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Talk Outline
• Introduction


• Differentiable rendering theory and algorithms


• Differentiable rendering systems and applications


• Q&A

3



CVPR 2021 Tutorial

Introduction

Ph
ys

ics
-B

as
ed

 D
iff

er
en

tia
bl

e 
Re

nd
er

in
g

4



CVPR 2021 TutorialPhysics-Based Differentiable Rendering

What is Differentiable Rendering?
• Computing derivative images (with respect to various parameters)


Forward-rendering result Differentiable-rendering result
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Why Use Differentiable Rendering?
• Solving inverse-rendering problems


• i.e., inferring scene parameters based on images of the scene


• Integrating forward rendering into probabilistic inference and machine 
learning pipelines

• e.g., backpropagating losses during training


• Numerous applications in computer vision, computer graphics, computational 
imaging, VR/AR, …
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Forward and Inverse Rendering

Scene: "bed classic" from Jiraniano
Geometry, materials, lighting, ...

θ IForward rendering

I = ℛ(θ)
Inverse rendering

θ = ℛ−1(I)?

Scene parameters Rendered image
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Ray Tracing
• A heavily abused term in graphics and vision


• We use ray tracing to mean ray-surface intersection computations

• Applicable to both explicit (e.g., mesh) and implicit (e.g., SDF) surfaces




• Basic building block for most (if not all) physics-based rendering algorithms


• e.g., path tracing, bidirectional path tracing, …
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Physics-Based Forward Rendering
• Relies heavily on Monte Carlo integration


• Can capture complex light-transport effects

• Soft shadows, interreflection, subsurface scattering, …
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Physics-Based Inverse Rendering

Scene: "bed classic" from Jiraniano
Geometry, materials, lighting, ...

θ I
Scene parameters Rendered image

Inverse rendering

θ = ℛ−1(I)?
•Inverting physics-based 

forward rendering


•Crucial to many applications
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Shape and Material Reconstruction

Rendering Abs. error
Joint optimization of object shape and spatially varying reflectance (our recent work)
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Computational Fabrication
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Determining the material configuration for individual voxels in full-color inkjet 3D printing
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Physics-Based Learning
• Integrating physics-based rendering into machine learning and 

probabilistic inference pipelines

• Inverse subsurface scattering [Che et al. 2020]

(a) auto-encoder network architecture
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(b) inverse transport network architecture
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Fig. 1: Inverse transport networks: (a) Traditional autoencoders
use two networks, encoder and decoder, to learn to predict pa-
rameters from images. (b) Inverse transport networks replace the
decoder with a differentiable Monte Carlo renderer, to improve the
generalization and physical accuracy of the predictions. During
training, the renderer is provided with the material parameter out-
put by the encoder network, as well as with groundtruth geometry
and illumination, to perform forward and backward evaluations
of an additional appearance-matching regularization term used to
learn the network weights. During testing, the encoder network is
used on its own, without the renderer: It takes as input a single,
fully uncalibrated (unknown geometry and illumination) image,
and produces as output a set of material parameters.

The regularization term in Equation (3) forces the neural network
to predict parameters ⇡d that not only match the groundtruth,
but also can be used with forward rendering to reproduce the
input images. This has two desirable effects: First, the parameters
predicted by the network are likely to be close to what would have
been obtained from analysis by synthesis, as the regularization
term in Equation (3) is equivalent to the analysis by synthesis
loss (1). Second, the regularization term forces the neural network
N [ŵ] to be approximately equal to the inverse of the volumetric
light transport operator T , that is, N [ŵ] ⇡ T �1. Given that
T models the physics of subsurface scattering for scenes of
arbitrary geometries and illumination, we expect the resulting
neural network to generalize well to novel scenes. We refer to
networks trained using the loss (2) as regressor networks (RN),
and to networks trained using (3) as inverse transport networks
(ITN), based on their above-discussed property.
Relationship to prior work. Regularization similar to Equa-
tion (3) has previously appeared in two general forms. The first
is autoencoder architectures [49], [50] that, in addition to the re-
gressor (encoder) network N [w] mapping images to parameters,
use a second decoder network D [u] that maps the parameters
back to images. Then, the regularization term in Equation (3) is
replaced with kId � D [u] (N [w] (Id))k2, and both the encoder
and decoder networks are trained simultaneously, potentially with-
out access to groundtruth parameters (self-supervised learning).
These architectures are of great utility when inferring semantic
parameters (e.g., a class label) of a scene, where there is generally
no analytical model for the forward mapping of these parameters
to images. However, when the unknowns ⇡ are scattering material
parameters, autoencoder architectures do not take advantage of
the rich knowledge we have about the physics governing the

forward operator T . Additionally, the forward mapping D [u] may
not generalize to novel scenes, as it is specific to the training
dataset. Figure 1 compares the autoencoder and inverse transport
architectures.

There are also networks that use regularization terms where
the light transport operator T is replaced with an approximate
rendering model [11], [12], [13], [14], [15]. These approximations
generally use direct lighting models, where photons are assumed
to only interact with the scene once between emission and detec-
tion (e.g., direct reflection without interreflections). Unfortunately,
these networks have limited applicability to the case of inverse
scattering, where the underlying physics are characterized by
extremely multi-path, multi-bounce light transport. Inspired by
these prior works, our ITNs are physics-aware learning pipelines
that can be used even in the presence of these higher-order
transport effects that are dominant in inverse scattering.
Training ITNs. The optimization problem (3) for ITN training is
computationally challenging: Evaluating the operator T requires
solving the radiative transfer equation [20]. In theory, training
could be performed using algorithms such as REINFORCE [51],
which do not require differentiating the regularization term and
only employ graphics rendering algorithms for forward evalua-
tions of T . However, such algorithms are known to suffer from
slow convergence.

Instead, we aim to optimize the loss (3) with state-of-the-art
stochastic gradient descent algorithms [59]. This requires using
differentiable rendering algorithms to estimate derivatives of T
with respect to material parameters ⇡ in an unbiased manner.
For this, we rely on prior work [4], [5], [6], [7] that devised
Monte Carlo rendering algorithms for simulating these derivatives
by simulating the full volumetric light transport in a physically-
accurate way. These algorithms have subsequently been general-
ized to scene parameters such as reflectance [44], [45], geome-
try [46], and pose [16], [47], [48]. For completeness, we provide
below an overview of the differentiable rendering formulation at
the basis of our work. We note that, because we optimize over
only material parameters, our differentiable rendering formulation
is significantly simpler than that required for dealing with global
geometry changes, and which has been developed extensively in
recent works [16], [47], [48].

Figure 1 provides an overview of our pipeline at training
and test time: During training, the network is connected to the
differentiable renderer. The network takes as input a single, high-
dynamic-range image, and produces as output a set of scattering
material parameters. During training, the network is connected
to the differentiable renderer. The renderer takes as input the
parameters produced by the network, as groundtruth geometry and
illumination, to compute values and gradients of the regularization
term in Equation (3). As we discuss in Section 6, because we
train the network using synthetic input images, the geometry and
illumination are readily available. During testing, the network is
used on its own, without the renderer. As our objective is to use
the network on testing images that are completely uncalibrated,
no geometry or illumination information is given as input to the
network during either training or testing.
Differentiable Monte Carlo volume rendering. To keep the
paper self-contained, we provide a brief overview of forward
and differentiable rendering in the context of subsurface scat-
tering. Our discussion largely follows [7]. The starting point for
both types of rendering is the path integral formulation of light
transport, which expresses the images captured by a radiometric
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Fig. 1: Inverse transport networks: (a) Traditional autoencoders
use two networks, encoder and decoder, to learn to predict pa-
rameters from images. (b) Inverse transport networks replace the
decoder with a differentiable Monte Carlo renderer, to improve the
generalization and physical accuracy of the predictions. During
training, the renderer is provided with the material parameter out-
put by the encoder network, as well as with groundtruth geometry
and illumination, to perform forward and backward evaluations
of an additional appearance-matching regularization term used to
learn the network weights. During testing, the encoder network is
used on its own, without the renderer: It takes as input a single,
fully uncalibrated (unknown geometry and illumination) image,
and produces as output a set of material parameters.

The regularization term in Equation (3) forces the neural network
to predict parameters ⇡d that not only match the groundtruth,
but also can be used with forward rendering to reproduce the
input images. This has two desirable effects: First, the parameters
predicted by the network are likely to be close to what would have
been obtained from analysis by synthesis, as the regularization
term in Equation (3) is equivalent to the analysis by synthesis
loss (1). Second, the regularization term forces the neural network
N [ŵ] to be approximately equal to the inverse of the volumetric
light transport operator T , that is, N [ŵ] ⇡ T �1. Given that
T models the physics of subsurface scattering for scenes of
arbitrary geometries and illumination, we expect the resulting
neural network to generalize well to novel scenes. We refer to
networks trained using the loss (2) as regressor networks (RN),
and to networks trained using (3) as inverse transport networks
(ITN), based on their above-discussed property.
Relationship to prior work. Regularization similar to Equa-
tion (3) has previously appeared in two general forms. The first
is autoencoder architectures [49], [50] that, in addition to the re-
gressor (encoder) network N [w] mapping images to parameters,
use a second decoder network D [u] that maps the parameters
back to images. Then, the regularization term in Equation (3) is
replaced with kId � D [u] (N [w] (Id))k2, and both the encoder
and decoder networks are trained simultaneously, potentially with-
out access to groundtruth parameters (self-supervised learning).
These architectures are of great utility when inferring semantic
parameters (e.g., a class label) of a scene, where there is generally
no analytical model for the forward mapping of these parameters
to images. However, when the unknowns ⇡ are scattering material
parameters, autoencoder architectures do not take advantage of
the rich knowledge we have about the physics governing the

forward operator T . Additionally, the forward mapping D [u] may
not generalize to novel scenes, as it is specific to the training
dataset. Figure 1 compares the autoencoder and inverse transport
architectures.

There are also networks that use regularization terms where
the light transport operator T is replaced with an approximate
rendering model [11], [12], [13], [14], [15]. These approximations
generally use direct lighting models, where photons are assumed
to only interact with the scene once between emission and detec-
tion (e.g., direct reflection without interreflections). Unfortunately,
these networks have limited applicability to the case of inverse
scattering, where the underlying physics are characterized by
extremely multi-path, multi-bounce light transport. Inspired by
these prior works, our ITNs are physics-aware learning pipelines
that can be used even in the presence of these higher-order
transport effects that are dominant in inverse scattering.
Training ITNs. The optimization problem (3) for ITN training is
computationally challenging: Evaluating the operator T requires
solving the radiative transfer equation [20]. In theory, training
could be performed using algorithms such as REINFORCE [51],
which do not require differentiating the regularization term and
only employ graphics rendering algorithms for forward evalua-
tions of T . However, such algorithms are known to suffer from
slow convergence.

Instead, we aim to optimize the loss (3) with state-of-the-art
stochastic gradient descent algorithms [59]. This requires using
differentiable rendering algorithms to estimate derivatives of T
with respect to material parameters ⇡ in an unbiased manner.
For this, we rely on prior work [4], [5], [6], [7] that devised
Monte Carlo rendering algorithms for simulating these derivatives
by simulating the full volumetric light transport in a physically-
accurate way. These algorithms have subsequently been general-
ized to scene parameters such as reflectance [44], [45], geome-
try [46], and pose [16], [47], [48]. For completeness, we provide
below an overview of the differentiable rendering formulation at
the basis of our work. We note that, because we optimize over
only material parameters, our differentiable rendering formulation
is significantly simpler than that required for dealing with global
geometry changes, and which has been developed extensively in
recent works [16], [47], [48].

Figure 1 provides an overview of our pipeline at training
and test time: During training, the network is connected to the
differentiable renderer. The network takes as input a single, high-
dynamic-range image, and produces as output a set of scattering
material parameters. During training, the network is connected
to the differentiable renderer. The renderer takes as input the
parameters produced by the network, as groundtruth geometry and
illumination, to compute values and gradients of the regularization
term in Equation (3). As we discuss in Section 6, because we
train the network using synthetic input images, the geometry and
illumination are readily available. During testing, the network is
used on its own, without the renderer. As our objective is to use
the network on testing images that are completely uncalibrated,
no geometry or illumination information is given as input to the
network during either training or testing.
Differentiable Monte Carlo volume rendering. To keep the
paper self-contained, we provide a brief overview of forward
and differentiable rendering in the context of subsurface scat-
tering. Our discussion largely follows [7]. The starting point for
both types of rendering is the path integral formulation of light
transport, which expresses the images captured by a radiometric

TrainingTesting

• Utilizing image loss provided by a volume path tracer to regularize training
• Use the trained encoder to solve inverse problems during testing
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Why is Physics-Based Differentiable Rendering Hard?
• Need to differentiate solutions of integral equations (or path integrals)


• e.g., the rendering equation: 


• The relation between such solutions and scene parameters can be highly complex


• Requires handling very large gradient matrices (e.g., with  or more entries)


• Can be tricky to implement correctly

L(x, ωo) = ∫𝕊2
fs(x, ωi, ωo) Li(x, ωo) dωi + Le(x, ωo)

1012
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Handling Many Parameters
• Forward-rendering function: 


•  ( : number of parameters)


•  ( : number of pixels)


• Gradient matrix: 


• Challenges:

•  and  can both be large (~ )


•  can involve  entries


• Reverse-mode automatic differentiation can  
easily run out of memory 

I = ℛ(θ)
θ ∈ ℝn n

I ∈ ℝm m

dℛ
dθ

(x) ∈ ℝm×n

m n 106

(dℛ/dθ) 1012
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Precautions Must Be Taken
• Precautions must be taken to ensure correctness


• E.g., applying automatic differentiation to a path tracer does not always work


• Should the PDF (used by a Monte Carlo estimator) be differentiated?

• Can go either way… 

(More on this later.)


• Discontinuities

• Differentiating only the integrand is insufficient 

(More on this later.)
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Why Not Simply Use Finite Differences?
Finite difference:





Potential problems:


• High bias (large ), rounding error (small )


• Need to correlate Monte Carlo samples


• Scales poorly with the number of parameters

∂ℛ
∂θi

(θ) ≈ ℛ(θ + εei) − ℛ(θ − εei)
2ε

ε ε
[Wikipedia]
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Global Illumination
• Can be simulated with modern differentiable renderers


• Required when solving many inverse-rendering problems

Computational fabrication Non-line-of-sight imaging
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Pixel-Level Antialiasing Matters

No antialiasing Perfect antialiasing

𝒫
One pixel

Pixel value = I(xc) Pixel value = 
1

|𝒫 | ∫𝒫
I(x) dx

xc

Binary-valued Continuous-valued

More information, more differentiable!

Can make inverse-rendering 
optimizations more robust
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Geometric Representations

• Ray-tracing-based forward rendering is agnostic to geometric representations


• The situation is more complex for differentiable rendering

• Due to the need to handle discontinuities (will discuss in details later)

Explicit 
(e.g., polygonal meshes)

Implicit 
(e.g., signed distance functions)
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Why you should use ray-tracing-based 
differentiable rendering
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Ray Tracing vs. Rasterization
• We believe that ray tracing is the way to go for future differentiable renderers

• Ray-tracing-based methods are not much slower than rasterization
• Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX)
• Visibility checks and intersections are typically not the performance bottleneck

22
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Ray Tracing vs. Rasterization

TargetInitial

23823 vertices, 44702 faces

1024x1024 at 2 spp (Titan RTX)
differentiable render time:
• psdr-cuda (ray-tracing-based)*:

2.8 msec
• PyTorch3D (soft rasterizer):

52.5 msec

*Luan et al., EGSR 2021 (to appear)

Other computations (loss 
backpropagation, mesh 
evolution and remeshing):

~ 1000 msec
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Ray Tracing vs. Rasterization

Optimized (psdr-cuda) Absolute error

Low High
23823 vertices, 44702 faces

Initial
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Ray Tracing vs. Rasterization
• We believe that ray racing is the way to go for future differentiable renderers

• Ray-tracing-based methods are not much slower than rasterization
• Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX)
• Visibility checks and intersections are typically not the performance bottleneck

• Ray-tracing-based methods can compute correct (i.e., unbiased) gradients
• Correct gradients matter in optimization!

25
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Ray Tracing vs. Rasterization

TargetOptimized (psdr-cuda) Optimized (PyTorch3D)

Optimization results after 5000 iterations (w/ identical settings)
Low High

26
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Second part of 
this tutorial

Third part of 
this tutorial

Ray Tracing vs. Rasterization
• We believe that ray racing is the way to go for future differentiable renderers

• Ray-tracing-based methods are not much slower than rasterization
• Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX)
• Visibility checks and intersections are typically not the performance bottleneck

• Ray-tracing-based methods can compute correct (i.e., unbiased) gradients
• Correct gradients matter in optimization!

• Ray-tracing-based methods can handle complex light-transport effects
• Soft shadows, environmental illumination
• Inter-reflections, radiative transfer (e.g., subsurface scattering), caustics

• Ray-tracing-based methods can provide gradients in general scenes
• Different shape representations, including point clouds, explicit (e.g., meshes), implicit (e.g., neural SDFs)
• Different types of cameras (e.g., intensity, lightfield, polarization, time-of-flight, hyperspectral, ...)
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What differentiable rendering does 
not give us
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Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

𝜋𝜋: BRDF
𝜋𝜋: scattering

𝜋𝜋: camera 
pose

𝜋𝜋: illumination

𝜋𝜋: 3D shape and pose

min
scene

unknowns 𝜋𝜋

loss , render scene
unknowns 𝜋𝜋

Stochastic gradient descent (e.g., Adam):

Differentiable 
rendering

initialize 𝜋𝜋 ← 𝜋𝜋0

update 𝜋𝜋 ← 𝜋𝜋 + 𝜂𝜂 � dloss 𝜋𝜋
d𝜋𝜋

while (not converged)
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Why we need good initializations

• Analysis-by-synthesis objectives are highly non-convex, non-linear
• Multiple local minima

• Ambiguities exist between different parameters
• Multiple global minima

Ambiguities between BRDF and lighting 
[Romeiro and Zickler 2010] 

Ambiguities between shape and lighting 
[Xiong et al. 2015] 

Ambiguities between scattering 
parameters [Zhao et al. 2014] 
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Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

min
scene

unknowns 𝜋𝜋

loss , render scene
unknowns 𝜋𝜋

Stochastic gradient descent (e.g., Adam):

Differentiable 
rendering

initialize 𝜋𝜋 ← 𝜋𝜋0

update 𝜋𝜋 ← 𝜋𝜋 + 𝜂𝜂 � dloss 𝜋𝜋
d𝜋𝜋

while (not converged)
Neural network

Learned initializations help:
• avoid local minima
• accelerate convergence
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Why we need discriminative loss functions

• Well-designed loss functions can help reduce ambiguities

• Perceptual losses can help emphasize design aspects that matter

• Differentiable rendering can be combined with any loss function that can be 
backpropagated through

VGG-based perceptual loss [Johnson et al. 2016] 
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Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

𝜋𝜋: BRDF
𝜋𝜋: scattering

𝜋𝜋: camera 
pose

𝜋𝜋: illumination

𝜋𝜋: 3D shape and pose

min
scene

unknowns 𝜋𝜋

loss , render scene
unknowns 𝜋𝜋

Stochastic gradient descent (e.g., Adam):

Differentiable 
rendering

initialize 𝜋𝜋 ← 𝜋𝜋0

update 𝜋𝜋 ← 𝜋𝜋 + 𝜂𝜂 � dloss 𝜋𝜋
d𝜋𝜋

while (not converged)
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• The extent to which we can improve upon an initialization strongly depends on the 
signal-to-noise ratio of our measurements

• We need reliable camera models (noise, aberrations, other non-idealities) 

High signal-to-noise ratio is critical

Optical gradient descent [Chen et al. 2020] 
scene initial mesh optimized mesh

simulated 
data

measured 
data

Non-line-of-sight imaging [Tsai et al. 2019] 

34



CVPR 2021 Tutorial

Differential Direct Illumination
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Account for discontinuities of 
integrand that depend on 𝜋𝜋

Account for changes in 
integration limits

Reminder from calculus

?d
d𝜋𝜋

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 =

+

Differentiation under the integral sign
Also known as the Leibniz integral rule

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋 d
d𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥

𝑓𝑓 𝑏𝑏 𝜋𝜋 ,𝜋𝜋
d𝑏𝑏(𝜋𝜋)

d𝜋𝜋
− 𝑓𝑓 𝛼𝛼 𝜋𝜋 ;𝜋𝜋

d𝑎𝑎(𝜋𝜋)
d𝜋𝜋

+ �
𝑖𝑖

𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 −,𝜋𝜋 − 𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 +,𝜋𝜋
d𝑐𝑐𝑖𝑖(𝜋𝜋)

d𝜋𝜋

Move derivative 
inside integral
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A simple example

𝑓𝑓 𝑥𝑥,𝜋𝜋 = �0 if 𝑥𝑥 < 2𝜋𝜋
1 if 𝑥𝑥 ≥ 2𝜋𝜋

+ 0 − 1
d(2𝜋𝜋)

d𝜋𝜋
Account for discontinuities of 
integrand that depend on 𝜋𝜋

+ 1
d(4𝜋𝜋)

d𝜋𝜋
− 0

d0
d𝜋𝜋

Account for changes in 
integration limits

d
d𝜋𝜋

�
0

4𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 = �

0

2𝜋𝜋 d
d𝜋𝜋

0d𝑥𝑥 + �
𝜋𝜋

4𝜋𝜋 d
d𝜋𝜋

1d𝑥𝑥 Move derivative 
inside integral
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Account for discontinuities of 
integrand that depend on 𝜋𝜋

Account for changes in 
integration limits

Interior integral

Boundary terms

Leibniz integral rule

d
d𝜋𝜋

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 =

+

Differentiation under the integral sign
Also known as the Leibniz integral rule

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋 d
d𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥

𝑓𝑓 𝑏𝑏 𝜋𝜋 ,𝜋𝜋
d𝑏𝑏(𝜋𝜋)

d𝜋𝜋
− 𝑓𝑓 𝛼𝛼 𝜋𝜋 ;𝜋𝜋

d𝑎𝑎(𝜋𝜋)
d𝜋𝜋

+ �
𝑖𝑖

𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 −,𝜋𝜋 − 𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 +,𝜋𝜋
d𝑐𝑐𝑖𝑖(𝜋𝜋)

d𝜋𝜋

Move derivative 
inside integral
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Interior integral

Simplified Leibniz integral rule

d
d𝜋𝜋

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 =

Differentiation under the integral sign
Also known as the Leibniz integral rule

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋 d
d𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 Move derivative 
inside integral

Differentiation wrt 𝝅𝝅 simplifies to just moving derivative inside integral when:
• Integration limits are independent of 𝝅𝝅.
• Integrand discontinuities are independent of 𝝅𝝅.
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Reynolds transport theorem
Boundary integral

𝑓𝑓 = 0 𝑓𝑓 = 1

?d
d𝜋𝜋

�
Ω 𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝐴𝐴 𝑥𝑥 = + �
𝜕𝜕Ω(𝜋𝜋)

𝑔𝑔 𝑥𝑥,𝜋𝜋 d𝑙𝑙 𝑥𝑥

𝜋𝜋
discontinuity points

discontinuity points ∪ boundary of domain Ω
(if they depend on 𝜋𝜋)

=Boundary domain
Reynolds transport theorem [1903]

Generalization of the Leibniz rule

Interior integral

�
Ω(𝜋𝜋)

d𝑓𝑓(𝑥𝑥,𝜋𝜋)
d𝜋𝜋

d𝐴𝐴 𝑥𝑥
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Unit hemisphere

Reflectance 
(BRDF)

Incident 
radiance

Shading wrt
normal 𝒏𝒏

Direct illumination integral

Radiance from 𝑥𝑥:

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓
Monte Carlo rendering:
• Sample random directions 𝜔𝜔𝑖𝑖

𝑠𝑠 from PDF 𝑝𝑝 𝜔𝜔𝑖𝑖

• Form estimator

𝐼𝐼 ≈�
𝑠𝑠

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖𝑠𝑠,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖
𝑠𝑠 𝑛𝑛 � 𝜔𝜔𝑖𝑖

𝑠𝑠

𝑝𝑝 𝜔𝜔𝑖𝑖
𝑠𝑠

𝐼𝐼 = �
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)
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Differential direct illumination

Differential radiance from 𝑥𝑥:

d𝐼𝐼
d𝜋𝜋

=
d

d𝜋𝜋
�
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓
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Differential direct illumination: local parameters

Differential radiance from 𝑥𝑥:

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓

𝝅𝝅: local parameters
• BRDF parameters
• shading normal
• illumination brightness

Monte Carlo differentiable rendering:
• Sample random directions 𝜔𝜔𝑖𝑖

𝑠𝑠 from PDF 𝑝𝑝 𝜔𝜔𝑖𝑖

• Form estimator

d𝐼𝐼
d𝜋𝜋

≈�
𝑠𝑠

d
d𝜋𝜋 𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖

𝑠𝑠,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖𝑠𝑠 𝑛𝑛 � 𝜔𝜔𝑖𝑖
𝑠𝑠

𝑝𝑝 𝜔𝜔𝑖𝑖
𝑠𝑠

Just move derivative inside integral

Just differentiate numerator
[Khungurn et al. 2015, Gkioulekas et al. 2015]

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)
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Differentiate entire contribution
[Zeltner et al. 2021]

d𝐼𝐼
d𝜋𝜋

≈�
𝑠𝑠

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖
𝑠𝑠,𝜔𝜔𝑜𝑜,𝜋𝜋 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖

𝑠𝑠 𝑛𝑛 � 𝜔𝜔𝑖𝑖
𝑠𝑠

𝑝𝑝 𝜔𝜔𝑖𝑖
𝑠𝑠,𝜋𝜋

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜,𝜋𝜋 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

Alternative estimator

Differential radiance from 𝑥𝑥:

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓

𝝅𝝅: local parameters
• BRDF parameters

Monte Carlo estimation:
• Sample random directions 𝜔𝜔𝑖𝑖

𝑠𝑠 from PDF 𝑝𝑝 𝜔𝜔𝑖𝑖 ,𝜋𝜋
• Form estimator

Just move derivative inside integral44
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Differential direct illumination: global parameters

Differential radiance from 𝑥𝑥:

d𝐼𝐼
d𝜋𝜋

=
d

d𝜋𝜋
�
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓

𝝅𝝅: global parameters
• shape and pose of 

different scene elements 
(camera, sources, objects)

= �
ℍ2

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

Need to use full Reynolds transport theorem
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𝐼𝐼 = �
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

Discontinuities in the integrand

Integrand
𝑓𝑓 𝜔𝜔𝑖𝑖

Discontinuous points 
(𝜋𝜋-dependent)

Low High

𝝅𝝅: size of the emitter

𝑓𝑓 𝜔𝜔𝑖𝑖
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Applying the Reynolds transport theorem

Low High

𝐼𝐼 = �
ℍ2

𝑓𝑓 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 d𝜎𝜎(𝜔𝜔𝑖𝑖)

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d𝑓𝑓
d𝜋𝜋

d𝜎𝜎 + �
𝜕𝜕ℍ2

𝑔𝑔 d𝑙𝑙

Interior integral
(same as for local 

parameters)

Boundary
integral Integrand

𝑓𝑓 𝜔𝜔𝑖𝑖

Discontinuous points 
(𝜋𝜋-dependent)

[Ramamoorthi et al. 2007, Li et al. 2019]
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Includes visibility, fall-off, 
and foreshortening terms

Reparameterizing the direct illumination integral
Hemispherical integral

Change of 
variables

Surface integral

𝒚𝒚𝓛𝓛(𝜋𝜋)

𝐼𝐼 = �
𝓛𝓛(𝜋𝜋)

𝑓𝑓 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚)

𝒙𝒙𝒙𝒙

𝝎𝝎𝒊𝒊

𝐼𝐼 = �
ℍ2
𝑓𝑓 𝝎𝝎𝒊𝒊 d𝜎𝜎(𝝎𝝎𝒊𝒊)

48



CVPR 2021 TutorialPhysics-Based Differentiable Rendering

constant domain evolving domain

continuousdiscontinuous

Reparameterizing the direct illumination integral
Hemispherical integral

Change of 
variables

Surface integral

Low High

𝐼𝐼 = �
ℍ2
𝑓𝑓 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖) 𝐼𝐼 = �

ℒ(𝜋𝜋)
𝑓𝑓 𝑦𝑦 → 𝑥𝑥 𝐺𝐺 𝑥𝑥,𝑦𝑦 d𝐴𝐴(𝑦𝑦)
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Differentiating the hemispherical integral
Low High Discontinuities of 𝑓𝑓𝜋𝜋: size of the emitter

𝒙𝒙

𝝎𝝎

Differentiation

Reynolds transport 
theorem 

𝐼𝐼 = �
ℍ2
𝑓𝑓 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝜄𝜄)

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d(𝑓𝑓)
d𝜋𝜋

d𝜎𝜎 + �
𝜕𝜕ℍ2

𝑔𝑔 d𝑙𝑙

Interior Boundary
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𝒙𝒙

Differentiating the area integral
Low High Boundary of 𝓛𝓛(𝜋𝜋)𝜋𝜋: size of the emitter

Differentiation

Reynolds transport 
theorem 

d𝐼𝐼
d𝜋𝜋

= �
𝓛𝓛(𝜋𝜋)

d(𝑓𝑓𝑓𝑓)
d𝜋𝜋

d𝐴𝐴 + �
𝜕𝜕𝓛𝓛(𝜋𝜋)

𝑔𝑔 d𝑙𝑙

Interior Boundary

𝐼𝐼 = �
ℒ(𝜋𝜋)

𝑓𝑓 𝑦𝑦 → 𝑥𝑥 𝐺𝐺 𝑥𝑥,𝑦𝑦 d𝐴𝐴(𝑦𝑦)
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Sources of discontinuities

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette
detection
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Significance of the boundary integral

Original image Derivative image
w.r.t. vertical offset of

the area light and the cube

Derivative image
w/o boundary integral
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Gradient Accuracy Matters
Inverse-rendering results with identical optimization settings

Luan et al. 2021
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Sources of discontinuities

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette
detection

• We still need to account for visibility discontinuities when using smooth 
closed surfaces (e.g., neural SDFs)

[Gargallo et al., ICCV 2007] 
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Handling Global Illumination
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Background: Path Integral for Global Illumination

Measurement 
contribution

Light path !" = (%!, %", %#, %$)

!!
!"

!#

!$
• Introduced by Veach [1997] and extended 

by Pauly et al. [2000]

Path space
Area-product 

measure

! = # 		% &' 		d	)(&')
!

Pixel value

• Can capture both surface reflection/refraction 
and volumetric (i.e., subsurface) scattering

• Theoretical foundation of most modern 
forward rendering techniques
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Background: Estimating Path Integrals

Light path !" = (%!, %", %#, %$)

!!
!"

!#

!$
Monte Carlo estimator:

Probability density 
for sampling path x̄

⟨I⟩ = f(x̄)
p(x̄)

Measurement 
contribution

Path space
Area-product 

measure

! = # 		% &' 		d	)(&')
!

Pixel value
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(The full derivation is quite involved…)

Differential Path Integral
Path-space differentiable rendering [Zhang et al. 2020, 2021]

Interior integral Boundary integral

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω
·f(x̄) dμ(x̄) + ∫∂Ω

g(x̄) dμ′￼(x̄)
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Differential Path Integral
Path-space differentiable rendering [Zhang et al. 2020, 2021]

Interior integral

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω
·f(x̄) dμ(x̄) + ∫∂Ω

g(x̄) dμ′￼(x̄)

!!
!"

!#

!$

Original
light path

Interior integral

• Defined on the ordinary path space 

• The integrand  can be obtained by differentiating 

the ordinary measurement contribution function 

Ω·f
f
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Boundary
light path !!

!"

!#

!$

Boundary segment

Differential Path Integral

Boundary integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω
·f(x̄) dμ(x̄) + ∫∂Ω

g(x̄) dμ′￼(x̄)

Boundary integral

• Defined on the boundary path space 

• A boundary light path is the same as an original one 

except having exactly one boundary segment

∂Ω
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Differential Path Integral

Interior integral Boundary integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

Physics-based differentiable rendering generally requires estimating both integrals

Challenges:
• Differentiating    w.r.t. many parameters (interior)


• Handling discontinuities (boundary)

f

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω
·f(x̄) dμ(x̄) + ∫∂Ω

g(x̄) dμ′￼(x̄)
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Differential Interior Path Integral

Interior integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω
·f(x̄) dμ(x̄) + ∫∂Ω

g(x̄) dμ′￼(x̄)

• Computing    requires differentiating    w.r.t. ·f f θ
• This can be done via automatic differentiation, but …


• We have many (e.g., ) path integrals to evaluate (one per pixel)

• There can be many (e.g., ) parameters

106

106

• Huge gradient matrices (e.g., with  entries), not enough memory!1012

Specialized computational differentiation methods have 
been developed [Nimier-David et al. 2020, Vicini et al. 2021]
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Differential Path Integral

Interior integral Boundary integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

Physics-based differentiable rendering generally requires estimating both integrals

Challenges:
• Differentiating    w.r.t. many parameters (interior)


• Handling discontinuities (boundary)

f

d
dθ (∫Ω

f(x̄) dμ(x̄)) = ∫Ω
·f(x̄) dμ(x̄) + ∫∂Ω

g(x̄) dμ′￼(x̄)
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Recap: Significance of the Boundary Integral

Original image Derivative image 
w.r.t. vertical offset of 

the area light and the cube

Derivative image 
w/o boundary integral

Negative PositiveZero
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Handling Discontinuities
• Objective: estimating the integral over all boundary light paths (that are the same as 

an original one except having exactly one boundary segment)


• (Solution 1) Monte Carlo edge sampling

• Introduced by Li et al. [2018]


• Also used by Zhang et al. [2019] Boundary
light path

Fixed
Boundary se

gment Sampled

To sample a boundary segment:


• Fix one endpoint

• Sample the other from discontinuity boundaries
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Recap: Sources of Discontinuities 

Boundary edges

(Topological) boundary of an object

Sharp edges

Surface-normal discontinuities 
(e.g., face edges)

Silhouette edges

View-dependent object silhouettes
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Handling Discontinuities
• Objective: estimating the integral over all boundary light paths (that are the same as 

an original one except having exactly one boundary segment)


• (Solution 2) multi-directional sampling of boundary paths

• Enabled by the path-integral formulation [Zhang et al. 2020, 2021]

To sample a boundary path:


• Start from the boundary segment in the middle

Boundary
light path

Boundary se
gment• Then construct the source and sensor subpaths
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Physics-Based Differentiable Rendering Algorithms
• Boundary-sampling differentiable rendering


• Path tracing with edge sampling [Li et al. 2018, Zhang et al. 2019] (solution 1)


• Path-space differentiable rendering [Zhang et al. 2020, 2021] (solution 2)


• Area-sampling differentiable rendering

• Avoids boundary integrals altogether (Sai will cover this later)

To be 
discussed 
next
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Differentiable Path Tracing with Edge Sampling

Main path

Side paths

Side paths

Interior integral Boundary integral

= ∫Ω
·f(x̄) dμ(x̄) + ∫∂Ω

g(x̄) dμ′￼(x̄)

d
dθ (∫Ω

f(x̄) dμ(x̄))

Differentiable path tracing with edge sampling


• Trace main paths to estimate the interior integral

• Same as ordinary path tracing (for forward rendering)

• Trace additional side paths for the boundary integral

• Each side path begins with a boundary segment 

(obtained with edge sampling)
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Inverse-Rendering Result [Zhang et al. 2019]

Parameters

Cube roughness

Apple position

Parameters
Target Optimization process

Light-transport phenomena: rough reflection and refraction 
subsurface scattering
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Differentiable Path Tracing with Edge Sampling

Boundary
light path

Fixed
Boundary se

gment Sampled

To sample a boundary segment:


• Fix one endpoint

• Sample the other from discontinuity boundaries

Requires silhouette detection, which can be expensive!
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Path-Space Differentiable Path Tracing

Interior integral Boundary integral

= ∫Ω
·f(x̄) dμ(x̄) + ∫∂Ω

g(x̄) dμ′￼(x̄)

d
dθ (∫Ω

f(x̄) dμ(x̄))

Path-space differentiable path tracing


• Trace main paths to estimate the interior integral

• Same as forward rendering

• Trace additional boundary paths for the boundary 
integral separately (using multi-directional sampling)

Main path

Boundary 

path
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Path-Space Differentiable Path Tracing

Boundary
light paths

Unidirectional path tracing + NEE

Unidirectional estimator


• Interior: unidirectional path tracing

• Boundary: unidirectional sampling of subpaths

Boundary
light paths

Bidirectional path tracing

Bidirectional estimator


• Interior: bidirectional path tracing

• Boundary: bidirectional sampling of subpaths
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Inverse-Rendering Result [Zhang et al. 2020]

Target

InitialConfig.

Scene configuration:

• A glossy ring lit by four colored light sources

• Optimize cross-sectional shape of the ring


Light-transport phenomenon:

• Caustics75
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Inverse-Rendering Comparison [Zhang et al. 2021]

Optimizing the position of a small area light

(identical inverse-rendering configurations, equal-time per iteration)

Pa
th

-s
pa

ce
Ed

ge
 sa

m
pl

in
g

Negative PositiveZero
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Inverse-Rendering Result [Zhang et al. 2021]
Initial Target

Jointly optimizing of the bunny’s:

• Shape

• Surface roughness

• Optical density

Negative PositiveZero
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