

Path Tracing & Microfacet BSDFs Gurprit Singh

Realistic Image Synthesis SS2021

Ray Tracing

Image Plane

Image Plane

-		

Direct Illumination

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2021

4 spp

Direct Illumination

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2021

256 spp

Direct and Indirect Illumination

UNIVERSITÄT DES SAARLANDES

4096 spp

Image rendered using PBRT

Direct and Indirect Illumination

UNIVERSITÄT DES SAARLANDES

4 spp

Image rendered using PBRT

Variance Reduction Techniques

- Correlated Sampling
- Importance Sampling
- Perceptual Error Distribution

Correlated Sampling: Jittered Sampling

Random 2D

0

Realistic Image Synthesis SS2021

0

Realistic Image Synthesis SS2021

Realistic Image Synthesis SS2021

Realistic Image Synthesis SS2021

Random vs. Stratified Sampling

Random Samples

Random vs. Stratified Sampling

Random Samples

N = 64 spp

Stratified sampling suffers from the curse of dimensionality

Realistic Image Synthesis SS2021

Jittered Samples

Correlated Sampling: Latin Hypercube Sampling

Realistic Image Synthesis SS2021

22

Realistic Image Synthesis SS2021

Latin Hypercube Sampler (N-rooks) Shuffle columns

Realistic Image Synthesis SS2021

Latin Hypercube Sampler (N-rooks) Shuffle columns

Realistic Image Synthesis SS2021

Realistic Image Synthesis SS2021

Realistic Image Synthesis SS2021

Variants of stratified sampling

hexagonal grid; (d) Voronoi diagram implied through (c).

mersley point set; (b) Voronoi diagram implied through (a); (c) 64-element

Slide from Philipp Slusallek

Correlated Sampling: Quasi-Monte Carlo Integration

Quasi-Monte Carlo Integration

Monte Carlo integration suffers, apart from the slow convergence rate, from the are possible

disadvantages that only probabilistic statements on convergence and error boundaries

Quasi-Monte Carlo Integration

Monte Carlo integration suffers, apart from the slow convergence rate, from the are possible

disadvantages that only probabilistic statements on convergence and error boundaries

- Monte Carlo integration suffers, apart from the slow convergence rate, from the are possible
- random samples

disadvantages that only probabilistic statements on convergence and error boundaries

The success of any Monte Carlo procedure stands or falls with the quality of these

- Monte Carlo integration suffers, apart from the slow convergence rate, from the are possible
- random samples

disadvantages that only probabilistic statements on convergence and error boundaries

The success of any Monte Carlo procedure stands or falls with the quality of these

- Monte Carlo integration suffers, apart from the slow convergence rate, from the are possible
- random samples
- there are no samples at all, which can increases the error

disadvantages that only probabilistic statements on convergence and error boundaries

The success of any Monte Carlo procedure stands or falls with the quality of these

• If the distribution of the sample points is not uniform then there are large regions where

- Monte Carlo integration suffers, apart from the slow convergence rate, from the are possible
- random samples
- there are no samples at all, which can increases the error

disadvantages that only probabilistic statements on convergence and error boundaries

The success of any Monte Carlo procedure stands or falls with the quality of these

• If the distribution of the sample points is not uniform then there are large regions where

- Monte Carlo integration suffers, apart from the slow convergence rate, from the are possible
- random samples
- there are no samples at all, which can increases the error
- many locations if samples are clumped

disadvantages that only probabilistic statements on convergence and error boundaries

The success of any Monte Carlo procedure stands or falls with the quality of these

• If the distribution of the sample points is not uniform then there are large regions where

• Closely related to this is the fact that a smooth function is evaluated at unnecessary

Deterministic generation of samples, while making sure uniform distributions

Deterministic generation of samples, while making sure uniform distributions

Deterministic generation of samples, while making sure uniform distributions

- Deterministic generation of samples, while making sure uniform distributions
- Based on number-theoretic approaches

- Deterministic generation of samples, while making sure uniform distributions
- Based on number-theoretic approaches

- Deterministic generation of samples, while making sure uniform distributions
- Based on number-theoretic approaches

- Deterministic generation of samples, while making sure uniform distributions
- Based on number-theoretic approaches
- Samples with good uniform properties can be generated in very high dimensions.

- Deterministic generation of samples, while making sure uniform distributions
- Based on number-theoretic approaches
- Samples with good uniform properties can be generated in very high dimensions.

- Deterministic generation of samples, while making sure uniform distributions
- Based on number-theoretic approaches
- Samples with good uniform properties can be generated in very high dimensions.

- Deterministic generation of samples, while making sure uniform distributions
- Based on number-theoretic approaches
- Samples with good uniform properties can be generated in very high dimensions.
- Sample generation is pretty fast: (almost) no pre-processing

• Low discrepancy sequences

32

- Low discrepancy sequences
 - Halton and Hammerslay sequences

32

- Low discrepancy sequences
 - Halton and Hammerslay sequences
 - Scrambled sequences

32

- Low discrepancy sequences
 - Halton and Hammerslay sequences
 - Scrambled sequences
- Discrepancy

32

distribution

• The concept of discrepancy can be viewed as a quantitative measure for the deviation of a given point set from a uniform

distribution

• The concept of discrepancy can be viewed as a quantitative measure for the deviation of a given point set from a uniform

distribution

• The concept of discrepancy can be viewed as a quantitative measure for the deviation of a given point set from a uniform

Area of the blue box:

distribution

• The concept of discrepancy can be viewed as a quantitative measure for the deviation of a given point set from a uniform

Area of the blue box: 0.09

Realistic Image Synthesis SS2021

distribution

• The concept of discrepancy can be viewed as a quantitative measure for the deviation of a given point set from a uniform

> Area of the blue box: 0.09 Area associated to each sample: 0.25

Realistic Image Synthesis SS2021

distribution

• The concept of discrepancy can be viewed as a quantitative measure for the deviation of a given point set from a uniform

> Area of the blue box: 0.09 Area associated to each sample: 0.25 Discrepancy:

distribution

• The concept of discrepancy can be viewed as a quantitative measure for the deviation of a given point set from a uniform

> Area of the blue box: 0.09 Area associated to each sample: 0.25 Discrepancy: 0.25 - 0.09 = 0.16

Random

Star Discrepancy

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2021

Jitter

Poisson Disk

Discrepancy = BoxArea - FractionSamples

Random

Star Discrepancy

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2021

Jitter

Poisson Disk

Discrepancy = BoxArea - FractionSamples

Random

Jitter

Poisson Disk

Discrepancy = BoxArea - FractionSamples

Star Discrepancy

Discrepancy

of \mathbf{P} is defined as

 $D_N(\mathbf{P}) \equiv D_N$

def sup $\mathbf{B} \in \mathcal{I}$

where \mathfrak{B} corresponds to a Lebesgue measurable family of subsets of \mathbf{I}^{s} , # corresponds to the counting measure over \mathcal{B} with respect to P, μ^{s} is, as usual, the Lebesgue measure and \mathbf{B} refers to a non empty subset of B.

DEFINITION 2.1 (Discrepancy) Let $\mathbf{P} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$ with $\mathbf{x}_i \in \mathbf{I}^s, i = 1, \dots, N$ be a point set. The discrepancy of P, denoted as $D_N(P)$, is a measure for the deviation of a point set from its ideal distribution. The discrepancy

$$\mathbf{P}_{B} \left| \frac{\#(\mathbf{P} \cap \mathbf{B})}{N} - \mu^{s}(\mathbf{B}) \right|,$$

Slide from Philipp Slusallek

Any integer can be represented in the form:

$$n = \sum_{i=1}^{\infty} d_i b^{i-1}$$

Realistic Image Synthesis SS2021

Techniques based on a construction called as radical inverse

n	Binary	$\Phi_b(n)$
1	1	
2	01	
3	11	
4	001	
5	101	

Any integer can be represented in the form:

$$n = \sum_{i=1}^{\infty} d_i b^{i-1}$$

Radical inverse:

$$\Phi_b(n) = 0.d_1d_2...d_m$$

Techniques based on a construction called as radical inverse

n	Binary	$\Phi_b(n)$
1	1	0,1
2	01	0,01
3	11	0,11
4	001	0,001
5	101	0,101

Radical inverse:

 $\Phi_b(n) = 0.d_1d_2...d_m$

Techniques based on a construction called as radical inverse

n	Binary	$\Phi_b(n)$
1	1	0.1 = 1/2
2	01	0.01 = 1/4
3	11	0.11 = 3/4
4	001	0.001 = 1/
5	101	0.101 = 5/

Radical inverse:

$$\Phi_b(n) = 0.d_1d_2...d_m$$

Techniques based on a construction called as radical inverse

n	Binary	$\Phi_b(n)$
1	1	0.1 = 1/2
2	01	0.01 = 1/4
3	11	0.11 = 3/4
4	001	0.001 = 1/
5	101	0.101 = 5/

Halton and Hammerslay Sequence

Radical inverse: $\Phi_b(n) = 0.d_1d_2...d_m$

Techniques based on a construction called as radical inverse

- Halton Sequence: For n-dimensional sequence, we use different base b for each dimension
 - $x_i = (\Phi_2(i), \Phi_3(i), \Phi_5(i), \dots, \Phi_{p_n}(i))$

Halton and Hammerslay Sequence

Radical inverse: $\Phi_b(n) = 0.d_1d_2...d_m$

$$x_i = (\Phi_2(i), \Phi_3(i), \Phi_5(i), \dots, \Phi_{p_n}(i))$$

Hammerslay Sequence: All except the first dimension has co-prime bases

$$x_i = \left(\frac{i}{N}, \Phi_{b_1}(i), \Phi_{b_2}(i), \dots, \Phi_{b_n}(i)\right)$$

Techniques based on a construction called as radical inverse

Halton Sequence: For n-dimensional sequence, we use different base b for each dimension

Halton and Hammerslay Sequence

Techniques based on a construction called as radical inverse

Radical inverse: $\Phi_b(n) = 0.d_1d_2...d_m$

Halton Sequence:

 $x_i = (\Phi_2(i), \Phi_3(i), \Phi_5(i), \dots, \Phi_{p_n}(i))$

Hammerslay has slightly **lower** discrepancy than Halton

Hammerslay Sequence:

$$x_i = \left(\frac{i}{N}, \Phi_{b_1}(i), \Phi_{b_2}(i), \dots, \Phi_{b_n}(i)\right)$$

Visualizing samples

Figure 2.7: Hammersley Point Set on the 2D Plane. Three 2-dimensional Hammersley point sets $\mathbf{P}_{HAM}^2 = \left(\frac{i}{N}, \Phi_2(i)\right)_{i \in (0,...,N-1)}$ of sizes N = 64-element, N = 256-element and N = 512-element.

Slide from Philipp Slusallek

Visualizing samples

Figure 2.5: Halton sequence. The first 64, 256, and 512 points of the 2-dimensional Halton Sequence $\mathbf{P}_{HAL}^2 = (\Phi_2(i), \Phi_3(i))_{i \in \mathbb{N}_0}$.

Slide from Philipp Slusallek

Visualizing samples

Projection: (9,10)

Projection: (19,20)

Projection: (29,30)

Halton Sequence

Slide from Philipp Slusallek

8. (a) The first 256 elements of the 2-dimensional Halton sequence $P_{HAL}^2 =$ $(\Phi_7(i), \Phi_8(i))$ and the scrambled versions of dimension 7 and 8 generated according to procedure of Faure.

Faure's permutation

Slide from Philipp Slusallek

Questions?

Gaussian Material Synthesis by Zsolnai-Feher, Wonka, Wimmer [SIGGRAPH 2018]

Importance Sampling

Realistic Image Synthesis SS2021

ω_{i}

Importance Sampling $L_o(p,\omega) = \int_{\mathcal{H}^2} f_r(x,\omega_0,\omega_i) L_i(x,\omega_i) |\cos\theta_i| d\omega_i$ What terms can we importance sample?

- BSDF

- Incident radiance
- cosine term

Realistic Image Synthesis SS2021

Importance Sampling: Cosine term

$$L_o(p,\omega) = \int_{\mathcal{H}^2} f_r(x,\omega_0,\omega_i) L_i(x,\omega_i) | \operatorname{control}(x,\omega_i) | \operatorname{control}(x,\omega$$

What terms can we importance sample?

- BSDF
- Incident radiance
- cosine term

Realistic Image Synthesis SS2021

Realistic Image Synthesis SS2021

$$L_o(p,\omega) = \int_{\mathcal{H}^2} f_r(x,\omega_0,\omega_i) L_i(x,\omega_i) |\cos\theta_i| d\omega$$

$$L_o(p,\omega) = \frac{\rho}{\pi} \int_{\mathcal{H}^2} V(x,\omega_i) |\cos\theta_i| d\omega_i$$

57

Realistic Image Synthesis SS2021

$L_o(p,\omega) = \frac{\rho}{\pi} \int_{\mathcal{H}^2} V(x,\omega_i) |\cos \theta_i| d\omega_i$

58

$$L_o(p,\omega) = \frac{\rho}{\pi} \int_{\mathcal{H}^2} V(x,\omega_i) |\cos\theta_i| d\omega_i$$
$$L_o(p,\omega) = \frac{\rho}{\pi} \frac{1}{N} \sum_{k=1}^N \frac{V(x,\omega_{i,k}) |\cos\theta_{i,k}|}{p(x,\omega_{i,k})}$$

59

Realistic Image Synthesis SS2021

Realistic Image Synthesis SS2021

$$L_o(p,\omega) = \frac{\rho}{\pi} \frac{1}{N} \sum_{k=1}^N \frac{V(x,\omega_{i,k})|\cos\theta_{i,k}|}{p(x,\omega_{i,k})}$$

 $p(x,\omega_{i,k}) \propto ???$

60

Hemispherical Sampling: Constant PDF

(1 Sample)

Realistic Image Synthesis SS2021

Hemispherical Sampling: Constant PDF

(4 Samples)

Realistic Image Synthesis SS2021

Hemispherical Sampling: Constant PDF

(256 Samples)

Importance Sampling: Cosine term

Uniform Hemispherical Sampling

Realistic Image Synthesis SS2021

Cosine-weighted Importance Sampling

 $p(x,\omega_i) = \cos\theta_i$

Uniform hemispherical 1 sample/pixel sampling

Cosine-weighted importance sampling

Uniform hemispherical 4 sample/pixel sampling

Cosine-weighted importance sampling

Uniform hemispherical 16 sample/pixel sampling

Cosine-weighted importance sampling

Importance Sampling: Incident Radiance

$$L_o(p,\omega) = \int_{\mathcal{H}^2} f(p,\omega_0,\omega_i) L_i(x,\omega_i) |\cos \theta_i| \cos \theta_i$$

What terms can we importance sample?

- BSDF
- Incident radiance
- cosine term

 $\cos \theta_i | d\omega_i |$

Realistic Image Synthesis SS2021

Example: Environment Lighting

Example: Environment Lighting

Realistic Image Synthesis SS2021

Environment Lighting

Realistic Image Synthesis SS2021

Importance function

Slide after Wojciech Jarosz

Realistic Image Synthesis SS2021

Importance function

Scalar version e.g., luminance channel only

Slide after Wojciech Jarosz

Realistic Image Synthesis SS2021

Importance function: Scalar function

Multiplication with $\sin \theta$

 θ

Importance function: Marginalization

Importance function: Conditional PDFs

Once normalized, each row can serve as the conditional PDF

Importance function: Sampling

Importance function: Sampling

Importance function: Sampling

Slide after Wojciech Jarosz

Realistic Image Synthesis SS2021

Importance function: Sampling

Slide after Wojciech Jarosz

Importance Sampling

For more details, see PBRTv3: 13.2 and 13.6.7

Realistic Image Synthesis SS2021

Importance Sampling

$$L_o(p,\omega) = \int_{\mathcal{H}^2} f(p,\omega_0,\omega_i) L_i(x,\omega_i) |\operatorname{co}_{\mathcal{H}^2} f(p,\omega_0,\omega_i) |\operatorname{co}_{\mathcal{H}^2}$$

What terms can we importance sample?

 $\cos \theta_i | d\omega_i |$

To handle this, we will introduce Microfacet BSDF theory in the later part of the lecture.

Light PDF Sampling

BSDF PDF Sampling

Light PDF Sampling

BSDF PDF Sampling

BSDF PDF Sampling

BSDF PDF Sampling

Realistic Image Synthesis SS2021

Light IS

Realistic Image Synthesis SS2021

Light vs. BSDF Importance Sampling

BSDF PDF Sampling

BSDF IS

Reference image N = 1024 spp

BSDF importance sampling N = 4 spp

Light importance sampling N = 4 spp

Reference image N = 1024 spp

BSDF importance sampling

Light importance sampling

N = 4 spp

N = 4 spp

BSDF sampling is better in some regions

Reference image N = 1024 spp

BSDF importance sampling N = 4 spp

Light importance sampling

N = 4 spp

Light sampling is better in other regions

Reference image

Can we combine the benefits of different PDFs ?

BSDF importance sampling

Light importance sampling

BSDF importance sampling

Light importance sampling

Can we combine the benefits of different PDFs?

BSDF importance sampling

Light importance sampling

Can we combine the benefits of different PDFs ? Yes!

BSDF importance sampling

Light importance sampling

Can we combine the benefits of different PDFs ? Yes!

Multiple Importance Sampling

Multiple Importance Sampling

Realistic Image Synthesis SS2021

 $I_{N} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x)g(x)}{p(x)}$

Multiple Importance Sampling

 $p(x) \propto ???$

Realistic Image Synthesis SS2021

 $I_{N} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x)g(x)}{p(x)}$

Multiple Importance Sampling

 $I_N = rac{1}{r}$

 $p(x) \propto ???$

$$\mathbf{I}_N = \frac{1}{n_f} \sum_{i=1}^{n_f} \frac{f(X_i)g(X_i)w_f(X_i)}{p_f(X_i)} + \frac{1}{n_g} \sum_{j=1}^{n_g} \frac{f(Y_j)g(Y_j)w_g(Y_j)}{p_g(Y_j)}$$

$$\frac{1}{N} \sum_{i=1}^{N} \frac{f(x)g(x)}{p(x)}$$

Multiple Importance Sampling

$$\mathbf{I}_{N} = \frac{1}{n_{f}} \sum_{i=1}^{n_{f}} \frac{f(X_{i})g(X_{i})w_{f}(X_{i})}{p_{f}(X_{i})}$$

Balance heuristic: $w_s(x) =$

Power heuristic: $w_s(x) =$

$$= \frac{n_s p_s(x)}{\sum_i n_i p_i(x)}$$

$$= \frac{(n_s p_s(x))^{\beta}}{\sum_i (n_i p_i(x))^{\beta}}$$

$$\beta = 2$$

Realistic Image Synthesis SS2021

 $L_o(x,\omega_o) = L_e(x,\omega_o) + L_r(x,\omega_o)$

Outgoing

emitted

reflected

James Kajiya, The Rendering Equation, SIGGRAPH 1986

Realistic Image Synthesis SS2021

 $L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\mathcal{H}^2} f_r(x,\omega_0,\omega_i) L_i(x,\omega_i) |\cos\theta_i| d\omega_i$

Outgoing

emitted

reflected

Rendering Equation: Light Transport

In vaccum, radiance is constant along rays

We can relate out-going radiance to the incoming radiance

93

Realistic Image Synthesis SS2021

Rendering Equation: Light Transport

In vaccum, radiance is constant along rays

We can relate out-going radiance to the incoming radiance

 $L_o(x,\omega) = L_e(x,\omega) + \int_{\mathcal{H}^2} f(x,\omega',\omega) L_i(x,\omega) |\cos\theta'| d\omega'$

Realistic Image Synthesis SS2021

95

$$L(x,\omega) = L_e(x,\omega) + \int_{\mathcal{H}^2} f(x,\omega) dx$$

Only outgoing radiance on both sides

- we drop the "o" subscript

- Becomes Fredholm equation of the second kind (recursive)

, ray tracing function $f(x,\omega',\omega)L(r(x,\omega),-\omega')|\cos\theta'|d\omega'$

Realistic Image Synthesis SS2021

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

Realistic Image Synthesis SS2021

Rendering Equation $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

Light source	

98

Realistic Image Synthesis SS2021

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

99

Realistic Image Synthesis SS2021

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta' | d\vec{\omega}'$$

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta'| d\vec{\omega}'$$

$L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta'| d\vec{\omega}'$$

recursion

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta'| d\vec{\omega}'$$

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta'| d\vec{\omega}'$$

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

Realistic Image Synthesis SS2021

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

Realistic Image Synthesis SS2021

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

Realistic Image Synthesis SS2021

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta'| d\vec{\omega}'$$

recursion

(Me)

Gr

Me

Tr

Questions?

Gs

Gr

Me

Gaussian Material Synthesis by Zsolnai-Feher, Wonka, Wimmer [SIGGRAPH 2018]

Path Tracing

Path Tracing

$$(x, \omega'), -\omega') \cos \theta' d\omega'$$

Path Tracing

$$(r(x,\omega'),-\omega')\cos\theta'd\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

Path Tracing Algorithm

Color color(**Point x, Direction** ω , int moreBounces):

if not moreBounces: return $L_e(\mathbf{x}, -\boldsymbol{\omega})$

// sample recursive integral $\boldsymbol{\omega}$ ' = sample from BRDF

 $L_o(x,\omega_o) = L_e(x,\omega_o) + L_r(x,\omega_o)$

return $L_e(x,-\omega)$ + BRDF * color(trace(x, ω '), moreBounces-1) * dot(n, ω ') / pdf(ω ')

123

Realistic Image Synthesis SS2021

Direct Illumination: sometimes emissive surfaces

Realistic Image Synthesis SS2021

Direct Illumination: sometimes better estimated by sampling the

Direct Illumination: sometimes better estimated by sampling the emissive surfaces

Let's estimate direct illumination separately from indirect illumination, then add the two

Direct Illumination: sometimes better estimated by sampling the emissive surfaces

Let's estimate direct illumination separately from indirect illumination, then add the two

- i.e., shoot shadow rays (direct) and gather rays (indirect)

- be careful not to double count!

Direct Illumination: sometimes better estimated by sampling the emissive surfaces

Let's estimate direct illumination separately from indirect illumination, then add the two

- i.e., shoot shadow rays (direct) and gather rays (indirect)

- be careful not to double count!

Also known as Next Event Estimation (NEE)

127

Light source

се		

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

се		

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{\substack{p(\omega')_{136}}}$$

 $L(x,\omega) = L_e(x,\omega) + L_{dir}(x,\omega) + L_{ind}(x,\omega)$

Color color(**Point** x, **Direction** ω , **int** moreBounces):

if not moreBounces: return L_e;

// next-event estimation: compute Ldir by sampling the light $\boldsymbol{\omega}_1$ = sample from light $L_{dir} = BRDF * color(trace(x, \omega_1), 0) * dot(n, \omega_1) / pdf(\omega_1)$ // compute Lind by sampling the BSDF $\boldsymbol{\omega}_2$ = sample from BSDF; $L_{ind} = BSDF * color(trace(x, \omega_2), moreBounces-1) * dot(n, \omega_2) / pdf(\omega_2)$

return L_e + L_{dir} + L_{ind}

Realistic Image Synthesis SS2021

 $L(x,\omega) = L_e(x,\omega) + L_{dir}(x,\omega) + L_{ind}(x,\omega)$

Color color(**Point** x, **Direction** ω , **int** moreBounces):

if not moreBounces: return L_e ;

// next-event estimation: compute L_{dir} by sampling the light $\boldsymbol{\omega}_1$ = sample from light $L_{dir} = BRDF * color(trace(x, \omega_1), 0) * dot(n, \omega_1) / pdf(\omega_1)$ // compute Lind by sampling the BSDF $\boldsymbol{\omega}_2$ = sample from BSDF; $L_{ind} = BSDF * color(trace(x, \omega_2), moreBounces-1) * dot(n, \omega_2) / pdf(\omega_2)$ return L_e + L_{dir} + L_{ind}

double counting!

Color color(**Point** x, **Direction** ω , **int** moreBounces):

if not moreBounces: return L_e;

// next-event estimation: compute L_{dir} by sampling the light $\boldsymbol{\omega}_1$ = sample from light $L_{dir} = BRDF * color(trace(x, \omega_1), 0) * dot(n, \omega_1) / pdf(\omega_1)$ // compute Lind by sampling the BSDF $\boldsymbol{\omega}_2$ = sample from BSDF; $L_{ind} = BSDF * color(trace(x, \omega_2), moreBounces-1) * dot(n, \omega_2) / pdf(\omega_2)$

return L_e + L_{dir} + L_{ind}

 $L(x,\omega) = L_e(x,\omega) + L_{dir}(x,\omega) + L_{ind}(x,\omega)$

Realistic Image Synthesis SS2021

 $L(x,\omega) = L_e(x,\omega) + L_{dir}(x,\omega) + L_{ind}(x,\omega)$

Color color(**Point x, Direction** ω , int moreBounces, bool includeL_e):

 $L_e = include L_e ? L_e(x, -\omega) : black$

if not moreBounces: return L_e

// next-event estimation: compute L_{dir} by sampling the light $\boldsymbol{\omega}_1$ = sample from light $L_{dir} = BRDF * color(trace(x, \omega_1), 0, true) * dot(n, \omega_1) / pdf(\omega_1)$

```
// compute Lind by sampling the BSDF
\boldsymbol{\omega}_2 = sample from BSDF
L_{ind} = BSDF * color(trace(x, \omega_2), moreBounces-1, false) * dot(n, \omega_2) / pdf(\omega_2)
```

```
return L<sub>e</sub> + L<sub>dir</sub> + L<sub>ind</sub>
```


Path: 0

Path: 0

Path: 1

Realistic Image Synthesis SS2021

Path: 0

Path: 1

Realistic Image Synthesis SS2021

Path: 2

Path: 0

Path: 1

Realistic Image Synthesis SS2021

Path: 2

Path: 3

Path: 0

Path: 1

Realistic Image Synthesis SS2021

Path: 2

Path: 3

Path: 0

Path: 1

Path: 5

Realistic Image Synthesis SS2021

Path: 2

Path: 3

Path: 0

Path: 1

Path: 5

Realistic Image Synthesis SS2021

Path: 2

Path: 3

141 **Path: 6**

Path: 0

Path: 1

Path: 5

Realistic Image Synthesis SS2021

All Paths added

Truncating at some fixed depth introducing **bias**

Solution: Russian roulette

Realistic Image Synthesis SS2021

When we do stop recursion?

Russian Roulette

Probabilisticaly terminate the recursion

New estimator: evaluate original estimator X with

$$X_{rr} = \begin{cases} \frac{X}{P} & \xi \\ 0 & 0 \end{cases}$$

- probability P (but reweighted), otherwise return zero:
 - $\xi < P$
 - otherwise

Russian Roulette

This will increase variance!

- but it will improve efficiency if P is chosen so that the samples that are expensive, but are likely to make small contribution, are skipped

Microfacet BSDFs

145

Bidirectional Reflectance Distribution Function

BRDF

Real/Physically plausible BRDFs obey:

- Energy conservation:

BRDF Properties

 $\int_{\mathcal{H}^{\in}} f_r(\mathbf{X}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_i d\vec{\omega}_i \leq 1, \quad \forall \ \vec{\omega}_r$

Real/Physically plausible BRDFs obey:

- Energy conservation:

- Helmholtz reciprocity:

BRDF Properties

 $\int_{\mathcal{H}\in} f_r(\mathbf{X}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_i d\vec{\omega}_i \leq 1, \quad \forall \ \vec{\omega}_r$

 $f_r(\mathbf{X}, \vec{\omega}_i, \vec{\omega}_r) = f_r(\mathbf{X}, \vec{\omega}_r, \vec{\omega}_i)$ $f_r(\mathbf{X}, \vec{\omega}_i \leftrightarrow \vec{\omega}_r)$

Conductors: Materials that conduct electricity, e.g. metal

Realistic Image Synthesis SS2021

- Dielectrics: Materials that does not conduct electricity, e.g., water, mineral oil, air

Clouds

149

Copper

Iron

Mercury

Clouds

150

Realistic Image Synthesis SS2021

Smooth dielectric material

151

Smooth conducting material

Rough conducting material

Smooth dielectric material

Rough dielectric material

152

Macro Scale

Scene geometry

Key Idea: transition from individual interactions to statistical averages

Realistic Image Synthesis SS2021

Macro Scale

Scene geometry

Key Idea: transition from individual interactions to statistical averages

Realistic Image Synthesis SS2021

Key Idea: transition from individual interactions to statistical averages

Macro Scale

Meso Scale

Scene geometry

Detail at intermediate scale

Realistic Image Synthesis SS2021

Key Idea: transition from individual interactions to statistical averages

Macro Scale

Meso Scale

Scene geometry

Detail at intermediate scale

Realistic Image Synthesis SS2021

Key Idea: transition from individual interactions to statistical averages

Macro Scale

Meso Scale

Scene geometry

Detail at intermediate scale

Realistic Image Synthesis SS2021

Micro Scale Roughness

153

Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

$$f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{e+2}{2\pi} (\vec{\omega}_r \cdot \vec{\omega}_o)^e$$

 $\vec{\omega_r} = (2\vec{\mathbf{n}}(\vec{\mathbf{n}}\cdot\vec{\omega_i}) - \vec{\omega_i})$

Blinn-Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

Blinn-Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

$$f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{e+2}{2\pi} (\vec{\omega}_h \cdot \vec{\mathbf{n}})^e$$

 $\vec{\omega_r} = (2\vec{\mathbf{n}}(\vec{\mathbf{n}}\cdot\vec{\omega_i}) - \vec{\omega_i})$

Blinn-Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

$$f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{e+2}{2\pi} (\vec{\omega}_h \cdot \vec{\mathbf{n}})^e$$

 $\vec{\omega_r} = (2\vec{\mathbf{n}}(\vec{\mathbf{n}}\cdot\vec{\omega_i}) - \vec{\omega_i})$

158

Realistic Image Synthesis SS2021

Rough Surfaces

Empirical glossy models have limitations:

- not physically-based
- (often) not reciprocal

159

Rough Surfaces

Empirical glossy models have limitations:

- not physically-based
- (often) not reciprocal

literature

- (often) no Fresnel effects
- cannot accurately model appearance of many glossy surfaces

- not energy-preserving (can be normalized): many conflicting normalizations in the

Rough Surfaces

Empirical glossy models have limitations:

- not physically-based
- (often) not reciprocal

literature

- (often) no Fresnel effects
- cannot accurately model appearance of many glossy surfaces Blinn-Phong was first step in the right direction Can do Better

- not energy-preserving (can be normalized): many conflicting normalizations in the

Microfacet Theory

Microfacet Theory

In geometric-optics-based approaches, rough surfaces can be modeled as a collection of small microfacets.

Surfaces comprised of microfacets are often modeled as heightfields, where the distribution of facet orientations is described statistically

Microfacet Theory

Assume surface consists of tiny facets

Assume that the differential area being viewed/illuminated is relatively large compared to the size of microfacets

A facet can be perfectly specular or diffuse

164

Torrance-Sparrow Model

Developed by Torrance & Sparrow in 1967

Originally used in the physics community

165

Realistic Image Synthesis SS2021

Torrance-Sparrow Model

- Developed by Torrance & Sparrow in 1967
- Originally used in the physics community
- Adapted by Cook & Torrance and Blinn for graphics
 - added ambient and diffuse terms

Torrance-Sparrow Model

- Developed by Torrance & Sparrow in 1967
- Originally used in the physics community
- Adapted by Cook & Torrance and Blinn for graphics
 - added ambient and diffuse terms
- Explain off-specular peaks

Assumes surface is composed of many micro-grooves, each of which is a perfect mirror

Copper-colored plastic

(1981)

 $f(\vec{\omega}_i, \vec{\omega}_o) = \frac{F(\vec{\omega}_h, \vec{\omega}_o) \cdot D(\vec{\omega}_h) \cdot G(\vec{\omega}_i, \vec{\omega}_o)}{4|(\vec{\omega}_i \cdot \vec{\mathbf{n}})(\vec{\omega}_o \cdot \vec{\mathbf{n}})|}$

Realistic Image Synthesis SS2021

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

169

Fresnel coefficient 、

 $f(\vec{\omega}_i, \vec{\omega}_o) = \frac{F(\vec{\omega}_h, \vec{\omega}_o)}{F(\vec{\omega}_i, \vec{\omega}_o)}$

$$\frac{\vec{\omega}_{o}}{4|(\vec{\omega}_{i}\cdot\vec{\mathbf{n}})(\vec{\omega}_{o}\cdot\vec{\mathbf{n}})|}$$

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

170

Realistic Image Synthesis SS2021

Fresnel coefficient

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

171

Realistic Image Synthesis SS2021

Fresnel coefficient

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

Realistic Image Synthesis SS2021

Fresnel coefficient 、

 $f(\vec{\omega}_i, \vec{\omega}_o) = \frac{F(\vec{\omega}_h, \vec{\omega}_o)}{F(\vec{\omega}_i, \vec{\omega}_o)}$

$$\frac{\vec{\omega}_{o}}{4|(\vec{\omega}_{i}\cdot\vec{\mathbf{n}})(\vec{\omega}_{o}\cdot\vec{\mathbf{n}})|}$$

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

173

Realistic Image Synthesis SS2021

Fresnel Term

Realistic Image Synthesis SS2021

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

175

What fraction of the surface participates in the reflection?

2) Solve using principles of statistical physics

there are many bumps?

- 1) difficult to say (need an actual micro surface to compute this, tedious..)

 - Is there anything general we can say about the surface when

Fraction of facets facing each direction

Probability density function over projected solid angle (must be normalized):

 $D(\vec{\omega}_h)$

$$\cos \theta_h d\vec{\omega}_h = 1$$

Beckmann-Spizzichino Model

The slopes follow a Gaussian distribution

Let's express slope distribution w.r.t. directions

Beckmann-Spizzichino Model

The slopes follow a Gaussian distribution

Let's express slope distribution w.r.t. directions

General Microfacet Model shadowing/masking $f(\vec{\omega}_i, \vec{\omega}_o) = \frac{F(\vec{\omega}_h, \vec{\omega}_o) \cdot D(\vec{\omega}_h) \cdot G(\vec{\omega}_i, \vec{\omega}_o)}{4|(\vec{\omega}_i \cdot \vec{\mathbf{n}})(\vec{\omega}_o \cdot \vec{\mathbf{n}})|}$

Realistic Image Synthesis SS2021

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

185

The microfacet of interest not visible to the viewer due to occlusions

Masking effect:

The microfacet of interest not visible to the viewer due to occlusions

Masking effect:

The microfacet of interest not visible to the viewer due to occlusions

The microfacet of interest not visible to the viewer due to occlusions

Microfacet Distribution: Shadowing effect

Shadowing effect:

Light does not reach the microfacet

Microfacet Distribution: Shadowing/Masking

Microfacet Distribution: Shadowing/Masking

Microfacet Distribution: Shadowing/Masking

Microfacet Distribution: Interreflection

Light bounces among the facets before reaching the viewer

Interreflection

Microfacet Distribution: Interreflection

Reading

• PBRT <u>Section 8.4</u>

- GGX Distribution, <u>Walter et al. (EGSR 2007)</u>
- Isotropic and anisotropic microfacet distributions
- Oren–Nayar model, a "directed-diffuse" microfacet model, with perfectly diffuse (rather than specular) microfacets.
- along with a diffuse substrate under a specular surface

Ashikhmin-Shirley model, allowing for anisotropic reflectance,

Isotropic microfacet distribution

Anisotropic microfacet distribution

Acknowledgements

Slides material borrowed from multiple resources.

lectures available online

Special thanks to Wojciech Jarosz for making his rendering

