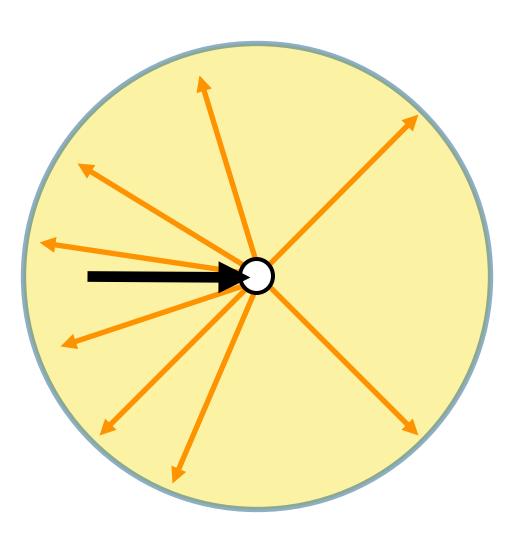
$$\frac{1 - g^2}{+ g^2 + 2g(\cos\theta))^{3/2}}$$



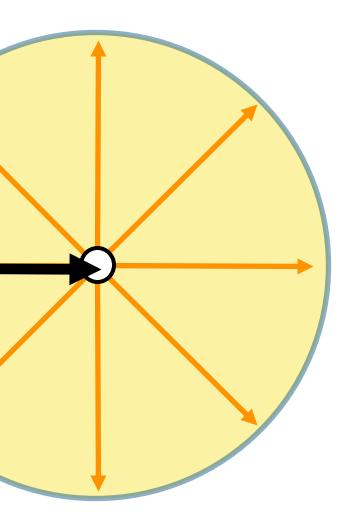


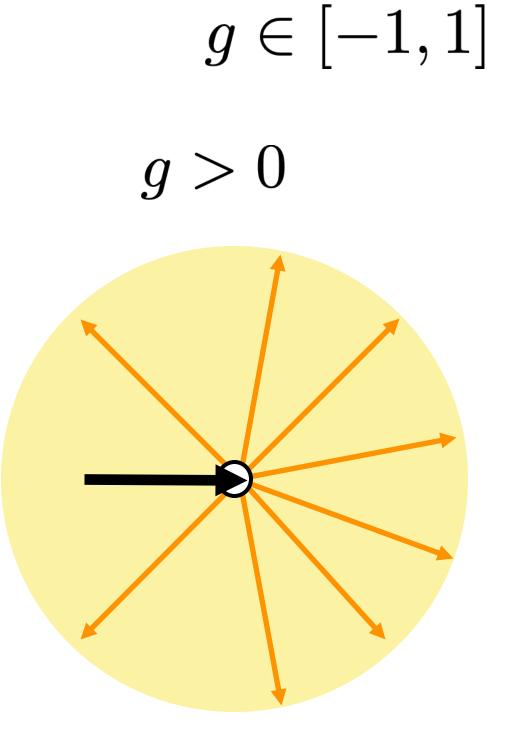
 $f_{\rm p}(\theta) = \frac{1}{4\pi} \frac{1}{(1 + 1)^2}$



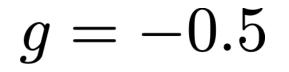


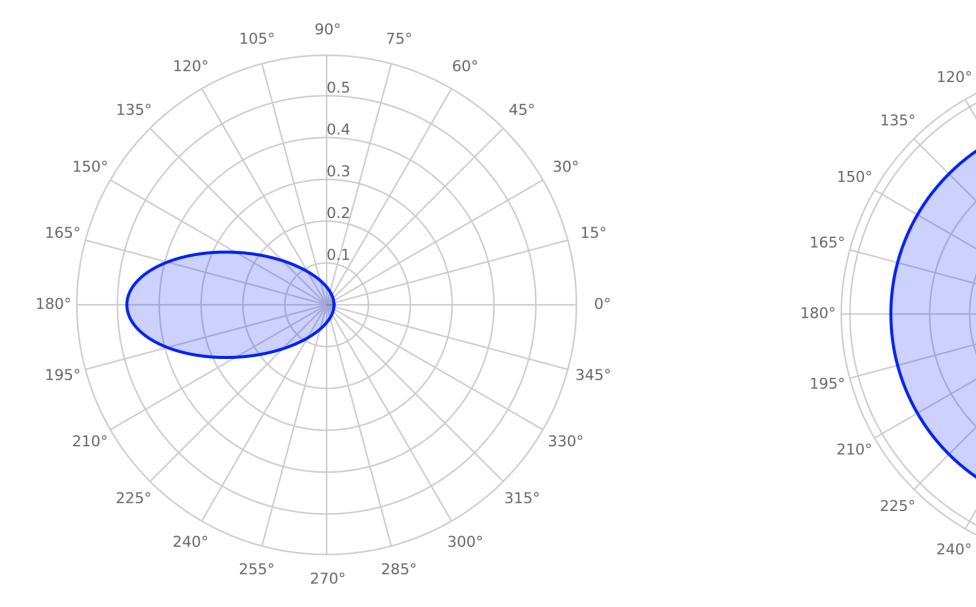
$$\frac{1 - g^2}{+ g^2 + 2g(\cos\theta))^{3/2}}$$





 $f_{\rm p}(\theta) = \frac{1}{4\pi} \frac{1}{(1 + 1)^2}$

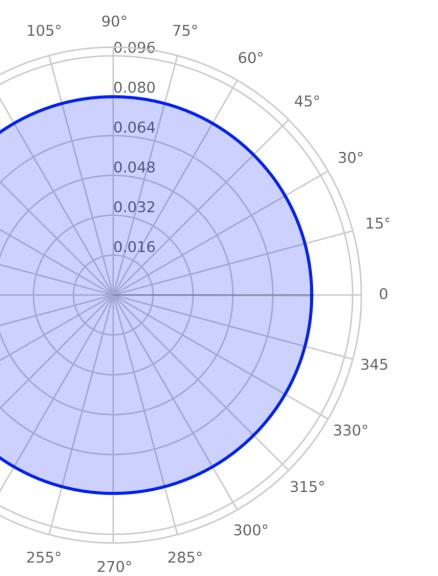


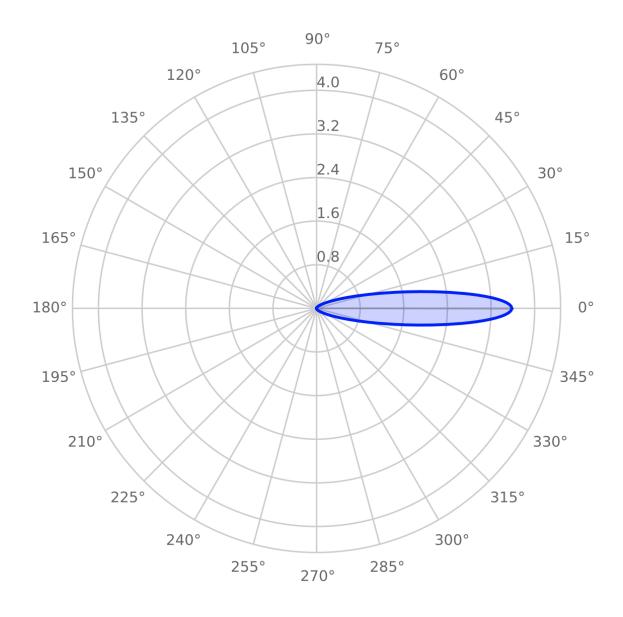


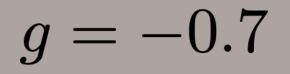
$$\frac{1-g^2}{+g^2+2g(\cos\theta))^{3/2}}$$

g = 0

g = 0.8







Strong backward scattering

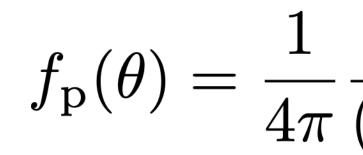
Strong forward scattering

PBRTv3 [2016]

Schlick's Phase Function

Empirical Phase Function

Faster approximation to HG



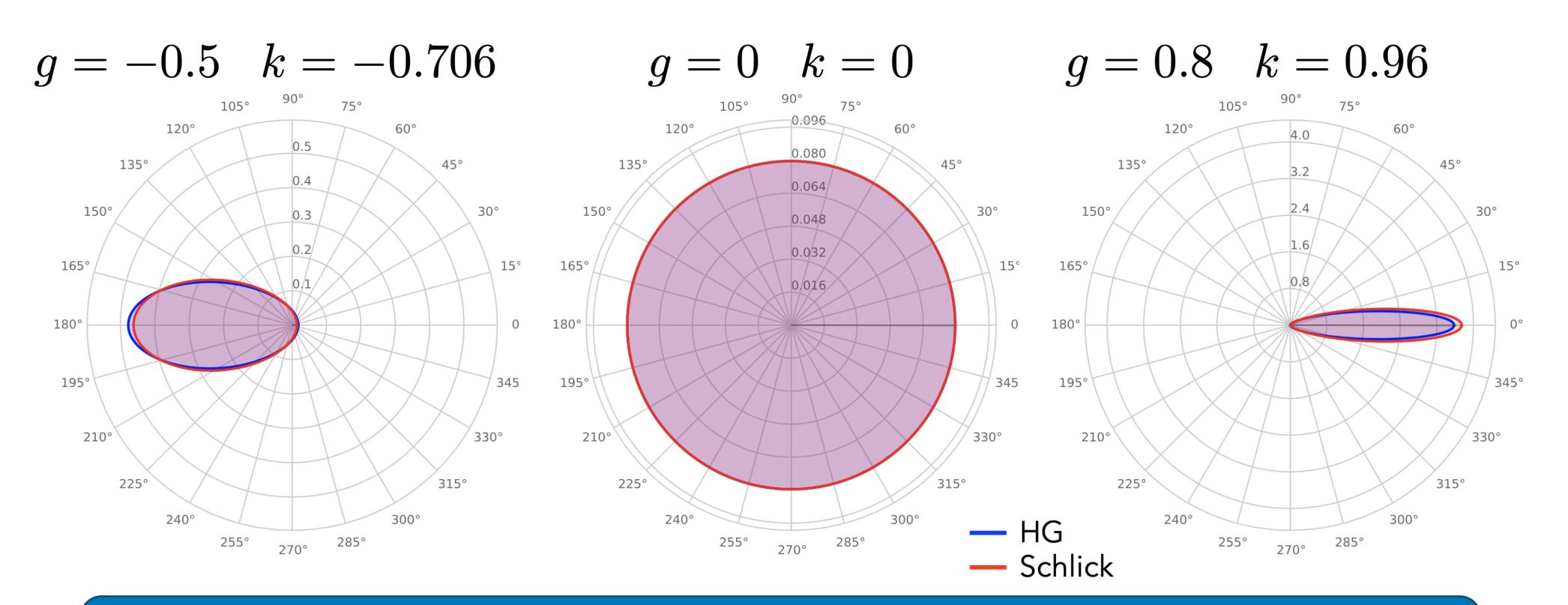
 $k = 1.55g - 0.55g^{3}$

$$\frac{1-k^2}{(1-k\cos\theta)^2}$$

Schlick's Phase Function

Empirical Phase Function

Faster approximation to HG



Rainbows

and a state with the

Lorenz-Mie Scattering

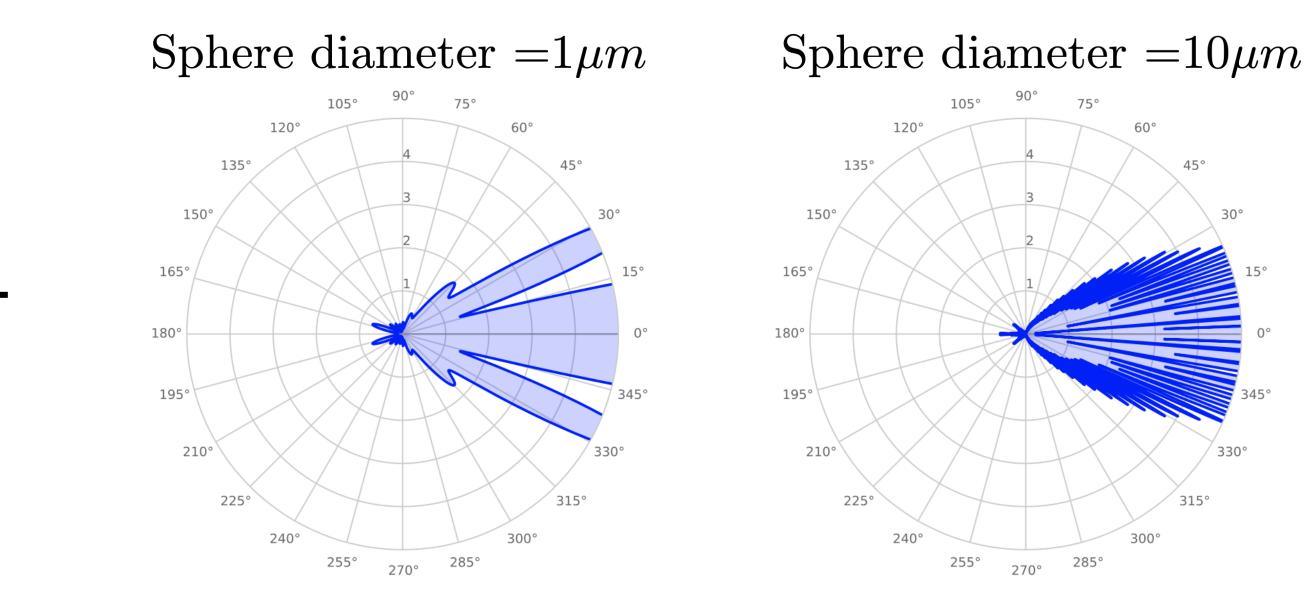
For large-size particles (scatterers), we cannot ignore the wave nature of light

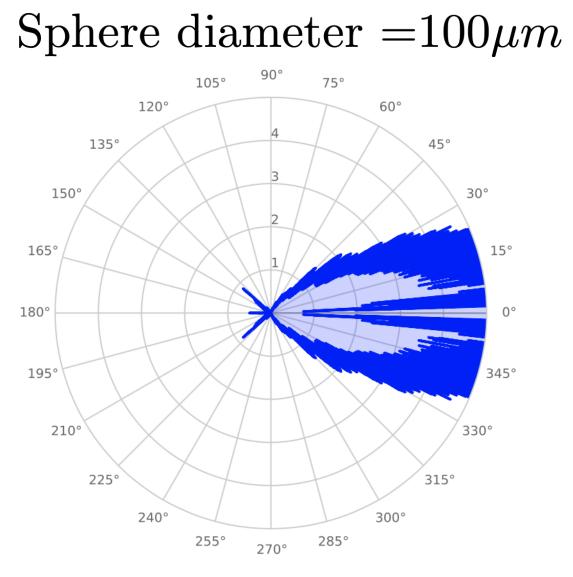
Solution to Maxwell's equations for scattering from many spherical dielectric particles

Explains many phenomena

Complicated: solution is an infinite analytic series

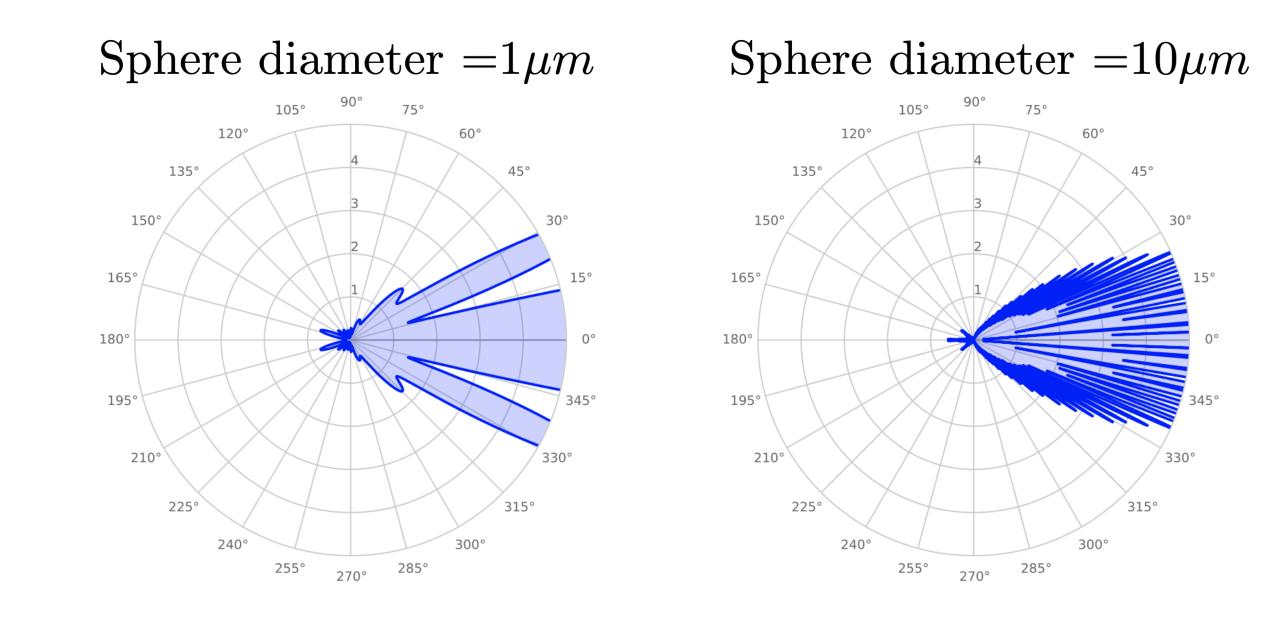
Lorenz-Mie Scattering





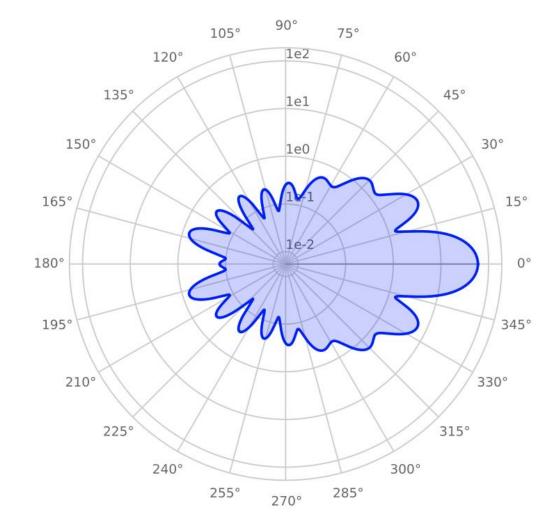


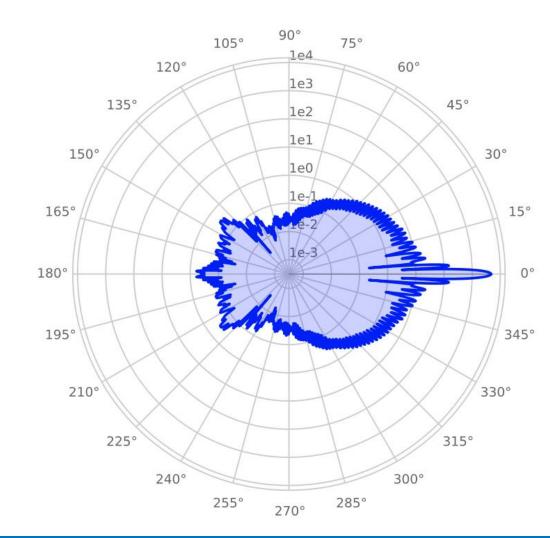
Lorenz-Mie Scattering



Log plot

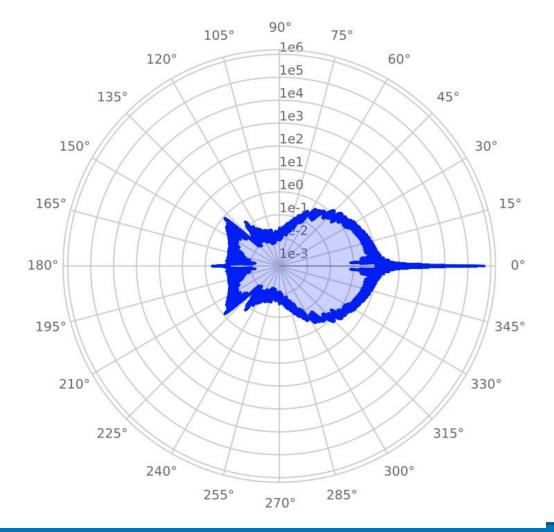
Linear plot



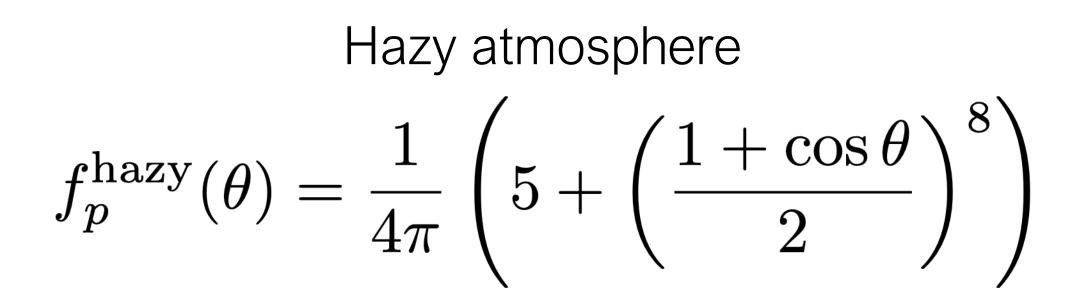


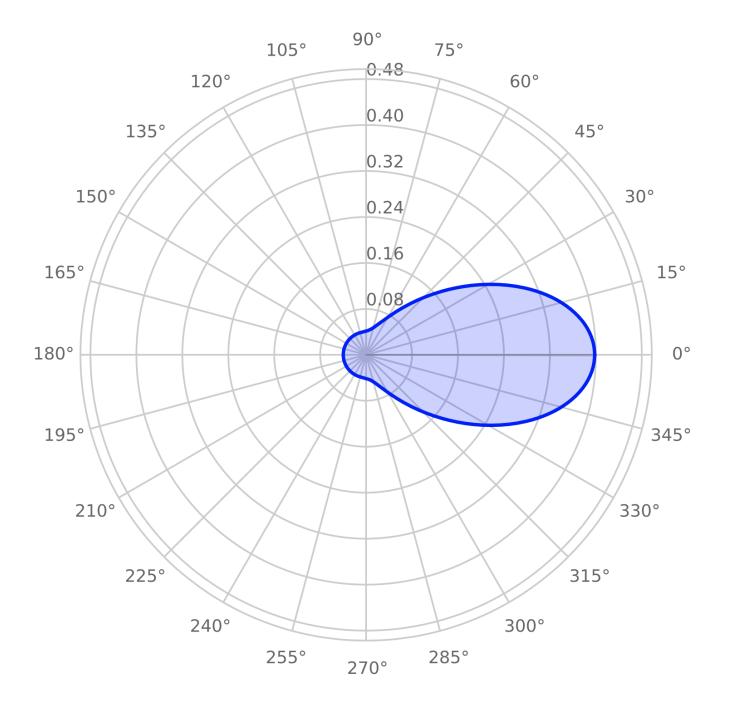
Realist

Sphere diameter $=100 \mu m$ 105° 90° 75° 120° 135° 150° 165° 15° 180° 195° 345° 210° 330° 225° 315° 240° 300° 270° 285° 255°

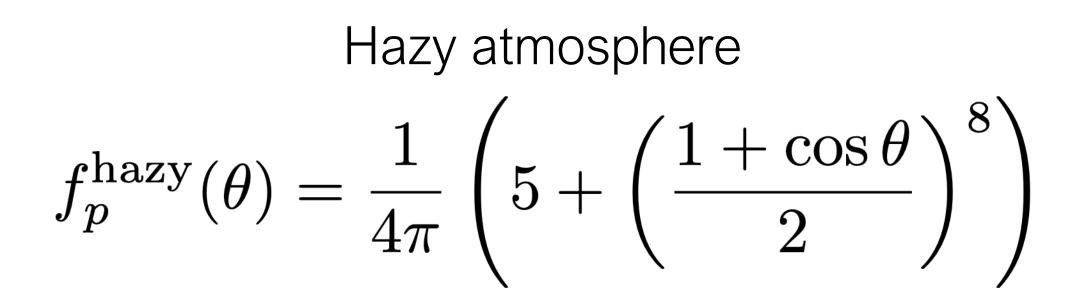


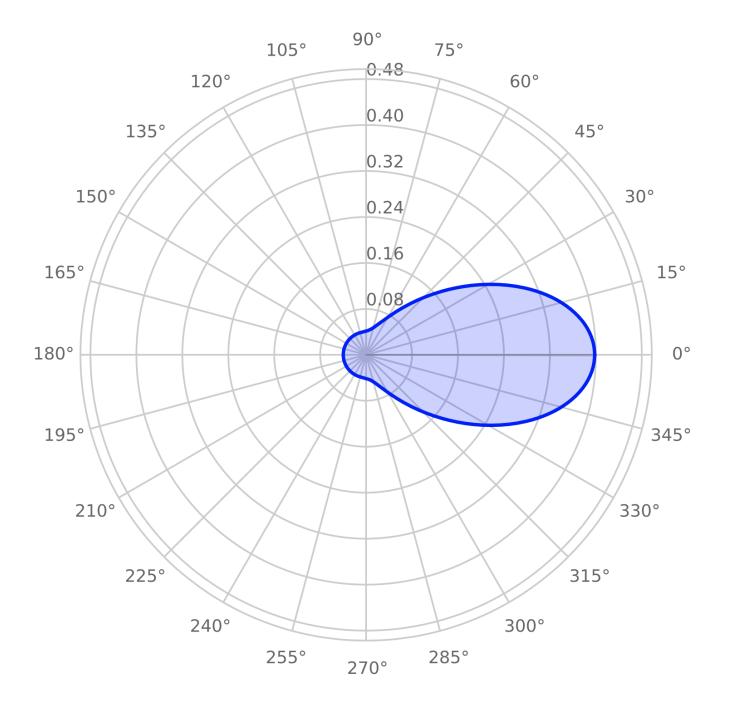
Lorenz-Mie Approximations

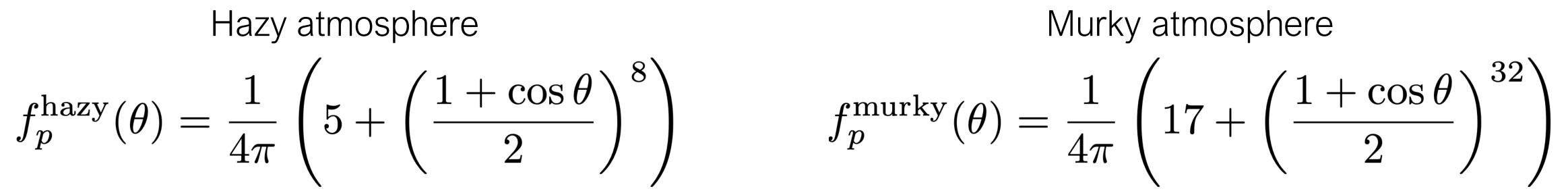


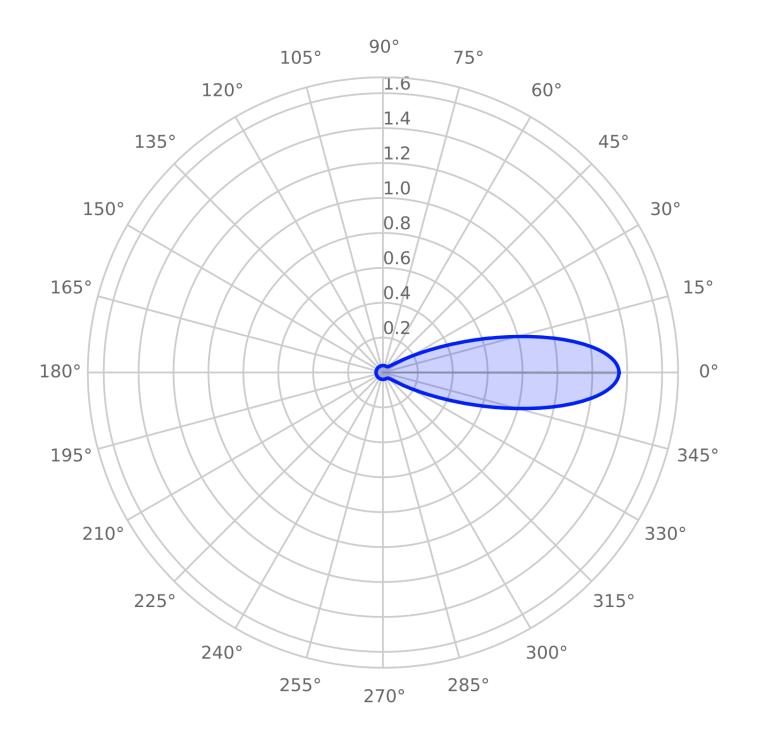


Lorenz-Mie Approximations

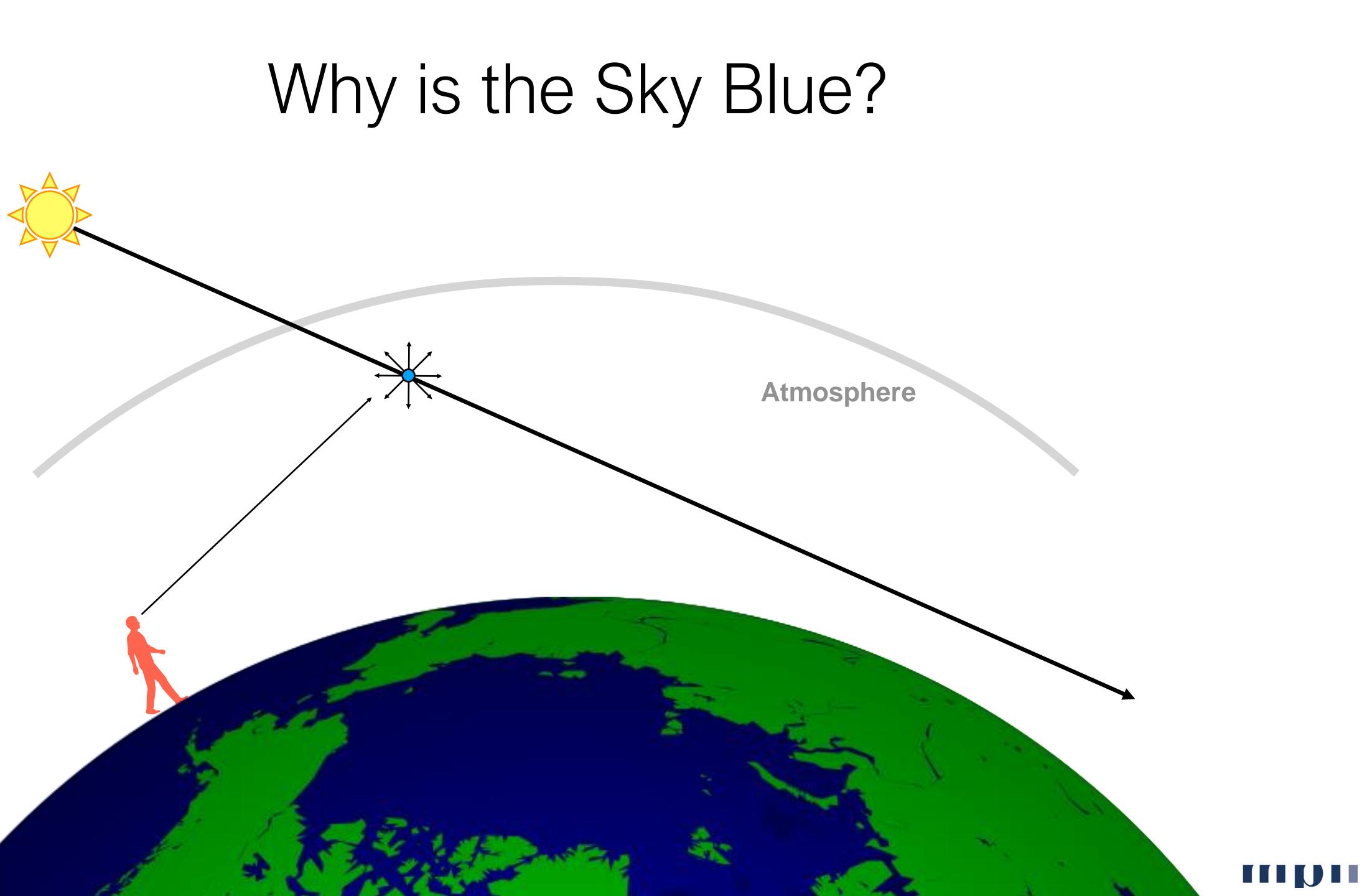




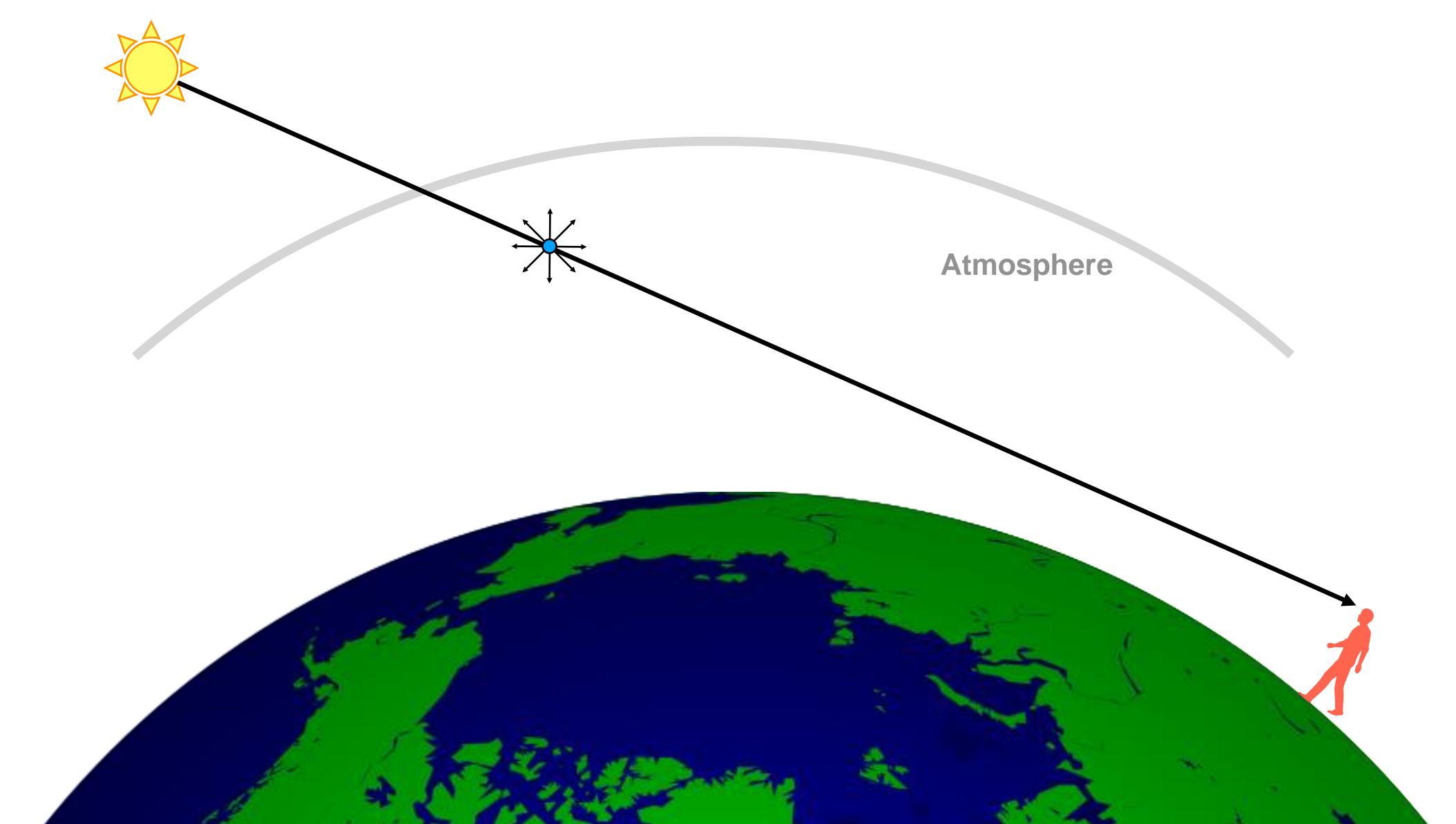




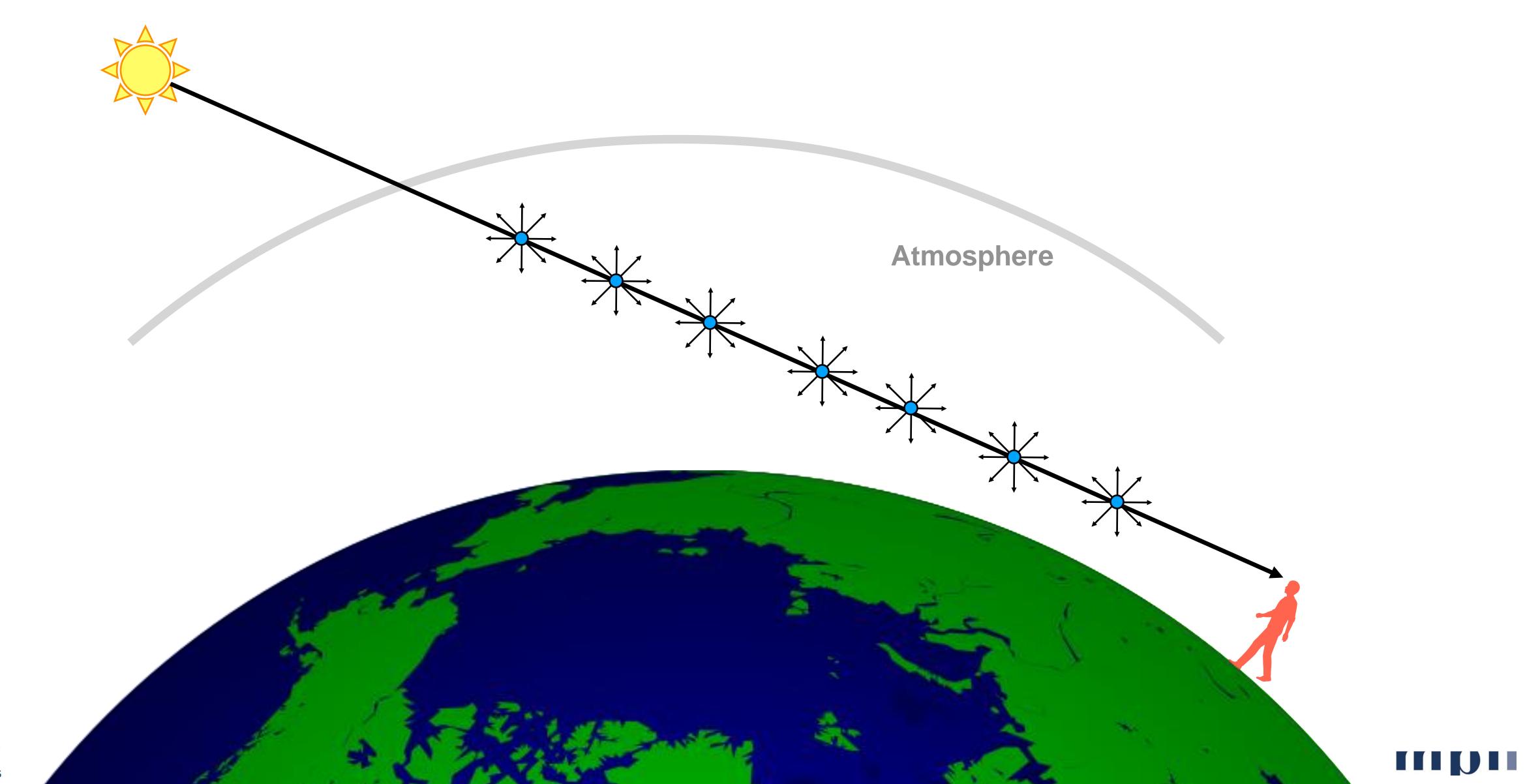
Realistic Image Synthesis SS2024

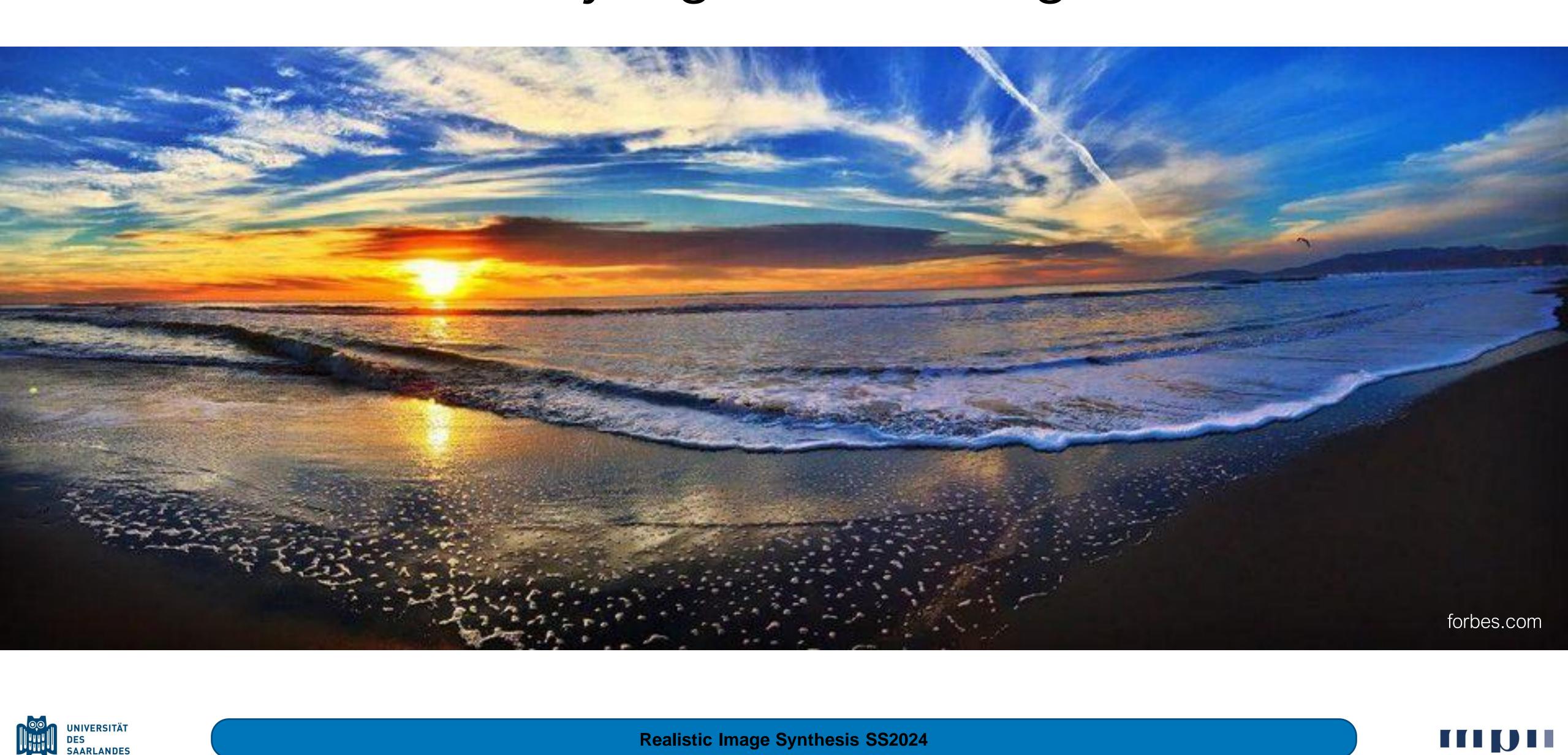


Why is the Sunset Red?



Why is the Sunset Red?

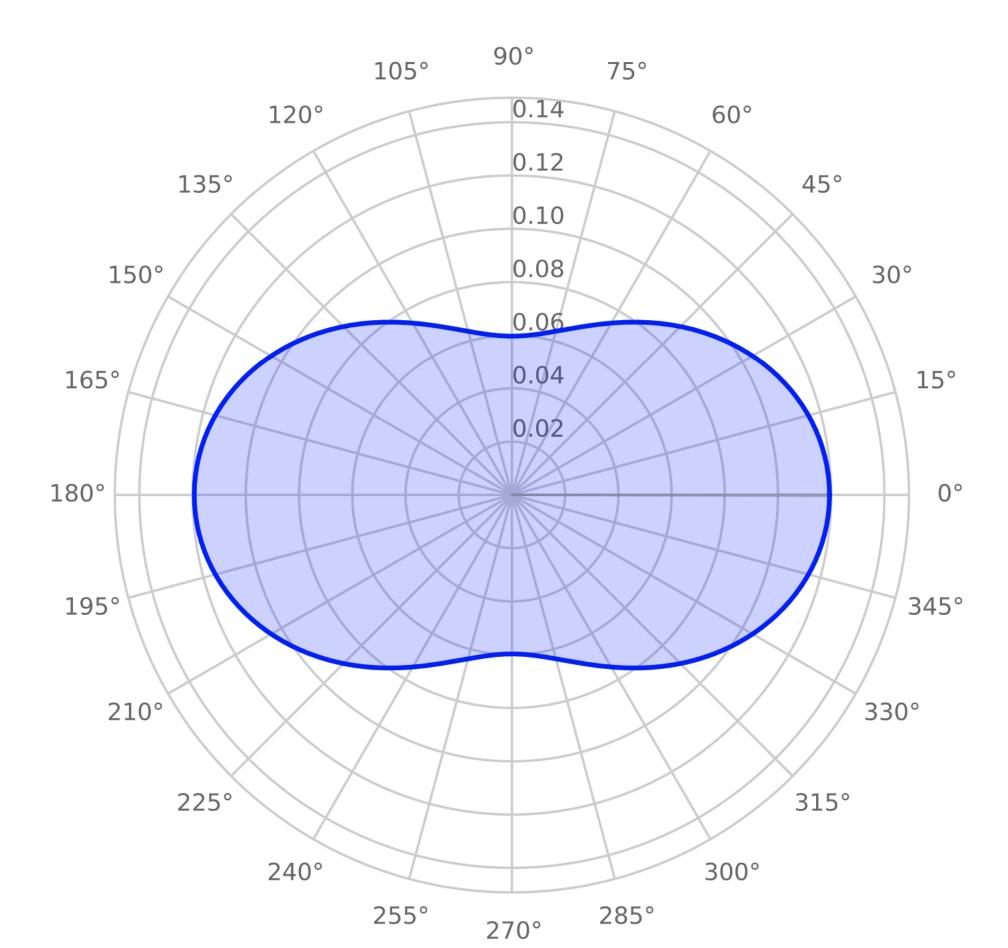




Approximation of Lorenz-Mie for tiny particles (scatterers) that are typically smaller than 1/10th the wavelength of visible light

Used for atmospheric scattering, gasses, transparent solids

Highly wavelength dependent



UNIVERSITÄT DES SAARLANDES

Rayleigh Phase Function

$$f_p^{\text{Rayleigh}}(\theta) = \frac{3}{16\pi} \left(1 + \cos^2 \theta\right)$$

Scattering at right angles is half as likely as scattering forward or backward

$eta_s^{ ext{Rayleigh}}(\lambda, d, \eta, ho)$

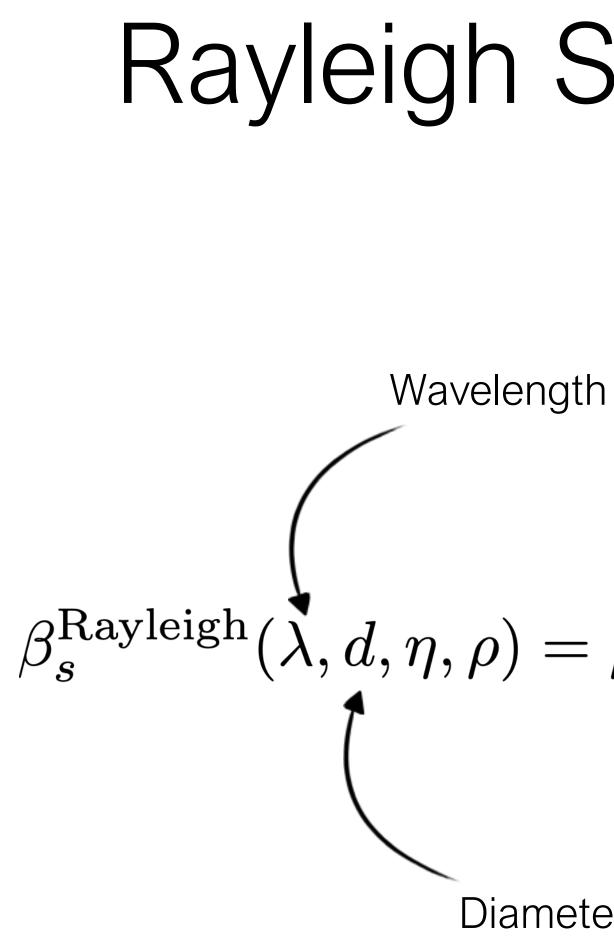
$$\rho) = \rho \frac{2\pi^5 d^6}{3\lambda^4} \left(\frac{\eta^2 - 1}{\eta^2 + 2}\right)^2$$

 $eta_s^{ ext{Rayleigh}}(\lambda, d, \eta,
ho)$

Realistic Image Synthesis SS2024

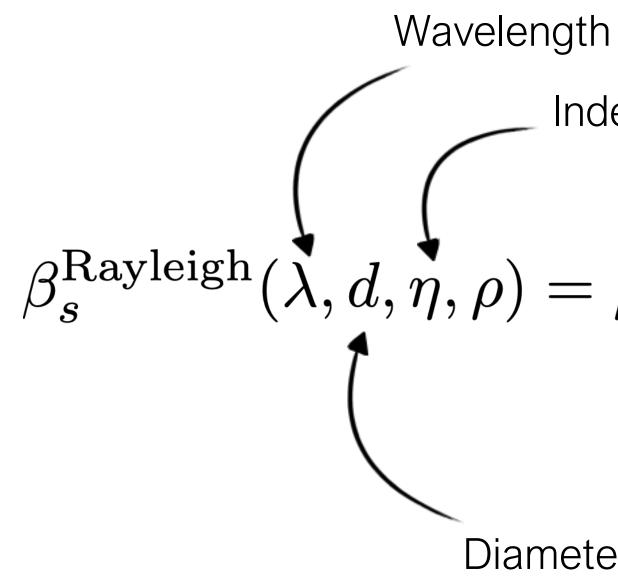
Wavelength

$$) = \rho \frac{2\pi^{5} d^{6}}{3\lambda^{4}} \left(\frac{\eta^{2} - 1}{\eta^{2} + 2}\right)^{2}$$



$$) = \rho \frac{2\pi^{5} d^{6}}{3\lambda^{4}} \left(\frac{\eta^{2} - 1}{\eta^{2} + 2}\right)^{2}$$

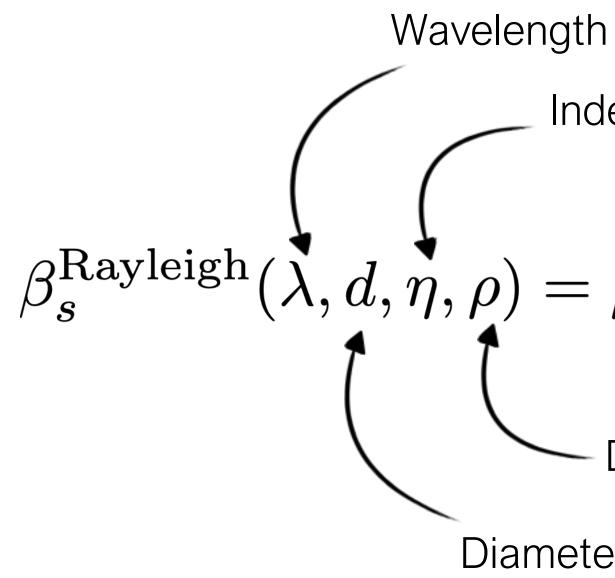
Diameter of particles



- Index of refraction

$$) = \rho \frac{2\pi^{5} d^{6}}{3\lambda^{4}} \left(\frac{\eta^{2} - 1}{\eta^{2} + 2}\right)^{2}$$

Diameter of particles



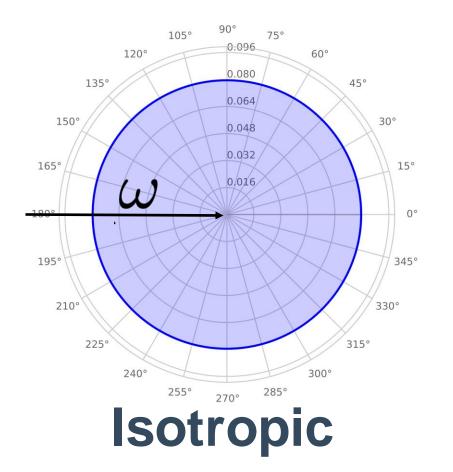
- Index of refraction

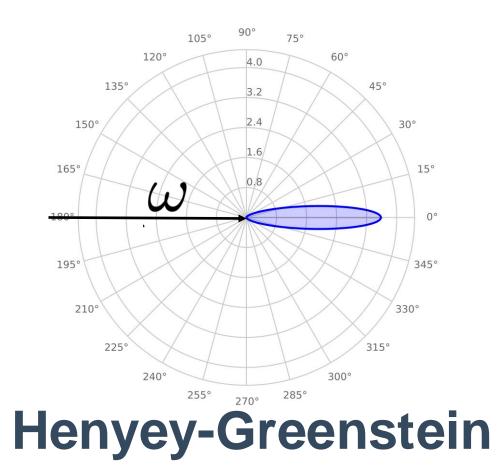
$$) = \rho \frac{2\pi^5 d^6}{3\lambda^4} \left(\frac{\eta^2 - 1}{\eta^2 + 2}\right)^2$$

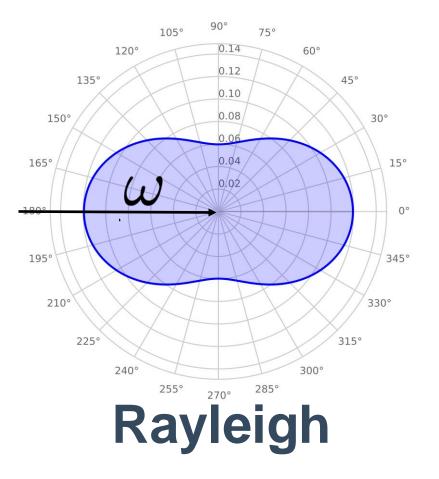
- Density of particles
- Diameter of particles

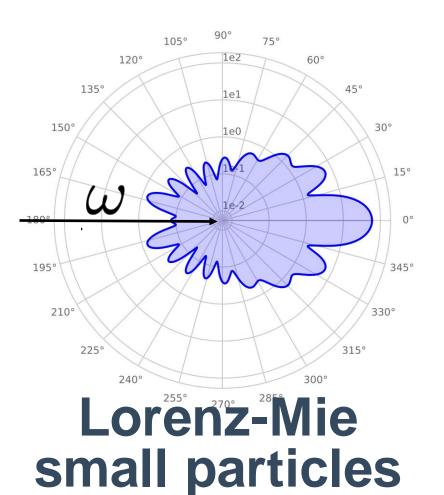


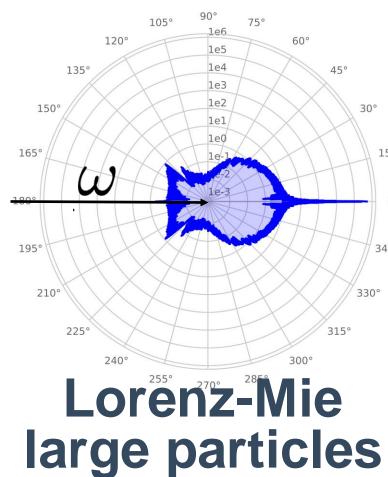
Recap: Phase Functions





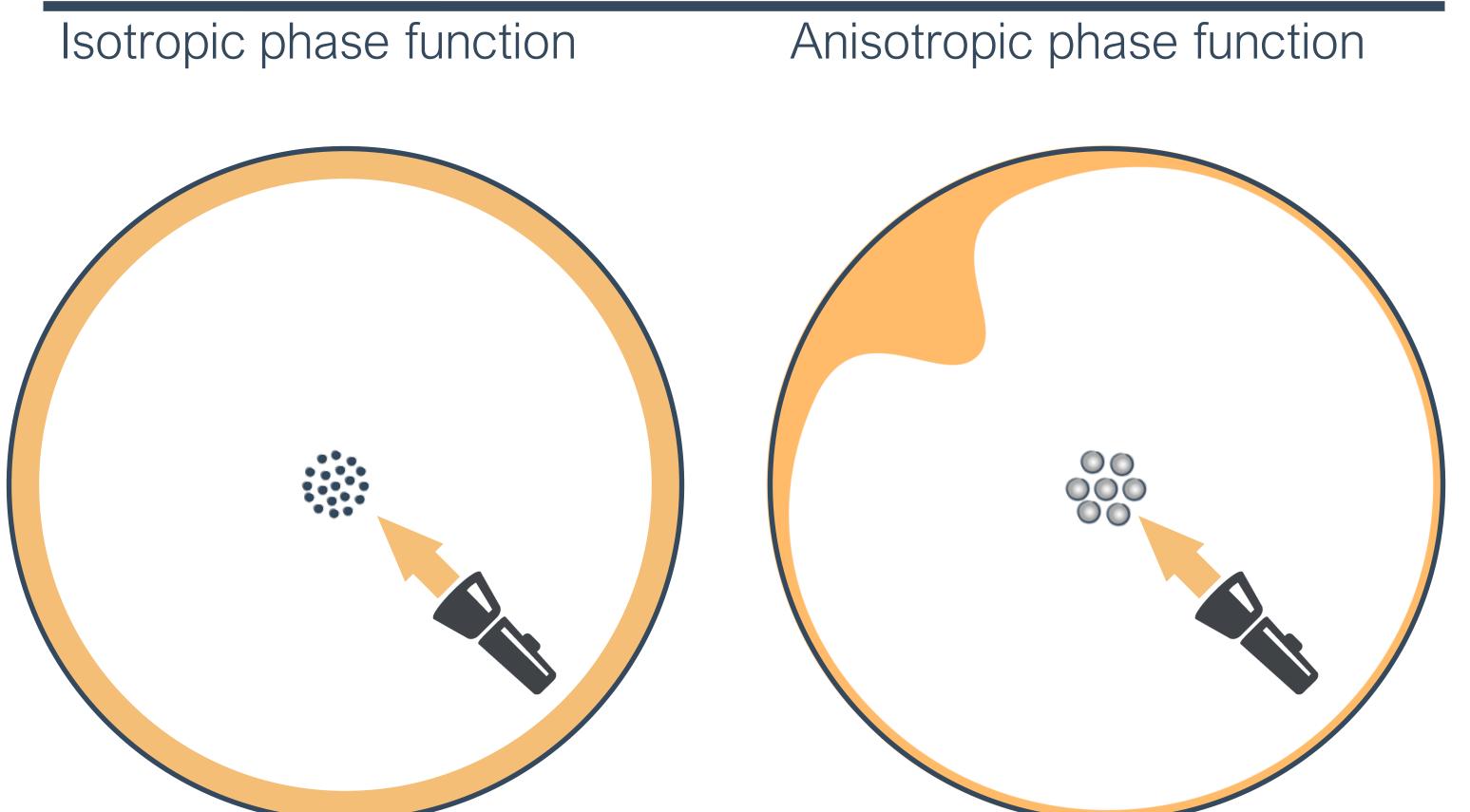






Anisotropy: Phase Function vs. Medium

Isotropic Medium

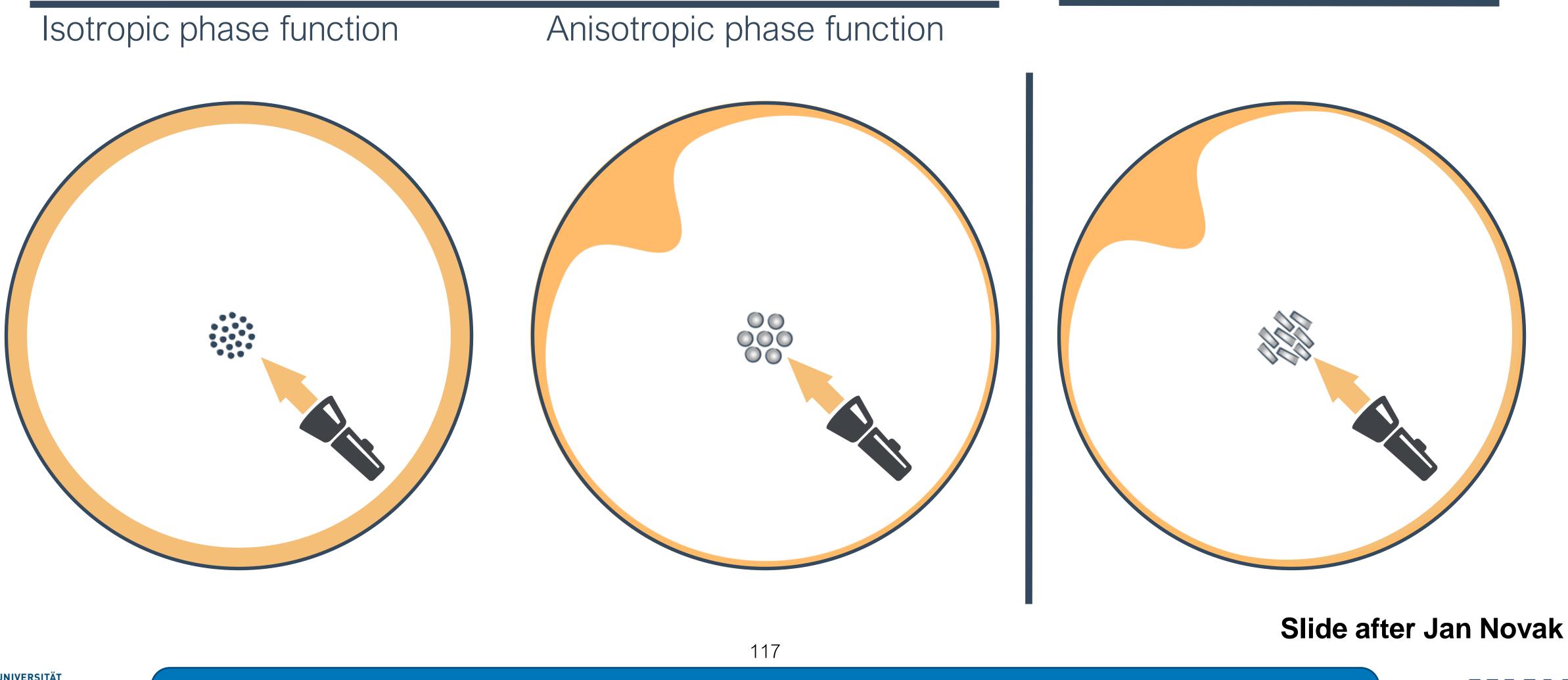


Slide after Jan Novak

116

Anisotropy: Phase Function vs. Medium

Isotropic Medium



Anisotropic Medium

Recap: Media Properties

Given:

Absorption coefficient

Scattering coefficient

Phase function

 $[m^{-1}]$ $\sigma_a(\mathbf{x})$ $[m^{-1}]$ $\sigma_s(\mathbf{x})$ $[sr^{-1}]$ $f_p(\mathbf{x}, \vec{\omega}, \vec{\omega}')$

118

Recap: Media Properties

Given:

Absorption coefficient

Scattering coefficient

Phase function

Derived:

 $\sigma_t(\mathbf{x})$ Extinction coefficient

 $\alpha(\mathbf{x})$ Albedo

Mean-free path

Transmittance

 $T_r(\mathbf{x}, \mathbf{y})$

$\sigma_a(\mathbf{x})$	$[m^{-1}]$
$\sigma_s(\mathbf{x})$	$[m^{-1}]$
$f_p(\mathbf{x},ec{\omega},ec{\omega}')$	$[sr^{-1}]$
$\mathbf{x}) = \sigma_a(\mathbf{x}) + \sigma_s(\mathbf{x})$	$[m^{-1}]$
$\sigma = \sigma_s(\mathbf{x}) / \sigma_t(\mathbf{x})$	[None]
$1/\sigma_t(\mathbf{x})$	[m]
$\mathbf{y}) = e^{-\int_0^{ \mathbf{x} - \mathbf{y} } \sigma_t(t) dt}$	[None]

For Homogeneous Isotropic Medium

Given:

Absorption coefficient

Scattering coefficient

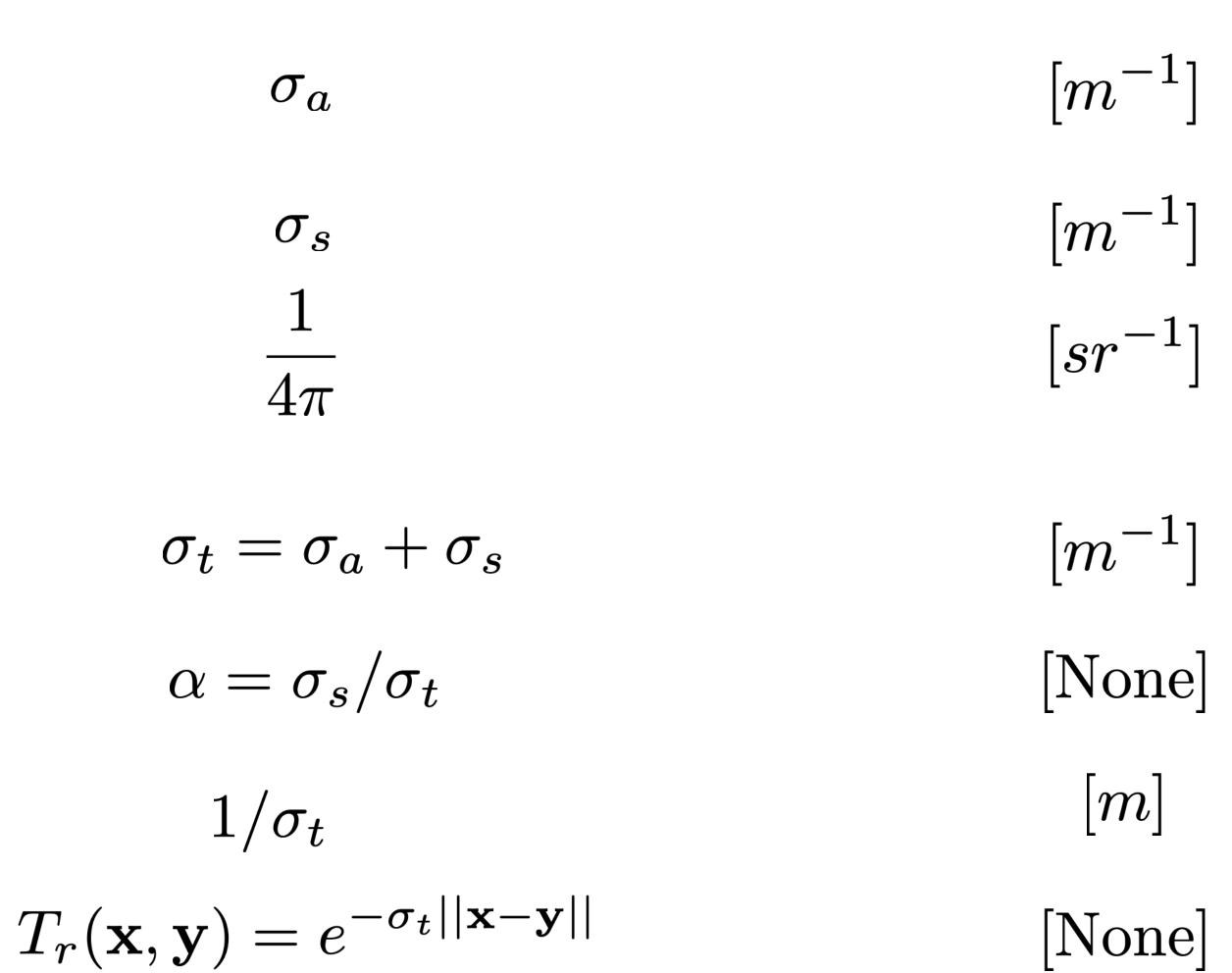
Phase function

Derived:

σ_t
lpha :
1

Transmittance

Realistic Image Synthesis SS2024



120

Solving the Volumetric Rendering Equation

Complexity

Homogeneous vs. Heterogeneous

Scattering

- none
- fake
- single scattering
- multiple scattering

122

$$L(\mathbf{x}, \vec{\omega}) = T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega} + \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_a(\mathbf{x}_z) d\mathbf{x}_s) + \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}_s) d\mathbf{x}_s$$

 $\mathbf{x}_t L_e(\mathbf{x}_t, \vec{\omega}) dt$

 $\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}_t, \vec{\omega}') d\omega' dt$

$$\begin{split} L(\mathbf{x}, \vec{\omega}) &= T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega}) \\ &+ \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_a(\mathbf{x}, \mathbf{x}_t) \\ &+ \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}, \mathbf{x}_t) \\ \end{split}$$

Attenuated background radiance

 $\mathbf{x}_t L_e(\mathbf{x}_t, \vec{\omega}) dt$

 $\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}_t, \vec{\omega}') d\omega' dt$

Attenuated background radiance

 $(\mathbf{x}_t) L_e(\mathbf{x}_t, \vec{\omega}) dt$ Accumulated emitted radiance

 $\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}_t, \vec{\omega}') d\omega' dt$

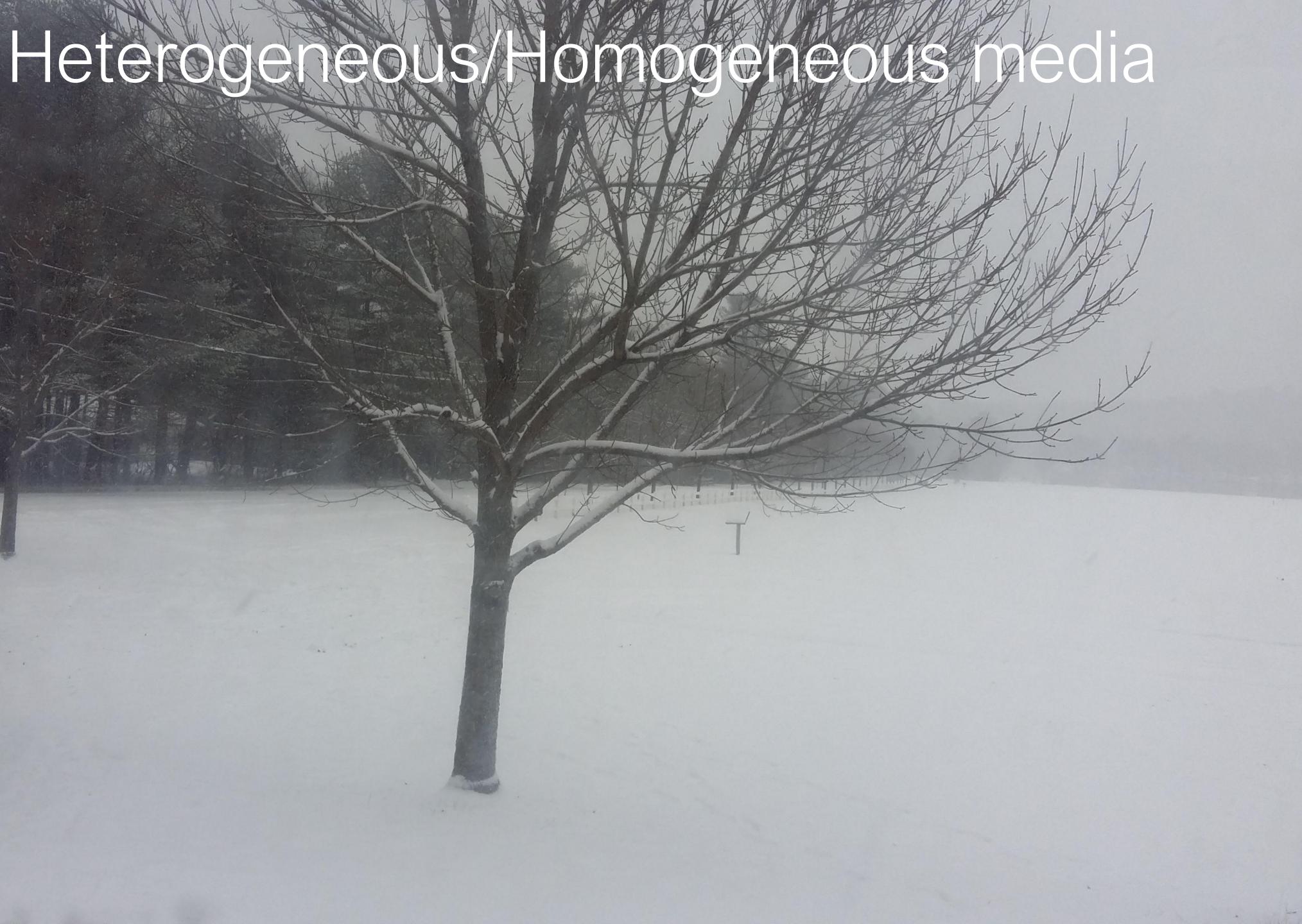
$$\begin{split} L(\mathbf{x}, \vec{\omega}) &= T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega}) & \text{Attenuated background radiance} \\ &+ \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_a(\mathbf{x}_t) L_e(\mathbf{x}_t, \vec{\omega}) dt & \text{Accumulated emitted radian} \\ &+ \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}_t, \vec{\omega}') d\omega' dt \end{split}$$

Realistic Image Synthesis SS2024

nce

Accumulated in-scattered radiance





Homogeneous media

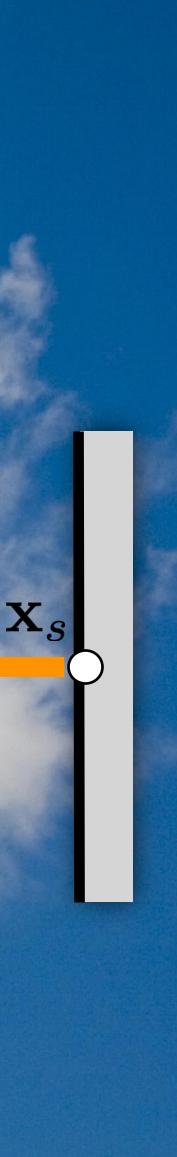
Heterogeneous media

Homogeneous media

$L(\mathbf{x},\vec{\omega}) = \int_0^s T_r(\mathbf{x}\leftrightarrow\mathbf{x}_t)\sigma_s(\mathbf{x}_t)L_i(\mathbf{x}_t,\vec{\omega})dt + T_r(\mathbf{x}\leftrightarrow\mathbf{x}_s)L(\mathbf{x}_s,\vec{\omega})$

 $\vec{\omega}$

X



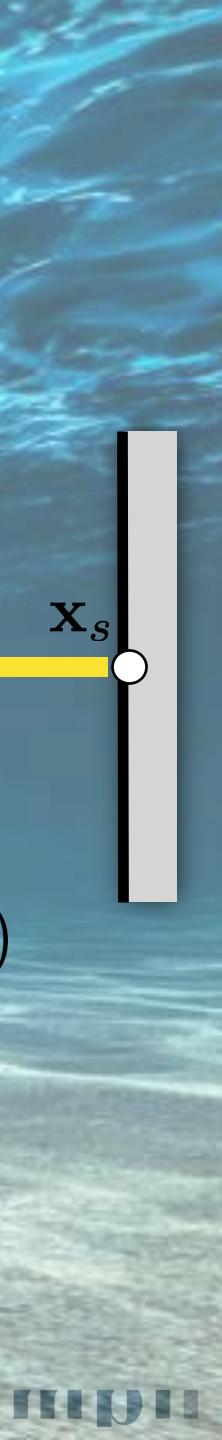
$$L(\mathbf{x}, \vec{\omega}) = \int_0^s T_r(\mathbf{x} \leftrightarrow \mathbf{x}_t) \sigma_s(\mathbf{x}, \vec{\omega}) = \sigma_s \int_0^s T_r(\mathbf{x} \leftrightarrow \mathbf{x}_t) L(\mathbf{x}, \vec{\omega}) = \sigma_s \int_0^s T_r(\mathbf{x} \leftrightarrow \mathbf{x}_t) L(\mathbf{x}, \vec{\omega}) = \sigma_s \int_0^s T_r(\mathbf{x}, \vec{\omega}) d\mathbf{x}_t$$

UNIVERSITÄT DES SAARLANDES

$(\mathbf{x}_t)L_i(\mathbf{x}_t,\vec{\omega})dt + T_r(\mathbf{x}\leftrightarrow\mathbf{x}_s)L(\mathbf{x}_s,\vec{\omega})$

 $L_i(\mathbf{x}_t, \vec{\omega})dt + T_r(\mathbf{x} \leftrightarrow \mathbf{x}_s)L(\mathbf{x}_s, \vec{\omega})$

131



$$L(\mathbf{x}, \vec{\omega}) = \int_0^s T_r(\mathbf{x} \leftrightarrow \mathbf{x}_t) \sigma_s(\mathbf{x}, \vec{\omega}) = \sigma_s \int_0^s T_r(\mathbf{x} \leftrightarrow \mathbf{x}_t) L(\mathbf{x}, \vec{\omega}) = \sigma_s \int_0^s T_r(\mathbf{x} \leftrightarrow \mathbf{x}_t) L(\mathbf{x}, \vec{\omega}) = \sigma_s \int_0^s T_r(\mathbf{x}, \vec{\omega}) d\mathbf{x}_t$$

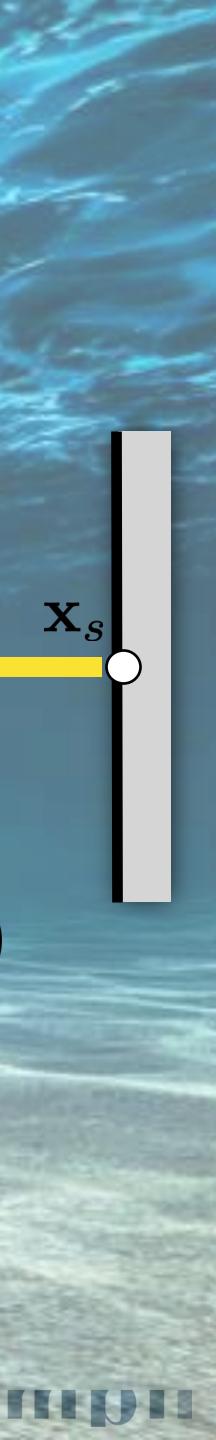
UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2024

$(\mathbf{x}_t)L_i(\mathbf{x}_t,\vec{\omega})dt + T_r(\mathbf{x}\leftrightarrow\mathbf{x}_s)L(\mathbf{x}_s,\vec{\omega})$

 $L_i(\mathbf{x}_t, \vec{\omega})dt + \frac{T_r(\mathbf{x} \leftrightarrow \mathbf{x}_s)}{L(\mathbf{x}_s, \vec{\omega})}$

132



$$L(\mathbf{x}, \vec{\omega}) = \int_{0}^{s} T_{r}(\mathbf{x} \leftrightarrow \mathbf{x}_{t}) \sigma_{s}(\mathbf{x}, \vec{\omega}) = \sigma_{s} \int_{0}^{s} T_{r}(\mathbf{x} \leftrightarrow \mathbf{x}_{t}) L$$
$$L(\mathbf{x}, \vec{\omega}) = \sigma_{s} \int_{0}^{s} e^{-t\sigma_{t}} L_{i}(\mathbf{x}_{t}, \vec{\omega}) d\mathbf{x}$$

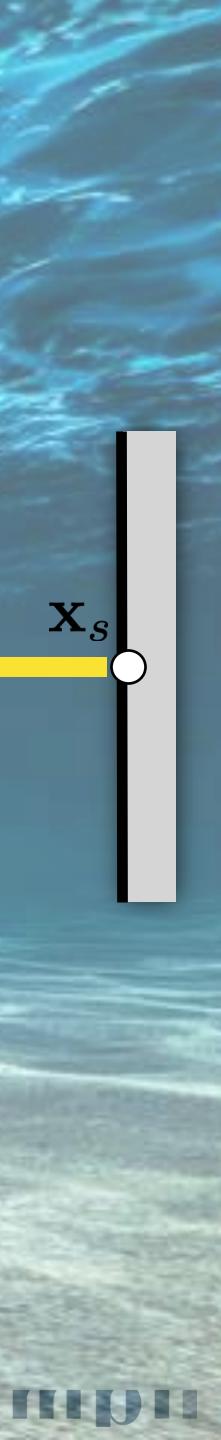
UNIVERSITÄT SAARLANDES

$(\mathbf{x}_t)L_i(\mathbf{x}_t,\vec{\omega})dt + T_r(\mathbf{x}\leftrightarrow\mathbf{x}_s)L(\mathbf{x}_s,\vec{\omega})$

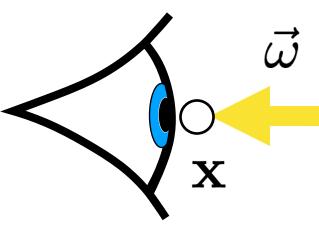
 $T_i(\mathbf{x}_t, \vec{\omega})dt + T_r(\mathbf{x} \leftrightarrow \mathbf{x}_s)L(\mathbf{x}_s, \vec{\omega})$

 $dt + e^{-s\sigma_t}L(\mathbf{x}_s,\vec{\omega})$ 133

 $L(\mathbf{x},\vec{\omega}) = \sigma_s \int_0^s e^{-t\sigma_t} L_i(\mathbf{x}_t,\vec{\omega}) dt + e^{-s\sigma_t} L(\mathbf{x}_s,\vec{\omega})$

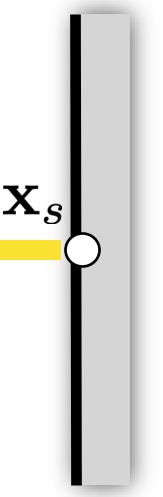


Homogeneous Ambient Media



 $L(\mathbf{x},\vec{\omega}) = \sigma_s \int_0^s e^{-t\sigma_t} L_i(\mathbf{x}_t,\vec{\omega}) dt + e^{-s\sigma_t} L(\mathbf{x}_s,\vec{\omega})$

Realistic Image Synthesis SS2024



Homogeneous Ambient Media

Assume in-scattered radiance is an ambient constant

$$L(\mathbf{x},\vec{\omega}) = \sigma_s \int_0^s e^{-t\sigma_t} L_i(\mathbf{x}_t,\vec{\omega}) dt + e^{-s\sigma_t} L(\mathbf{x}_s,\vec{\omega})$$

136

Homogeneous Ambient Media

Assume in-scattered radiance is an ambient constant

$$L(\mathbf{x}, \vec{\omega}) = \sigma_s \int_0^s e^{-t\sigma_t}$$
$$L(\mathbf{x}, \vec{\omega}) = \sigma_s \mathbf{L}_i \int_0^s e^{-t\sigma_t}$$

 $^{t}L_{i}(\mathbf{x}_{t},\vec{\omega})dt + e^{-s\sigma_{t}}L(\mathbf{x}_{s},\vec{\omega})$

 $t^{-t\sigma_t}dt + e^{-s\sigma_t}L(\mathbf{x}_s,\vec{\omega})$

137

Assume in-scattered radiance is an ambient constant

$$\begin{split} L(\mathbf{x},\vec{\omega}) &= \sigma_s \int_0^s e^{-t\sigma_t} L_i(\mathbf{x}_t,\vec{\omega}) dt + e^{-s\sigma_t} L(\mathbf{x}_s,\vec{\omega}) \\ L(\mathbf{x},\vec{\omega}) &= \sigma_s L_i \int_0^s e^{-t\sigma_t} dt + e^{-s\sigma_t} L(\mathbf{x}_s,\vec{\omega}) \end{split}$$

138

Assume in-scattered radiance is an ambient constant

$$L(\mathbf{x}, \vec{\omega}) = \sigma_s \int_0^s e^{-t\sigma_t} L_i(\mathbf{x}_t, \vec{\omega}) dt + e^{-s\sigma_t} L(\mathbf{x}_s, \vec{\omega})$$
$$L(\mathbf{x}, \vec{\omega}) = \sigma_s L_i \int_0^s e^{-t\sigma_t} dt + e^{-s\sigma_t} L(\mathbf{x}_s, \vec{\omega})$$
$$L(\mathbf{x}, \vec{\omega}) = \sigma_s L_i \frac{1 - e^{-s\sigma_t}}{\sigma_t} + e^{-s\sigma_t} L(\mathbf{x}_s, \vec{\omega})$$

Assume in-scattered radiance is an ambient constant

$$L(\mathbf{x}, \vec{\omega}) = \sigma_s \int_0^s e^{-t\sigma_t} L_i(\mathbf{x}_t, \vec{\omega}) dt + e^{-s\sigma_t} L(\mathbf{x}_s, \vec{\omega})$$
$$L(\mathbf{x}, \vec{\omega}) = \sigma_s L_i \int_0^s e^{-t\sigma_t} dt + e^{-s\sigma_t} L(\mathbf{x}_s, \vec{\omega})$$
$$L(\mathbf{x}, \vec{\omega}) = \sigma_s L_i \frac{1 - e^{-s\sigma_t}}{\sigma_t} + e^{-s\sigma_t} L(\mathbf{x}_s, \vec{\omega})$$
$$L(\mathbf{x}, \vec{\omega}) = \operatorname{lerp}\left(\frac{\sigma_s}{\sigma_t} L_i, L(\mathbf{x}_s, \vec{\omega}), e^{-s\sigma_t}\right)$$

140

Fog

Realistic Image Synthesis SS2024

Clear Day

Fog

Volumetric Rendering Equation

$$L(\mathbf{x}, \vec{\omega}) = T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega}) + \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_a(\mathbf{x}_z) + \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}_z) ds$$

Realistic Image Synthesis SS2024

 $(\mathbf{x}_t) L_e(\mathbf{x}_t, \vec{\omega}) dt$

 $\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}_t, \vec{\omega}') d\omega' dt$

Accumulated in-scattered radiance

In-scattered Radiance

 $L(\mathbf{x},\omega) = \int_0^z T_r(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t,\vec{\omega}',\vec{\omega}) L_i(\mathbf{x}_t,\vec{\omega}') d\omega' dt$

Realistic Image Synthesis SS2024

In-scattered Radiance

$$L(\mathbf{x},\omega) = \int_0^z T_r(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x},\mathbf{x}_t)$$

$$L_s(\mathbf{x},\omega) = \int_{S^2} f_p(\mathbf{x}_t,\vec{\omega}',\vec{\omega}) L_i(\mathbf{x}_t,\vec{\omega}') d\omega' dt$$

Single scattering L_i arrives directly from a light source (direct illumination)

$$L_i(\mathbf{x},\vec{\omega}) = T_r(\mathbf{x},r(\mathbf{x},r))$$

Multiple scattering

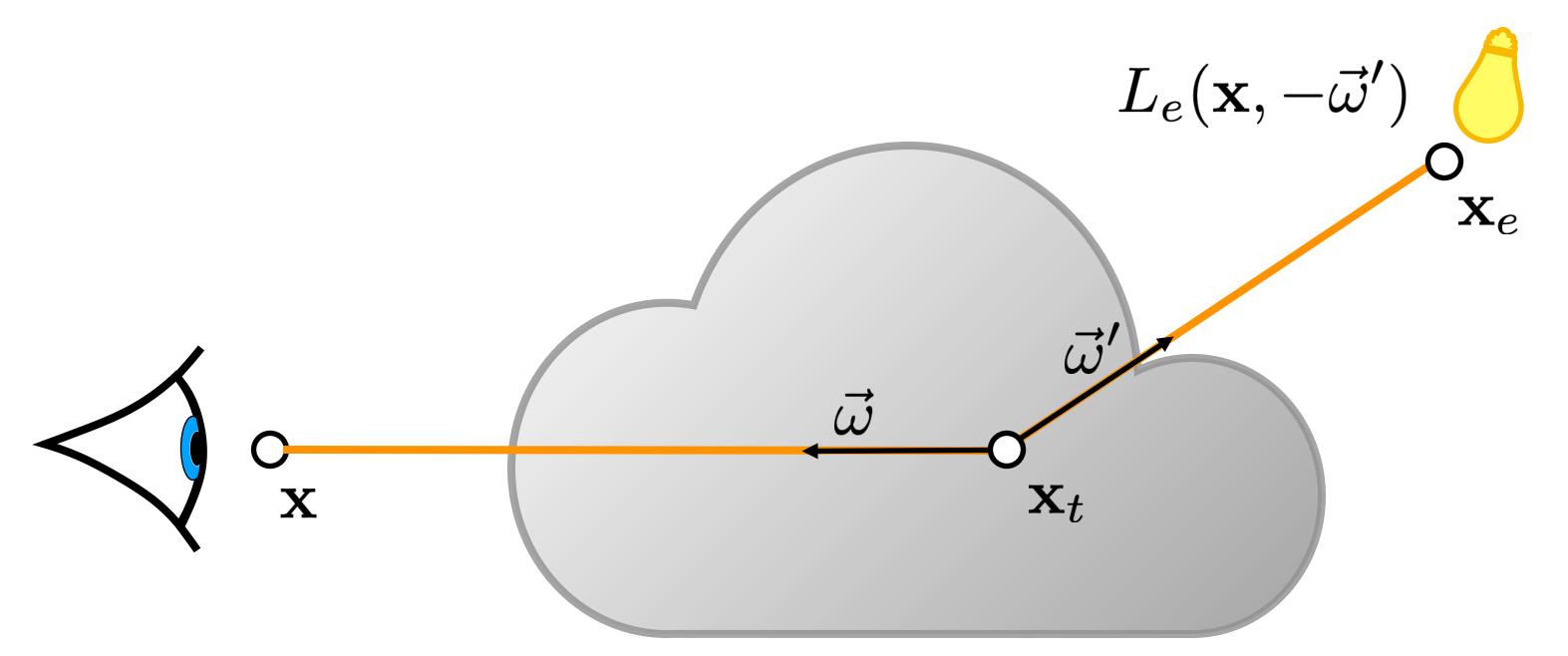
arrives through multiple bounces (indirect illumination)

 $\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}_t, \vec{\omega}') d\omega' dt$

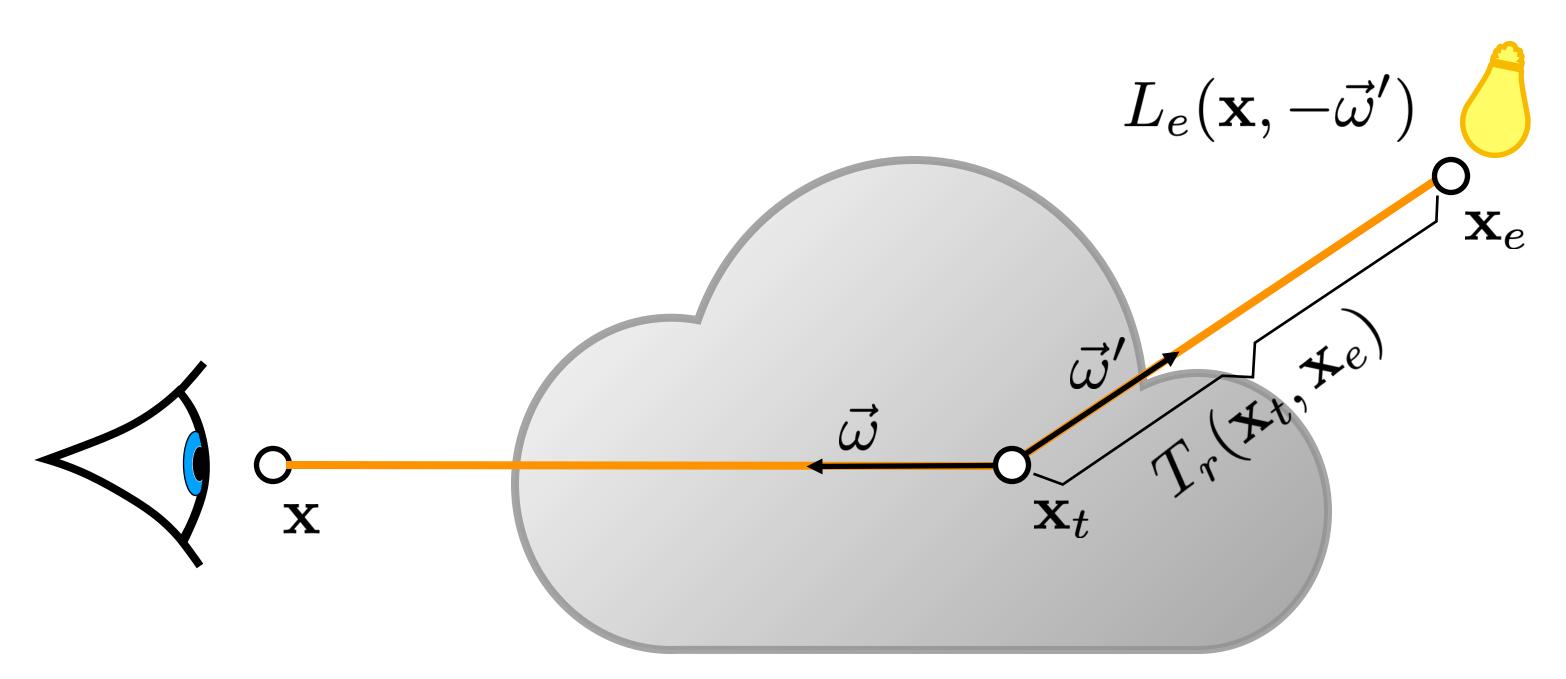
 $(\mathbf{x}, \vec{\omega}) L_e(r(\mathbf{x}, \vec{\omega}), -\vec{\omega}))$



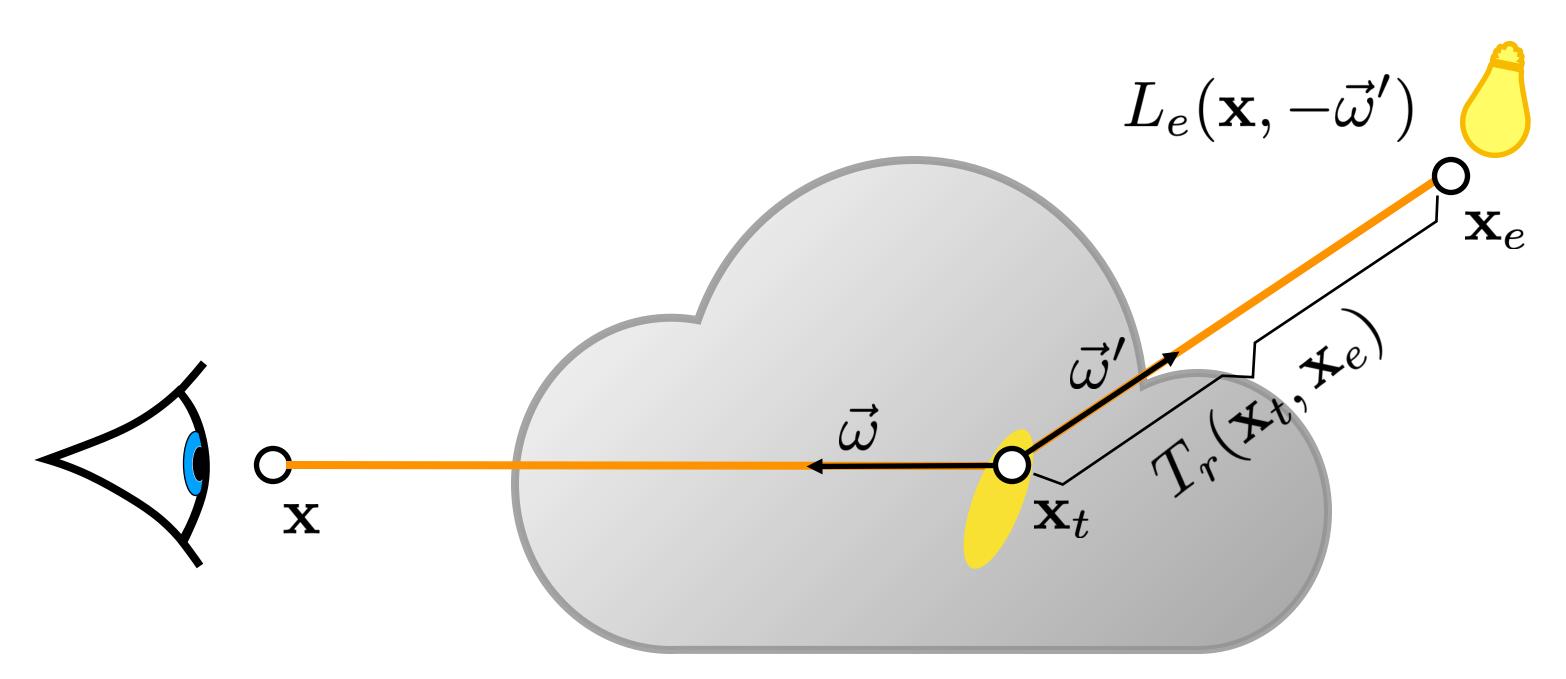
 $L(\mathbf{x},\vec{\omega}) = \int_0^\infty T_r(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x},\vec{\omega},\vec{\omega}')T_r(\mathbf{x}_t,\mathbf{x}_e)L_e(\mathbf{x}_e,-\vec{\omega})d\vec{\omega}'dt$



 $L(\mathbf{x},\vec{\omega}) = \int_0^\infty T_r(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x},\vec{\omega},\vec{\omega}')T_r(\mathbf{x}_t,\mathbf{x}_e)L_e(\mathbf{x}_e,-\vec{\omega})d\vec{\omega}'dt$

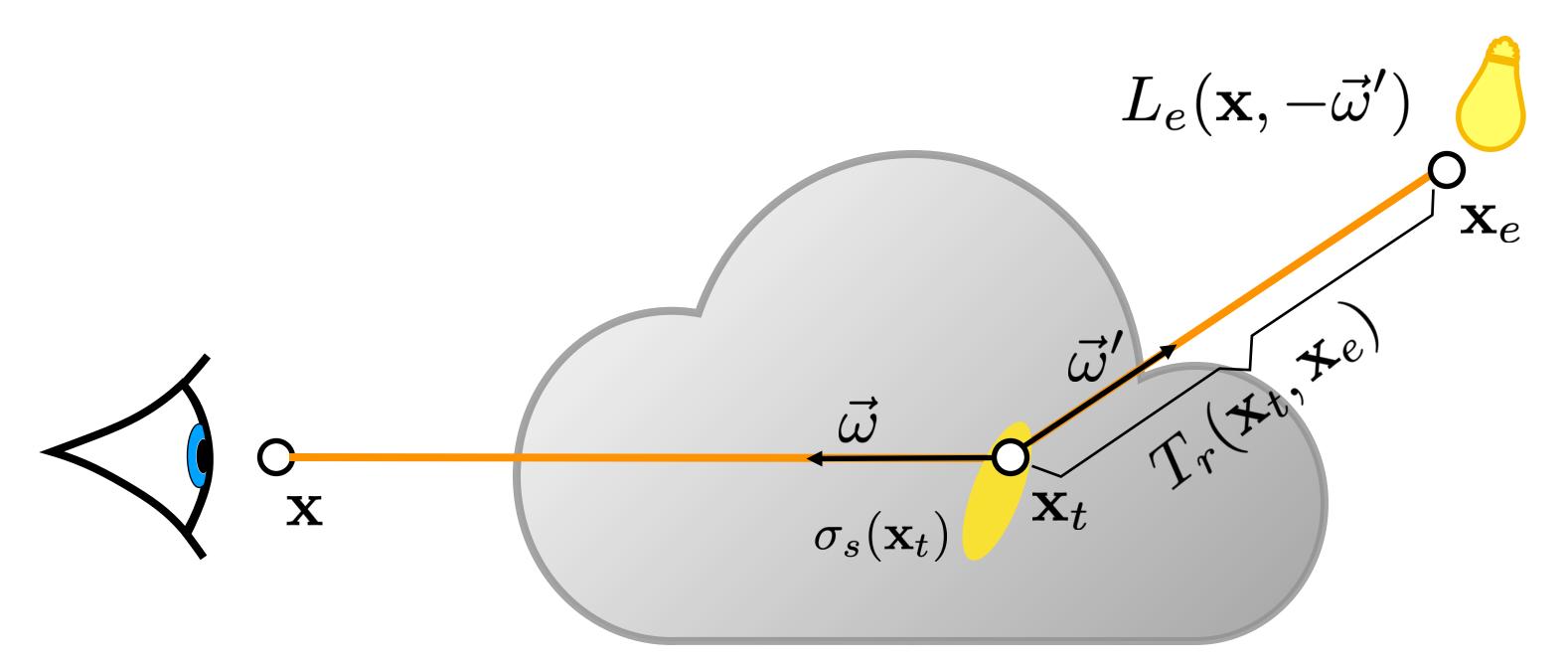


 $L(\mathbf{x},\vec{\omega}) = \int_0^\infty T_r(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x},\vec{\omega},\vec{\omega}')T_r(\mathbf{x}_t,\mathbf{x}_e)L_e(\mathbf{x}_e,-\vec{\omega})d\vec{\omega}'dt$

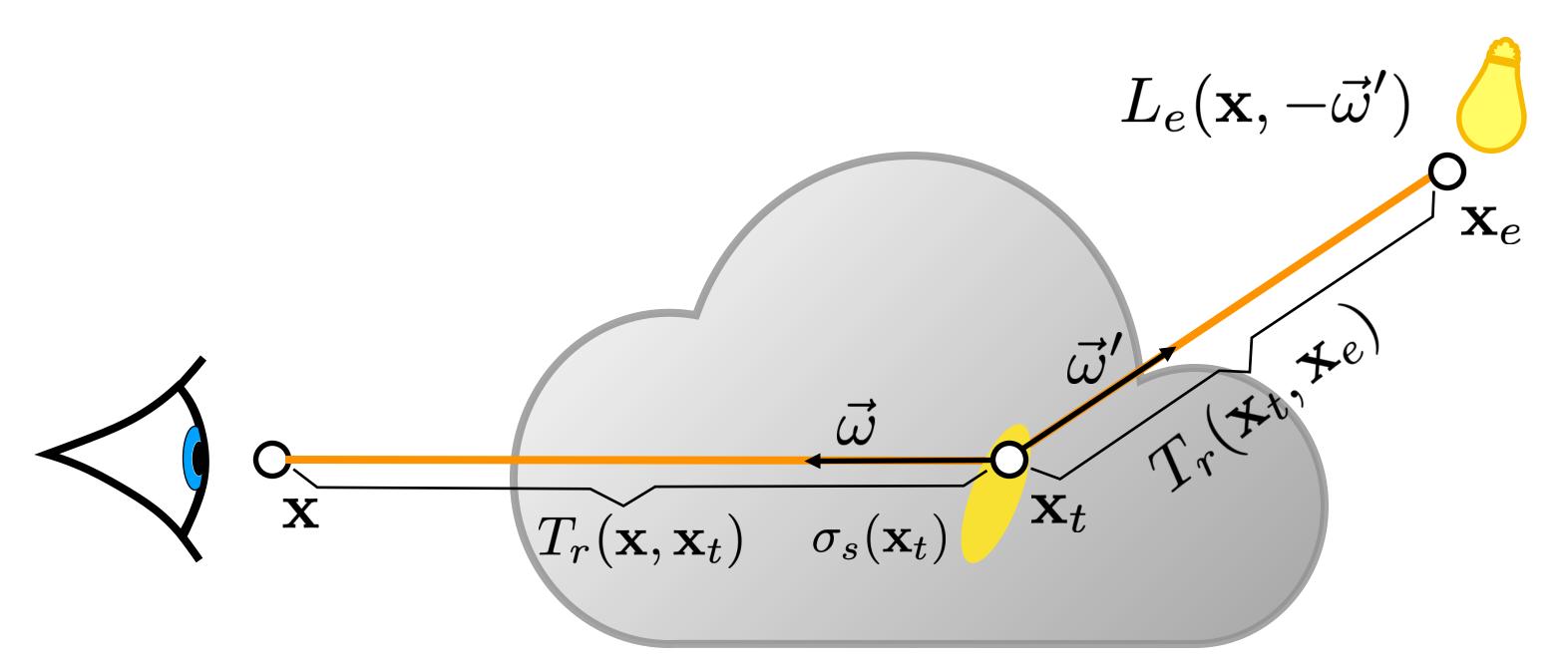




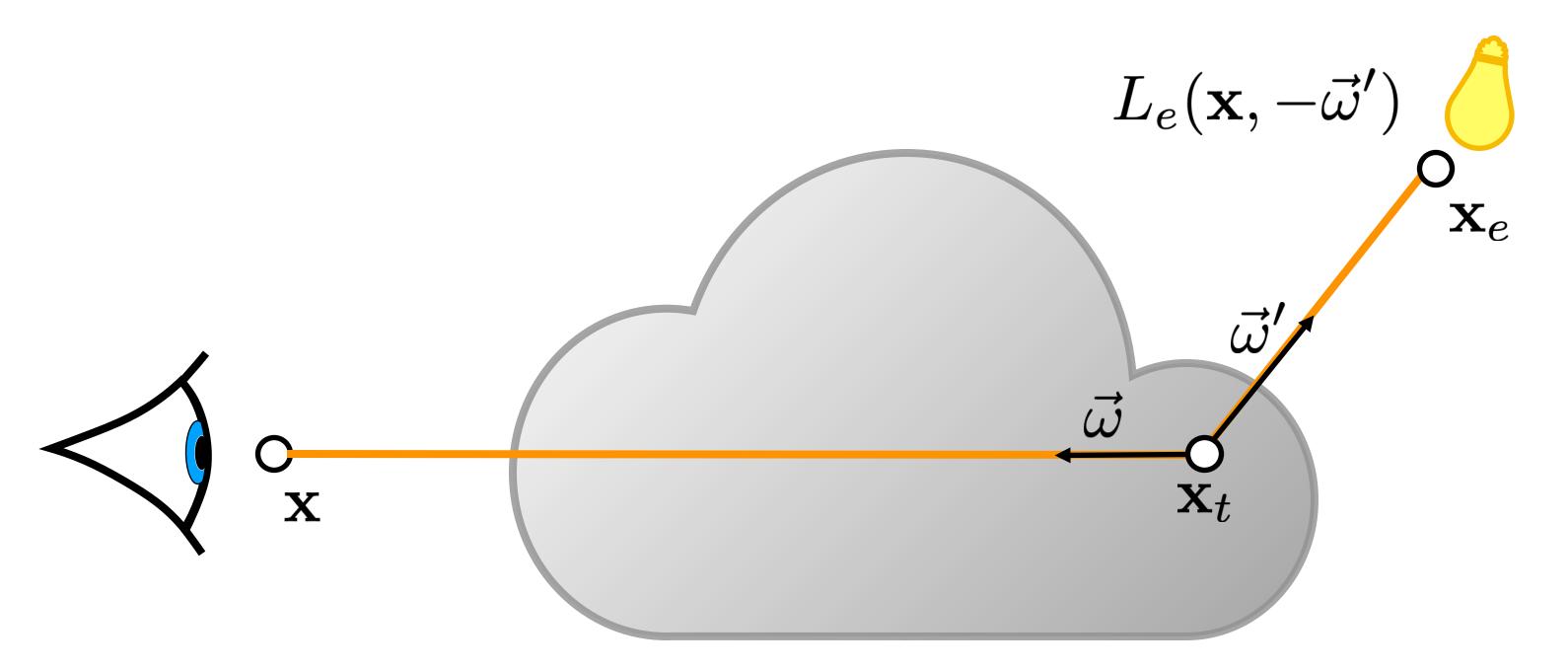
 $L(\mathbf{x},\vec{\omega}) = \int_0^\infty T_r(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x},\vec{\omega},\vec{\omega}')T_r(\mathbf{x}_t,\mathbf{x}_e)L_e(\mathbf{x}_e,-\vec{\omega})d\vec{\omega}'dt$



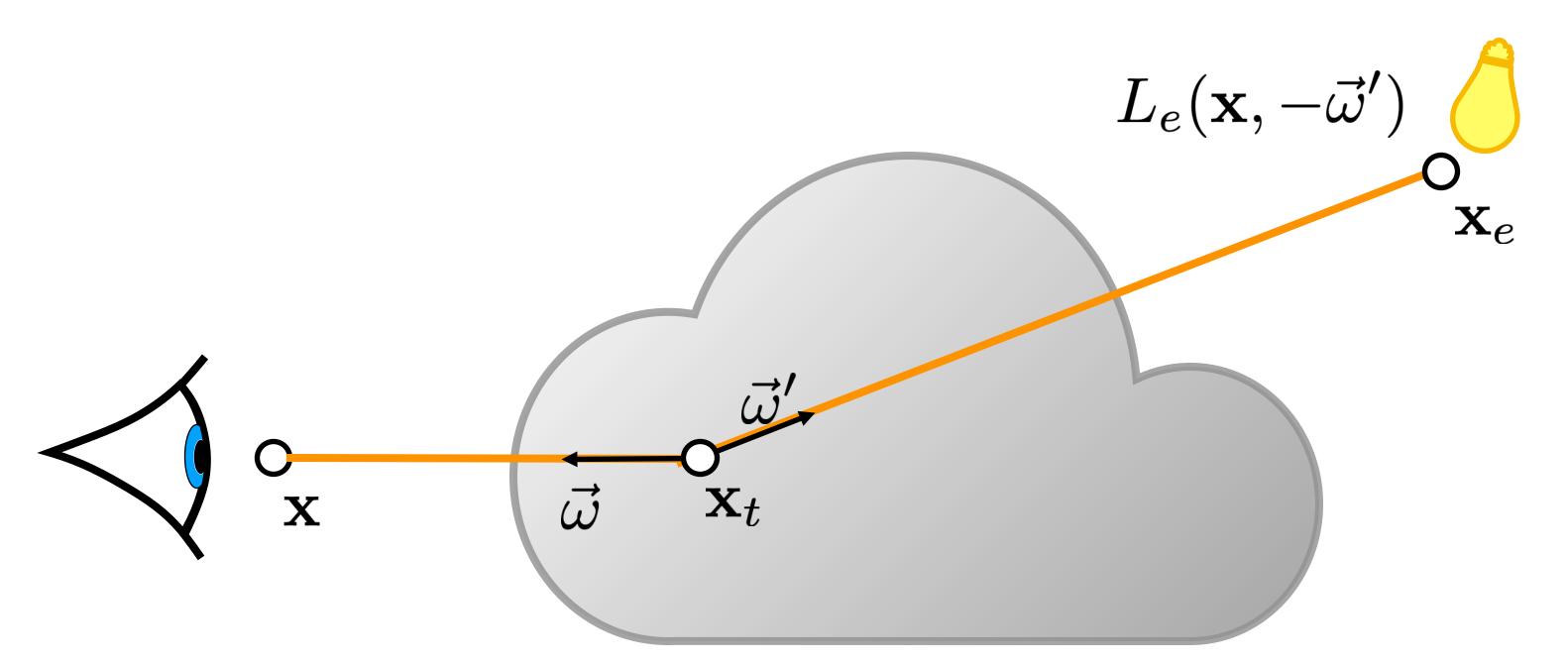
 $L(\mathbf{x},\vec{\omega}) = \int_0^{\tilde{\omega}} T_r(\mathbf{x},\mathbf{x}_t) \sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x},\vec{\omega},\vec{\omega}') T_r(\mathbf{x}_t,\mathbf{x}_e) L_e(\mathbf{x}_e,-\vec{\omega}) d\vec{\omega}' dt$



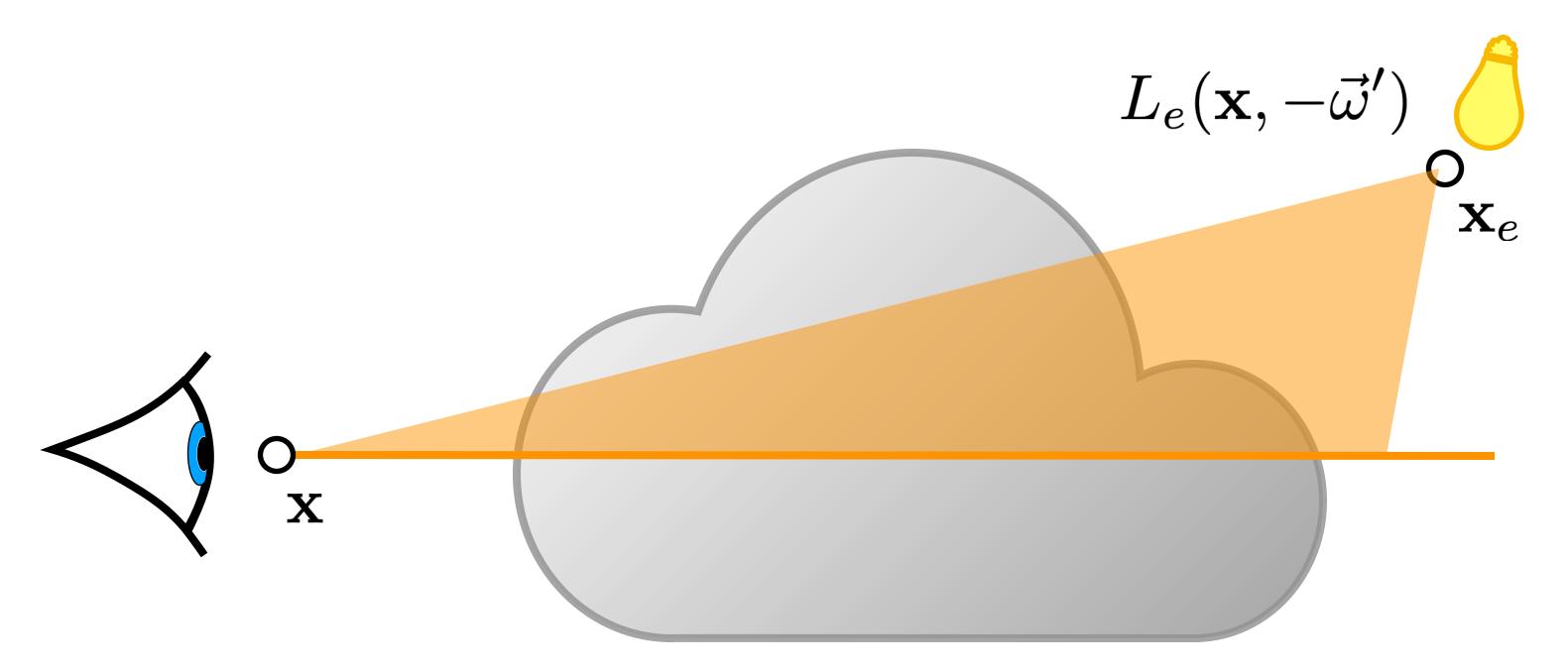
 $L(\mathbf{x},\vec{\omega}) = \int_0^{\omega} T_r(\mathbf{x},\mathbf{x}_t) \sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x},\vec{\omega},\vec{\omega}') T_r(\mathbf{x}_t,\mathbf{x}_e) L_e(\mathbf{x}_e,-\vec{\omega}) d\vec{\omega}' dt$



 $L(\mathbf{x},\vec{\omega}) = \int_0^{\omega} T_r(\mathbf{x},\mathbf{x}_t) \sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x},\vec{\omega},\vec{\omega}') T_r(\mathbf{x}_t,\mathbf{x}_e) L_e(\mathbf{x}_e,-\vec{\omega}) d\vec{\omega}' dt$



$$L(\mathbf{x},\vec{\omega}) = \int_0^z T_r(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x}_t) \int_{S^2}$$



Single Scattering

$f_p(\mathbf{x}, \vec{\omega}, \vec{\omega}') T_r(\mathbf{x}_t, \mathbf{x}_e) L_e(\mathbf{x}_e, -\vec{\omega}) d\vec{\omega}' dt$

$$L(\mathbf{x},\vec{\omega}) = \int_0^z T_r(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x}_t) \int_{S^2}$$

Semi-analytic solutions Sun et al. [2005]

Pegoraro et al. [2009, 2010]

Numerical solutions

Ray marching

Equiangular sampling

Single Scattering

$\int f_p(\mathbf{x}, \vec{\omega}, \vec{\omega}') T_r(\mathbf{x}_t, \mathbf{x}_e) L_e(\mathbf{x}_e, -\vec{\omega}) d\vec{\omega}' dt$

158

$$L(\mathbf{x},\vec{\omega}) = \int_0^z T_r(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x}_t) \int_S$$

Assumptions:

Homogeneous

Point or spot light

Relatively simple phase function

No occlusion

 $\int_{2^2} f_p(\mathbf{x}, \vec{\omega}, \vec{\omega}') T_r(\mathbf{x}_t, \mathbf{x}_e) L_e(\mathbf{x}_e, -\vec{\omega}) d\vec{\omega}' dt$

$\left\langle L_{\mathbf{I}}(\mathbf{x},\vec{\omega}) = \frac{\Phi}{4\pi} \frac{1}{4\pi} \int_{0}^{z} e^{-\sigma_{t}||\mathbf{x},\mathbf{x}_{t}||} \frac{e^{-\sigma_{t}||\mathbf{x}_{t},\mathbf{x}_{p}||}{e^{-\sigma_{t}||\mathbf{x}_{t},\mathbf{x}_{p}||^{2}}} dt \right\rangle$

159

OpenGL Fog

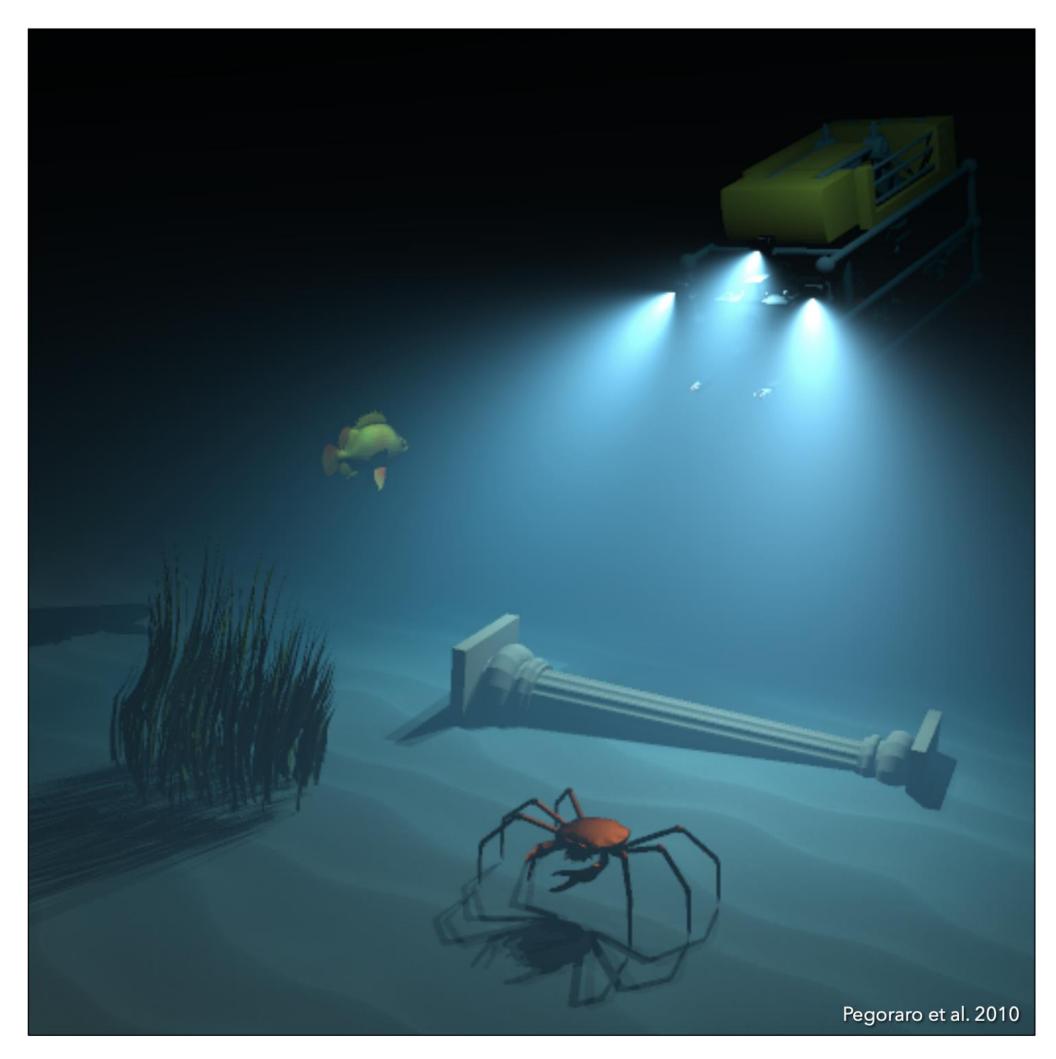
Realistic Image Synthesis SS2024



Realistic Image Synthesis SS2024



Realistic Image Synthesis SS2024



$$L_m(x_a, x_b, \vec{\omega}) = \frac{\kappa_s}{h} e^{\kappa_t (x_a - x_h)} 2 \sum_{n=0}^{N-1} c(n) \sum_{k=0}^{2n} d(n, k) \int_{\nu_a}^{\nu_b} \frac{e^{-H\nu}}{(\nu^2 + 1)^{n+1}} \nu^k d\nu$$

$$\int \frac{e^{av}}{(v^2+1)^m} v^n dv = \frac{1}{2^{m-1}} \sum_{l=0}^{m-1} \frac{1}{2^l} \binom{m-1+l}{m-1} \binom{\min\{m-1-l,n\}}{k=0} \binom{n}{k} \binom{a^{m-1-l-k}}{(m-1-l-k)!} E(a,v,m-n-l+k) \\ -e^{av} \sum_{j=1}^{m-1-l-k} \frac{(j-1)!}{(m-1-l-k)!} \frac{a^{m-1-l-k-j}}{(v^2+1)^j} \sum_{i=(m-n-l+k-j) \mod 2}^{\leq j} (-1)^{\frac{m-n-l+k-j+i}{2}} \binom{j}{i} v^i \end{pmatrix} \\ + \frac{e^{av}}{a} \sum_{k=0}^{\leq n-m+l} \binom{n}{k} \sum_{j=0}^{n-m+l-k} \frac{(n-m+l-k)!}{j!} \frac{1}{(-a)^{n-m+l-k-j}} \sum_{i=(-m+l+k-j) \mod 2}^{\leq j} (-1)^{\frac{-m+l+k-j+i}{2}} \binom{j}{i} v^i \end{pmatrix}$$

$$= \frac{1}{2^{m-1}} \sum_{l=0}^{m-1} \frac{1}{2^{l}} \binom{m-1+l}{m-1} \binom{\min\{m-1-l,n\}}{k=0} \binom{n}{k} \binom{a^{m-1-l-k}}{(m-1-l-k)!} E(a,v,m-n-l+k) \\ -e^{av} \sum_{j=1}^{m-1-l-k} \frac{(j-1)!}{(m-1-l-k)!} \frac{a^{m-1-l-k-j}}{(v^{2}+1)^{j}} \sum_{i=(m-n-l+k-j) \mod 2}^{j} (-1)^{\frac{m-n-l+k-j+i}{2}} \binom{j}{i} v^{i} \end{pmatrix} \\ + \frac{e^{av}}{a} \sum_{k=0}^{n-m+l} \binom{n}{k} \sum_{j=0}^{n-m+l-k} \frac{(n-m+l-k)!}{j!} \frac{1}{(-a)^{n-m+l-k-j}} \sum_{i=(-m+l+k-j) \mod 2}^{j} (-1)^{\frac{-m+l+k-j+i}{2}} \binom{j}{i} v^{i} \end{pmatrix}$$

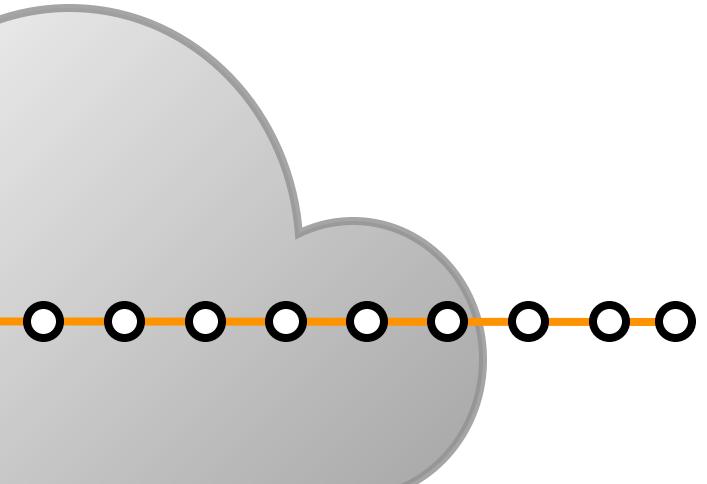
No shadows, implementation nightmare, computationally intensive,...

Let's try brute force!

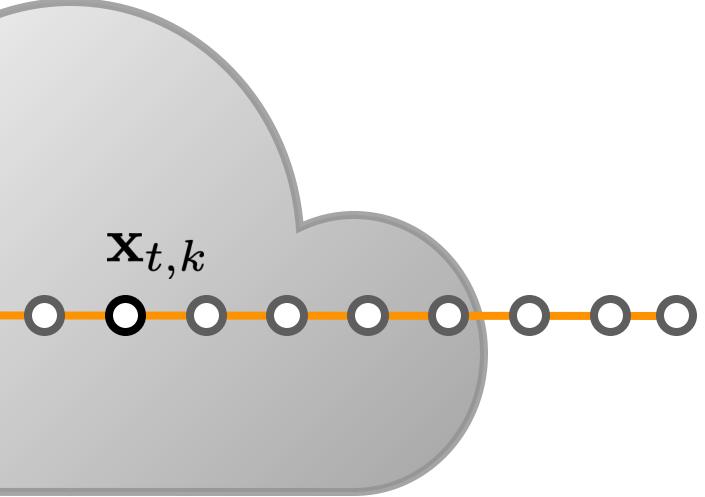
163

Ray Marching $L(\mathbf{x}, \vec{\omega}) = \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}_t) L_s(\mathbf{x}_t, \vec{\omega}) dt$ Approximate with Riemann summation 0 \mathbf{X}

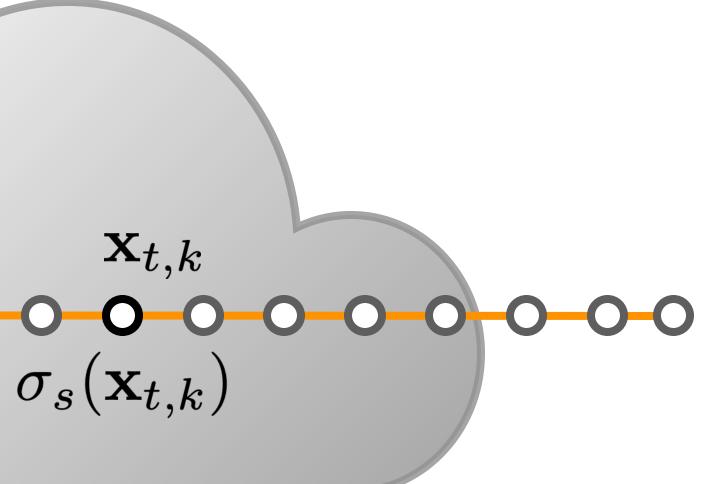
Ray Marching N $L_{(\mathbf{x},\vec{\omega})} \approx \sum T_r(\mathbf{x},\mathbf{x}_{t,k})\sigma_s(\mathbf{x}_{t,k})L_s(\mathbf{x}_{t,k},\vec{\omega})\Delta t$ k=0 \mathbf{X}



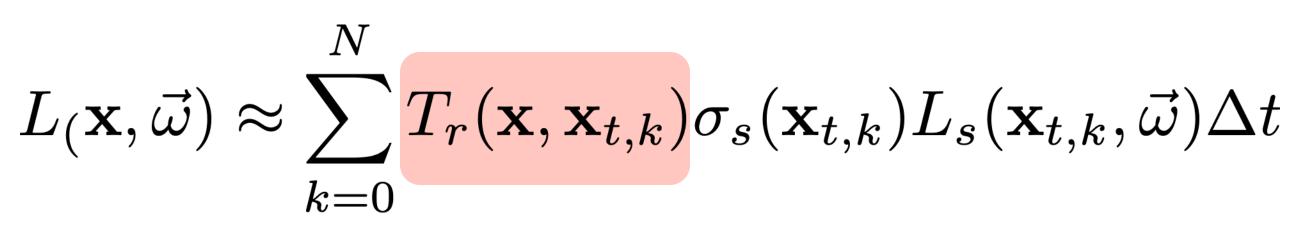
Ray Marching N $L_{(\mathbf{x},\vec{\omega})} \approx \sum^{N} T_{r}(\mathbf{x},\mathbf{x}_{t,k}) \sigma_{s}(\mathbf{x}_{t,k}) L_{s}(\mathbf{x}_{t,k},\vec{\omega}) \Delta t$ $k{=}0$ 0 \mathbf{X}

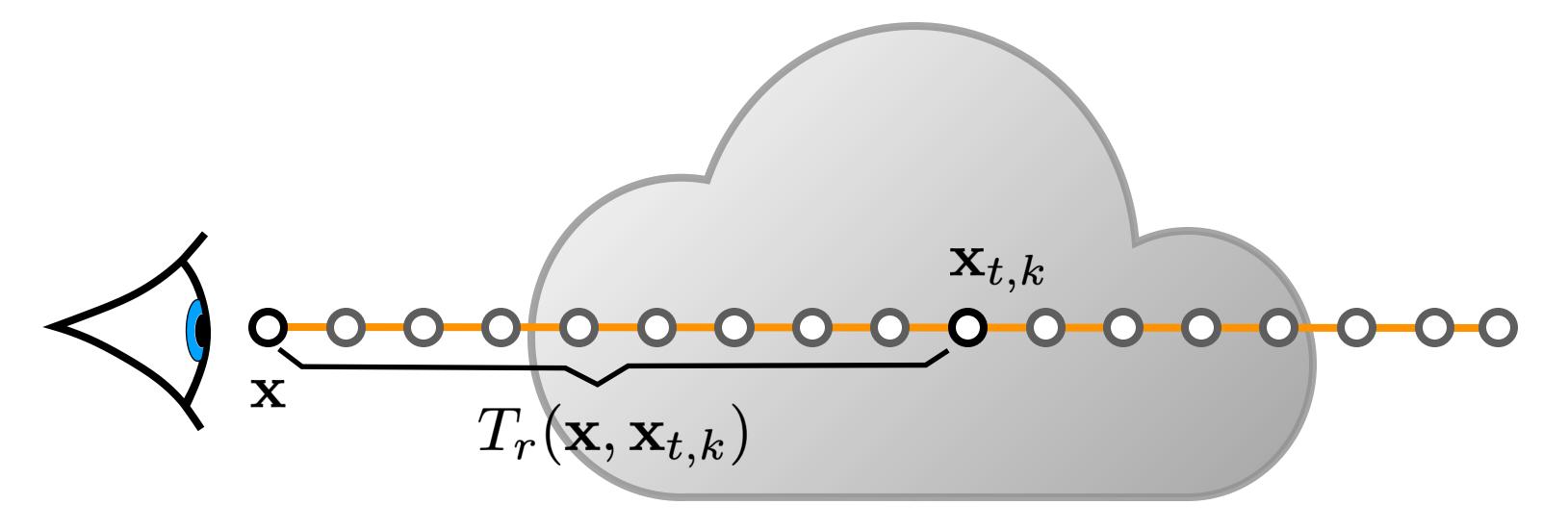


Ray Marching N $L_{(\mathbf{x},\vec{\omega})} \approx \sum T_r(\mathbf{x},\mathbf{x}_{t,k})\sigma_s(\mathbf{x}_{t,k})L_s(\mathbf{x}_{t,k},\vec{\omega})\Delta t$ $k{=}0$ $\mathbf{x}_{t,k}$ 0-0-0-0-Ο \mathbf{X}

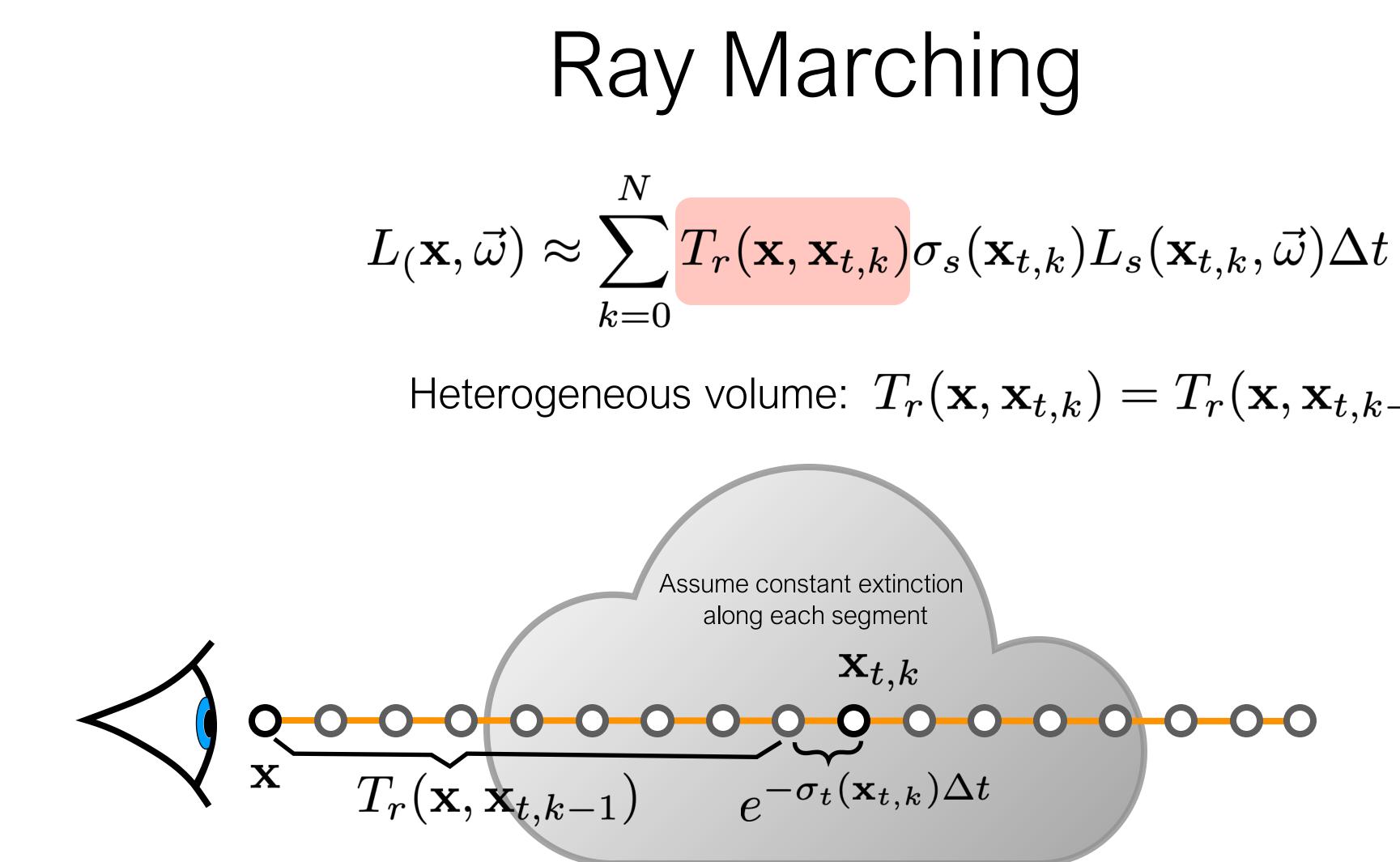


Ray Marching



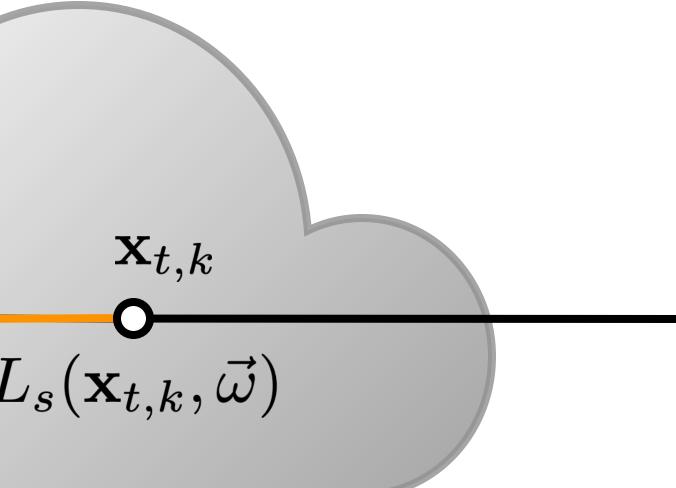


Homogeneous volume: $T_r(\mathbf{x}, \mathbf{x}_{t,k}) = e^{-\sigma_t ||\mathbf{x}, \mathbf{x}_{t,k}||}$

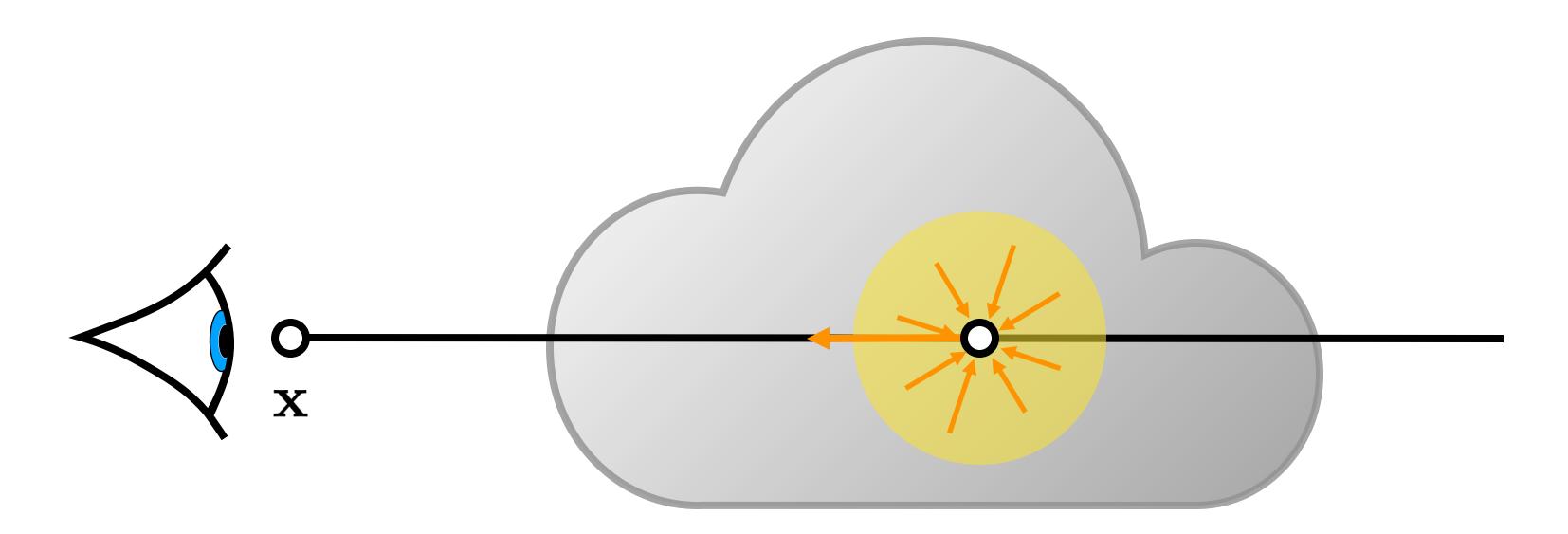


Heterogeneous volume: $T_r(\mathbf{x}, \mathbf{x}_{t,k}) = T_r(\mathbf{x}, \mathbf{x}_{t,k-1})e^{-\sigma_t(\mathbf{x}_{t,k})\Delta t}$

Ray Marching N $L_{(\mathbf{x},\vec{\omega})} \approx \sum_{r} T_{r}(\mathbf{x},\mathbf{x}_{t,k})\sigma_{s}(\mathbf{x}_{t,k})\frac{L_{s}(\mathbf{x}_{t,k},\vec{\omega})}{\Delta t}$ k = 0 $\mathbf{x}_{t,k}$ 0 $L_s(\mathbf{x}_{t,k},\vec{\omega})$ \mathbf{X}



 $L_s(\mathbf{x}_t, \vec{\omega}) = \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}, \vec{\omega}') L_i(\mathbf{x}_t, \vec{\omega}') d\vec{\omega}'$

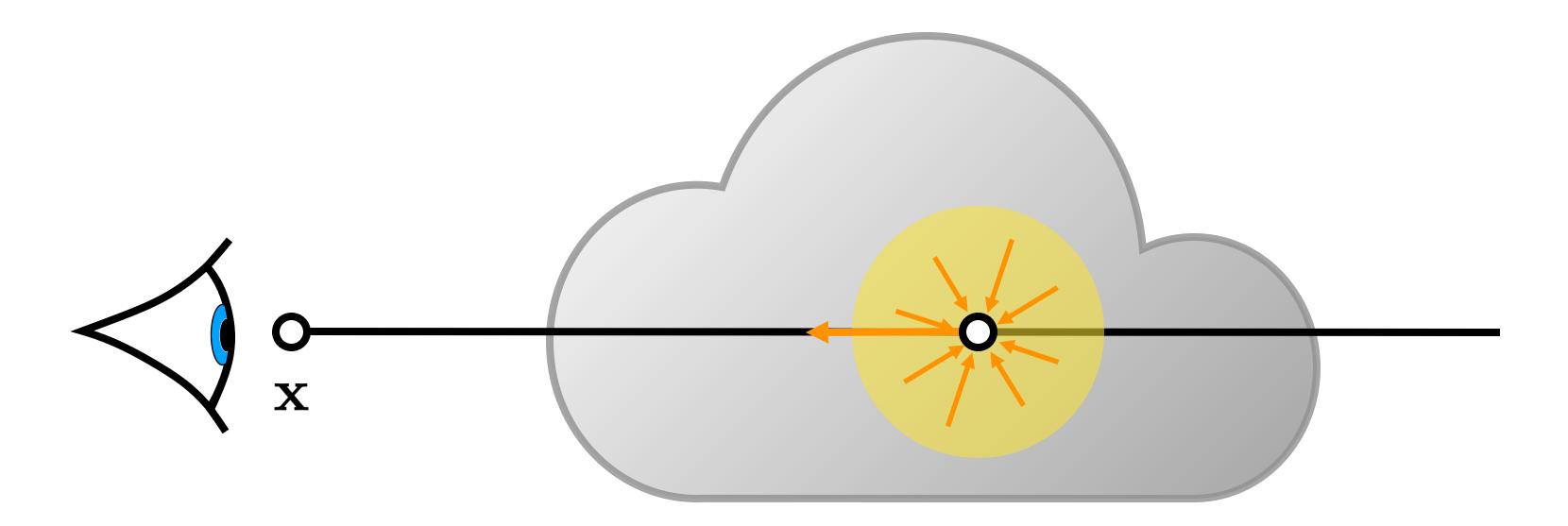


Ray Marching



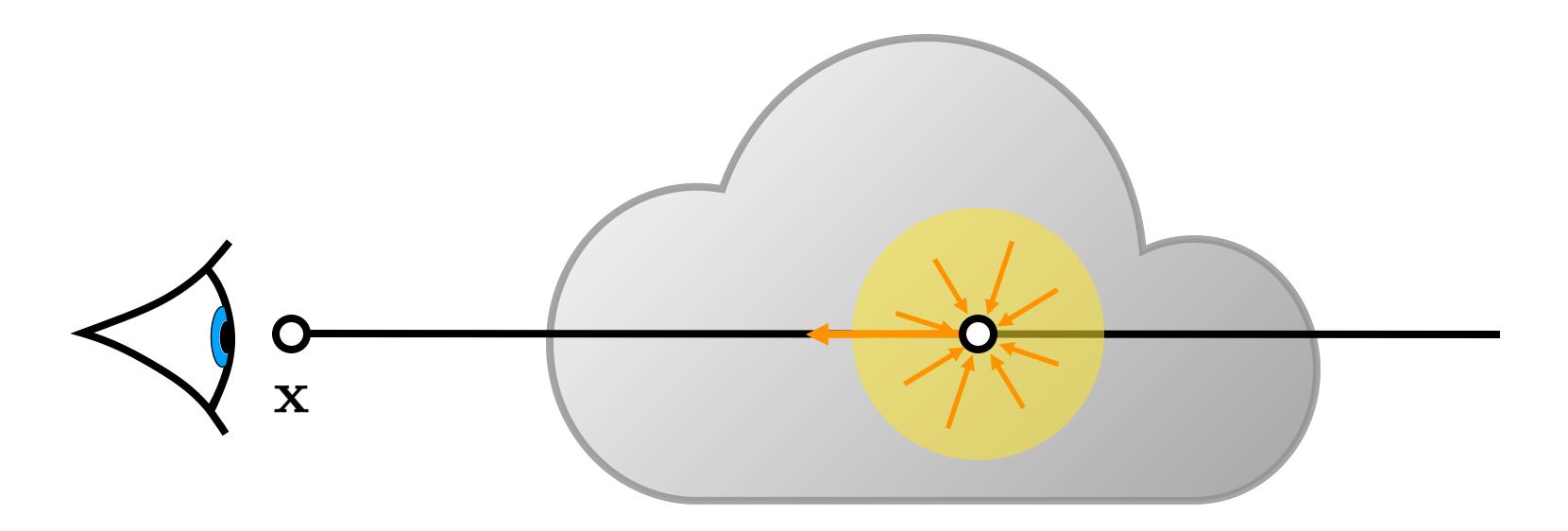
Ray Marching

 $L_s(\mathbf{x}_t, \vec{\omega}) \approx \frac{1}{M} \sum_{j=1}^M \frac{f_p(\mathbf{x}_t, \vec{\omega}, \vec{\omega}'_j) L_i(\mathbf{x}_t, \vec{\omega}'_j)}{p(\vec{\omega}'_j)}$





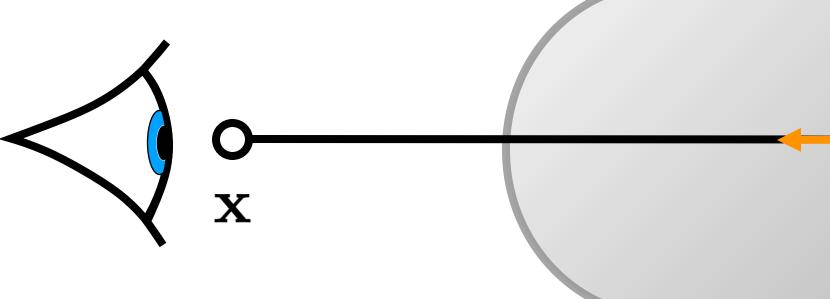
 $L_s(\mathbf{x}_t, \vec{\omega}) \approx \frac{1}{M} \sum_{j=1}^M \frac{f_p(\mathbf{x}_t, \vec{\omega}, \vec{\omega}'_j) L_i(\mathbf{x}_t, \vec{\omega}'_j)}{p(\vec{\omega}'_j)}$

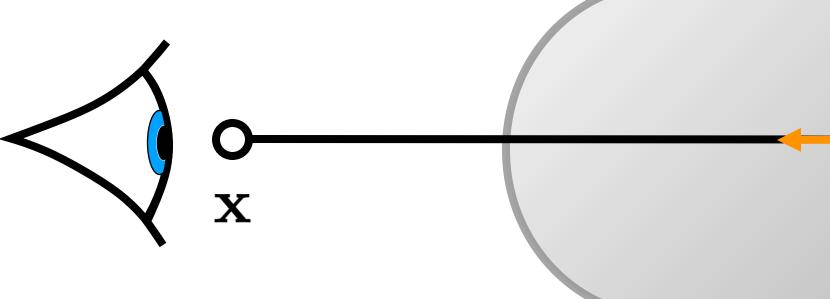


Ray Marching

Ray Marching \mathbf{x}_{e} (tr)

 $L_s(\mathbf{x}_t, \vec{\omega}) \approx \frac{1}{M} \sum_{j=1}^M \frac{f_p(\mathbf{x}_t, \vec{\omega}, \vec{\omega}'_j) L_i(\mathbf{x}_t, \vec{\omega}'_j)}{p(\vec{\omega}'_j)}$





Ray Marching $L_s(\mathbf{x}_t, \vec{\omega}) \approx \frac{1}{M} \sum_{j=1}^M \frac{f_p(\mathbf{x}_t, \vec{\omega}, \vec{\omega}'_j) L_i(\mathbf{x}_t, \vec{\omega}'_j)}{p(\vec{\omega}'_j)}$ \mathbf{x}_{e} 4.e)

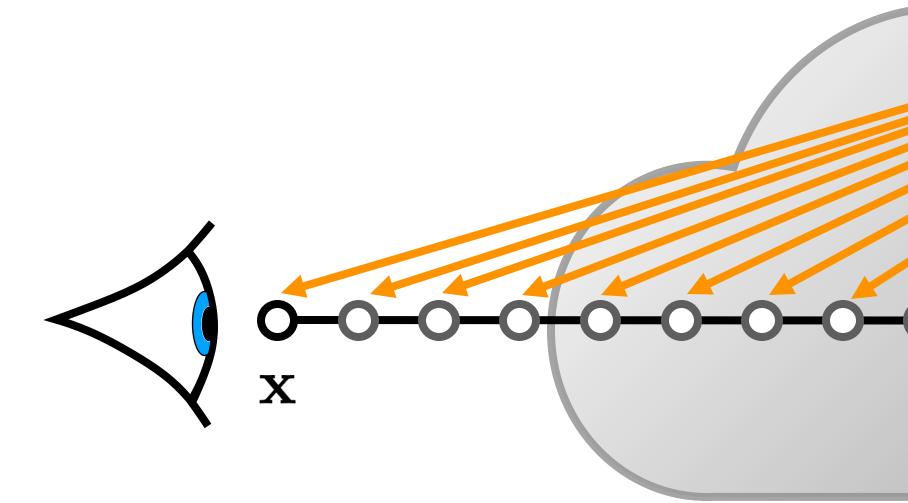
Another ray marching needed to estimate the transmittance along the connection ray (in the heterogeneous media)

175

Ray Marching in Heterogeneous Media

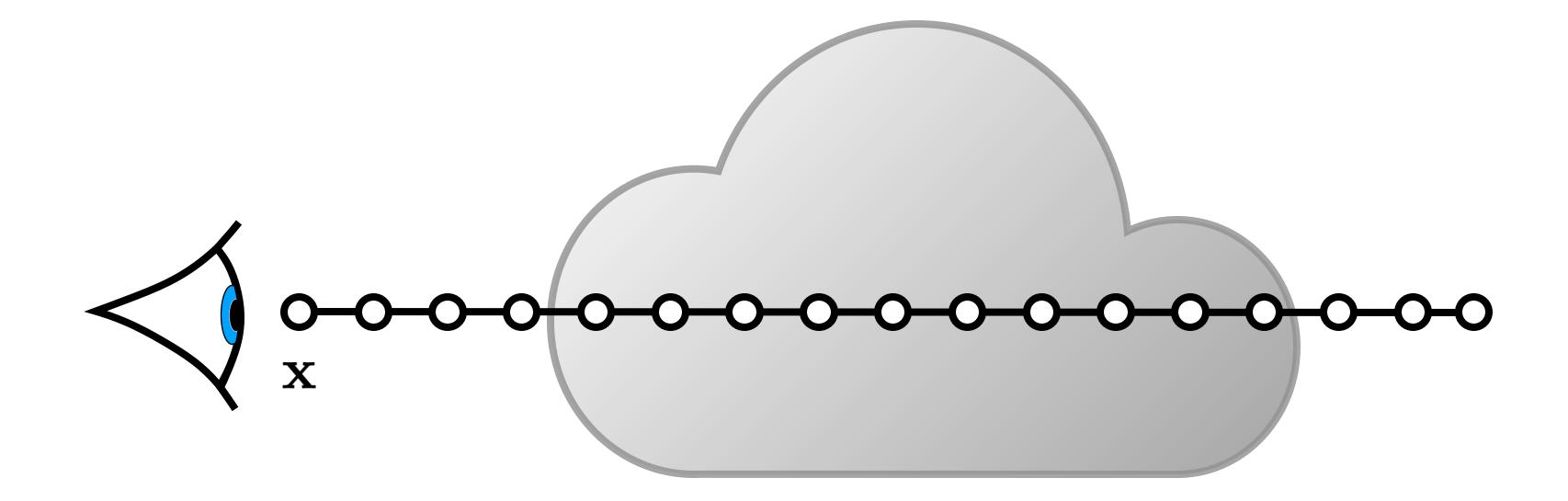
Marching towards the light source

- Connections are expensive, many, and uniformly distributed along the primary ray \mathbf{X}_{e}

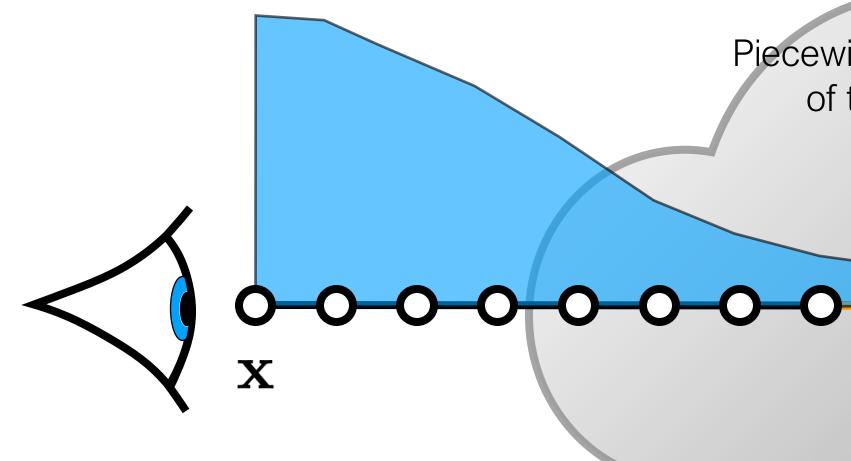


176

- 1. Ray march and cache transmittance
 - Choose step-size w.r.t. frequency content to accurately capture variations

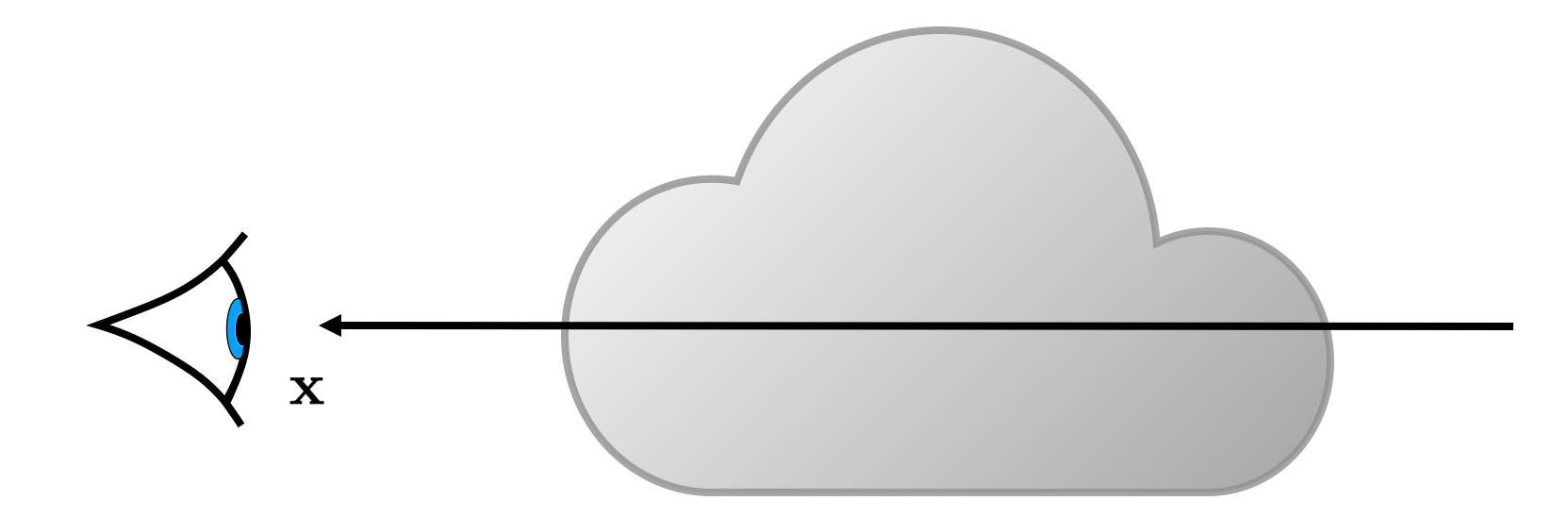


- 1. Ray march and cache transmittance
 - Choose step-size w.r.t. frequency content to accurately capture variations

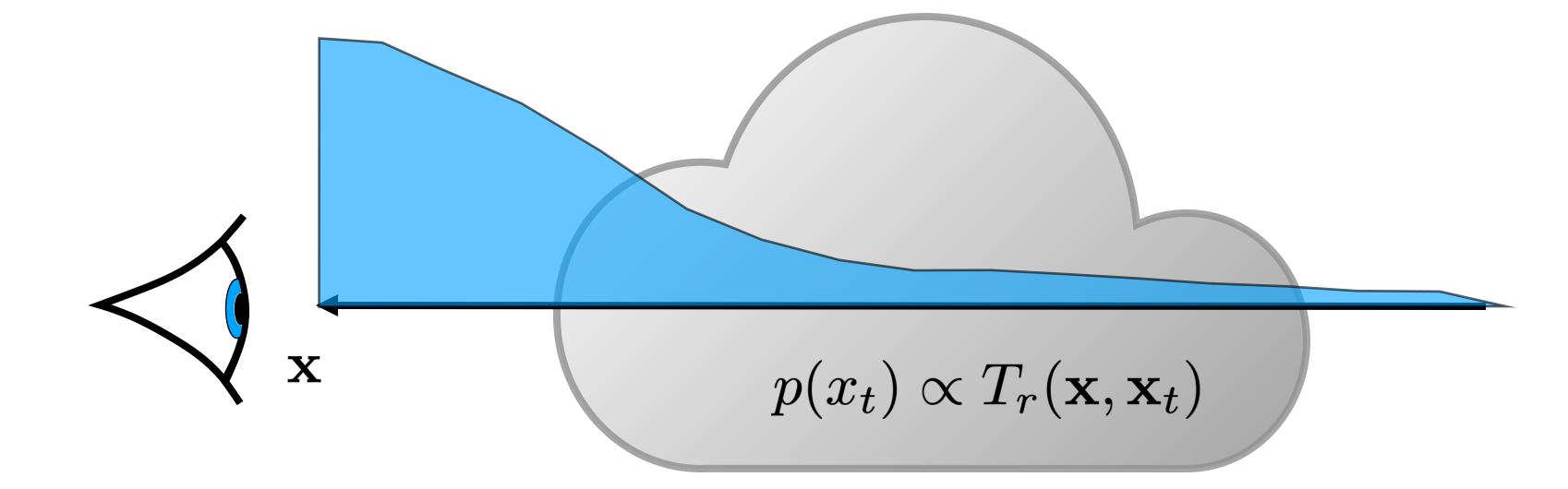


Piecewise approximation of transmittance $T_r(\mathbf{x}, \mathbf{x}_t)$

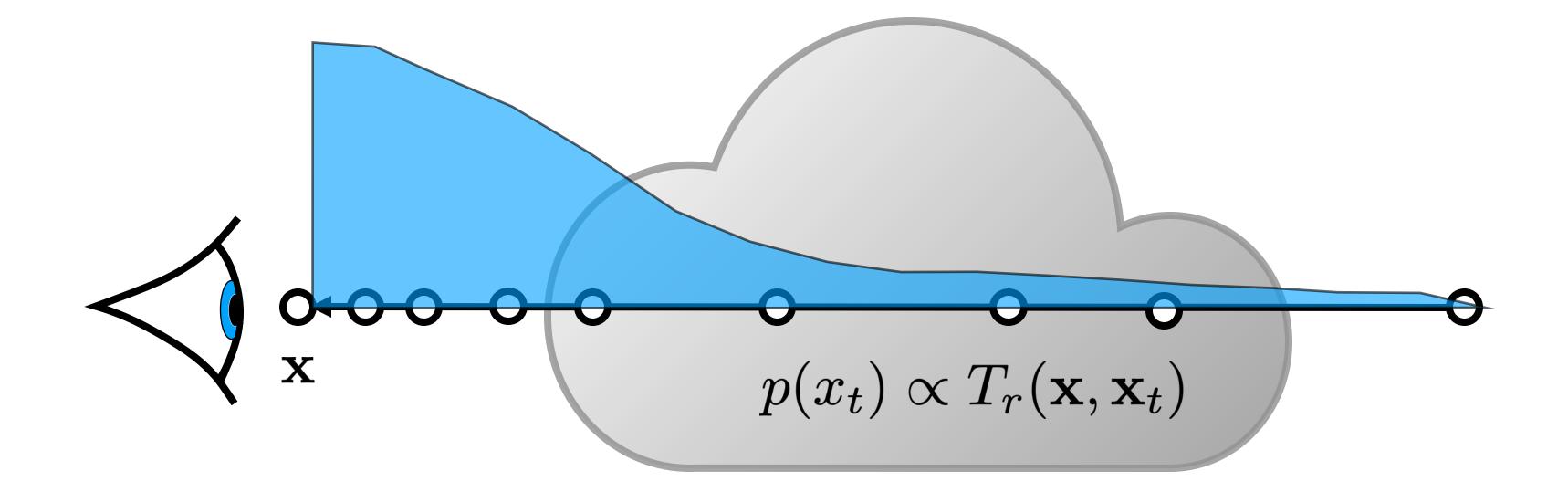
- 2. Estimate in-scattering using MC integration
 - Distribute samples proportional to (part of) the integrand



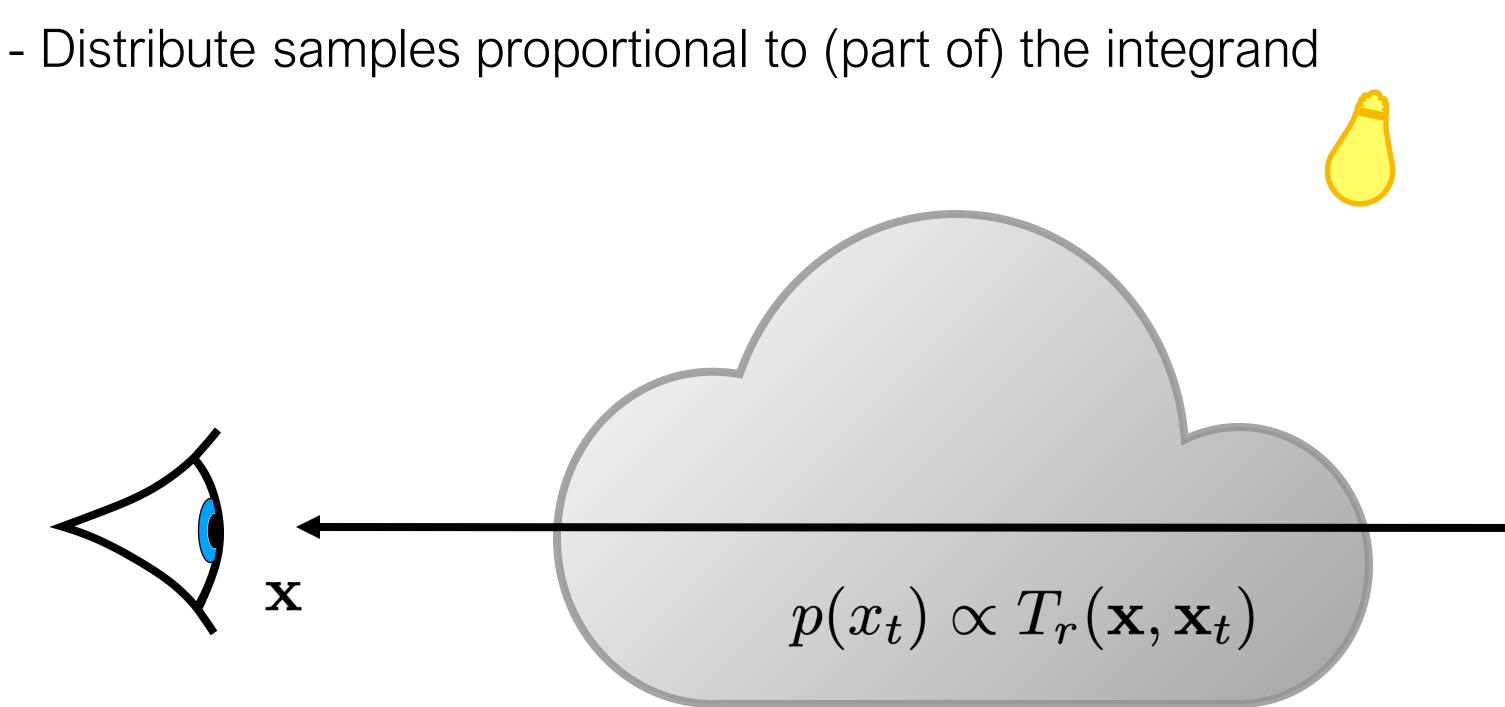
- 2. Estimate in-scattering using MC integration
 - Distribute samples proportional to (part of) the integrand



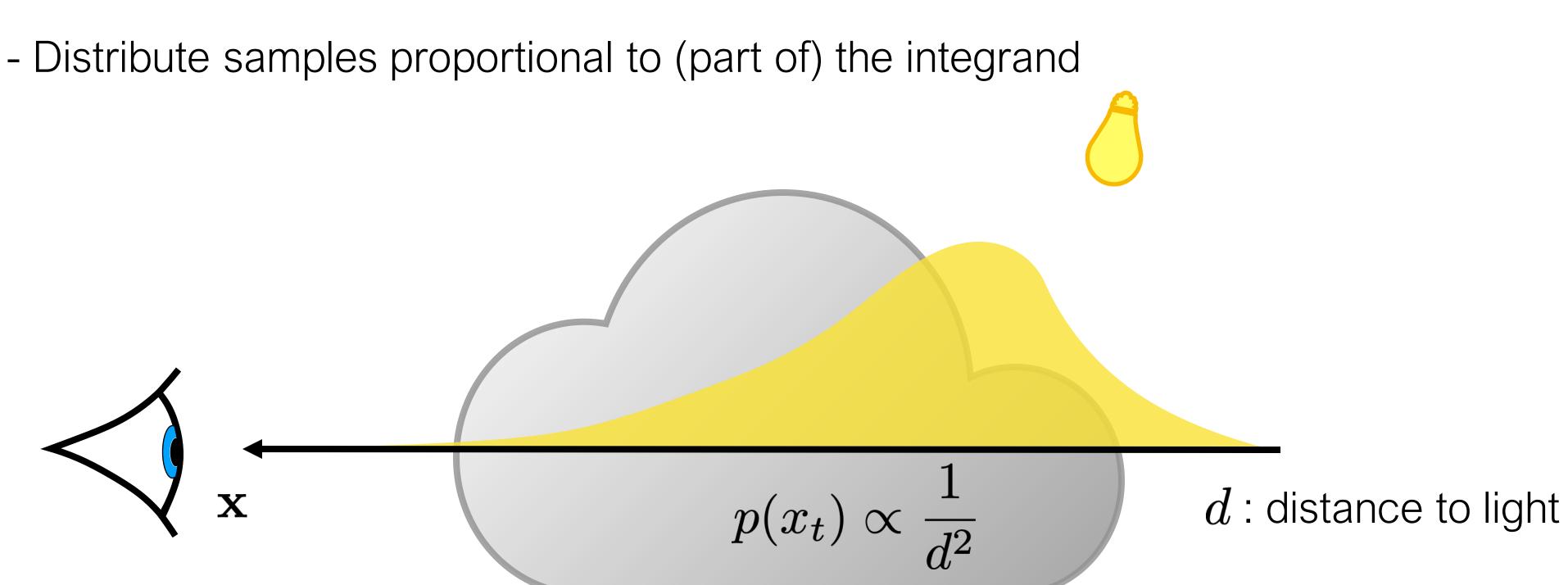
- 2. Estimate in-scattering using MC integration
 - Distribute samples proportional to (part of) the integrand



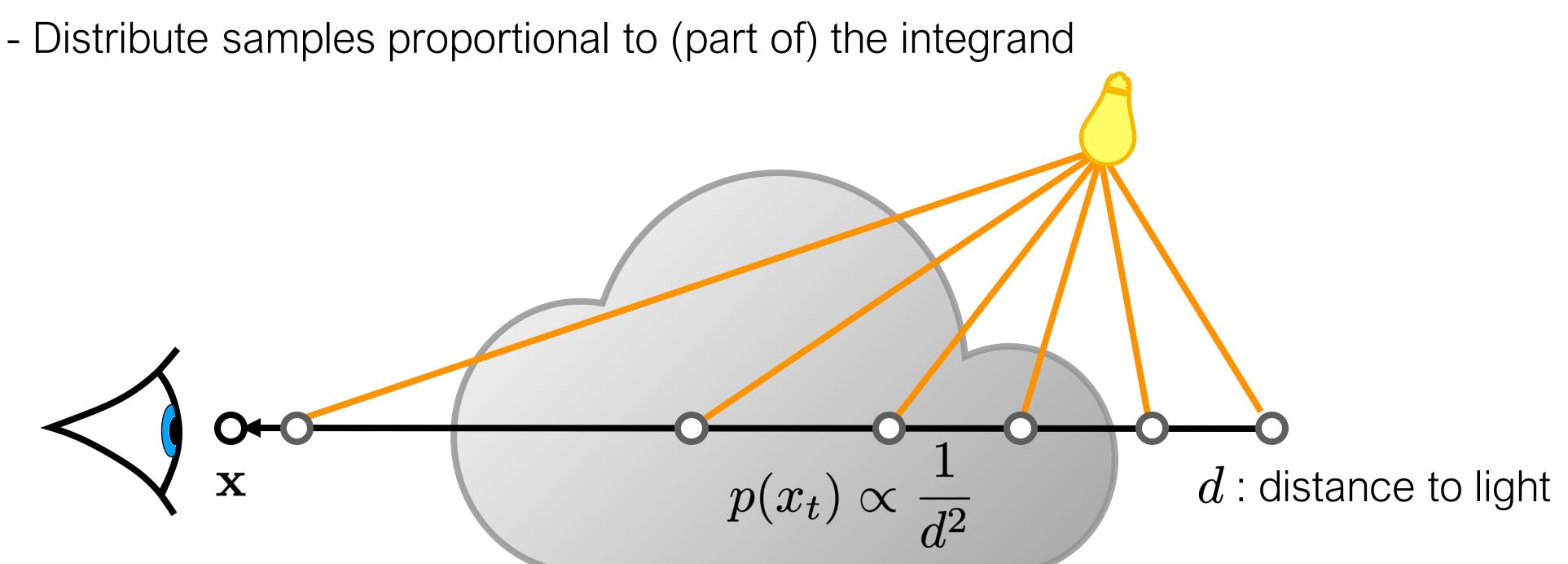
- 2. Estimate in-scattering using MC integration



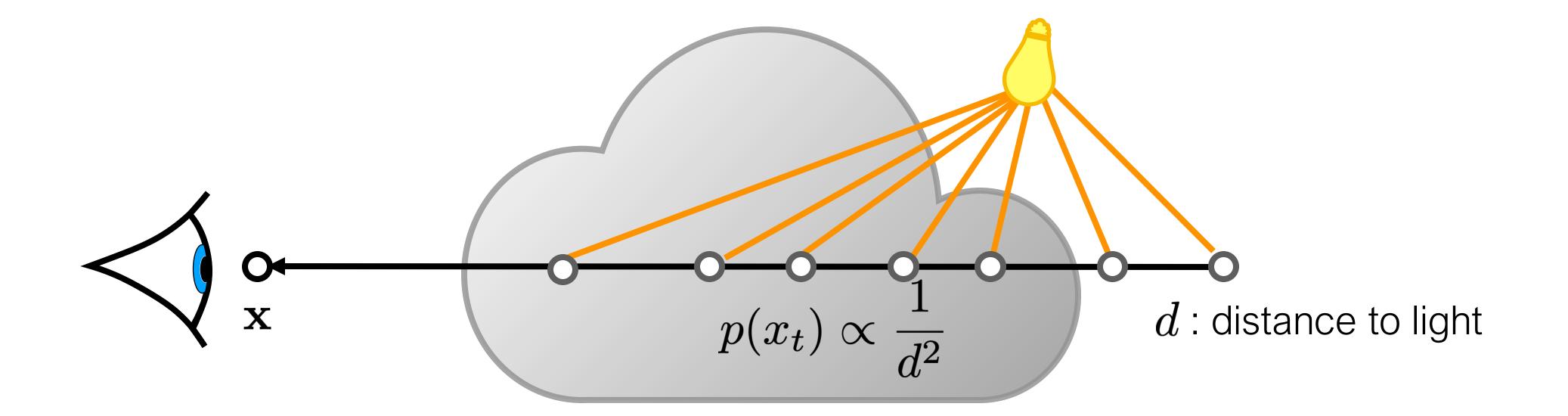
- 2. Estimate in-scattering using MC integration



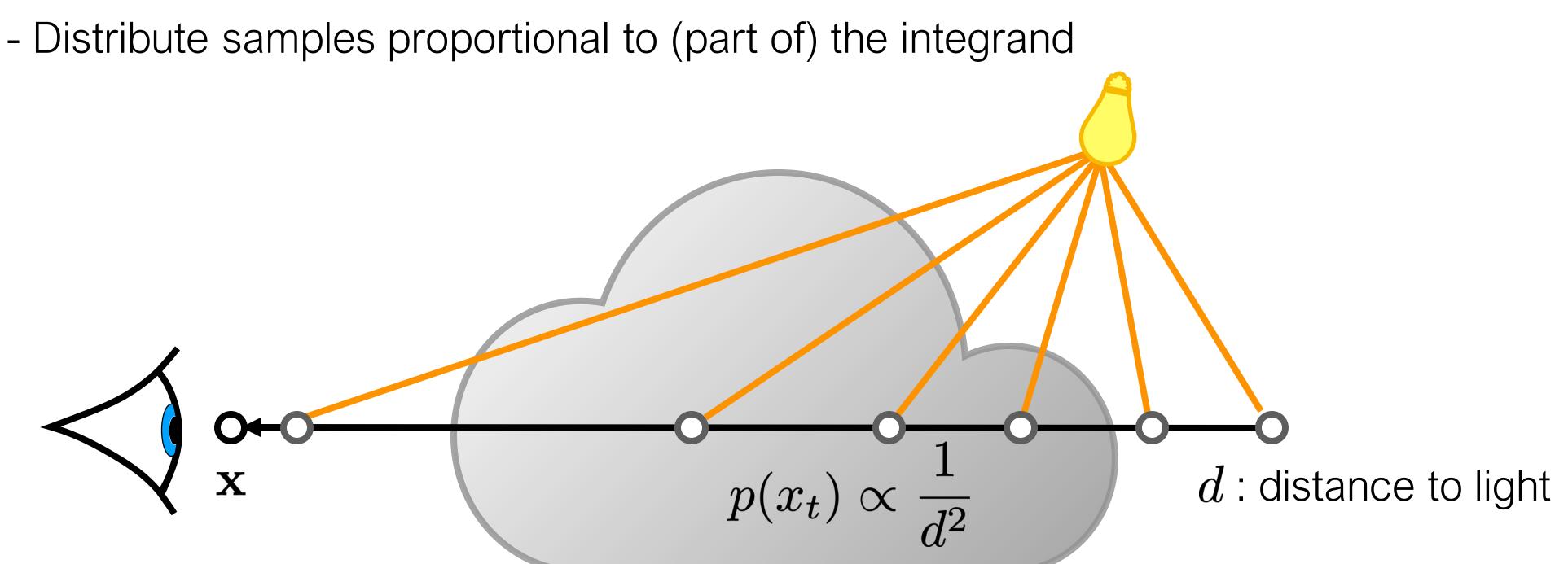
- 2. Estimate in-scattering using MC integration



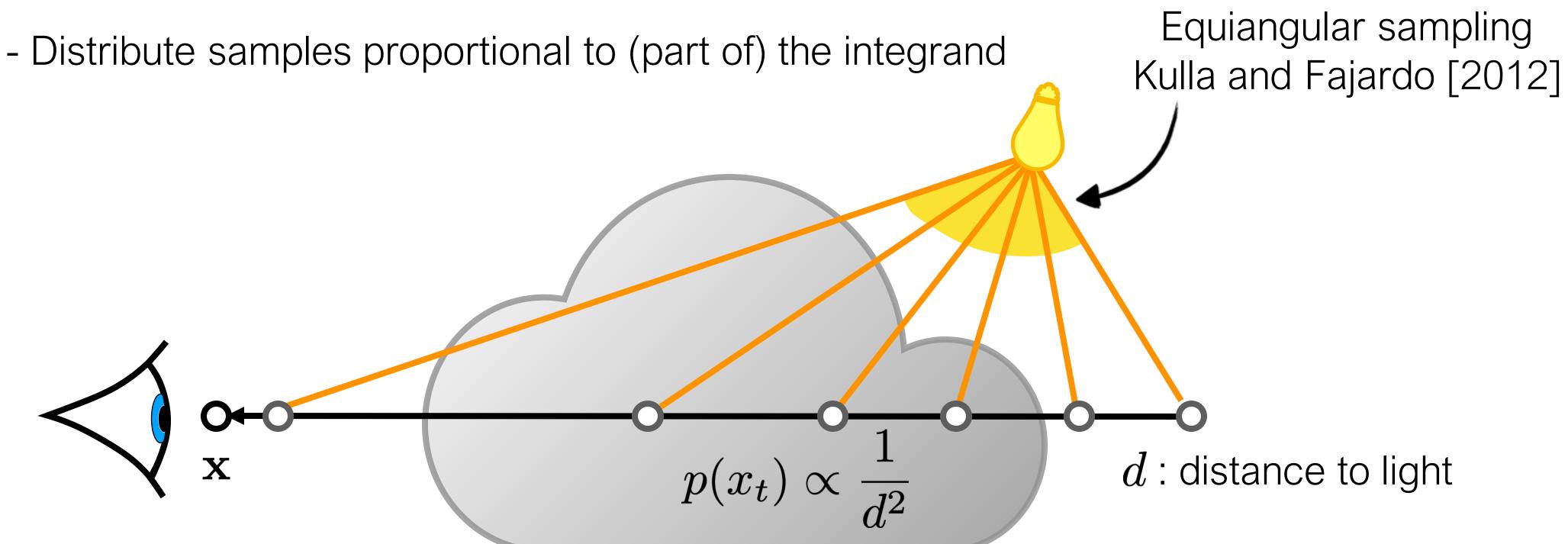
- 2. Estimate in-scattering using MC integration
 - Distribute samples proportional to (part of) the integrand



- 2. Estimate in-scattering using MC integration

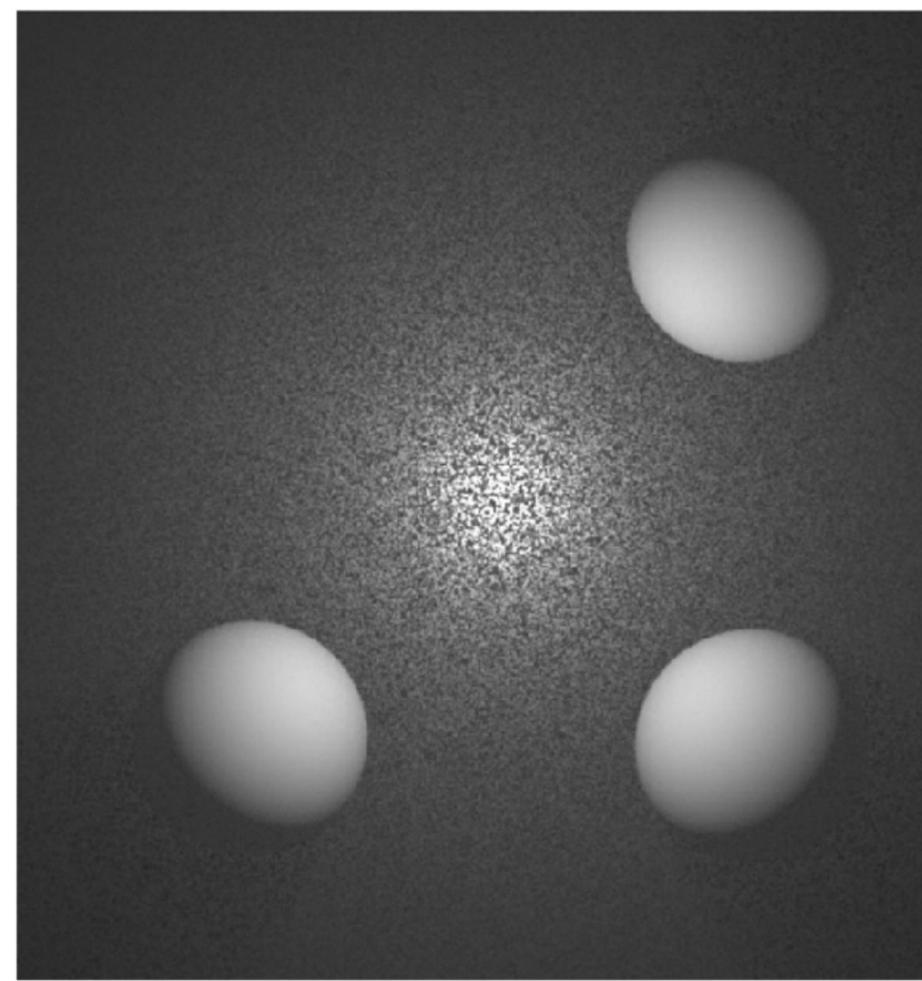


- 2. Estimate in-scattering using MC integration



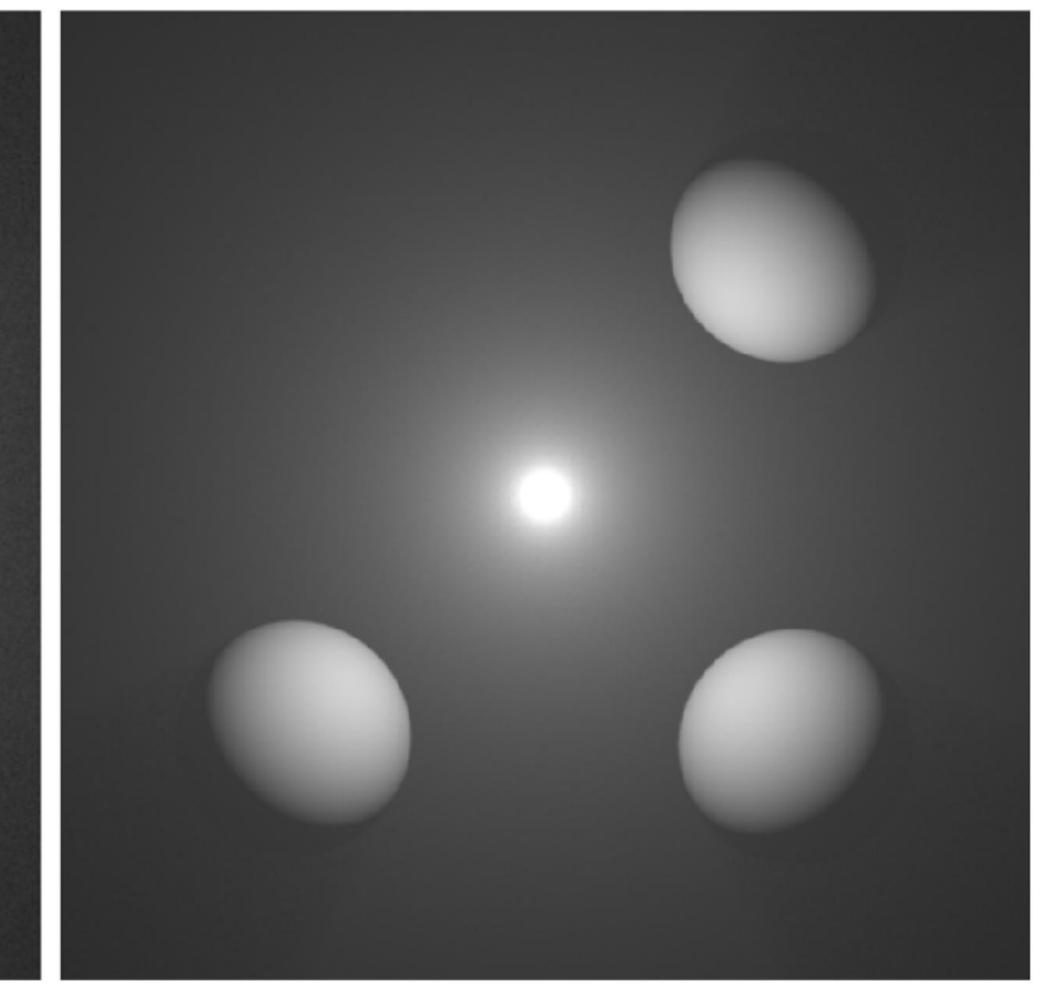
Realistic Image Synthesis SS2024

Ray Marching



Realistic Image Synthesis SS2024

Equi-angular sampling



Single scattering

Multiple scattering

Realistic Image Synthesis SS2024

Volumetric Path Tracing

Volumetric Path Tracing

Motivation

Same as with path tracing: avoid the exponential growth

Paths can:

Reflect / Refract off surfaces Scatter inside a volume

191



Volumetric Rendering Equation

$$L(\mathbf{x},\vec{\omega}) = \int_0^z T_r(\mathbf{x},\mathbf{x}_t)\sigma_a(\mathbf{x}_t)L_e(\mathbf{x}_t,\vec{\omega})dt$$

$$+\int_0^z T_r(\mathbf{x},\mathbf{x}_t)\sigma_s(\mathbf{x}_t)L_s(\mathbf{x}_t,\omega)dt$$

$$+ T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \mathbf{z})$$

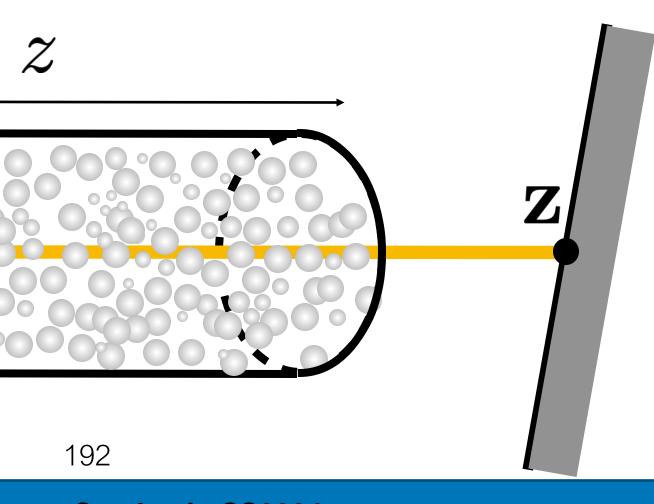
Realistic Image Synthesis SS2024

Accumulated emitted radiance

Accumulated in-scattered radiance



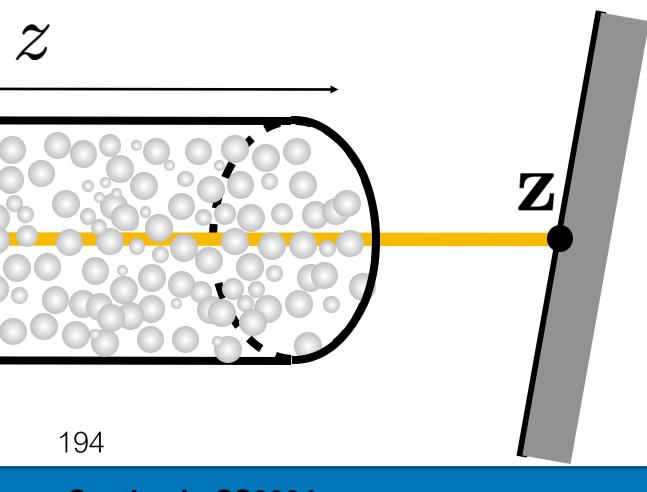
Attenuated background radiance



Volumetric Rendering Equation

Accumulated emitted + in-scattered radiance

$$L(\mathbf{x}, \vec{\omega}) = \int_{0}^{z} T_{r}(\mathbf{x}, \mathbf{x}_{t}) \Big[\sigma_{a}(\mathbf{x}_{t}) L_{e}(\mathbf{x}_{t}, \vec{\omega}) + \sigma_{s}(\mathbf{x}_{t}) L_{s}(\mathbf{x}_{t}, \vec{\omega}) \Big] dt$$
$$+ \frac{T_{r}(\mathbf{x}, \mathbf{x}_{z}) L(\mathbf{x}_{z}, \vec{\omega})}{L(\mathbf{x}_{z}, \vec{\omega})} \quad \text{Attenuated background radiance}$$



Volumetric Rendering Equation

$$L(\mathbf{x}, \vec{\omega}) = \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \Big[\sigma_a(\mathbf{x}_t) L_s + T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega}) \Big]$$

 $\sigma_e(\mathbf{x}_t, \vec{\omega}) + \sigma_s(\mathbf{x}_t) L_s(\mathbf{x}_t, \vec{\omega}) \bigg| dt$

1-Sample Monte Carlo Estimator

$$\langle L(\mathbf{x}, \vec{\omega}) \rangle = \frac{T_r(\mathbf{x}, \mathbf{x}_t)}{p(t)} \Big[\sigma_a(\mathbf{x}_t) L_e(\mathbf{x}_t) + \frac{T_r(\mathbf{x}, \mathbf{x}_z)}{P(z)} L(\mathbf{x}_z, \vec{\omega}) \Big]$$

 $|\mathbf{x}_t, \vec{\omega}) + \sigma_s(\mathbf{x}_t) L_s(\mathbf{x}_t, \vec{\omega})|$

1-Sample Monte Carlo Estimator

$$\langle L(\mathbf{x}, \vec{\omega}) \rangle = \frac{T_r(\mathbf{x}, \mathbf{x}_t)}{p(t)} \Big[\sigma_a(\mathbf{x}_t) L_e(\mathbf{x}_t) \Big] + \frac{T_r(\mathbf{x}, \mathbf{x}_z)}{P(z)} L(\mathbf{x}_z, \vec{\omega})$$

p(t)Probability density of distance tP(z)Probability of exceeding distance z

 $|\mathbf{x}_t, \vec{\omega}) + \sigma_s(\mathbf{x}_t) L_s(\mathbf{x}_t, \vec{\omega})|$

197

1-Sample Monte Carlo Estimator

$$\langle L(\mathbf{x}, \vec{\omega}) \rangle = \frac{T_r(\mathbf{x}, \mathbf{x}_t)}{p(t)} \left[\sigma_a(\mathbf{x}_t) L_e(\mathbf{x}_t) + \frac{T_r(\mathbf{x}, \mathbf{x}_z)}{P(z)} L(\mathbf{x}_z, \vec{\omega}) \right]$$

p(t)Probability density of distance tP(z)Probability of exceeding distance z $p(\vec{\omega}_i)$ Probability density of direction $\vec{\omega}_i$

Realistic Image Synthesis SS2024

 $(\mathbf{x}_t, \vec{\omega}) + \sigma_s(\mathbf{x}_t) \frac{f_p(\mathbf{x}, \vec{\omega}, \vec{\omega}_i) L(\mathbf{x}_t, \vec{\omega})}{p(\vec{\omega}_i)} \Big]$

198

Volumetric Path Tracing

1. Sample distance to next interaction

 \bigcirc

2. Scatter in the volume or bounce off a surface

Volumetric Path Tracing

O

- 1. Sample distance to next interaction
- 2. Scatter in the volume or bounce off a surface

 \bigcirc

Volumetric Path Tracing with NEE

 \bigcirc

Sampling the Phase Function

Isotropic: Uniform sphere sampling

Henyey-Greenstein: Using the inversion method we can derive

$$\cos \theta = \frac{1}{2g} \left(1 + g^2 - \phi \right)$$
$$\phi = 2\pi \xi_2$$

PDF is the value of the HG phase function

$$\left(\frac{1-g^2}{1-g+2g\xi_1}\right)^2\right)$$

202

Free-path or free-flight distance:

- Distance to the next interaction in the medium
- Dense media (e.g. milk): short mean-free path
- Thin media (e.g. atmosphere): long mean-free path

203

Free-path or free-flight distance:

- Distance to the next interaction in the medium
- Dense media (e.g. milk): short mean-free path
- Thin media (e.g. atmosphere): long mean-free path

Ideally, we want to sample according to (part of) of the integrand: $p(\mathbf{x}_t|(\mathbf{x},$

$$ec{\omega})) \propto T_r(\mathbf{x}, \mathbf{x}_t)$$
 $p(t) \propto T_r(t)$

simplified notation

204

Homogeneous media:

 $T_r(t) = e^{-\sigma_t t}$

PDF:

 $p(t) \propto e^{-\sigma_t t}$

 $p(t) = \frac{e^{-\sigma_t t}}{\int_0^\infty e^{-\sigma_t s}}$

CDF: $P(t) = \int_0^t e^{-\sigma_t s}$

Inverted CDF: $P^{-1}(\xi) = -\frac{\log_e(1-\xi)}{-}$

$$\frac{t}{t^s ds} = \sigma_t e^{-\sigma_t t}$$

$$s^{s}ds = 1 - e^{-\sigma_{t}t}$$

$$(1 - \xi)$$

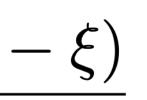
 σ_t

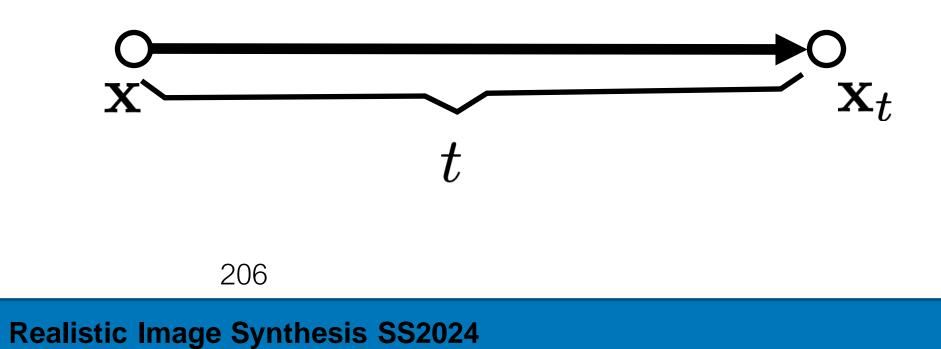
205

Homogeneous media: $T_r(t) = e^{-\sigma_t t}$

Recipe:

Generate a random number ξ Sample distance $t = -\frac{log_e(1-\xi)}{t}$ σ_t Compute PDF $p(t) = \sigma_t e^{-\sigma_t t}$

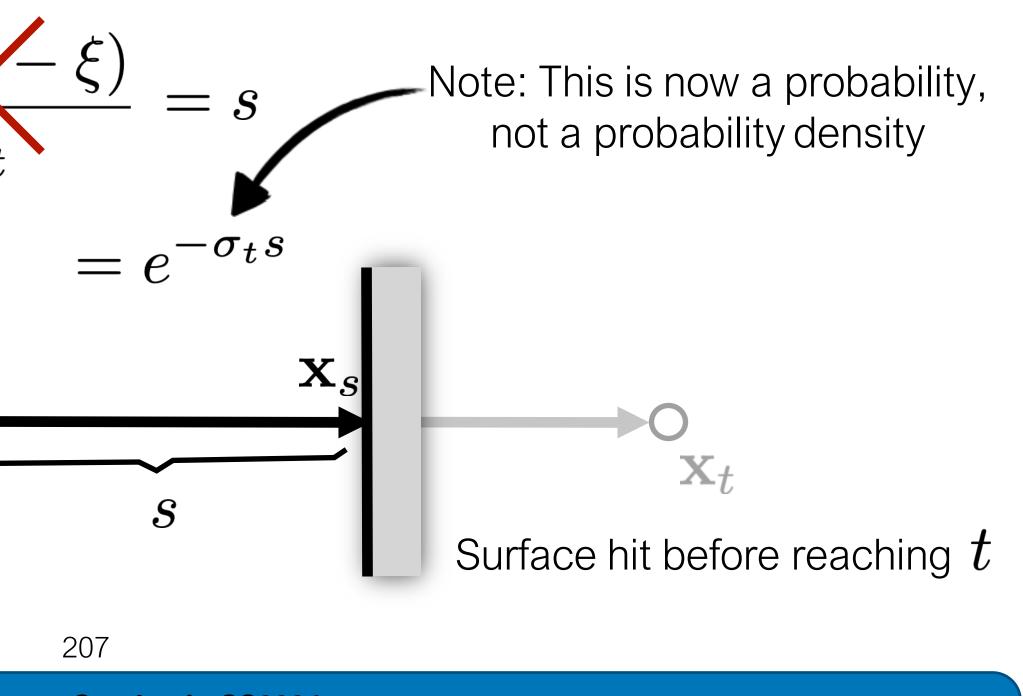




Homogeneous media: $T_r(t) = e^{-\sigma_t t}$

Recipe:

Generate a random number ξ Sample distance $t = -\frac{log_e(1-\xi)}{-} = s$ σ_t Compute PDF $p(t) = \sigma_t e^{-\sigma_t t}$



What about heterogeneous media?

Heterogeneous medium: $T_r(t) = e^{\int_0^t -\sigma_t(s)ds}$

- Closed form solutions exist but for only simple media e.g., linearly or exponentially varying extinction

- Other solutions:

- Regular tracking (3D DDA)
- Ray marching
- Delta tracking

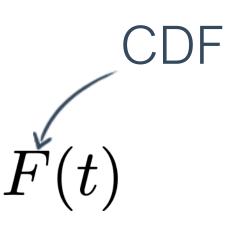
How to sample the flight distance to the next interaction?

$$T(t) = e^{-\int_0^t \mu_t(s) ds} = P(X > t)$$

$$P(X \le t) = 1$$
Partition of unity

F(t) = 1 - T(t)— Recipe for generating samples

- ndom variable representing flight distance



211

Cumulative distribution function (CDF)

$$F(t) = 1 - T(t) = 1 - e^{-t}$$

Probability density function (**PDF**) $p(t) = \frac{\mathrm{d}F(t)}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(1 - e^{-\tau(t)}\right) = \mu_{\mathrm{t}}(t)e^{-\tau(t)}$

Inverted cumulative distr. function (**CDF**⁻¹)

$$\xi = 1 - e^{- au(t)}$$
 Solve f
$$\int_0^t \mu_{\mathrm{t}}(s) \mathrm{d}s = -\ln(1-\xi)$$

 $\tau(t)$

or t

Approaches for finding t: 1) ANALYTIC (closed-form CDF⁻¹) 2) SEMI-ANALYTIC (regular tracking) 3) **APPROXIMATE** (ray marching)

Realistic Image Synthesis SS2024

Inverted cumulative distr. function (**CDF**⁻¹)

$$\int_0^t \mu_{\mathrm{t}}(s) \mathrm{d}s = -\ln(1-\xi)$$

Some simple volumes permit closed-form solutions

Example: homogeneous medium ($\mu_t(\mathbf{x}) = \mu_t$)

Opt. thickness

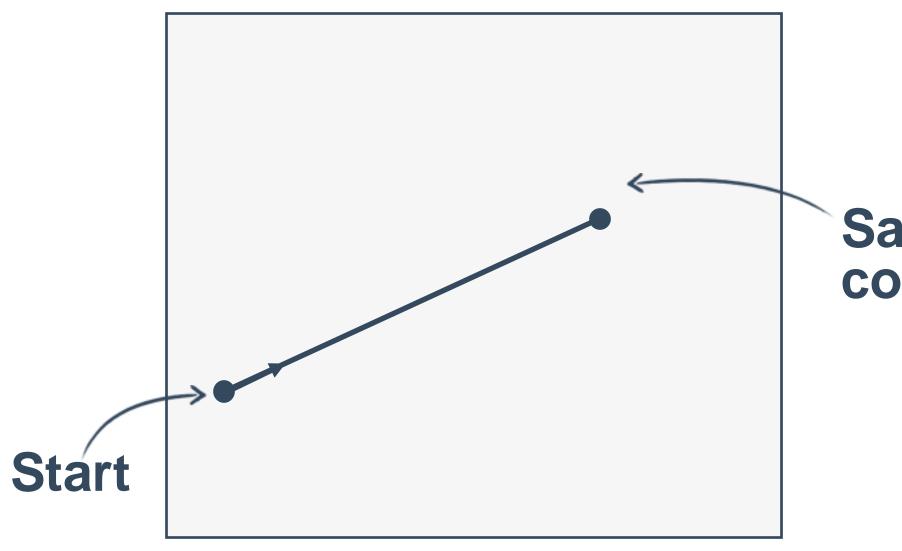
$$\int_0^t \mu_{\rm t}(s) {\rm d}s = t \mu_{\rm t} \qquad \Longrightarrow \qquad$$

Inverted CDF $F^{-1}(\xi) = -\frac{\ln(1-\xi)}{1-\xi}$ $\mu_{ ext{t}}$

Inverted cumulative distr. function (**CDF**⁻¹)

$$\int_0^t \mu_{\mathrm{t}}(s) \mathrm{d}s = -\ln(1-\xi)$$

Homogeneous volume



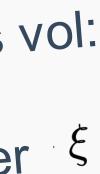
Analytic Approach

Sampling in homogeneous vol:

1) Draw a random number ξ 2) Set $t = -\frac{\ln(1-\xi)}{\mu_t}$ 3) Set $p(t) = \mu_t e^{-t\mu_t}$

Sampled collision

Realistic Image Synthesis SS2024



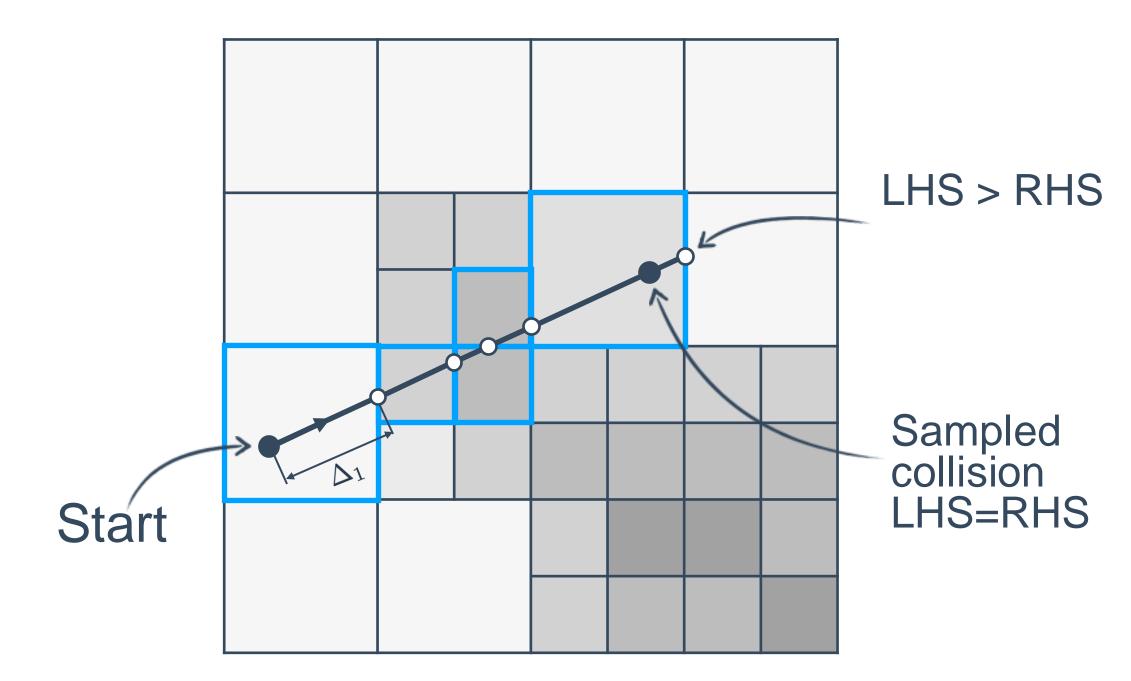
Regular Tracking (Semi-Analytic)

For piecewise-simple (e.g. piecewise-constant), summation replaces integration

$$\int_0^t \mu_t(s) ds = -\ln(1-\xi)$$
$$\sum_{i=1}^k \mu_{t,i} \Delta_i = -\ln(1-\xi)$$

Regular tracking:

1) Draw a random number ξ 2) While LHS < RHS move to the next intersection 3) Find the exact location in the last segment analytically



215

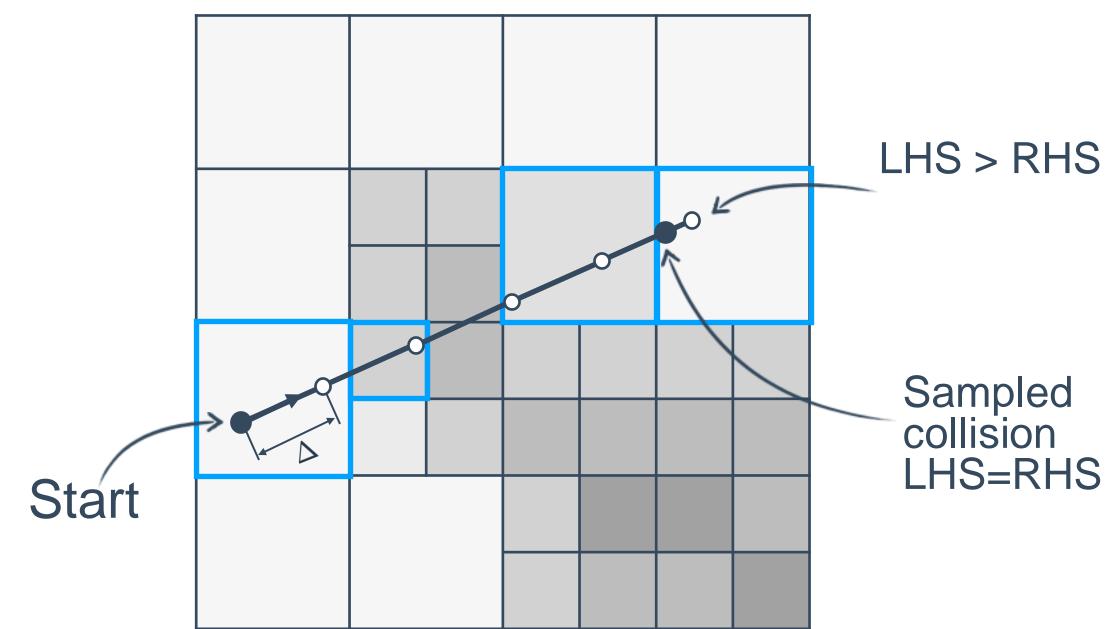
Ray Marching

Find the collision distance approximately

$$\int_{0}^{t} \mu_{t}(s) ds = -\ln(1-\xi)$$

$$k + \sum_{i=1}^{k} \mu_{t,i} \Delta = -\ln(1-\xi)$$
Constant step

Ray marching: 1) Draw a random number ξ 2) While LHS < RHS make a (fixed-size) step 3) Find the exact location in the last segment analytically



216

Realistic Image Synthesis SS2024

Ray Marching

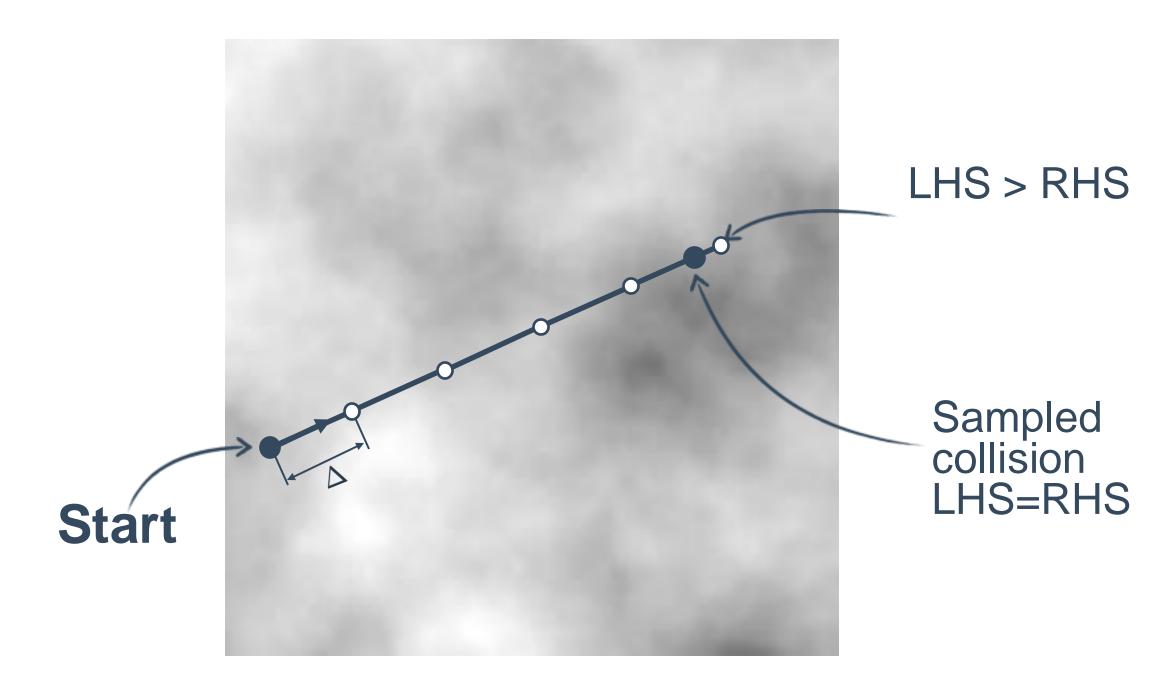
Find the collision distance approximately

$$\int_{0}^{t} \mu_{t}(s) ds = -\ln(1-\xi)$$

$$k + \sum_{i=1}^{k} \mu_{t,i} \Delta = -\ln(1-\xi)$$
Constant step

Ray marching: 1) Draw a random number ξ 2) While LHS < RHS make a (fixed-size) step 3) Find the exact location in the last segment analytically

General volume



217

Ray Marching

Find the collision distance approximately

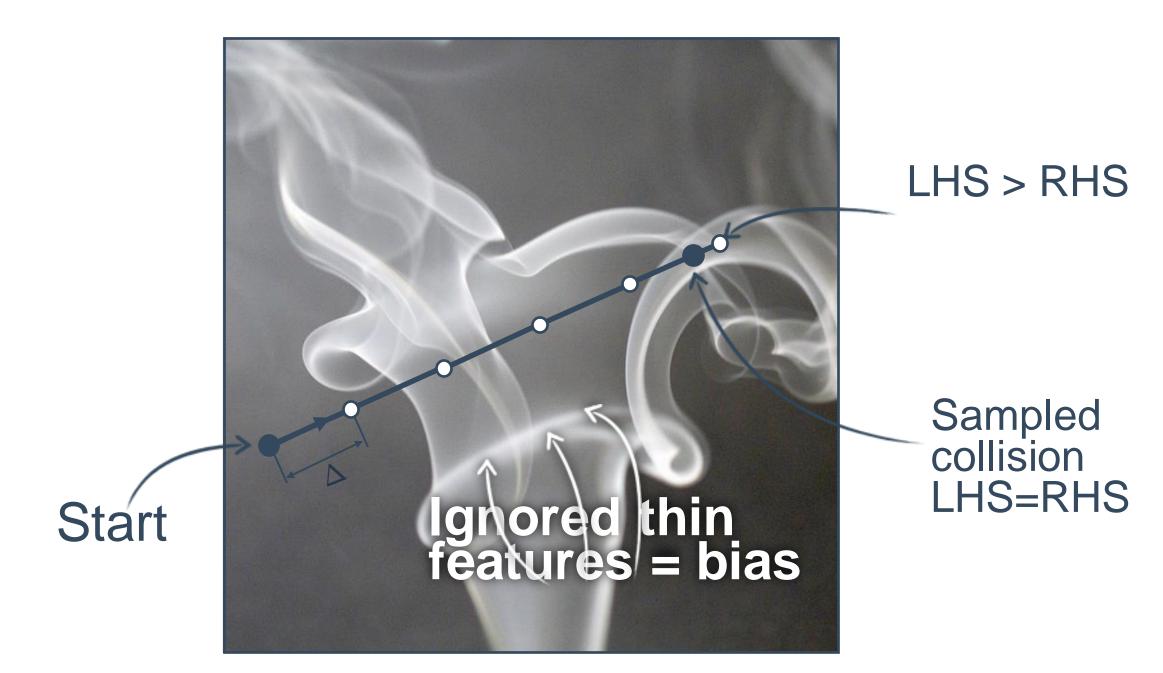
$$\int_{0}^{t} \mu_{t}(s) ds = -\ln(1-\xi)$$

$$\sum_{k=1}^{k} \mu_{t,i} \Delta = -\ln(1-\xi)$$

$$\sum_{i=1}^{k} \mu_{t,i} \Delta = -\ln(1-\xi)$$
Constant step

Ray marching: 1) Draw a random number ξ 2) While LHS < RHS make a (fixed-size) step 3) Find the exact location in the last segment analytically

General volume



218

Free-path Sampling

ANALYTIC CDF⁻¹

- Efficient & simple, limited to few volumes
- Iterative, inefficient if free paths cross many boundaries
- Simple volumes Piecewise-simple (e.g. homogeneous) volumes
- Unbiased Unbiased

REGULAR TRACKING

RAY MARCHING

- Iterative, inaccurate (or inefficient) for media with high frequencies
- Any volume
- Biased

Common approach: sample optical thickness, find corresponding distance

219

Delta Tracking

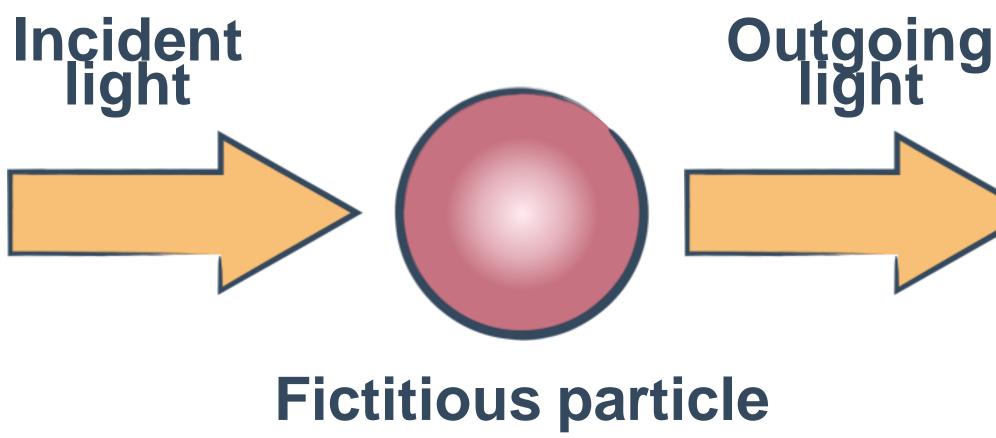
Realistic Image Synthesis SS2024

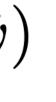
a.k.a. Woodcock tracking, pseudo scattering, hole tracking, null-collision method,...

Physical Interpretation

Add **FICTITIOUS MATTER** to homogenize heterogeneous extinction

- ► albedo $\alpha(\mathbf{x}) = 1$
- phase function $f_{\rm p}(\omega, \bar{\omega}) = \delta(\omega \bar{\omega})$

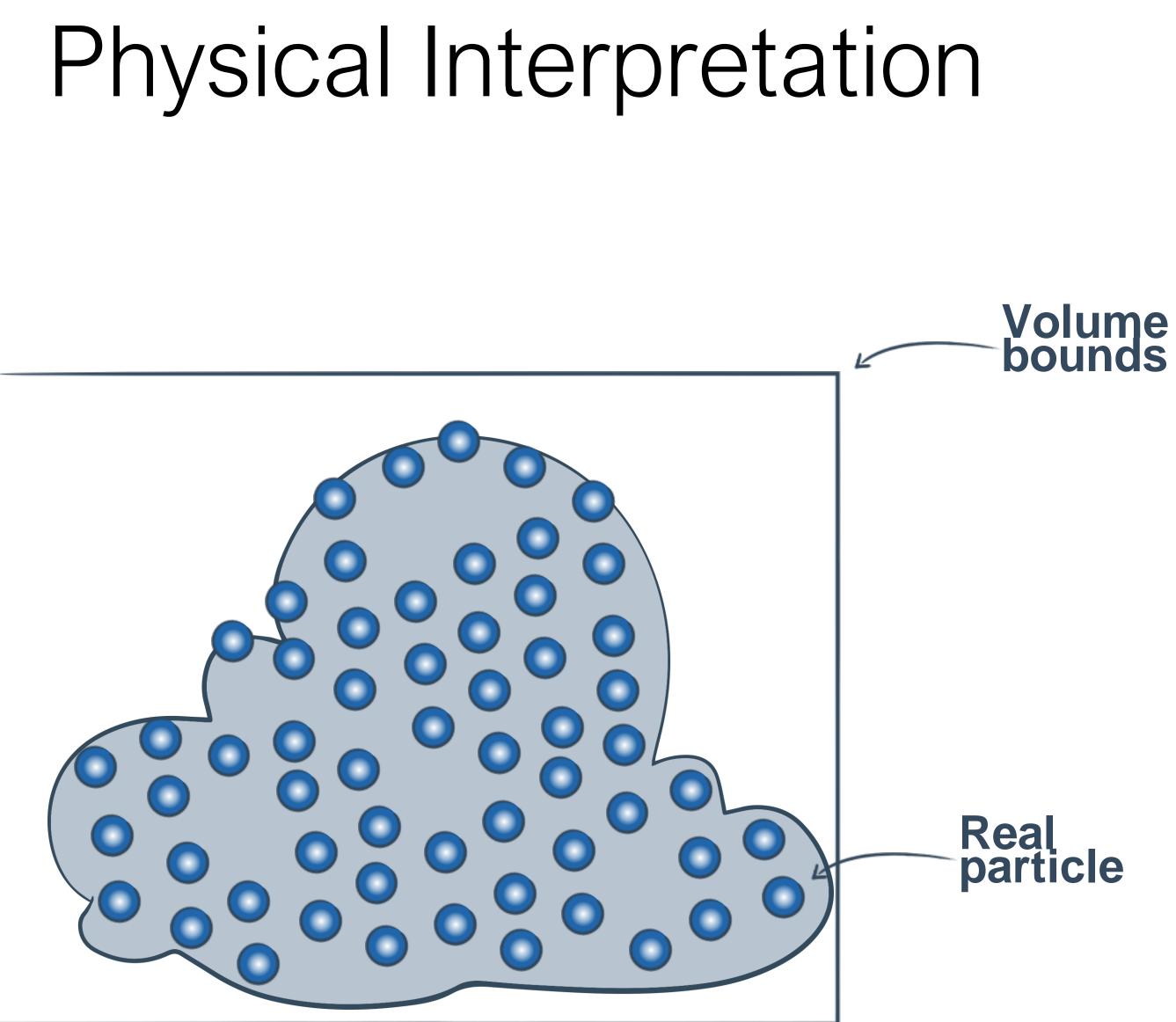




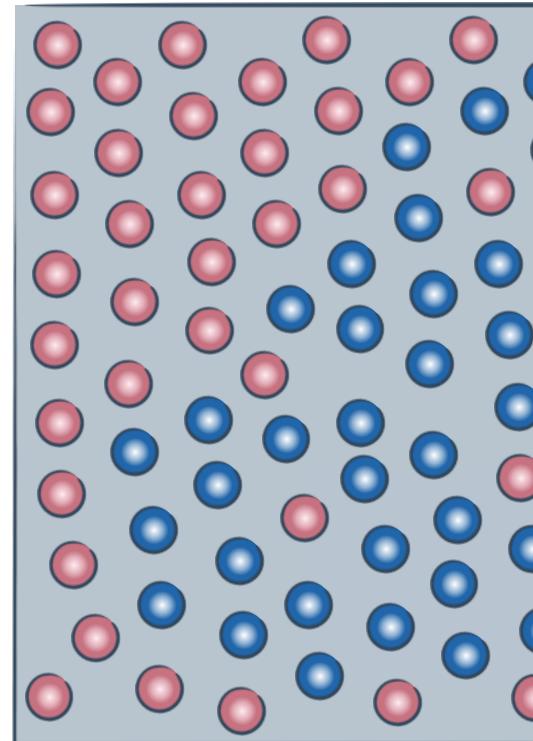
Presence of fictitious matter does not impact light transport

Realistic Image Synthesis SS2024

HOMOGENIZATION

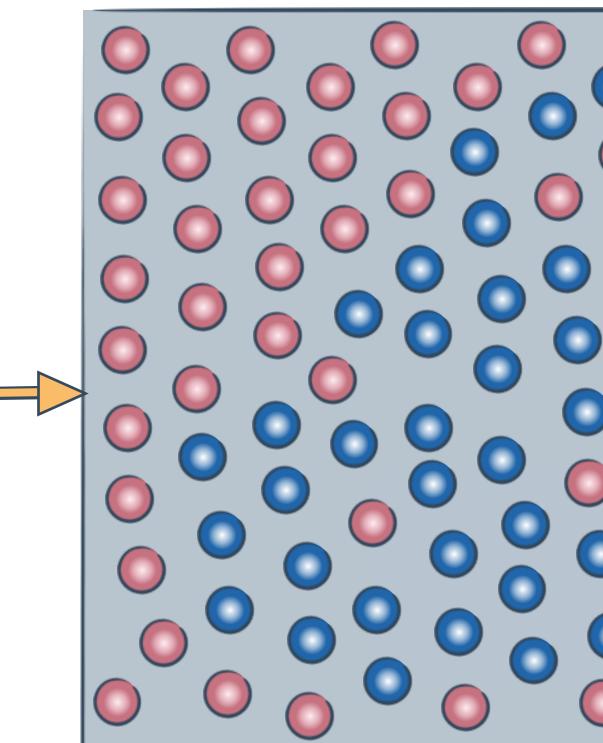


HOMOGENIZATION

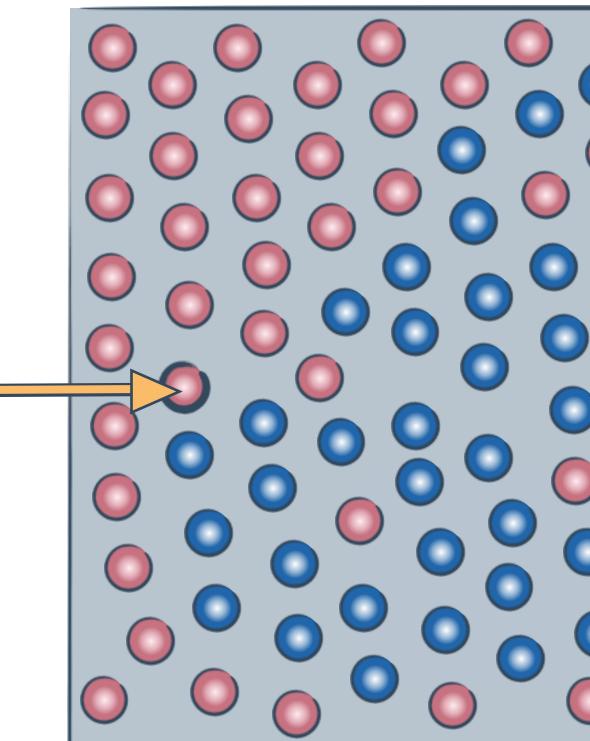


Realistic Image Synthesis SS2024

HOMOGENIZATION

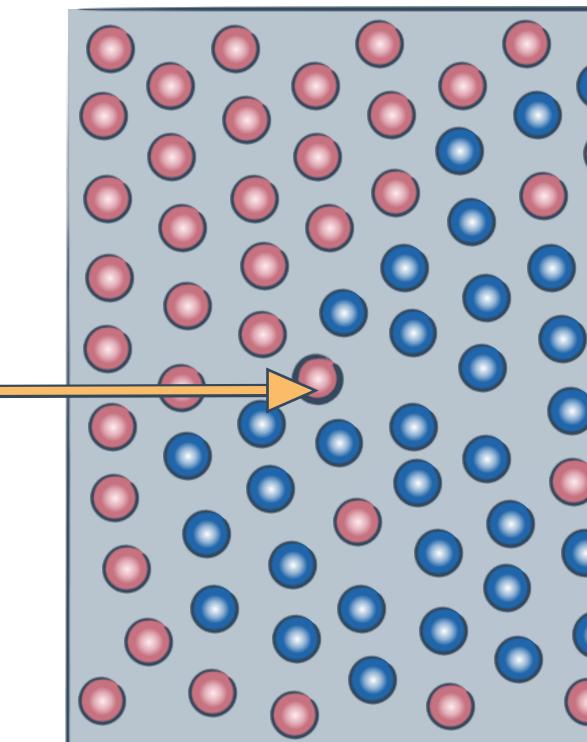


HOMOGENIZATION



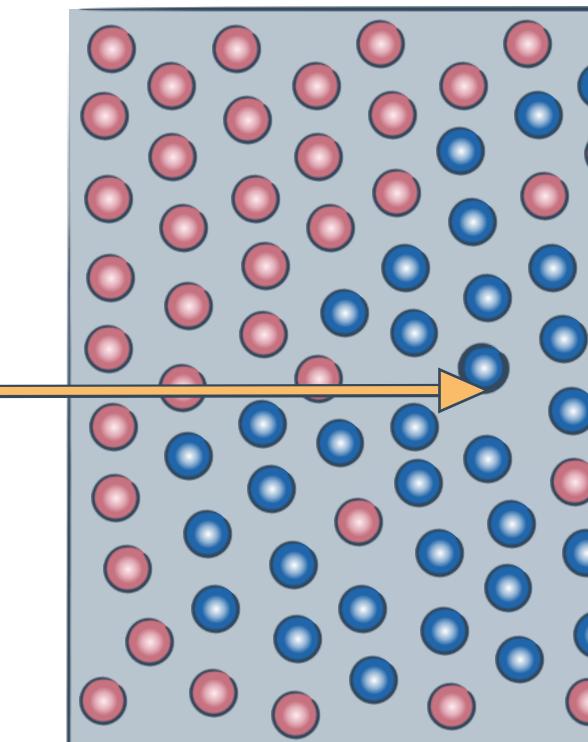
Realistic Image Synthesis SS2024

HOMOGENIZATION



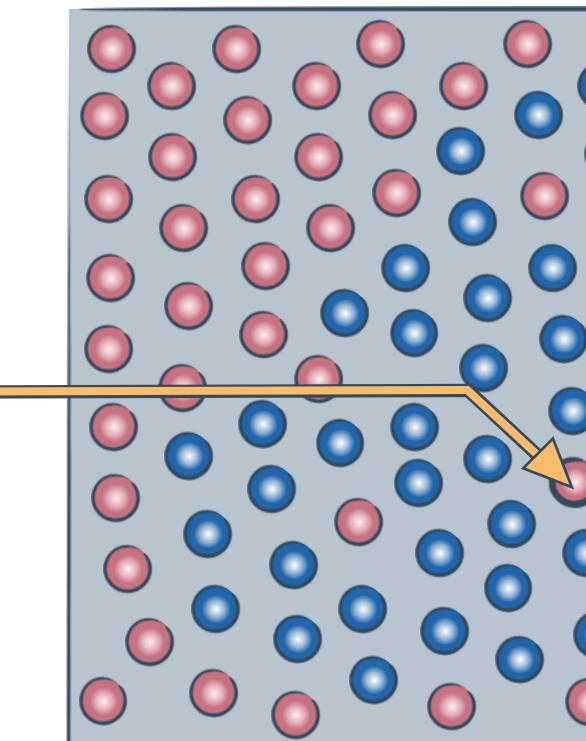
Realistic Image Synthesis SS2024

HOMOGENIZATION

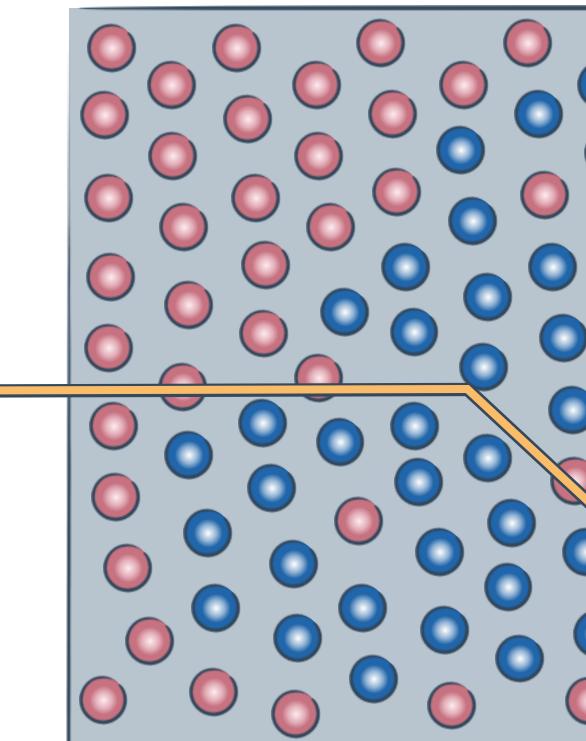


Realistic Image Synthesis SS2024

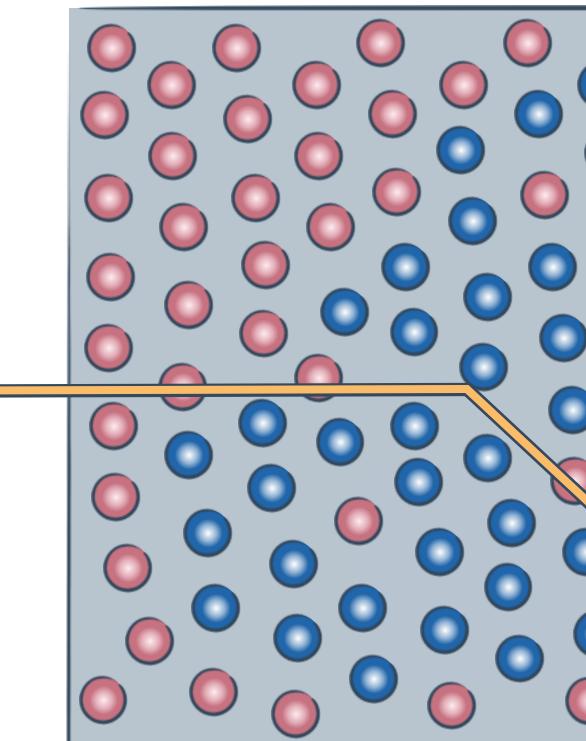
HOMOGENIZATION



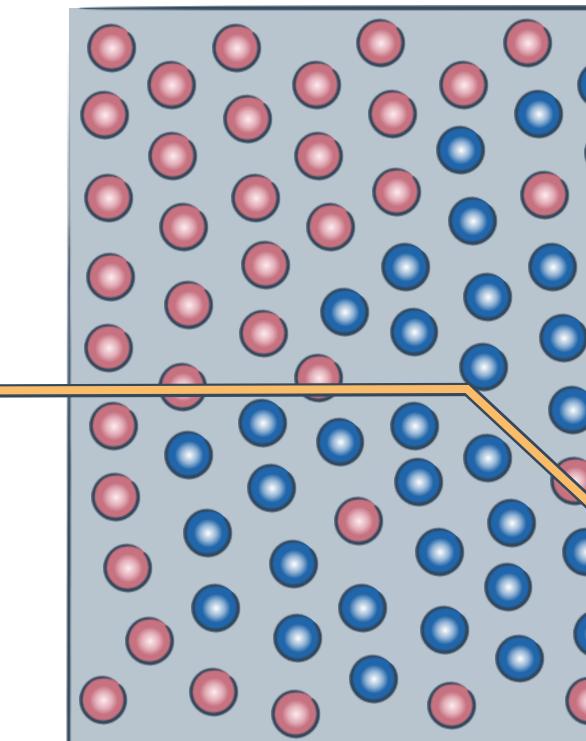
HOMOGENIZATION



HOMOGENIZATION



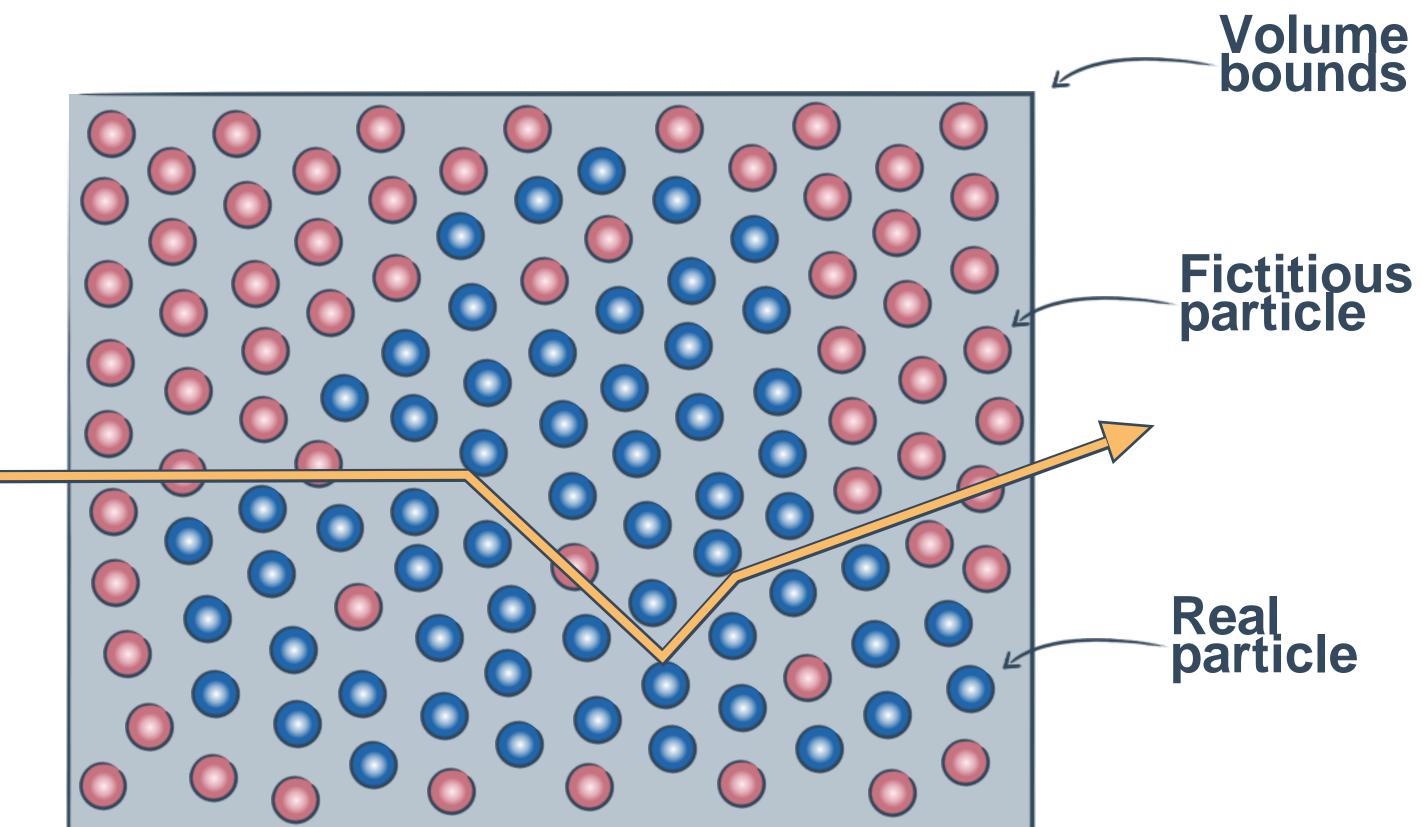
HOMOGENIZATION



Realistic Image Synthesis SS2024

 \bigcirc

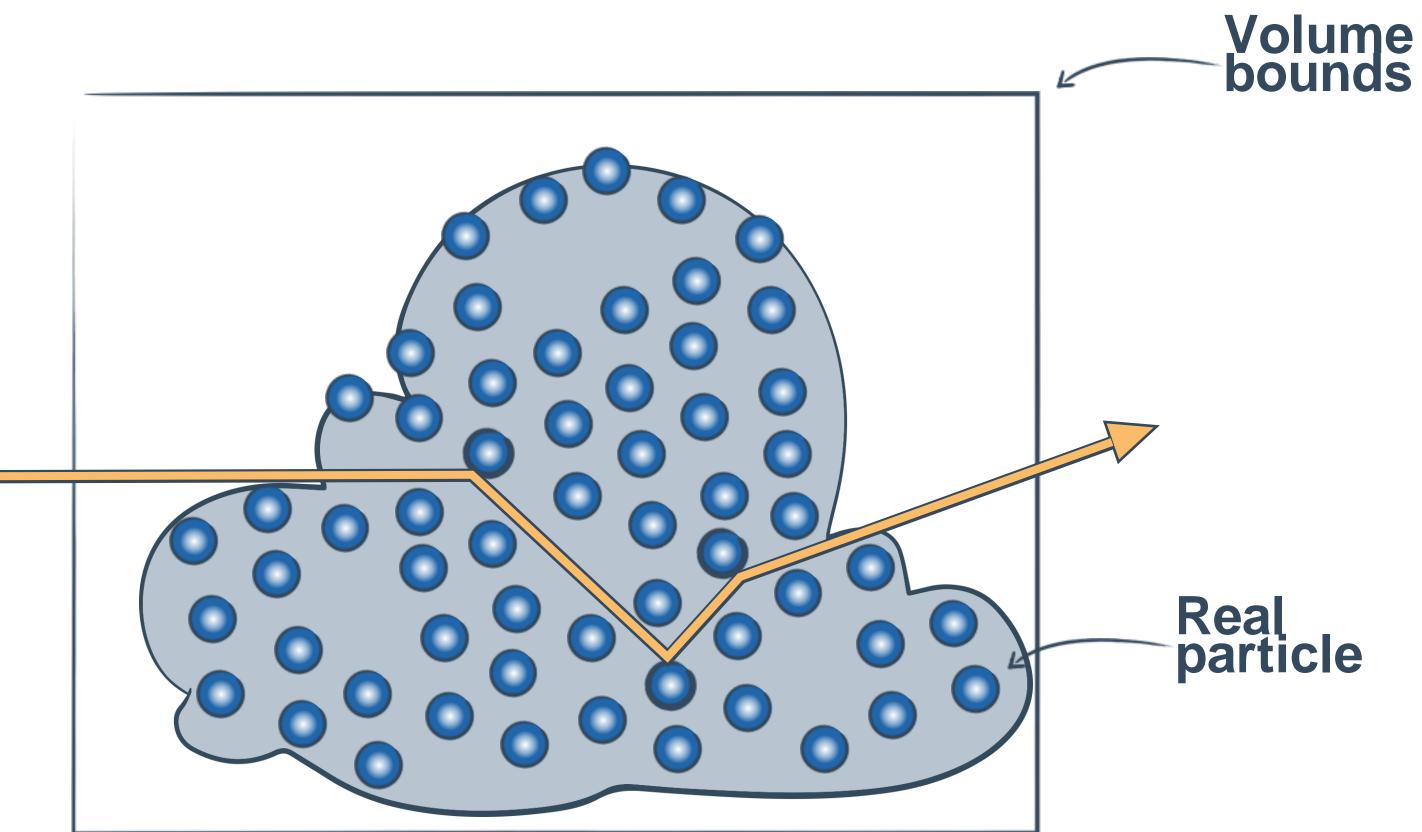
HOMOGENIZATION



Realistic Image Synthesis SS2024

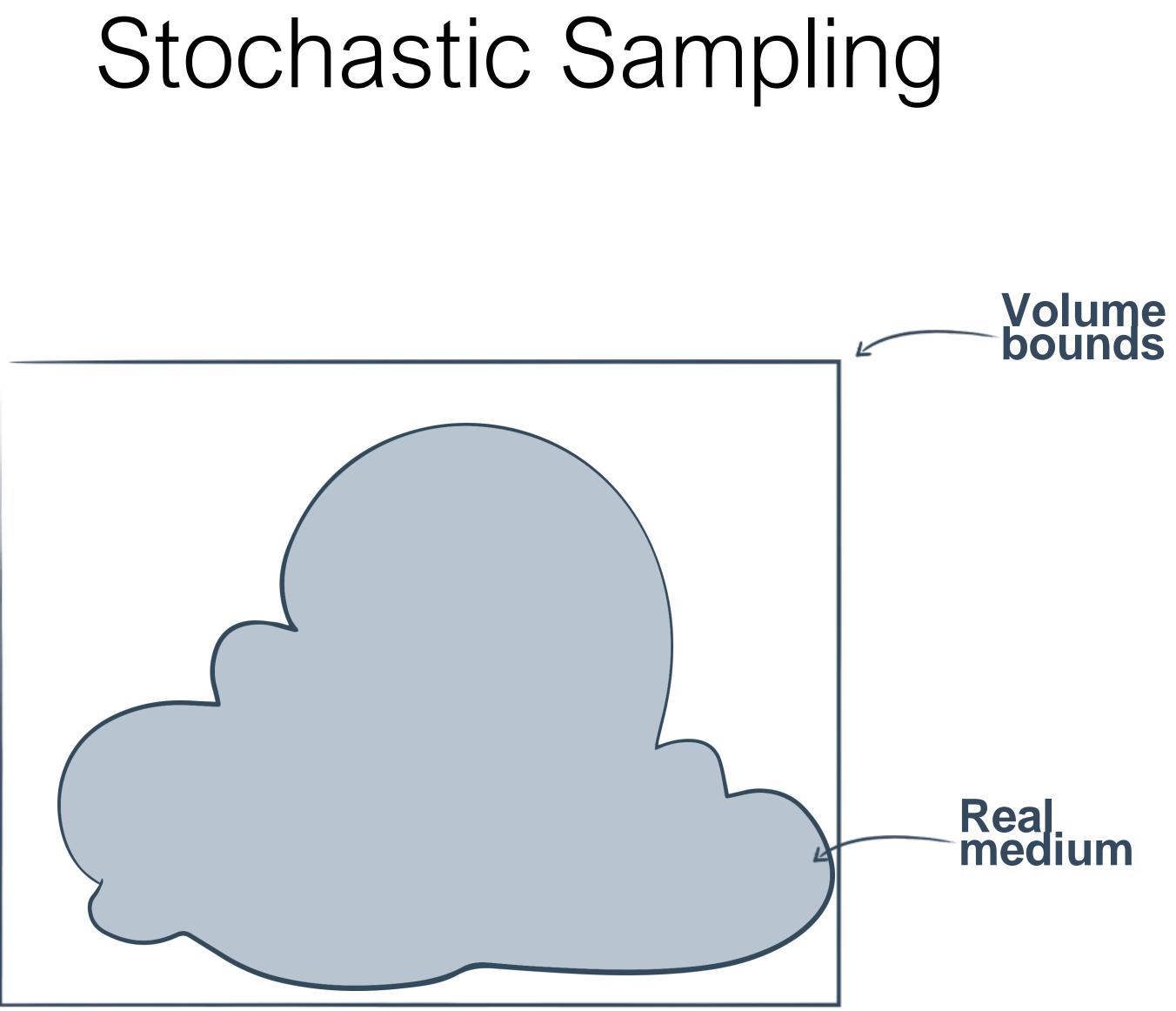
Physical Interpretation

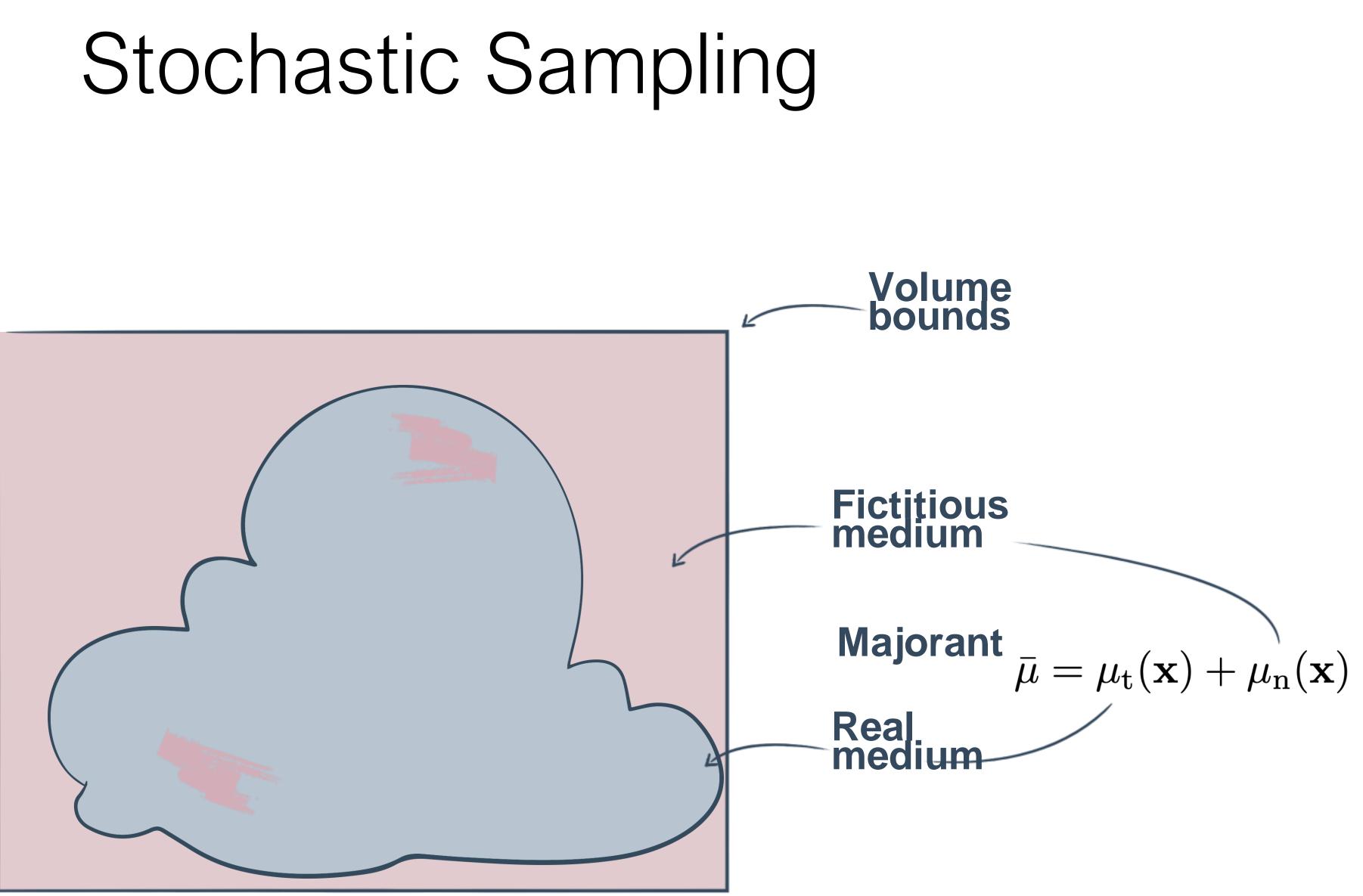
HOMOGENIZATION



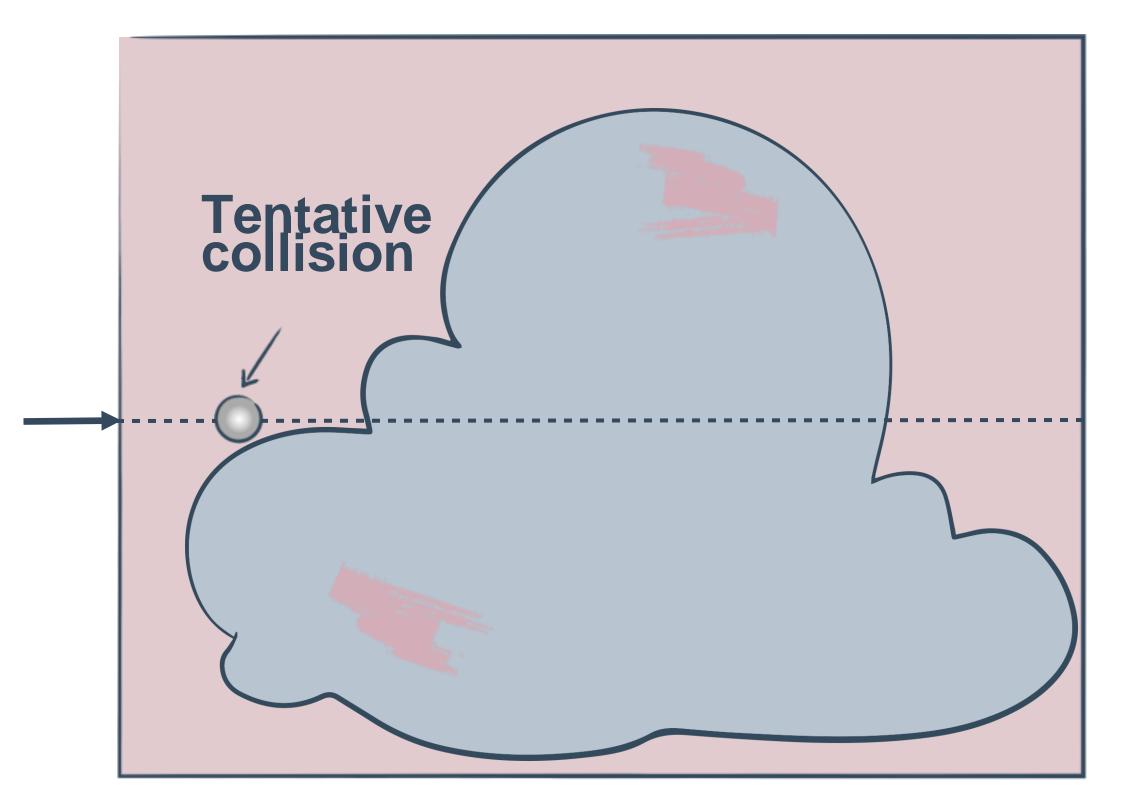
Realistic Image Synthesis SS2024

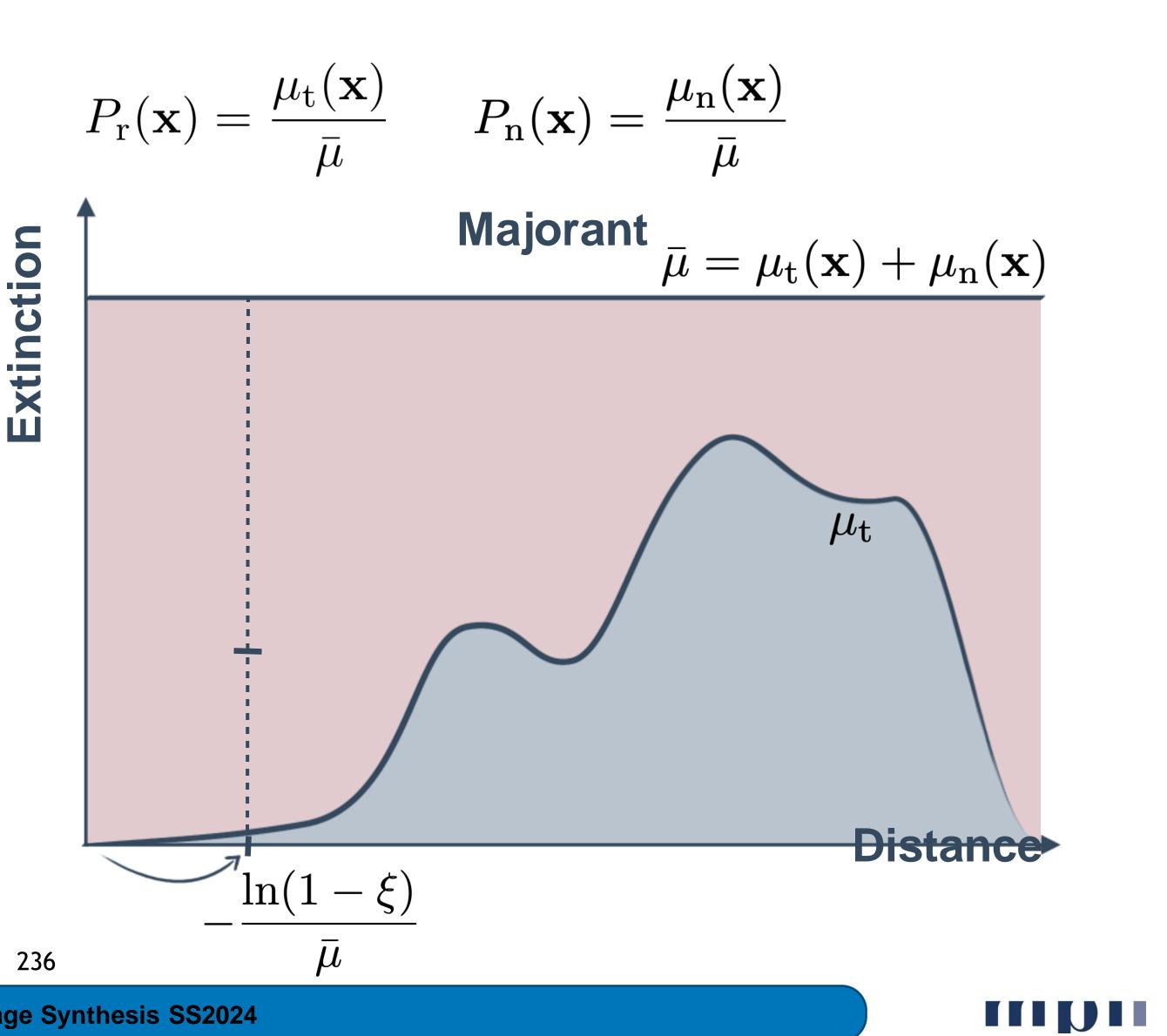
Physical Interpretation

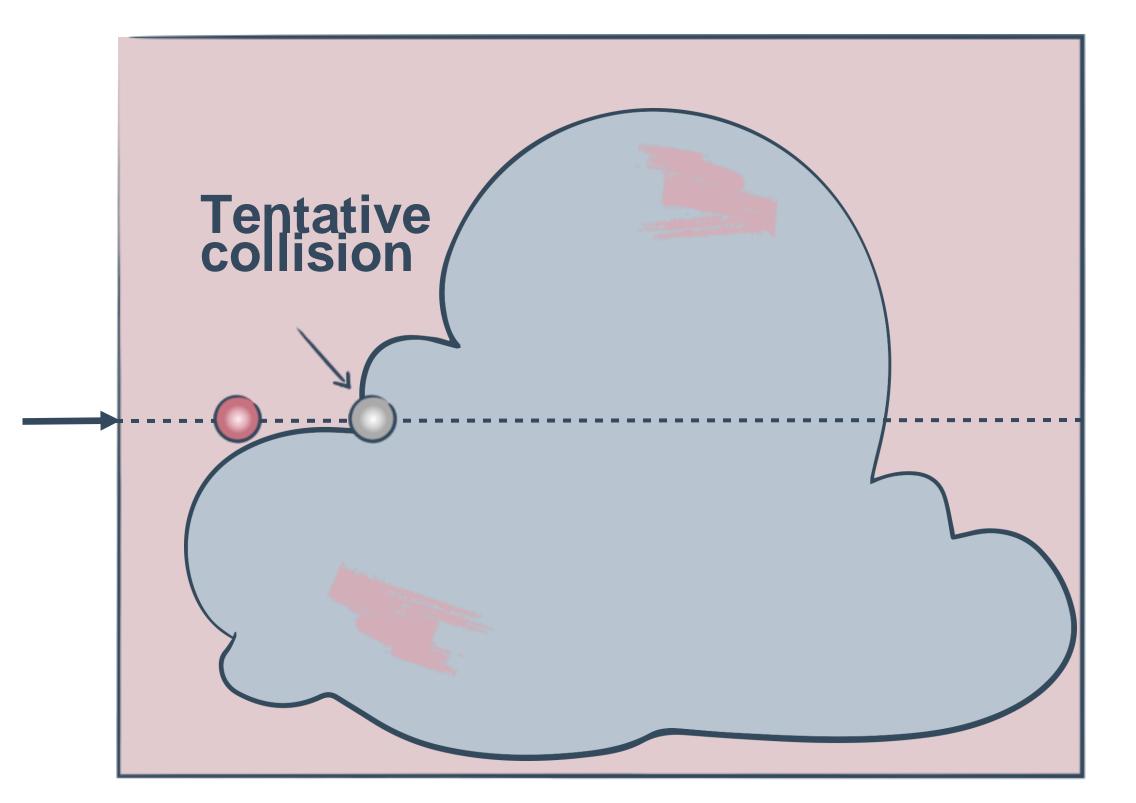


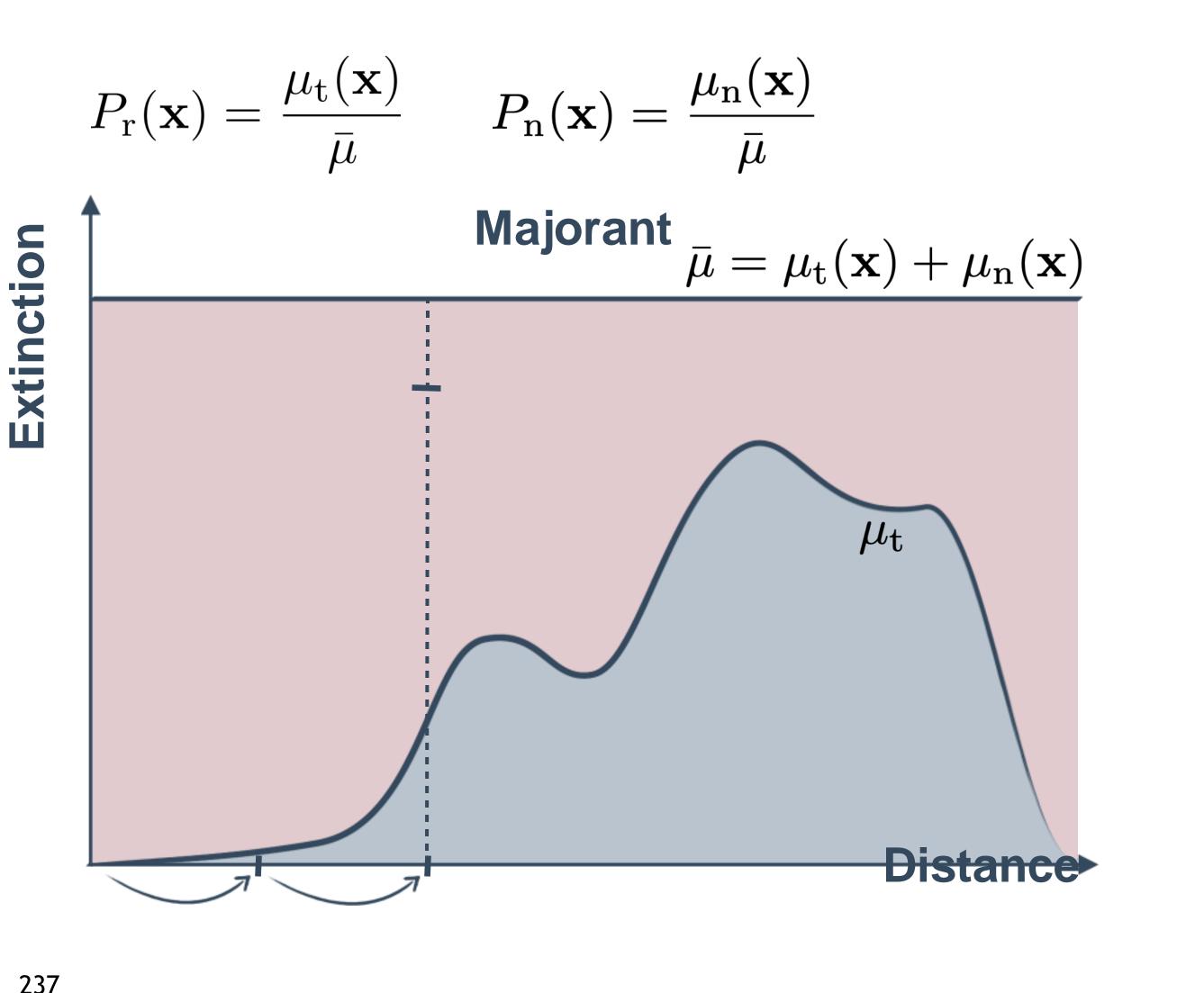


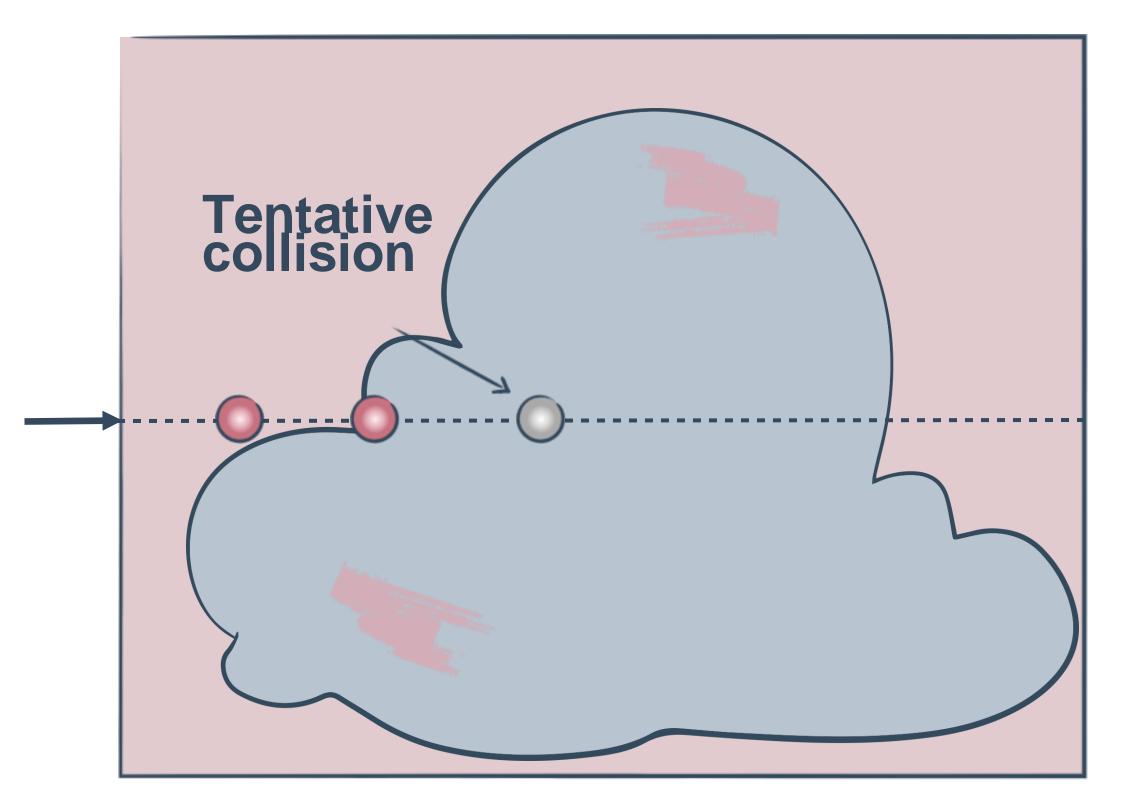
Realistic Image Synthesis SS2024



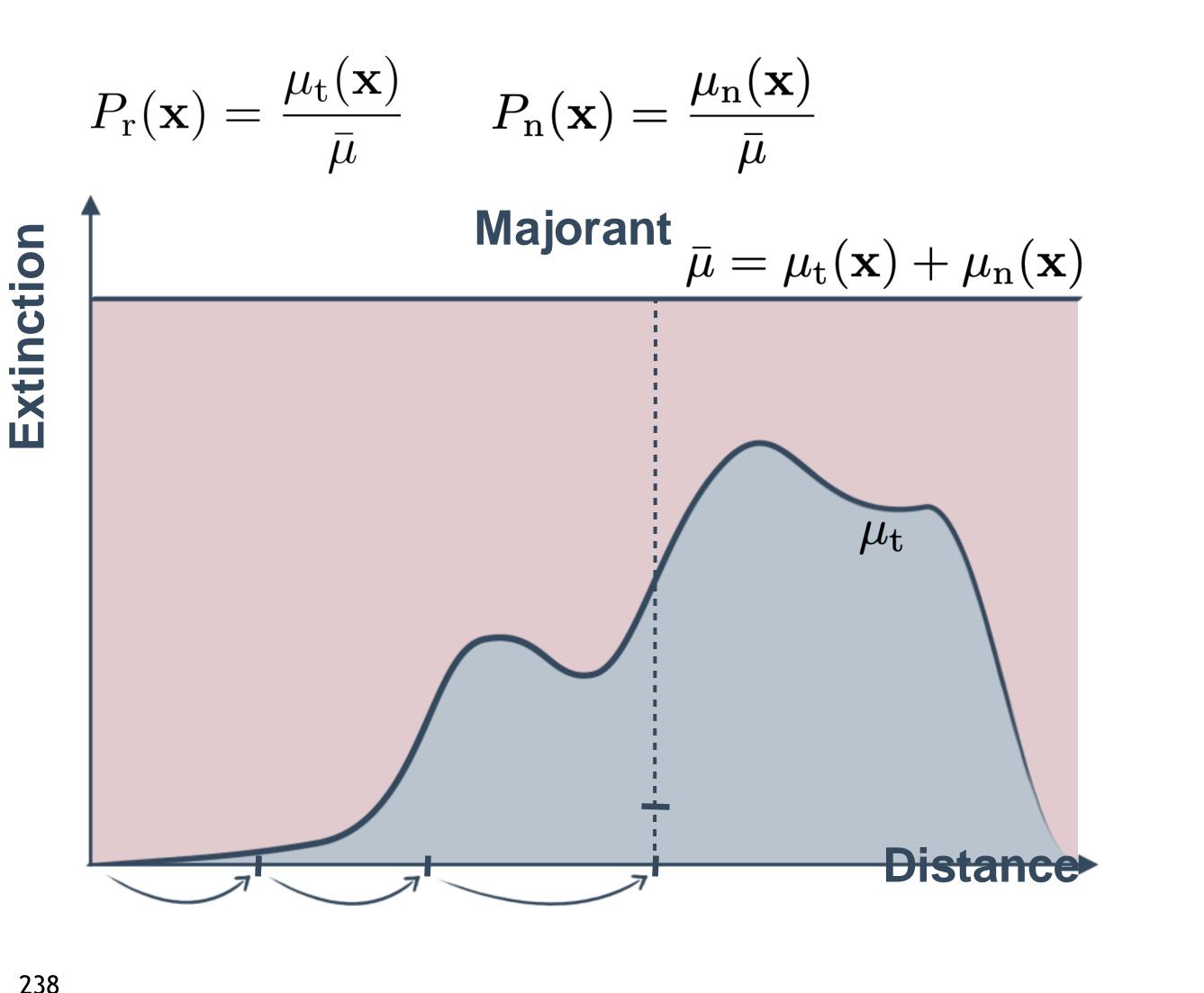


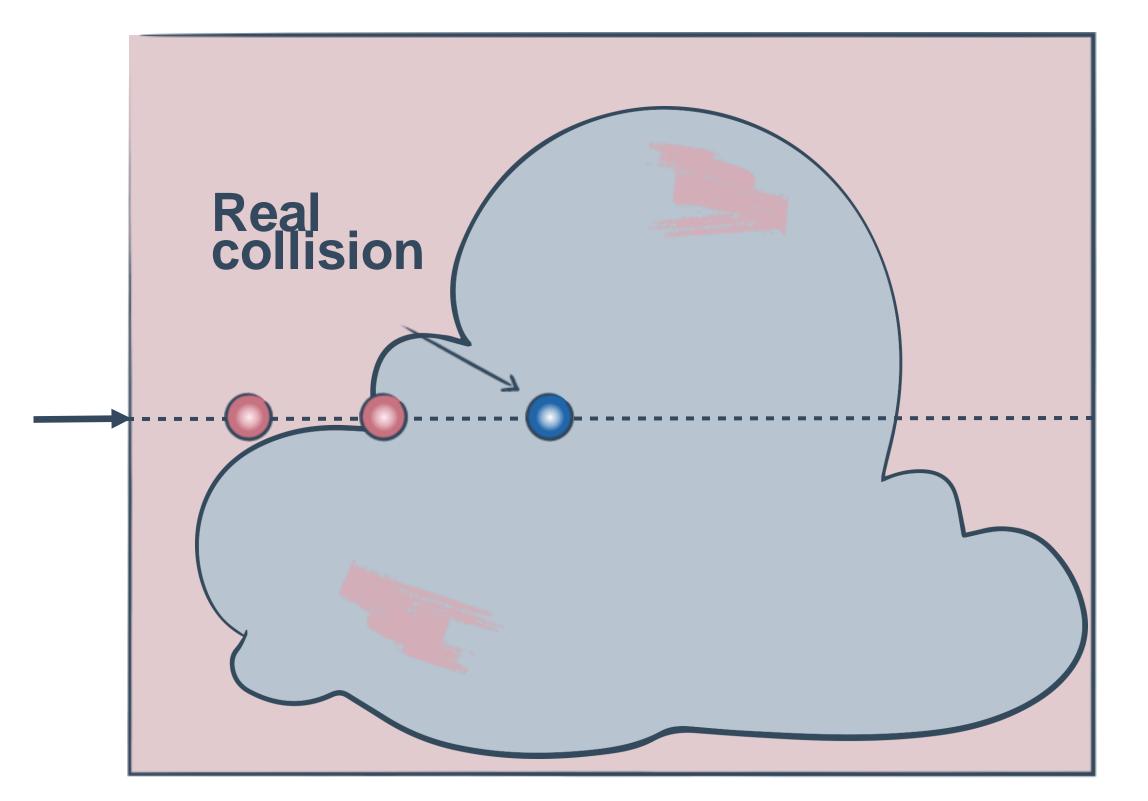


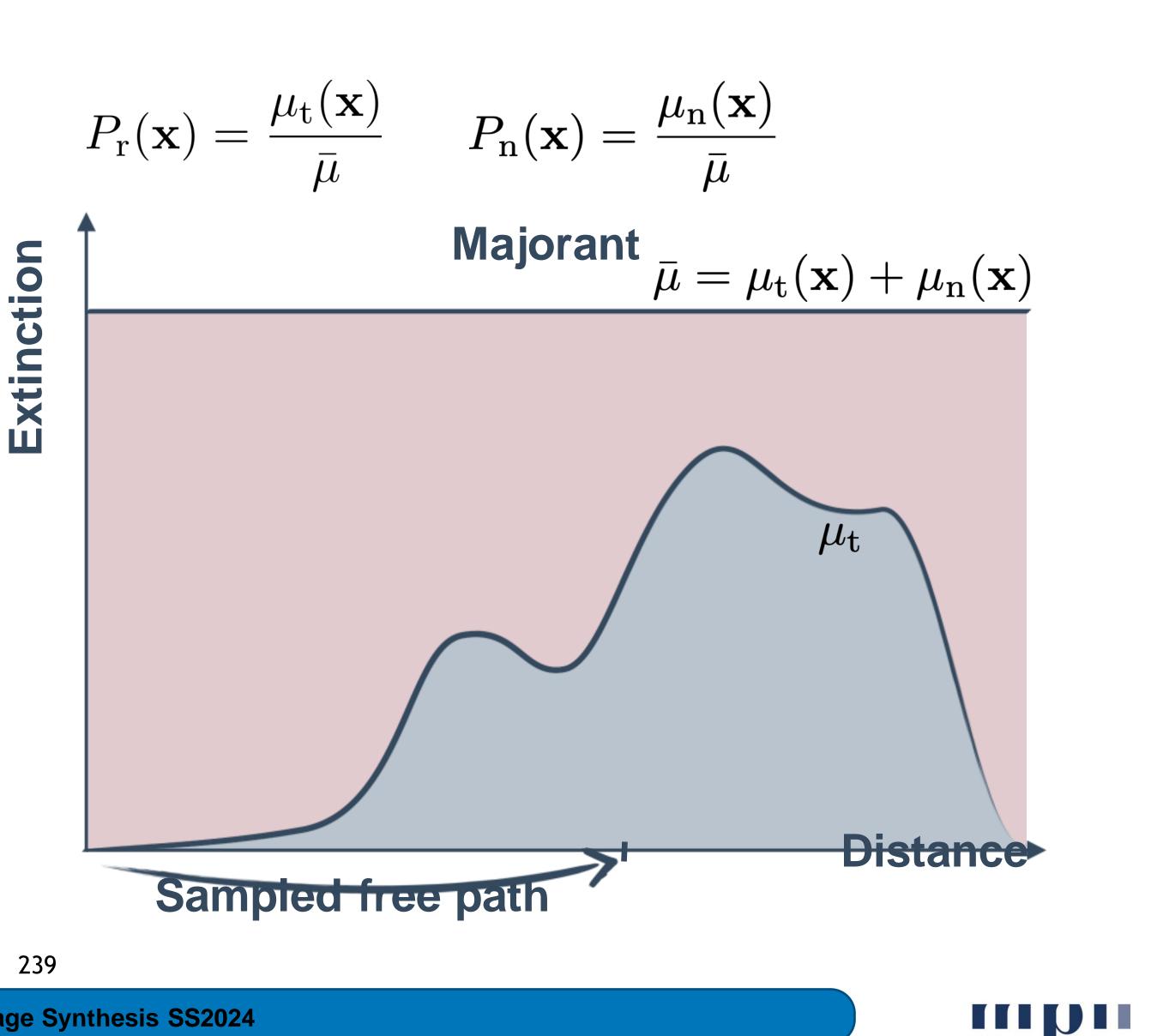




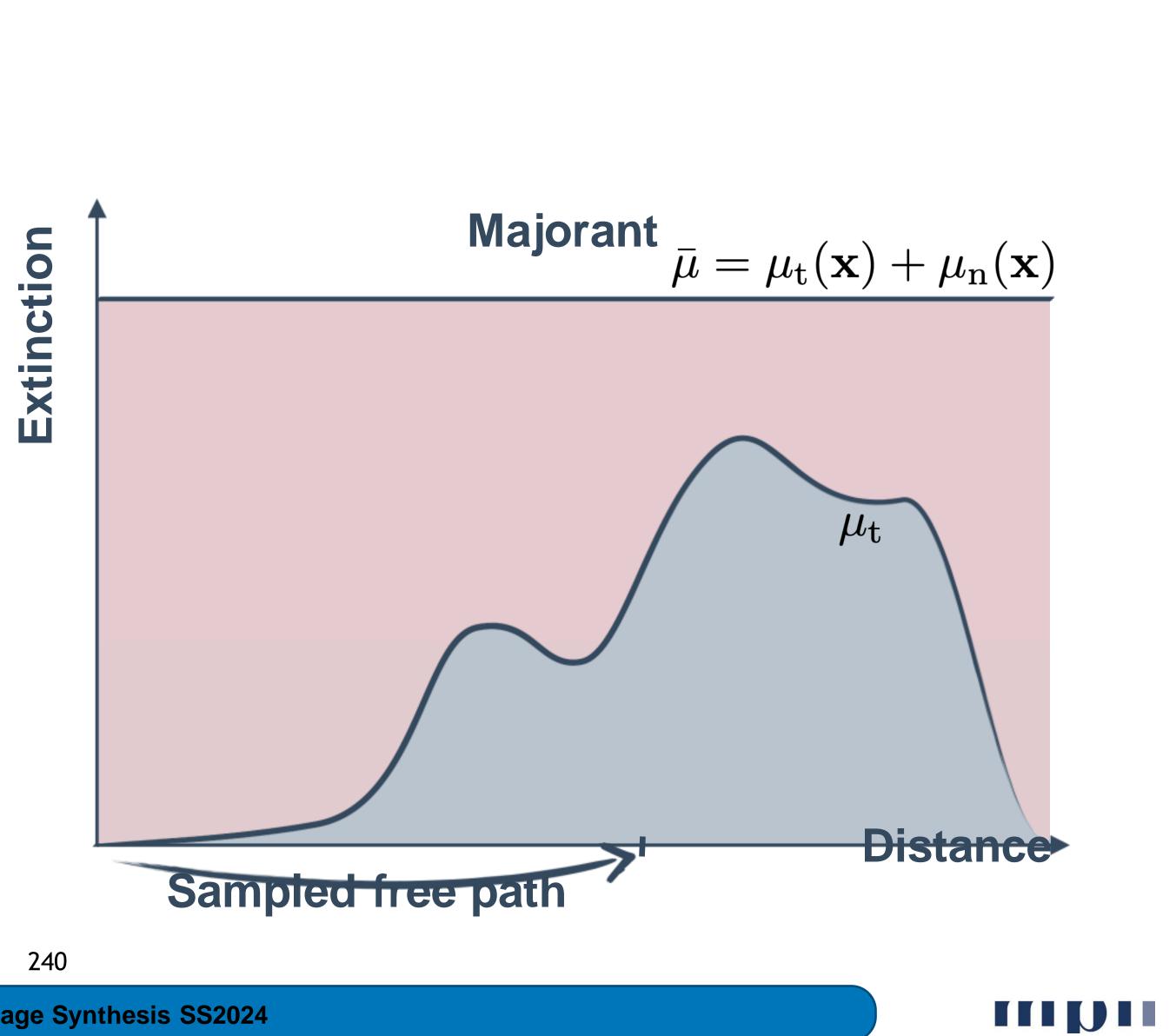
Realistic Image Synthesis SS2024





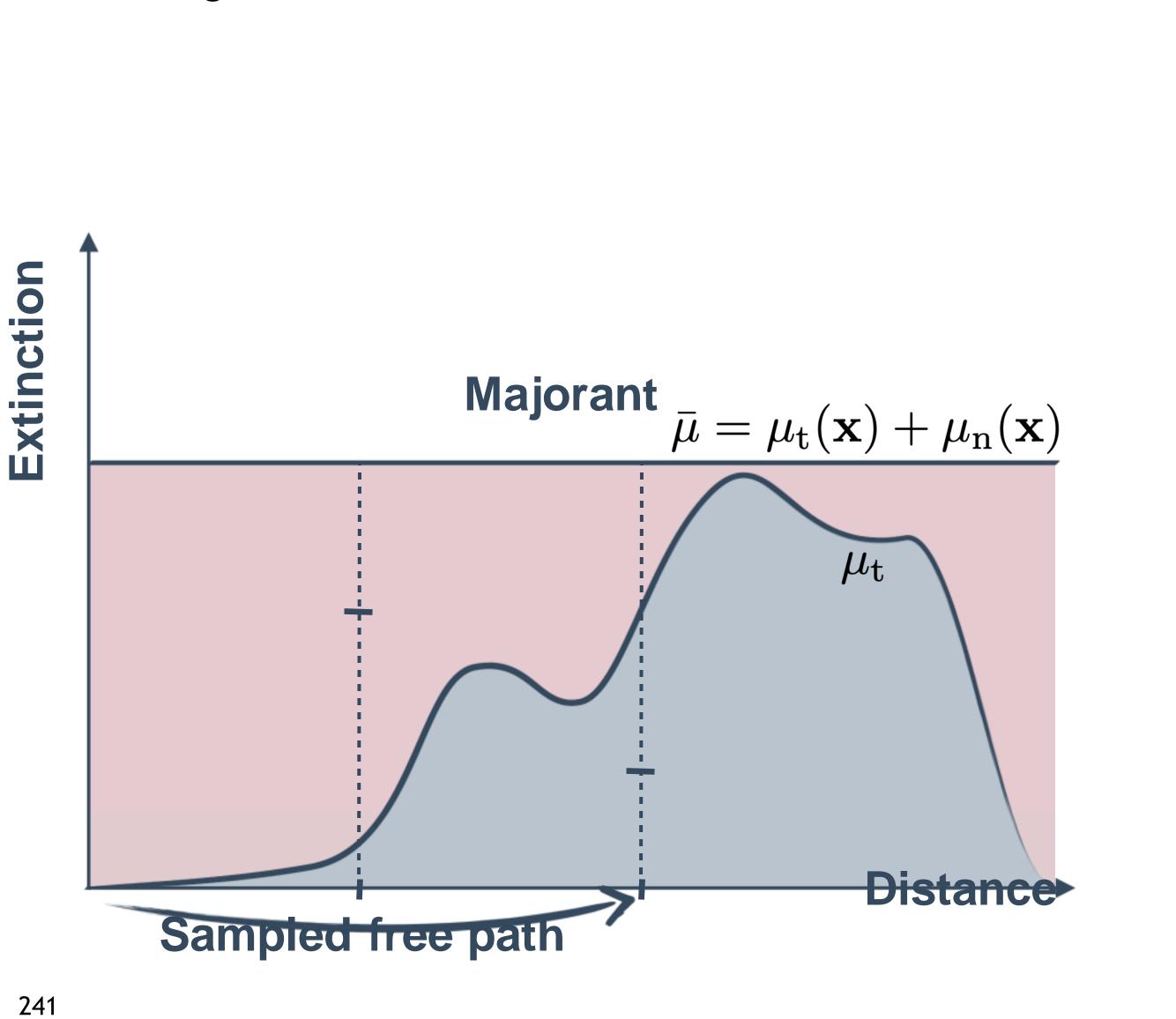


Impact of Majorant



Impact of Majorant

Tight majorant = GOOD (few rejected collisions)



Impact of Majorant Majorant $ar{\mu} = \mu_{\mathrm{t}}(\mathbf{x}) + \mu_{\mathrm{n}}(\mathbf{x})$ Extinction μ_{t} **Distance** Sampled free path

Loose majorant = BAD (many expensive rejected collisions)

Realistic Image Synthesis SS2024

Acknowledgements

Slides material borrowed from multiple resources.

Special thanks to Wojciech Jarosz and Jan Novak et al. for making their lectures and SIGGRAPH 2018 slides available online

Next career fair "next" on June 11, 2024 from 10:00 a.m. to 5:00 p.m.

The trade fair offers our students the opportunity to meet potential employers, make contacts and find out about career opportunities. Companies have the opportunity to offer internships, theses or entry-level positions.

Die Karrieremesse der UdS

247

DES