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Ray Tracing
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Direct Illumination 4 spp

Image rendered using PBRT
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Direct Illumination 256 spp

Image rendered using PBRT
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Direct and Indirect Illumination 4096 spp

Image rendered using PBRT



Realistic Image Synthesis SS2024

9

Path Tracing
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Path Tracing
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Path Tracing
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Path Tracing
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4 sppDirect and Indirect Illumination

Image rendered using PBRT
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Noise
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NoiseCasino de Monte-Carlo

Copyright Monte Carlo SBM

https://www.montecarlosbm.com/fr/casino-monaco/casino-monte-carlo/salon-jeux
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Monte Carlo Integration
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Slide after Wojciech Jarosz
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Monte Carlo Integration

17
Slide after Wojciech Jarosz
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Numerical Integration

18

• Analytic evaluation: accurate and fast
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Numerical Integration

19

• Numerical evaluations: 

• Provide only approximate solutions, 

• Rate of convergence is important

• Often involves evaluations only at selected locations
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Numerical Integration

20

• Numerical quadrature: designed for 1D integrals

• Cubature/Quadratures: for higher dimensions
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Numerical Integration

21

• Hybrid methods: First transform the integral analytically for simpler numerical handling
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Variance Reduction Techniques

22

• Correlated Sampling

• Importance Sampling
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Correlated Sampling: Jittered Sampling
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Variance reduction: Stratified Sampling
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Random 2D

0 1

1 Jittered 2D

0 1

1
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Random 2D

0 1

1 Jittered 2D

0 1

1

Variance reduction: Stratified Sampling
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Random Samples

Random vs. Stratified Sampling
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Random Samples Jittered Samples
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Stratified sampling suffers from the curse of dimensionality

N = 64 spp

Random vs. Stratified Sampling
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Correlated Sampling: Latin Hypercube Sampling
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Latin Hypercube Sampler (N-rooks)
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Initialize
Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)

32

Shuffle rows
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Latin Hypercube Sampler (N-rooks)
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Shuffle columns

Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Variants of stratified sampling
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Slide from Philipp Slusallek
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Correlated Sampling: 

Quasi-Monte Carlo Integration

41
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• Monte Carlo integration suffers, apart from the slow convergence rate, from the 

disadvantages that only probabilistic statements on convergence and error boundaries 

are possible

•  The success of any Monte Carlo procedure stands or falls with the quality of these 

random samples

• If the distribution of the sample points is not uniform then there are large regions where 

there are no samples at all, which can increases the error  

• Closely related to this is the fact that a smooth function is evaluated at unnecessary many 

locations if samples are clumped 

42

Quasi-Monte Carlo Integration
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• Deterministic generation of samples, while making sure uniform distributions

• Based on number-theoretic approaches

• Samples with good uniform properties can be generated in very high dimensions.

• Sample generation is pretty fast: (almost) no pre-processing

43

Quasi-Monte Carlo Integration
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Quasi-Monte Carlo Integration

44

• Low discrepancy sequences

• Halton and Hammerslay sequences

• Scrambled sequences

• Discrepancy
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Discrepancy: Basic idea 
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• The concept of discrepancy can be viewed as a quantitative 

measure for the deviation of a given point set from a uniform 

distribution
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• The concept of discrepancy can be viewed as a quantitative 

measure for the deviation of a given point set from a uniform 

distribution

Area of the blue box: 

Discrepancy: 

0.09

Area associated to each sample: 0.25

0.25 0.09- = 0.16

Discrepancy: Basic idea 



Realistic Image Synthesis SS2024

Spatial Statistics: Discrepancy
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JitterRandom Poisson Disk

Star Discrepancy

Discrepancy = BoxArea - FractionSamples
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Discrepancy

48

Slide from Philipp Slusallek
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Radical Inverse

Techniques based on a construction called as radical inverse

Any integer can be represented in the form: 
1 1

2 01

3 11

4 001

5 101

n Binary 
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Techniques based on a construction called as radical inverse

Any integer can be represented in the form: 
1 1 0.1

2 01 0.01

3 11 0.11

4 001 0.001

5 101 0.101

n Binary 

Radical inverse:

Radical Inverse
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Techniques based on a construction called as radical inverse

1 1 0.1 = 1/2

2 01 0.01 = 1/4

3 11 0.11 = 3/4

4 001 0.001 = 1/8

5 101 0.101 = 5/8

n Binary Radical inverse:

Radical Inverse
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Techniques based on a construction called as radical inverse

Radical inverse:

Halton and Hammerslay Sequence

Halton Sequence: For n-dimensional sequence, we use different base b for each dimension
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Halton and Hammerslay Sequence

Techniques based on a construction called as radical inverse

Radical inverse:

Halton Sequence: For n-dimensional sequence, we use different base b for each dimension

Hammerslay Sequence: All except the first dimension has co-prime bases 
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Techniques based on a construction called as radical inverse

Radical inverse:

Halton Sequence: Hammerslay Sequence:

Hammerslay has slightly lower discrepancy than Halton 

Halton and Hammerslay Sequence
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Low discrepancy samplers
Halton 4spp
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Low discrepancy samplers
Halton 8spp
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Low discrepancy samplers
Sobol 4spp
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Low discrepancy samplers
Sobol 8spp
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Low discrepancy samplers
Random 8spp
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Slide from Philipp Slusallek

Visualizing samples
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Slide from Philipp Slusallek

Visualizing samples
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Halton Sequence

Projection: (9,10) Projection: (19,20) Projection: (29,30)

Slide from Philipp Slusallek

Visualizing samples
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Slide from Philipp Slusallek

Faure's permutation



Gaussian Material Synthesis by ZsoInai-Feher, Wonka, Wimmer [SIGGRAPH 2018]

Questions?
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Importance Sampling

68
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Importance Sampling

69

What terms can we importance sample?

- BSDF

- Incident radiance

- cosine term
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What terms can we importance sample?

- BSDF

- Incident radiance

- cosine term

Importance Sampling: Cosine term
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Example: Ambient Occlusion
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Example: Ambient Occlusion
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Example: Ambient Occlusion
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Example: Ambient Occlusion
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Example: Ambient Occlusion
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Uniform Hemispherical Sampling

(1 Sample)

Hemispherical Sampling: Constant PDF
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Uniform Hemispherical Sampling

Hemispherical Sampling: Constant PDF

(4 Samples)
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Uniform Hemispherical Sampling

Hemispherical Sampling: Constant PDF

(256 Samples)
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Importance Sampling: Cosine term

Cosine-weighted Importance SamplingUniform Hemispherical Sampling
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Slide from Wojciech Jarosz
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Slide from Wojciech Jarosz
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What terms can we importance sample?

- BSDF

- Incident radiance

- cosine term

Importance Sampling: Incident Radiance
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Example: Environment Lighting
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Example: Environment Lighting



Realistic Image Synthesis SS2024

Environment Lighting
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Slide after Wojciech Jarosz
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Importance function
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Slide after Wojciech Jarosz
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Importance function

Scalar version e.g., luminance channel only
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Slide after Wojciech Jarosz

Importance function: Scalar function

Multiplication with 
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Slide after Wojciech Jarosz

Importance function: Marginalization
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Slide after Wojciech Jarosz

Importance function: Conditional PDFs

Once normalized, each row can serve as the conditional PDF
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Importance function: Sampling
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Importance function: Sampling
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Importance function: Sampling
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Importance Sampling

98

For more details, see PBRTv3: 13.2 and 13.6.7
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Importance Sampling

100

What terms can we importance sample?

- BSDF

- Incident radiance

- cosine term

To handle this, we will introduce Microfacet BSDF 

theory in the later part of the lecture.
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Light vs. BSDF Importance Sampling

101

Sensor

Light PDF Sampling BSDF PDF Sampling

Light IS BSDF IS
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Variance reduction: Importance sampling

102

Reference image BSDF importance sampling Light importance sampling

N = 4 sppN = 1024 spp N = 4 spp
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Variance reduction: Importance sampling

103

Reference image BSDF importance sampling Light importance sampling

BSDF sampling is better in some regions

N = 4 sppN = 1024 spp N = 4 spp
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Variance reduction: Importance sampling

104

Reference image BSDF importance sampling Light importance sampling

Light sampling is better in other regions

N = 4 sppN = 1024 spp N = 4 spp
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Variance reduction: Importance sampling

106

Reference image BSDF importance sampling Light importance sampling

Can we combine the benefits of different PDFs ? Yes!
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Variance reduction: Importance sampling

107

Multiple Importance SamplingBSDF importance sampling Light importance sampling

Can we combine the benefits of different PDFs ? Yes!
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Variance reduction: Multiple Importance sampling

108

Multiple Importance Sampling

???
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Variance reduction: Multiple Importance sampling

109

Multiple Importance Sampling

Balance heuristic:

Power heuristic:



Questions?

Gaussian Material Synthesis by ZsoInai-Feher, Wonka, Wimmer [SIGGRAPH 2018]
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Rendering Equation

111
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Rendering Equation

112

James Kajiya, The Rendering Equation, SIGGRAPH 1986

Outgoing emitted reflected
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Rendering Equation

113

reflectedOutgoing emitted
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Rendering Equation: Light Transport

In vaccum, radiance is constant along rays

We can relate out-going radiance to the incoming radiance

114
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Rendering Equation: Light Transport

In vaccum, radiance is constant along rays

We can relate out-going radiance to the incoming radiance

115
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Rendering Equation

116
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Rendering Equation

117

Only outgoing radiance on both sides

- we drop the "o" subscript

- Becomes Fredholm equation of the second kind (recursive)

ray tracing function
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Rendering Equation

118
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Path Tracing

136
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Path Tracing

137

Light source
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Path Tracing

138

Light source
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Path Tracing

139

Light source
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Path Tracing

140

Light source
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Path Tracing

141

Light source
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Path Tracing

142

Light source
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Path Tracing Algorithm

143
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Partitioning the Integrand

144

Direct Illumination: sometimes better estimated by sampling the 

emissive surfaces

Let's estimate direct illumination separately from indirect illumination, 

then add the two 

  - i.e., shoot shadow rays (direct) and gather rays (indirect)

  - be careful not to double count!
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Partitioning the Integrand

145

Direct Illumination: sometimes better estimated by sampling the 

emissive surfaces

Let's estimate direct illumination separately from indirect illumination, 

then add the two 

  - i.e., shoot shadow rays (direct) and gather rays (indirect)

  - be careful not to double count!
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Partitioning the Integrand

146

Direct Illumination: sometimes better estimated by sampling the 

emissive surfaces

Let's estimate direct illumination separately from indirect illumination, 

then add the two 

  - i.e., shoot shadow rays (direct) and gather rays (indirect)

  - be careful not to double count!
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Direct Illumination: sometimes better estimated by sampling the 

emissive surfaces

Let's estimate direct illumination separately from indirect illumination, 

then add the two 

  - i.e., shoot shadow rays (direct) and gather rays (indirect)

  - be careful not to double count!

Partitioning the Integrand

Also known as Next Event Estimation (NEE)
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Light source

Path Tracing Algorithm with NEE
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Light source

Path Tracing Algorithm with NEE
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Light source

Path Tracing Algorithm with NEE
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Light source

Path Tracing Algorithm with NEE
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Light source

Path Tracing Algorithm with NEE
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Light source

Path Tracing Algorithm with NEE
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Light source

Path Tracing Algorithm with NEE
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Light source

Path Tracing Algorithm with NEE
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Light source

Avoid 

double count!

Path Tracing Algorithm with NEE
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Path Tracing Algorithm with NEE

157
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Path Tracing Algorithm with NEE
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Path Tracing Algorithm with NEE
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Path Tracing Algorithm with NEE
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Path-wise Visualization

161

Path: 0 Path: 1 Path: 2 Path: 3

Path: 4 Path: 5 Path: 6 All Paths added
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When we do stop recursion?

162

Truncating at some fixed depth introducing bias

Solution: Russian roulette
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Russian Roulette

163

Probabilisticaly terminate the recursion

New estimator: evaluate original estimator X with probability P 

(but reweighted), otherwise return zero:
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Russian Roulette

164

This will increase variance!

 - but it will improve efficiency if P is chosen so that the 

samples that are expensive, but are likely to make small 

contribution, are skipped



165
Source: Midjourney
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Microfacet BSDFs

166
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BRDF

167

Bidirectional Reflectance Distribution Function
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BRDF Properties

168

Real/Physically plausible BRDFs obey:

- Energy conservation:



Realistic Image Synthesis SS2024

BRDF Properties

169

Real/Physically plausible BRDFs obey:

- Energy conservation:

 - Helmholtz reciprocity:
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Conductors vs. Dielectrics

170

Conductors: Materials that conduct electricity, e.g. metal

— Complex index of refraction.                        

Dielectrics: Materials that does not conduct electricity, 

— e.g., glass, mineral oil, water and air 

— index of refraction



Realistic Image Synthesis SS2024

Conductors vs. Dielectrics

171

Gold GlassIronCopper

CloudsMercuryCrystal rocks
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Smooth conducting material Smooth dielectric material

Conductors vs. Dielectrics
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Smooth conducting material Smooth dielectric material

Rough conducting material Rough dielectric material

Conductors vs. Dielectrics
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Meso Scale

Detail at intermediate scale 

Three Levels of Detail

174

Micro Scale

Roughness

Macro Scale

KlausNetflix

Scene geometry

Key Idea: transition from individual interactions to statistical averages 
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Phong BRDF

175

Reflection direction distributed over an exponentiated cosine lobe:

incident direction

mirror-reflection 

direction
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Phong BRDF
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Reflection direction distributed over an exponentiated cosine lobe:

incident direction
outgoing direction

mirror-reflection 

direction
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Phong BRDF
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Reflection direction distributed over an exponentiated cosine lobe:

incident direction
outgoing direction

mirror-reflection 

direction
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Blinn-Phong BRDF
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Reflection direction distributed over an exponentiated cosine lobe:

incident direction
outgoing direction
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Blinn-Phong BRDF

179

Reflection direction distributed over an exponentiated cosine lobe:

incident direction
outgoing direction

: half-vector
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Rough Surfaces

180

Empirical glossy models have limitations:

 - not physically-based

 - (often) not reciprocal
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Rough Surfaces

181

Empirical glossy models have limitations:

 - not physically-based

 - (often) not reciprocal

 - not energy-preserving (can be normalized): many conflicting normalizations in the 

literature

 - (often) no Fresnel effects

 - cannot accurately model appearance of many glossy surfaces
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Rough Surfaces

182

Empirical glossy models have limitations:

 - not physically-based

 - (often) not reciprocal

 - not energy-preserving (can be normalized): many conflicting normalizations in the 

literature

 - (often) no Fresnel effects

 - cannot accurately model appearance of many glossy surfaces

Blinn-Phong was first step in the right direction

Can do Better
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Microfacet Theory

183
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Microfacet Theory

184

In geometric-optics-based approaches, rough surfaces can be modeled as a 

collection of small microfacets. 

Surfaces comprised of microfacets are often modeled as heightfields, where 

the distribution of facet orientations is described statistically
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Microfacet Theory

185

Assume surface consists of tiny facets

Assume that the differential area being viewed/illuminated is relatively large compared 

to the size of microfacets

A facet can be perfectly specular or diffuse
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Torrance-Sparrow Model

186

Developed by Torrance & Sparrow in 1967

Originally used in the physics community
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Torrance-Sparrow Model

187

Developed by Torrance & Sparrow in 1967

Originally used in the physics community

Adapted by Cook & Torrance and Blinn for graphics

- added ambient and diffuse terms
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Torrance-Sparrow Model

188

Developed by Torrance & Sparrow in 1967

Originally used in the physics community

Adapted by Cook & Torrance and Blinn for graphics

- added ambient and diffuse terms

Explain off-specular peaks

Assumes surface is composed of many micro-grooves, each of which is a 

perfect mirror
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Torrance-Sparrow Model

189

Slides material borrowed from multiple resources. 

Thanks to Wojciech Jarosz for making his rendering lectures 

available online
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General Microfacet Model
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Fresnel coefficient

General Microfacet Model



Realistic Image Synthesis SS2024

192

Microfacet

distributionFresnel coefficient

General Microfacet Model
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Fresnel coefficient

Microfacet

distribution shadowing/masking

General Microfacet Model
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General Microfacet Model

194

Fresnel coefficient
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Fresnel Term

195
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General Microfacet Model

196

Microfacet

distribution
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Microfacet Distribution

197
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Microfacet Distribution

198
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Microfacet Distribution

199
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Microfacet Distribution

200
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Microfacet Distribution

201

How much of the surface reflects?
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Microfacet Distribution

202

What fraction of the surface participates in the reflection?

1) difficult to say (need an actual micro surface to compute this, tedious..)

2) Solve using principles of statistical physics

- Is there anything general we can say about the surface when 

there are many bumps?



Realistic Image Synthesis SS2024

Microfacet Distribution

203

Fraction of facets facing each direction

Probability density function over projected solid angle (must be normalized): 
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Beckmann-Spizzichino Model

204

The slopes follow a Gaussian distribution

Let's express slope distribution w.r.t. directions
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Beckmann-Spizzichino Model

205

The slopes follow a Gaussian distribution

Let's express slope distribution w.r.t. directions
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shadowing/masking

General Microfacet Model
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Microfacet Distribution: Masking effect

207
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Microfacet Distribution: Masking effect

208

Masking effect:

The microfacet of interest not visible to the viewer due to occlusions 
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Microfacet Distribution: Shadowing effect

209

Light does not reach the microfacet

Shadowing effect:
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Microfacet Distribution: Shadowing/Masking

210

Light bounces among the facets before reaching the viewer
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Microfacet Distribution: Shadowing/Masking

211

Light bounces among the facets before reaching the viewer
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Microfacet Distribution: Interreflection

212

Interreflection

Light bounces among the facets before reaching the viewer
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Reading

• PBRT Section 8.4

• GGX Distribution, Walter et al. (EGSR 2007)

• Isotropic and anisotropic microfacet distributions 

• Oren–Nayar model, a "directed-diffuse" microfacet model, with 

perfectly diffuse (rather than specular) microfacets. 

• Ashikhmin-Shirley model, allowing for anisotropic reflectance, 

along with a diffuse substrate under a specular surface

213

http://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models.html
https://www.cs.cornell.edu/~srm/publications/EGSR07-btdf.pdf
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Reading

• PBRT Section 8.4

• GGX Distribution, Walter et al. (EGSR 2007)

214
PBRT v3 [2016]

Isotropic microfacet distribution Anisotropic microfacet distribution

http://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models.html
https://www.cs.cornell.edu/~srm/publications/EGSR07-btdf.pdf
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Source: Midjourney
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