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Talk Outline

® |ntroduction

e Differentiable rendering theory and algorithms

e Differentiable rendering systems and applications

o Q&A
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What is Differentiable Rendering?

® Computing derivative images (with respect to various parameters)

0.003

0.0

-0.003

Original Derivative with respect to sun location

Forward-rendering result Differentiable-rendering result
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Why Use Differentiable Rendering?

® Solving inverse-rendering problems

® i.e., inferring scene parameters based on images of the scene
® |ntegrating forward rendering into probabilistic inference and machine
learning pipelines

® c.g., backpropagating losses during training

® Numerous applications in computer vision, computer graphics, computational
imaging, VR/AR, ...
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Forward and Inverse Rendering

Scene parameters

e

Forward rendering |

Inverse rendering

—

0 =%"1I)?

Geometry, materials, lighting, ...

Scene: "bed classic" from Jiraniano
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Ray Tracing

® A heavily abused term in graphics and vision

® \We use ray tracing to mean ray-surface intersection computations

® Applicable to both explicit (e.g., mesh) and implicit (e.g., SDF) surfaces

P1

or
PO P2

® Basic building block for most (if not all) physics-based rendering algorithms

® e.g., path tracing, bidirectional path tracing, ...
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Physics-Based Forward Rendering

® Relies heavily on Monte Carlo integration

® Can capture complex light-transport effects

® Soft shadows, interreflection, subsurface scattering, ...

[Gkioulekas et al. 2013]
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Physics-Based Inverse Rendering

Scene parameters

Inverse rendering

B —

0=R"1)?

®|nverting physics-based

forward rendering

®Crucial to many applications

Geometry, materials, lighting, ...

Scene: "bed classic" from Jiraniano
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Joint optimization of object shape and spatially varying reflectance (our recent work)

(A) CAPTURE (B) PHOTOS (c) INIT. MODEL (D) OPT. MODEL (E) RENDERING
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Computational Fabrication

Determining the material configuration for individual voxels in full-color inkjet 3D printing

[Nindel et al. 2021]
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Physics-Based Learning

® |ntegrating physics-based rendering into machine learning and
probabilistic inference pipelines

® |nverse subsurface scattering [Che et al. 2020]

Testing Training
Ot
g
image encoder parameters differentiable renderer image

e Utilizing image loss provided by a volume path tracer to regularize training

® Use the trained encoder to solve inverse problems during testing
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Why is Physics-Based Differentiable Rendering Hard?

® Need to differentiate solutions of integral equations (or path integrals)

e ©.9. the rendering equation: L(x,w,) = J f(x, 0,0, Lx,0,)dw;, + L(x,®,)
S2
® The relation between such solutions and scene parameters can be highly complex

® Requires handling very large gradient matrices (e.g., with 10'? or more entries)

® Can be tricky to implement correctly
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Handling Many Parameters

® Forward-rendering function: I = Z£(0)
® f € R" (n: number of parameters)

® | € R" (m: number of pixels)

. - dZ
e Gradient matrix: E(x) e R"MXn

® Challenges:

® m and n can both be large (~100) e .
e (d%#/d0) can involve 10'? entries

® Reverse-mode automatic differentiation can
easily run out of memory
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Precautions Must Be Taken

® Precautions must be taken to ensure correctness

® E.g., applying automatic differentiation to a path tracer does not always work

® Should the PDF (used by a Monte Carlo estimator) be differentiated?

® Can go either way...
(More on this later.)

® Discontinuities

e Differentiating only the integrand is insufficient
(More on this later.)

Physics-Based Differentiable Rendering CVPR 2021 Tutorial



Why Not Simply Use Finite Differences?

Finite difference:

—(@) ~
d0; 2¢e
Potential problems: 021 e Aﬂf‘“
10-16 ‘ desired accuracy h
e High bias (large €), rounding error (small ¢) 10-16 10-12 10-8 10-4 100
[Wikipedial

® Need to correlate Monte Carlo samples

® Scales poorly with the number of parameters
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Global [llumination

® Can be simulated with modern differentiable renderers

® Required when solving many inverse-rendering problems

visible surface

[theawesomer.com]
[Tsai etal. 2019]

source
and
sensor

Computational fabrication Non-line-of-sight imaging
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Pixel-Level Antialiasing Matters

Binary-valued Continuous-valued
///;;% ‘ il TN
y ‘ MR
////////////////I ! ‘\\\\\\\\\\\\\\\\\\\

No antialiasing Perfect antialiasing

—- —_——
Vs

1 |
Pixel value = —J I(x)dx
| 2P| )

More information, more differentiable!

Pixel value = I(x,)

Can make inverse-rendering
optimizations more robust

One pixel
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Geometric Representations

o v

o =

8
iRe B
G LY

Explicit Implicit

(e.g., polygonal meshes) (e.g., signed distance functions)

® Ray-tracing-based forward rendering is agnostic to geometric representations

® The situation is more complex for differentiable rendering

® Due to the need to handle discontinuities (will discuss in details later)
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Why you should use ray-tracing-hased
differentiable rendering
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Ray Tracing vs. Rasterization

* We believe that ray tracing is the way to go for future differentiable renderers

* Ray-tracing-based methods are not much slower than rasterization

* Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX)
* Visibility checks and intersections are typically not the performance bottleneck
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23823 vertices, 44702 faces

1024x1024 at 2 spp (Titan RTX)
render time:

* psdr-cuda (ray-tracing-based)*:
2.8 msec

* PyTorch3D (soft rasterizer):
52.5 msec

Other computations (loss

backpropagation, mesh

evolution and remeshing):
~ 1000 msec

Initial Target

*Luan et al., EGSR 2021 (to appear)
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Low High
23823 vertices, 44702 faces N

Initial Optimized (psdr-cuda) Absolute error
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Ray Tracing vs. Rasterization

* We believe that ray racing is the way to go for future differentiable renderers

* Ray-tracing-based methods are not much slower than rasterization

* Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX)
* Visibility checks and intersections are typically not the performance bottleneck

* Ray-tracing-based methods can compute correct (i.e., unbiased) gradients
* Correct gradients matter in optimization!
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Low High

Optimized (psdr-cuda) Target Optimized (PyTorch3D)
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We believe that ray racing is the way to go for future renderers

Ray-tracing-based methods are not much slower than rasterization
Second part of

* Hardware-accelerated ray tracing has been improving rapidly (e.g., Nvidia RTX) _ _
this tutorial

* Visibility checks and intersections are typically not the performance bottleneck

Ray-tracing-based methods can compute correct (i.e., unbiased) gradients

* Correct gradients matter in optimization!

Ray-tracing-based methods can handle complex light-transport effects
* Soft shadows, environmental illumination
* Inter-reflections, radiative transfer (e.g., subsurface scattering), caustics

Ray-tracing-based methods can provide gradients in general scenes
* Different shape representations, including point clouds, explicit (e.g., meshes), implicit (e.g., neural SDFs)
* Different types of cameras (e.g., intensity, lightfield, polarization, time-of-flight, hyperspectral, ...)
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Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:
. scene
min  loss [m ,render ( )]
scene unknowns
unknowns

Stochastic gradient descent (e.g., Adam):

;. illumination

m: scattering

— N
Cinitialize T « mg |
while (not converged)
n: 3D shape and pose ' '
- camera p p update < 1+ 1 dloss(m)| | Differentiable

pose \_ dr rendering
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Why we need good initializations

* Analysis-by-synthesis objectives are highly non-convex, non-linear

* Multiple local minima

* Ambiguities exist between different parameters

* Multiple global minima

@

INPUT IMAGE MIRROR BRDF ILLUMINATION

B e

Ambiguities between shape and lighting
[Xiong et al. 2015]

Ambiguities between BRDF and lighting Ambiguities between scattering
[Romeiro and Zickler 2010] parameters [Zhao et al. 2014]
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Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

. scene
min  loss [ ,render ( )]
scene unknowns 7
unknowns

Learned initializations help:
« avoid local minima
» accelerate convergence

Stochastic gradient descent (e.g., Adam):
N

Uinitialize 7 « 7, |

while (not converged)

Neural network

update m « w4+ 1 - dlo;:‘;(ﬂ) DI:ferdent!abIe
~ endering
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Why we need discriminative loss functions

* Well-designed loss functions can help reduce ambiguities

* Perceptual losses can help emphasize design aspects that matter

* Differentiable rendering can be combined with any loss function that can be
backpropagated through

Style Target £¢,re1u1_2 £¢,relu2_2 £¢,re1u3_3 £¢,relu4_3

y style style style style
l"""""""'I s AA AA A AA
" fw P & et | S
1 ! 1 [ |
| | r— L :
[ L [
X : > L y T :
1 T 1
Input ! : 4 '
Image 'mage Transform Net il Loss Network (VGG-16) ¢
c —————————————————————————
e(p,revluS_S
Content Target feat

VGG-based perceptual loss [Johnson et al. 2016]
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Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

. scene
min  loss [ ,render ( )]
scene unknowns

unknowns

;. illumination

Stochastic gradient descent (e.g., Adam):

m: scattering

— N
Cinitialize T « mg |
while (not converged)
. 3D shape and pose ' i
T camera update Tem+n- dloss(w)| | Differentiable

pose \_ dr rendering

Physics-Based Differentiable Rendering CVPR 2021 Tutorial



High signal-to-noise ratio is critical

* The extent to which we can improve upon an initialization strongly depends on the
signal-to-noise ratio of our measurements

* We need reliable camera models (noise, aberrations, other non-idealities)

simulated
data

ambient light

T( S) direct & indirect light transport
projector optical transfer function
camera optical transfer functio

spatio-temporal
pixel responses

| -
‘))
. : \

N
4
A
> P 4
N - _— N
oroj( ) spatio-temporal
- light generation
' : > ~ [ non-linear
¥ ~ |response function
|
= low-level pattern
processing

measured L o
data AN
{
scene initial mesh  optimized mesh B e
Non-line-of-sight imaging [Tsai et al. 2019] Optical gradient descent [Chen et al. 2020]
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Reminder from calculus

Differentiation under the integral sign
Also known as the Leibniz integral rule

d (b ? (b g -
Ef f(x,n)dx — j —f(x ) dx I\{Iovle dgrlvatlve

a(rm) a(m) AT inside integral

Account for changes in db () da(n)

integration limits + f(b(m),m) dr f(a(m); m)

de; (ﬂ)

Accountfordiscontinuities of _I_ Z(f(cl(n) T[) f(Cl(T[)"' ))

integrand that depend on
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A simple example

Flx,m) = {(1) ifx <2m

ifx > 2m
d 41T 2T d 41T d
— f(x n)dx —_ —0dx + — 1dx Move derivative
dr J, ’ ), dm L dm inside integral
Account for changes in d(47T) do
integration limits + 1 drr —0 E
d(2m)

Account for discontinuities of _I_ (O . 1)
integrand that depend on

dm
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Leibniz integral rule

Differentiation under the integral sign

Also known as the Leibniz integral rule L
Interior integral

d rb@m b(m) g o
Ef f(x,n)dx — f —f(x ) dx I\{Iovle dgrlvatlve

a(rm) a(m) AT inside integral

Boundary terms
Account for changes in ( ) da(”)

integration limits + f(b(m),m) — f(a(m); m)

de; (ﬂ)

Accountfordiscontinuities of _I_ Z(f(cl(”) 7.[) f(Cl(T[)"' ))

integrand that depend on
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Simplified Leibniz integral rule

Differentiation under the integral sign

Also known as the Leibniz integral rule L
Interior integral

d b b d L
_f f(x, T[) dy — f Ef(x’ 7_[) dox Move derivative

dmr 4 a inside integral

Differentiation wrt r simplifies to just moving derivative inside integral when:
 Integration limits are independent of m.
 Integrand discontinuities are independent of .
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Reynolds transport theorem

Interior integral Boundary integral

d ?
— f(x,m)dA(x) — f df (x,m) dA(x) + g(x, m)dl(x)
Q()

drr Q(m) dr dQ ()
Boundary domain
Reynolds transport theorem [1903] I
SLEMIEEZEIR Gt Lz Tl discontinuity points U boundary of domain
(if they depend on m)

discontinuity points

®
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Radiance from x:

Reflectance Shading wrt

(BRDF) normal n
I = f fr(wy, wy) Li(w;) (n - w;) do(w;)

Unit hemisphere

Monte Carlo rendering:

« Sample random directions w; from PDF p(w;)
 Form estimator

O F@f w0) Liwf) (n- )
= z p(w?)
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W

Differential radiance from x:

dl d

I dn - fr(w;i, w,) Li(w;) (n - ;) do(w;)
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Differential radiance from x:

dTL’ f d {f;‘(wu w,) Li(w;) (n - w;)} do(w;)

Just move derivative inside integral

Monte Carlo differentiable rendering:

. : : o w
Sample random directions w; from PDF p(w;
. Just differentiate numerator

Form estlmator [Khungurn et al. 2015, Gkioulekas et al. 2015]

{fr(wuwo) Li(w;) (n-w))}
p(w;)

1r. local parameters
 BRDF parameters
- Z dmr
dn

* Shading normal
* illumination brightness

Physics-Based Differentiable Rendering
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Differential radiance from x:

o= [ o DL )0 w))do(w)

Just move derivative inside integral

Monte Carlo estimation:

« Sample random directions w; from PDF p(w;, )

e Form estimator Differentiate entire contribution
1r. local parameters [Zeltner et al. 2021]
 BRDF parameters S S S
drm drm p(wf, m)
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Differential radiance from x:

d/ B d . q
dr _ drm H2 fr(w;i, w,) Li(w;) (n - ;) do(w;)

Need to use full Reynolds transport theorem

1r. global parameters

« shape and pose of
different scene elements
(camera, sources, objects)
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High

1T Size of the emitter

_ , YYD _ Integrand Discontinuous points
I = Hz[,ﬂ(wl,wo)L\lSul)(n a)lzda(a)l) (@) (n-dependent)
f(w;)
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Applying the Reynolds transport theorem

Low | High

I = jHZ f (o wo)do(wy)
v
dI df
— do + faﬂzg dl

dﬂ: H 2 dT[

Interior integral Boundary
(same as for local integral
parameters)

[Ramamoorthi et al. 2007, Li et al. 2019]
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Hemispherical integral Surface integral

Change of
variables

[ = j f(w;) do(w;) I = fly—-x) G(x,y) dA(Y)
H2 L(m)
Includes visibility, fall-off,

and foreshortening terms
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Hemispherical integral

discontinuous
1= fdo(
H 2

constant domain

Physics-Based Differentiable Rendering

High

Change of
variables

continuous

[ = fly—-x)G(x,y) dA(y)
L(1)

evolving domain
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: size of the emitter

High Discontinuities of f

d] d
I = f f(w;)do(w,) Differentiation> —_—= f ﬂdc + f g dl
H 2 dmr H 2 dm oH 2
Reynolds transport _
theorem Interior
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High Boundary of L(m)

\ /

O

d/ d(fGa
I = fly - x)a(x,y)dA(y) Differentiation> —_—= f Y )dA + f g dl
L(TT) dm = Jyqy dm dL(TT)
Reynolds transport _
theorem |nteI’IOI’
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Boundary edge Sharp edge | Silhouette edge

-

Silhouette ®
detection L i

Boundary edge

Silhouette
edge

Topology-driven Visibility-driven
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Significance of the boundary integral

Negative I 0 - Positive

I

Original image Derivative image Derivative image
w.r.t. vertical offset of w/0 boundary integral
the area light and the cube
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Gradient Accuracy Matters

Inverse-rendering results with identical optimization settings

INIT. MESH SOFTRAS PYTORCH3D MITSUBA 2 NVDIFFRAST Luan et al. 2021 GROUND TRUTH
0.0039 0.0022
0.0053 0.0066 0 0071 0.0023 0.0010 maneki

W 30%

Relative err: 0%
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Sources of discontinuities

* We still need to account for visibility discontinuities when using smooth
closed surfaces (e.g., neural SDFs)

Silhouette edge '
'Silhouette W
e

[Gargallo et al., ICCV 2007]

Visibility-driven
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Background: Path Integral for Global Illumination

Measurement

Pixel value contribution

= f(x) d u(x)

Area-product
Path space measure

® Introduced by Veach [1997] and extended
by Pauly et al. [2000]

® Can capture both surface reflection/refraction
and volumetric (i.e., subsurface) scattering

L|ght path X = (XO, X1, X2, X3)

® Theoretical foundation of most modern
forward rendering techniques
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Background: Estimating Path Integrals

Measurement

Pixel value contribution

1= @ du
Q

Area-product
Path space measure

Monte Carlo estimator:

= I%
pXx) Light path % = (xo, X1, X5, X3)
Probability density
for sampling path ¥

Physics-Based Differentiable Rendering CVPR 2021 Tutorial



Differential Path Integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

do

J(%) du(x)

Q Q

S du(x) +

0Q2

g(®) du'(x)

Interior integral Boundary integral

vided by Egs. (21) and (24). Let

B = (1IN ey 9(Es X -2, %mw—1)] Weln = xn-1),
) = SN LK) V().

Ahf.?')', = h,(,u) AG(Xp s Xt 2. X 1) [G( X s Xy 2. X 1)

Ah:lo,)', on Xp+1, . . ., XN for notational convenience.
We now show that, for all 0 < n < N, it holds that

hn(xXp; Xp-1) = fMN-n hSIO) l'lﬁ:,.ﬂ dA(xp),

and

for 0 < n < n’ £ N. We omit the dependencies of hf,o), hf,l),

We now derive dIx/ax in Eq. (25) using the recursive relations pro-

(52)
(53)
(59

and

(55)

iln(xn; Xn-1) = jMN—n [(h:O)). - h:.mhr(ll)] ﬂﬁ:,.“ dA(xp)

*IN i [ By Vot () de(x) T dAGx:),  (56)
" ” n<i<N
i#n

where the integral domain of the second term on the right-hand
side, which is oﬂted for notational clarity, is M(x) for each x;

with i # n” and IM,y (), which depends on x,_1, for x,y.
It is easy to verify that Egs. (55) and (56) hold for n = N — 1. We
now show that, if they hold for some 0 < n < N, then it is also

the case for n — 1. Let g,y = g(xp; Xp—2,Xp—1) forall0 < n < N.

Then,

hn-1(xp-1; xp-2) = fM In-1 fMN"' hs.o) nﬁ:nﬂ dA(x,) dA(x,)
= [ypnnes By TIN ., dAGew), (57

and
hn—l(xn—li Xn-2)
= 9n-1Nn + gn-1 .n— n K(Xn Xn Xn
vt [gn-1h (hn = hn k(xn) V (xn))] dA(xn)
+ fm,. Agn-1hn Vagp d(xn)
= Jyovenos fan-t b + gns | (17 ) = BRI daGen)
+ 3N ot [ Int AR Vo (x) de(x) 1 dA(xi)
: " n<isN
i#n'

+ [ Agn-1 by Vg deGen) TN,y dAGxn)
[(URY ) , (1)
= fMN‘"‘I ’(hn-l) - hn-lhn-ll nﬁ:n dA(xn)
N (0)
+ S [ A, Var, Gen) de o) i | d4G). (58)
i#n’

Thus, using mathematical induction, we know that Egs. (55) and
(56) hold for all0 < n < N.

Notice that h‘()o) = fand AR, = Afy, where Afy follows the

o,n’

definition in Eq. (28). Letting n = 0 in Eq. (56) yields
ho(x0) = [y [£(2) = F(2) N, k() V) TIN-, dAGxw)
N - .
+In [ M (2) Vagg de(a) oﬂ A (69

i#n'

Lastly, based on the assumption that hg is continuous in xg, Eq. (25)
can be obtained by differentiating Eq. (23):

IAn = 2 [ ho(x0) dA(x0)
= [y [Ro(x0) = ho(x0) k(x0) V(x0) | dA(xo)
+ fmo ho(x0) V357 (x0) dé(xo) (60)
= Jou [f®) = @) ZR_o x(Gxx) V(xk0)] du(2)
+ %0 Jo e Mk (®) Vazp duy (2).

Physics-Based Differentiable Rendering

(The full derivation is quite involved...)
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Differential Path Integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

d .
— J Se) du(x) =I J) du(x) + J g(x) du'(x)
d@ Q Q 0Q

Interior integral

Original
light path

Interior integral
® Defined on the ordinary path space Q

V X3 e The integrand f can be obtained by differentiating
the ordinary measurement contribution function f
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Differential Path Integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

d :
— J Se) du(x) =J J) du(x) + J g(x) du'(x)
de Q Q 0Q

Boundary integral

Boundary
light path

Boundary integral

® Defined on the boundary path space dQ2
® Aboundary light path is the same as an original one
except having exactly one boundary segment
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Differential Path Integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

d .
— (I f®) dy(x)> =I f@) du(®) + J 8(¥) du'(x)
d@ Q Q 0Q2

Interior integral Boundary integral

Physics-based differentiable rendering generally requires estimating both integrals

ﬁ¥0 Differentiating f w.r.t. many parameters (interior) B
Challenges: ————— - :

® Handling discontinuities (boundary)
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Differential Interior Path Integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

d .
— J Se) du(x) =J J) du(x) + J g(x) du'(x)
do \ Jo Q 0Q \

Interior integral

e Computing f requires differentiating f w.r.t. 8
® This can be done via automatic differentiation, but ...

® \We have many (e.g., 10°) path integrals to evaluate (one per pixel)

® There can be many (e.g., 10°) parameters .

® Huge gradient matrices (e.g., with 10'? entries), not enough memory!

e - 4
| Specialized computational differentiation methods have
been developed [Nimier-David et al. 2020, Vicini et al. 2021]

Physics-Based Differentiable Rendering Shuang Zhao




Differential Path Integral

Path-space differentiable rendering [Zhang et al. 2020, 2021]

d .
— (I f®) dy(i:)) =I f@) du(®) + J 8(¥) du'(x)
d@ Q Q 0Q2

Interior integral Boundary integral

Physics-based differentiable rendering generally requires estimating both integrals

e Differentiating f w.r.t. many parameters (interior)

Challenges:  —————— -
it‘ Handling discontinuities (boundary) B
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Recap: Significance of the Boundary Integral

Negative [N 7T

|- Positive

L

Original image Derivative image Derivative image
w.r.t. vertical offset of w/o boundary integral
the area light and the cube
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Handling Discontinuities

® Objective: estimating the integral over all boundary light paths (that are the same as
an original one except having exactly one boundary segment)

® (Solution 1) Monte Carlo edge sampling
® |ntroduced by Lietal.[2018]

® Also used by Zhang et al. [2019] Boundary
light path

To sample a boundary segment:

® Fix one endpoint V Sampled

® Sample the other from discontinuity boundaries
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Recap: Sources of Discontinuities

Silhouette edges

View-dependent object silhouettes
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Handling Discontinuities

® Objective: estimating the integral over all boundary light paths (that are the same as
an original one except having exactly one boundary segment)

® (Solution 2) multi-directional sampling of boundary paths
® FEnabled by the path-integral formulation [Zhang et al. 2020, 2021]

Boundary
To sample a boundary path: light path

® Start from the boundary segmentin the middle

® Then construct the source and sensor subpaths
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Physu:s-Based leferentlable Renderlng Algorlthms

|

® Area-sampling differentiable rendering

® Avoids boundary integrals altogether (Sai will cover this later)
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Differentiable Path Tracing with Edge Sampling

d Y Y - T~
9 Jgf(x) dp(x) .

=[ f@) du(x) + J g(x) du'(x)
Q 02

Interior integral Boundary integral

Differentiable path tracing with edge sampling

")
® Trace main paths to estimate the interior integral %
® Same as ordinary path tracing (for forward rendering) %,,) 3,
. : . pe S
® Trace additional side paths for the boundary integral %\

® Fach side path begins with a boundary segment
(obtained with edge sampling)
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Inverse-Rendering Result [zhang et al. 20191

Target Optimization process

Parameters

Apple position

Cube roughness

rough reflection and refraction
subsurface scattering

Light-transport phenomena:
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Differentiable Path Tracing with Edge Sampling

Boundary
light path

To sample a boundary segment:

® Fix one endpoint Sampled

® Sample the other from discontinuity boundaries

.[Requires silhouette detection, which can be expensive! i
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Path-Space Differentiable Path Tracing

d N
9 JQ J(%) du(x)

=[ f@) du(x) + J g(x) du'(x)
Q 02

Interior integral Boundary integral

Path-space differentiable path tracing

® Trace main paths to estimate the interior integral
® Same as forward rendering

® Trace additional boundary paths for the boundary
integral separately (using multi-directional sampling)
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Path-Space Differentiable Path Tracing

Unidirectional estimator Bidirectional estimator
® Interior: unidirectional path tracing ® Interior: bidirectional path tracing
® Boundary: unidirectional sampling of subpaths ® Boundary: bidirectional sampling of subpaths

Boundary Boundary
light paths light paths

Unidirectional path tracing + NEE Bidirectional path tracing
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Inverse-Rendering Result [zhang et al. 20201

Config. Initial

Scene configuration:
® A glossy ring lit by four colored light sources

® Optimize cross-sectional shape of the ring

Light-transport phenomenon:

® Caustics
Cross-sectional shape
Ta rg et Iter #0 (displacement x 20)
le-2 Img. RMSE
1.40 -
1.10 -
0.91 - = target shape

w— current shape

0.73 1

0 25 50 75 100 125 150
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Inverse-Rendering Comparison (zhang et al. 2021]

Optimizing the position of a small area light

(identical inverse-rendering configurations, equal-time per iteration)

Target Iter #0 Deriv. Iter #0 Param. RMSE Img. RMSE
g 2.0 A

0 o 0.004 -

®© . 1.5 A

8 ¥

(P 1 0 -

_c% ’ : 0.002 -

a 0.5

0.0 . . 0.000 . .
0 50 100 0 50 100
Target Iter #0 Deriv. Iter #0 Param. RMSE Img. RMSE

gj : . 2.0 A
£ R '_ 0.010 -

o s 1.5 1

% :

n 1.0 A

% 0.005 -
5 0.5 1

O :

0.0 T T 0.000 T T
0 50 100 0 50 100
Negative [ ~ Positive
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Inverse-Rendering Result (zhang et al. 2021]

Initial

Jointly optimizing of the bunny’s:
® Shape
® Surface roughness

® Optical density

Deriv. lter #0 Param. RMSE Img. RMSE
071 0.08 -
0.6
0.5 1 0.06 -
0.4
0.04 -
0.3 1
0.2 1
0.02 -
0.1 1
0-0 T T T T 0-00 T T T T
0 25 50 75 100 125 0 25 50 75 100 125
Negative NN | Positive
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