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Recap

• Goal: compute pixel value

• Integral over all possible paths connecting the pixel to a light source
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𝐹 = ∫ 𝑓 𝑥 𝑑𝑥



How to compute an integral?

1. Analytically (usually not possible in rendering)

2. Numerically, e.g., quadrature with midpoint rule
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Problem: High dimensionality

• Recursive! → High (infinite) dimensionality

• Simple quadrature: exponential cost

• Monte Carlo: one n-dimensional sample at a time
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Monte Carlo integration: Estimate via random samples

• Choose midpoints at random

• Converges to the integral

• Can be done one sample at a time – that’s why it scales well!
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1 sample 10 samples 1000 samples



Advantages of Monte Carlo integration

• Scales well: One sample at a time

• Converges to the correct solution

• Early iterations are noisy, but no systematic error (bias)
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1 sample 10 samples 100 samples



Applied to rendering

• Sample random path between camera and light, e.g., via
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Recursive path tracing from 
the camera (“Path Tracer”)

Recursive path tracing from
the light (“Light Tracer”)



Applied to rendering

• Sample random path between camera and light, e.g., via

Realistic Image Synthesis - Monte Carlo Integration 8

Combine both (“Bidirectional Path Tracing (BDPT)”, “Vertex Connection and Merging (VCM)”, …)

Discussed in more depth over the next lectures!



A bit of math to back it all up
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Probability density (PDF)
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Discrete probability: 

Throw a banana. Either lands in the 

bin or lands on the floor.

𝑃 𝑏𝑖𝑛 ≤ 1

𝑃 𝑓𝑙𝑜𝑜𝑟 ≤ 1

𝑃 𝑏𝑖𝑛 + 𝑝 𝑓𝑙𝑜𝑜𝑟 = 1

Continuous probability: 

Throw a banana. At what point on the floor will it land?

• Infinitely many possibilities (real numbers)

• Any exact position has zero probability

• 𝑝 𝑥 𝑑𝑥 is the probability that the banana lands in the 

differential area 𝑑𝑥

• ∫𝑝 𝑥 𝑑𝑥 = 1

• Units (this example): 𝑝 𝑥 = 𝑑𝑥 −1 = 𝑚−2

𝑑𝑥



Basic properties are much like for discrete probabilities

• Joint PDF: 

• 𝑝 𝑥, 𝑦

• Can be written based on the conditional PDF

• 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝 𝑦

• We can obtain the marginal PDF

• 𝑝 𝑥 = ∫𝑌 𝑝 𝑥, 𝑦 𝑑𝑦 = ∫𝑌 𝑝 𝑥 𝑦 𝑝 𝑦 𝑑𝑦

• Useful for transforming samples (as we will see later)
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Expected value

• For discrete random variables: Sum over all possible values 𝐹𝑖 , multiplied by their probability

• Continuous case: Integral over all possible values 𝑓 𝑥 times their PDF 𝑝 𝑥
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𝐸 𝐹 =𝐹𝑖 𝑃 𝐹𝑖

𝐸 𝐹 = න𝑓(𝑥) 𝑝 𝑥 𝑑𝑥



Monte Carlo Integration
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Integral as an expected value

• We want to compute

• Idea of MC integration: Rewrite with sampling x ∝ 𝑝 𝑥

• Where 𝑝(𝑥) is an arbitrary probability density function (PDF)

• With 𝑝 𝑥 ≠ 0 whenever 𝑓 𝑥 ≠ 0
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𝐹 = න
𝑋

𝑓 𝑥 𝑑𝑥

𝐹 = න
𝑋

𝑓 𝑥
𝑝 𝑥

𝑝 𝑥
𝑑𝑥 = 𝐸

𝑓 𝑥

𝑝 𝑥



Primary estimator

• Sample a random 𝑥 distributed according to 𝑝 𝑥 and compute

• The expected value is the integrand we are looking for
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𝐸 𝐹 1 = 𝐸
𝑓 𝑥

𝑝 𝑥
= 𝐹

𝐹 1 =
𝑓 𝑥

𝑝 𝑥



The Monte Carlo estimator

• Average many primary estimators

• Due to the law of large numbers (consistent estimator)

• Converges to the desired integral!

• Estimator is unbiased, iff

• Even stronger condition
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𝐹 𝑛 =
1

𝑛


𝑖=1

𝑛
𝑓 𝑥𝑖
𝑝 𝑥𝑖

lim
𝑛→∞

𝐹 𝑛 = 𝐸 𝐹 1 = 𝐹

𝐸 𝐹 𝑁 = 𝐹



Graphical interpretation
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𝑛 𝑝 𝑥𝑖
−1

𝑓 𝑥𝑖
𝑓 𝑥𝑖

Δ𝑥 =
X

𝑛

Regular quadrature: 𝐹 ≈ σ𝑖=1
𝑛 𝑓 𝑥𝑖 Δ𝑥 Monte Carlo: 𝐹 𝑛 = σ𝑖=1

𝑛 𝑓 𝑥𝑖

𝑛 𝑝 𝑥𝑖



A simple example

• Here, we use a uniform PDF 𝑝 𝑥 = 1

Realistic Image Synthesis - Monte Carlo Integration 18

int numSamples = 1_000_000;
double estimate = 0;
for (int i = 0; i < numSamples; ++i) {

x = rng.NextDouble();
estimate += Integrand(x) / numSamples;

}

Estimate with increasing 𝑛



Error and convergence

• Measured by variance: Expected squared error

• Reduces with increasing 𝑛

• Can be reduced by choosing 𝑝 𝑥 intelligently

• Standard deviation is simply:  𝜎 = V 𝐹

• Expected error & in the same units as the function

• But we will mainly deal with variance

Realistic Image Synthesis - Monte Carlo Integration 19

V 𝐹 = E 𝐹 − 𝐹 2 = E 𝐹 2 − E 𝐹 2

V 

𝑖=1

𝑛
𝑓 𝑥𝑖
𝑛 𝑝 𝑥𝑖

=
1

𝑛
V
𝑓 𝑥

𝑝 𝑥



Sample transformation
How to sample according to a non-uniform PDF 𝑝 𝑥 ?
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Rejection sampling for sample transformation

• Inverting a CDF can be difficult → use general alternative

• Uniformly sample pair 𝑥𝑖 , 𝑦𝑖 from the envelope of 𝑝 𝑥

• Only keep points 𝑥𝑖 , 𝑦𝑖 below the PDF

• Repeat until desired number of accepted points found
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double RejectionSample() {
while (true) {

double x = rng.NextDouble();
double y = rng.NextDouble() * yrange;
if (y < Pdf(x)) return x;

}
}



Rejection sampling

• Pros:

• Easy to implement

• Deals with any pdf as long as we can evaluate it pointwise

• Cons:

• Can be inefficient (if many samples are rejected)
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CDF inversion
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1

Discrete probabilities

1

Commulative probabilities

1

Mapped samples

Setting

𝑥 = 𝑃−1 𝑦

With uniform 𝑦 results in

𝑥~𝑝 𝑥

Continuous PDF Commulative distribution 

function (CDF) 𝑃 𝑥 = ∫0
𝑥
𝑝 𝑦 𝑑𝑦

1



CDF inversion

• Pros:

• Exact sampling possible

• (Sometimes) efficient to compute

• Cons:

• Can be difficult to find invertible CDF 

• (Sometimes) expensive to compute
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Example: Uniformly sampling the hemisphere

• Target pdf: 𝑝 𝜔 ∝ 1

• Normalize such that ∫ 𝑝 𝜔 𝑑𝜔 = 1

• We know ∫1𝑑𝜔 = Ω = 2𝜋

• So 𝑝 𝜔 =
1

2𝜋
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න
Ω

𝐿𝑖 𝑓 cos 𝜃 𝑑𝜔𝑖



CDF inversion for the hemisphere

• Goal: Sample according to 𝑝 𝜔 =
1

Ω
=

1

2𝜋

• Express 𝜔 in spherical coordinates: 𝑝 = 𝑝 𝜃, 𝜙

• Separate into two 1D PDFs: 𝑝 𝜃, 𝜙 = 𝑝 𝜙 𝑝 𝜃 𝜙

• First sample 𝜙 then, conditionally, sample 𝜃
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න
Ω

𝐿𝑖 𝑓 cos 𝜃 𝑑𝜔𝑖



Mapping a direction to spherical coordinates
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𝑥 = cos𝜙 sin 𝜃
𝑦 = sin𝜙 sin 𝜃
𝑧 = cos 𝜃

𝜔

𝜃

𝜙



How does the density change? (Intuition)
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Larger area → lower density

𝜔

𝜃

𝜙

𝐴 𝜔 𝐴 𝜃, 𝜙

𝑝 𝑑𝜃, 𝑑𝜙

𝑝 𝑑𝜔
=

𝐴 𝑑𝜔

𝐴 𝑑𝜃, 𝑑𝜙

Ratio of densities = Inverse ratio of areas

(intuitively; equality only holds for differential areas 𝑑𝜔 and 𝑑𝜃𝑑𝜙)



Even simpler: change of length in 1D
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𝑥 𝑥 + 𝜖

𝑓(𝑥) 𝑓(𝑥 + 𝜖)

𝑓 𝑥

𝐴

𝐵

𝐵

𝐴
=
𝑓 𝑥 + 𝜖 − 𝑓 𝑥

𝑥 + 𝜖 − 𝑥
Derivative! lim

𝜖→0

𝐵

𝐴
=
𝑑𝑓 𝑥

𝑑𝑥



In multiple dimensions: Jacobian determinant

• Mapping from spherical coordinates to cartesian coordinates:

• Jacobian determinant:

• For directions: 𝑟 = 1

• PDF conversion: 𝑝 𝜃, 𝜙 = sin 𝜃 𝑝 𝜔
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𝑑

𝑑𝜃
𝑟 cos𝜙 sin 𝜃

𝑑

𝑑𝜙
𝑟 cos𝜙 sin 𝜃

𝑑

𝑑𝑟
𝑟 cos𝜙 sin 𝜃

𝑑

𝑑𝜃
𝑟 sin𝜙 sin 𝜃

𝑑

𝑑𝜙
𝑟 sin𝜙 sin 𝜃

𝑑

𝑑𝑟
𝑟 sin𝜙 sin 𝜃

𝑑

𝑑𝜃
𝑟 cos 𝜃

𝑑

𝑑𝜙
𝑟 cos 𝜃

𝑑

𝑑𝑟
𝑟 cos 𝜃

=
𝑟 cos𝜙 cos 𝜃 −𝑟 sin𝜙 sin 𝜃 cos𝜙 sin 𝜃
𝑟 sin𝜙 cos 𝜃 𝑟 cos𝜙 sin 𝜃 sin𝜙 sin 𝜃
−𝑟 sin 𝜃 0 cos 𝜃

= 𝑟2 sin 𝜃

𝑓 𝜃, 𝜙, 𝑟 =
𝑟 cos𝜙 sin 𝜃
𝑟 sin𝜙 sin 𝜃
𝑟 cos 𝜃

=
𝑥
𝑦
𝑧



Verified geometrically
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Area on hemisphere is locally sin 𝜃 times as large as the corresponding area on the 2D 
plane of spherical coordinates

⇒ 𝑑𝜔 = sin 𝜃 𝑑𝜃𝑑𝜙

⇒ 𝑝 𝜃, 𝜙 = sin 𝜃 𝑝 𝜔

𝜔𝜃

sin 𝜃 2𝜋 𝜃

𝜙

2𝜋 𝜋

2

𝜋

2



CDF inversion for the uniform hemisphere (continued)

• 𝑝 𝜔 =
1

2𝜋
⇒ 𝑝 𝜃, 𝜙 =

sin 𝜃

2𝜋

• Marginal PDF: 𝑝 𝜙 = ∫0

𝜋

2
sin 𝜃

2𝜋
𝑑𝜃 =

1

2𝜋

• No big surprise: it’s uniform

• Conditional PDF: 𝑝 𝜃 𝜙 =
𝑝 𝜃,𝜙

𝑝 𝜙
= sin𝜃

• The CDF is 𝑃 𝜃 𝜙 = ∫0
𝜃
sin 𝑥 𝑑𝑥 = 1 − cos 𝜃

• And its inverse 𝑃−1 𝑦 = cos−1 1 − 𝑦
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Sampling the uniform hemisphere
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Vector3 ToUniformHemisphere(float u, float v) {
float phi = 2 * MathF.PI * u;

float cosTheta = 1 - v;
float sinTheta = MathF.Sqrt(1 - cosTheta * cosTheta);

return new Vector3(
sinTheta * MathF.Cos(phi),
sinTheta * MathF.Sin(phi),
cosTheta

);
}

𝜃 = cos−1 1 − 𝑦

𝑝 𝜙 =
1

2𝜋
⇒ 𝜙 = 2𝜋𝑥Input: 2 uniform random numbers in [0,1]

Output: cartesian coordinates (𝑧 axis up) 
of the direction in the hemisphere



Sampling directions via points on a surface

• Sometimes, we rather sample points on surfaces than directions

• Example: connecting directly to a point on a light

• How can we compute 𝑝 𝜔 from a surface density 𝑝 𝑦 ?
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𝑝 𝜔 𝑑𝜔 = 𝑝 𝑦 𝜔 𝑑𝑦 𝜔

⇔ 𝑝 𝜔 = 𝑝 𝑦 𝜔
𝑑𝑦 𝜔

𝑑𝜔

𝜔

𝑦



Geometry term

• Surfaces are 2D manifolds

• They locally resemble a plane
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𝜃
cos 𝜃

𝑑𝜔 =
cos 𝜃

𝑑2
𝑑𝑦 ⟺

𝑑𝜔

𝑑𝑦
=
cos 𝜃

𝑑2

1

1

𝑑 1

𝑑



Sampling directions via points on a surface

1. Sample a point 𝑦 on the surface (e.g., light source)

2. Compute 

3. Monte Carlo estimate:
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𝑝 𝜔 = 𝑝 𝑦
𝑦 − 𝑥 2

cos 𝜃

𝑓 𝑥, 𝜔 𝑥, 𝑦

𝑝 𝜔
=
𝑓 𝑥, 𝜔 𝑥, 𝑦

𝑝 𝑦

cos 𝜃

𝑦 − 𝑥 2

𝜔

𝑦

𝑑

𝜃



Variance Reduction
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Importance sampling

• Choosing 𝑝 𝑥 to focus on “important” regions
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“Zero variance sampling”?

• Ideally: Choose 𝑝 𝑥 ∝ 𝑓 𝑥 ⇒
𝑝 𝑥

𝑓 𝑥
= 𝐶 = 𝑐𝑜𝑛𝑠𝑡.

• Then, a single sample already gives the correct result

• However, this requires we know ∫𝑓 𝑥 𝑑𝑥 already…

• Unfortunately, does not work 
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∫𝑝 𝑥 𝑑𝑥 = 1 ⇒ 𝐶 = 1/∫𝑓 𝑥 𝑑𝑥

⇔ 𝑝 𝑥 =
𝑓 𝑥

∫𝑓 𝑥 𝑑𝑥
∝ 𝑓(𝑥)



Multiple importance sampling (MIS)

• Idea: use multiple densities that match different regions well
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Simple average

• The simplest way: average both estimators

• The resulting variance is the weighted sum (iff independent):

• If either (or both) individual variances are high, this is still bad!

➔Want to tune where to prefer which estimator!
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𝐹 avg =
1

2


𝑖=1

𝑛𝐴
𝑓 𝑥𝑖

𝑛𝐴 𝑝𝐴 𝑥𝑖
+
1

2


𝑖=1

𝑛𝐵
𝑓 𝑥𝑖

𝑛𝐵 𝑝𝐵 𝑥𝑖

𝑉 𝐹 avg =
1

4
𝑉 𝐹 𝐴 +

1

4
𝑉 𝐹 𝐵



MIS

• Form a linear combination

• Weighting function 𝑤𝑡 𝑥 for each sampling technique 𝑡

• Unbiased estimator is achieved if for all 𝑥 where 𝑓 𝑥 ≠ 0:
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𝐹 MIS =

𝑡



𝑖=1

𝑛𝑡

𝑤𝑡 𝑥𝑡,𝑖
𝑓 𝑥𝑡,𝑖

𝑛𝑡𝑝𝑡 𝑥𝑡,𝑖



𝑡

𝑤𝑡 𝑥 = 1

𝑝𝑡 𝑥 = 0 ⇒ 𝑤𝑡 𝑥 = 0

MIS weights



Balance heuristic
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𝑤𝑡 𝑥 =
𝑛𝑡𝑝𝑡 𝑥

σ𝑘 𝑛𝑘𝑝𝑘 𝑥

Balance heuristic weightsIntegrand and densities



Application to rendering
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Sampling the BRDF Sampling the light 
sources

𝜔𝑜



Application to rendering
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Sampling the BRDF Sampling the light 
sources



Application to rendering
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𝑤1 +𝑤2 =

Sampling the BRDF Sampling the light 
sources

MIS



Balance heuristic and optimality

• Provably good [Veach & Guibas, 1995], but not optimal

• Minimizes an upper bound of the variance

• Ignores sample / technique correlation

• Performs poorly if some techniques have low variance
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Path tracer Path tracer + Bidir.
(Balance heuristic)

𝜎𝑡
2 = න

Ω

𝑓2 𝑥

𝑛𝑡𝑝𝑡 𝑥
𝑑𝑥 − 𝑟𝑡

Minimized by balance

Minimized by optimal weights



Power and maximum heuristics

• Amplify weights where one density is higher

• If high density correlates with low variance, that improves the “low variance” issue
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𝑤𝑡 𝑥 =
𝑛𝑡𝑝𝑡 𝑥

𝑝

σ𝑘 𝑛𝑘𝑝𝑘 𝑥
𝑝

𝑤𝑡 𝑥 = ቊ
1, 𝑛𝑡𝑝𝑡 𝑥 > 𝑛𝑘𝑝𝑘 𝑥 ∀𝑘
0, else

Power heuristic

Maximum heuristic



Variance-aware balance heuristic

• Estimate second moment and variance

• Use to offset the weights in the right direction

• By [Grittmann et al., 2019]
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𝑣𝑡 =
∫Ω

𝑓2 𝑥
𝑛𝑡𝑝𝑡 𝑥

𝑑𝑥

𝜎𝑡
2

𝑤𝑡 𝑥 =
𝑣𝑡𝑛𝑡𝑝𝑡 𝑥

σ𝑘 𝑣𝑘𝑛𝑘𝑝𝑘 𝑥



Optimal MIS weights: complex and expensive, but worth it
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𝜎𝑡
2 = න

Ω

𝑓2 𝑥

𝑛𝑡𝑝𝑡 𝑥
𝑑𝑥 − 𝑟𝑡

Minimized by balance

Minimized by optimal weights

𝛼1
⋮
𝛼𝑁

𝑎11 ⋯ 𝑎1𝑁
⋮ ⋱ ⋮

𝑎𝑁1 ⋯ 𝑎𝑁𝑁

=
𝑏1
⋮
𝑏𝑁

𝑎𝑖𝑗 = න
𝑝𝑖𝑝𝑗

σ𝑛𝑘𝑝𝑘

𝑏𝑖 = න
𝑝𝑖𝑓

σ𝑛𝑘𝑝𝑘

Balance heuristicOptimal weights

13x better
By [Kondapaneni et al., 2019]



Stratified sampling

• Subdivide domain into bins

• Sample within each bin

• Less sample clustering → Guarantees that all regions are explored

• Lower variance!

• Discussed in more depth later in the course
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No samples
Clustered 
samples



Stratified sampling
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Random 2D Jittered 2D



Stratified sampling
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64 spp

Stratified sampling suffers from the curse of dimensionality

Random 2D Jittered 2D



Control Variates

• Start with known integral

• Estimate difference between that and the target

• Can have lower variance if chosen well
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𝑓 − 𝑔
𝑓

𝑔

𝐺 𝐹 − 𝐺𝐹

𝑔



Learning to importance sample (“Sample Guiding”)

• Sample in multiple iterations

• Use data from first iteration(s) to learn a PDF that is closer to the optimal one

• Discussed more in-depth later in the course
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By [Grittmann et al., 2020]



Summary
What have we learned today?
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This lecture

• Rendering equation: recursive integral, infinite dimensionality

• Analytical solution not possible

• Monte Carlo integration: numerical integration method that scales well with dimensionality

• Like “normal” quadrature but with random positions

• Efficient, scales, well, very flexible (many tweak, tricks, improvements possible)
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Next up: Apply MC to rendering!

• Path tracing

• Bidirectional path tracing

• Density estimation

• Combinations via MIS

• Learned importance sampling

• Filtering and denoising

• Quasi-Monte Carlo and sampling patterns

• Markov chain Monte Carlo
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