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Direct Illumination 4 spp

Image rendered using PBRT
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Direct Illumination 256 spp

Image rendered using PBRT
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Direct and Indirect Illumination 4096 spp

Image rendered using PBRT
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Path Tracing
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Path Tracing
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Path Tracing
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4 sppDirect and Indirect Illumination

Image rendered using PBRT
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Noise
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Variance Reduction Techniques
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• Correlated Sampling


• Importance Sampling


• Perceptual Error Distribution
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Correlated Sampling: Jittered Sampling
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Variance reduction: Stratified Sampling



Realistic Image Synthesis SS2021

18

Random Samples

Random vs. Stratified Sampling



Realistic Image Synthesis SS2021

Random Samples Jittered Samples
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Stratified sampling suffers from the curse of dimensionality
N = 64 spp

Random vs. Stratified Sampling
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Correlated Sampling: Latin Hypercube Sampling
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Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Initialize
Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Shuffle rows
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Latin Hypercube Sampler (N-rooks)
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Shuffle rows
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Latin Hypercube Sampler (N-rooks)
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Shuffle columns
Latin Hypercube Sampler (N-rooks)
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Shuffle columns
Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Variants of stratified sampling
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Quasi-Monte Carlo Integration
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• Monte Carlo integration suffers, apart from the slow convergence rate, from the 
disadvantages that only probabilistic statements on convergence and error boundaries 
are possible

•  The success of any Monte Carlo procedure stands or falls with the quality of these 
random samples

• If the distribution of the sample points is not uniform then there are large regions where 
there are no samples at all, which can increases the error  

• Closely related to this is the fact that a smooth function is evaluated at unnecessary 
many locations if samples are clumped 

30

Quasi-Monte Carlo Integration
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• Deterministic generation of samples, while making sure uniform distributions

• Based on number-theoretic approaches

• Samples with good uniform properties can be generated in very high dimensions.

• Sample generation is pretty fast: (almost) no pre-processing

31

Quasi-Monte Carlo Integration
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Quasi-Monte Carlo Integration
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• Low discrepancy sequences
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Quasi-Monte Carlo Integration
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• Low discrepancy sequences

• Halton and Hammerslay sequences

• Scrambled sequences

• Discrepancy
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• The concept of discrepancy can be viewed as a quantitative 
measure for the deviation of a given point set from a uniform 
distribution
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• The concept of discrepancy can be viewed as a quantitative 
measure for the deviation of a given point set from a uniform 
distribution

(0, 0)

(1, 1)

(0, 0.3)

(0.3, 0)

Area of the blue box: 

Discrepancy: 

0.09

Area associated to each sample: 0.25

0.25 0.09- = 0.16

Discrepancy: Basic idea 
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JitterRandom Poisson Disk

Star Discrepancy

Discrepancy = BoxArea - FractionSamples
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JitterRandom Poisson Disk

Star Discrepancy

Discrepancy = BoxArea - FractionSamples
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Discrepancy
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Radical Inverse

Techniques based on a construction called as radical inverse

n =
1X

i=1

dib
i�1

Any integer can be represented in the form: 1 1

2 01

3 11

4 001

5 101

n Binary �b(n)
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Techniques based on a construction called as radical inverse

n =
1X

i=1

dib
i�1

Any integer can be represented in the form: 1 1 0,1

2 01 0,01

3 11 0,11

4 001 0,001

5 101 0,101

n Binary �b(n)

�b(n) = 0.d1d2...dm

Radical inverse:

Radical Inverse
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Techniques based on a construction called as radical inverse

�b(n) = 0.d1d2...dm 1 1 0.1 = 1/2

2 01 0.01 = 1/4

3 11 0.11 = 3/4

4 001 0.001 = 1/8

5 101 0.101 = 5/8

n Binary �b(n)Radical inverse:

1

2

1

4

3

4

1

8

5

8
0 1

Radical Inverse
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Techniques based on a construction called as radical inverse

�b(n) = 0.d1d2...dmRadical inverse:

Halton and Hammerslay Sequence

Halton Sequence: For n-dimensional sequence, we use different base b for each dimension
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Halton and Hammerslay Sequence

Techniques based on a construction called as radical inverse

�b(n) = 0.d1d2...dmRadical inverse:

Halton Sequence: For n-dimensional sequence, we use different base b for each dimension

Hammerslay Sequence: All except the first dimension has co-prime bases 
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Techniques based on a construction called as radical inverse

�b(n) = 0.d1d2...dmRadical inverse:

Halton Sequence: Hammerslay Sequence:

Hammerslay has slightly lower discrepancy than Halton 

Halton and Hammerslay Sequence
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Low discrepancy samplers Halton 4spp
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Low discrepancy samplers Halton 8spp
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Low discrepancy samplers Sobol 4spp



Realistic Image Synthesis SS2021

46

Low discrepancy samplers Sobol 8spp
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Low discrepancy samplers Random 8spp
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Visualizing samples
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Visualizing samples



Realistic Image Synthesis SS2021

50

Halton Sequence

Projection: (9,10) Projection: (19,20) Projection: (29,30)

Slide from Philipp Slusallek

Visualizing samples



Realistic Image Synthesis SS2021

51
Slide from Philipp Slusallek

Faure's permutation



Gaussian Material Synthesis by ZsoInai-Feher, Wonka, Wimmer [SIGGRAPH 2018]

Questions?
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Importance Sampling
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Lo(p,!) =

Z

H2

fr(x,!0,!i)Li(x,!i)| cos ✓i|d!i

What terms can we importance sample?

 - BSDF

 - Incident radiance

 - cosine term
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What terms can we importance sample?

 - BSDF

 - Incident radiance

 - cosine term

Importance Sampling: Cosine term

Lo(p,!) =

Z

H2

fr(x,!0,!i)Li(x,!i)| cos ✓i|d!i
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Example: Ambient Occlusion
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Lo(p,!) =

Z

H2

fr(x,!0,!i)Li(x,!i)| cos ✓i|d!i

Example: Ambient Occlusion

Lo(p,!) =
⇢

⇡

Z

H2

V (x,!i)| cos ✓i|d!i



Realistic Image Synthesis SS2021

58

Example: Ambient Occlusion
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Example: Ambient Occlusion

Lo(p,!) =
⇢

⇡

Z

H2

V (x,!i)| cos ✓i|d!i

Lo(p,!) =
⇢

⇡

1

N

NX

k=1

V (x,!i,k)| cos ✓i,k|
p(x,!i,k)
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Example: Ambient Occlusion

Lo(p,!) =
⇢

⇡

1

N

NX

k=1

V (x,!i,k)| cos ✓i,k|
p(x,!i,k)

p(x,!i,k) / ???
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Uniform Hemispherical Sampling
(1 Sample)

Hemispherical Sampling: Constant PDF
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Uniform Hemispherical Sampling

Hemispherical Sampling: Constant PDF
(4 Samples)

p(x,!i) =
1

2⇡
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Uniform Hemispherical Sampling

Hemispherical Sampling: Constant PDF
(256 Samples)

p(x,!i) =
1

2⇡
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Importance Sampling: Cosine term

p(x,!i) = cos ✓ip(x,!i) =
1

2⇡

Cosine-weighted Importance SamplingUniform Hemispherical Sampling
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Lo(p,!) =

Z

H2

f(p,!0,!i)Li(x,!i)| cos ✓i|d!i

What terms can we importance sample?

 - BSDF

 - Incident radiance

 - cosine term

Importance Sampling: Incident Radiance
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Example: Environment Lighting
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Example: Environment Lighting
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Environment Lighting

71
Slide after Wojciech Jarosz
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Importance function
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✓

�
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Importance function
Scalar version e.g., luminance channel only

✓

�
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Importance function: Scalar function
Multiplication with sin ✓

✓

�
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Importance function: Marginalization

✓

�
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Importance function: Conditional PDFs
Once normalized, each row can serve as the conditional PDF

✓

�
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Importance function: Sampling

✓

�
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Importance function: Sampling

✓

�
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Importance function: Sampling

✓

�
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Importance function: Sampling

✓

�
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Importance Sampling
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For more details, see PBRTv3: 13.2 and 13.6.7
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Importance Sampling
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Lo(p,!) =

Z

H2

f(p,!0,!i)Li(x,!i)| cos ✓i|d!i

What terms can we importance sample?

 - BSDF

 - Incident radiance

 - cosine term

To handle this, we will introduce Microfacet BSDF 
theory in the later part of the lecture.
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Light vs. BSDF Importance Sampling

82

Sensor

Light PDF Sampling BSDF PDF SamplingIN =
1

N

NX

k=1

f(~xk)

p(~xk)
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Light vs. BSDF Importance Sampling

82

Sensor

Light PDF Sampling BSDF PDF SamplingIN =
1

N

NX

k=1

f(~xk)

p(~xk)

Light IS BSDF IS
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling
N = 4 sppN = 1024 spp N = 4 spp



Realistic Image Synthesis SS202184

Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling

BSDF sampling is better in some regions
N = 4 sppN = 1024 spp N = 4 spp



Realistic Image Synthesis SS202185

Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling

Light sampling is better in other regions
N = 4 sppN = 1024 spp N = 4 spp
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling

Can we combine the benefits of different PDFs ?
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Variance reduction: Importance sampling

BSDF importance sampling Light importance sampling

Can we combine the benefits of different PDFs ? Yes!
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Variance reduction: Importance sampling

Multiple Importance SamplingBSDF importance sampling Light importance sampling

Can we combine the benefits of different PDFs ? Yes!
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Variance reduction: Multiple Importance sampling

Multiple Importance Sampling

IN =
1

N

NX

i=1

f(x)g(x)

p(x)
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Variance reduction: Multiple Importance sampling

Multiple Importance Sampling

IN =
1

N

NX

i=1

f(x)g(x)

p(x)

p(x) / ???
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Variance reduction: Multiple Importance sampling

Multiple Importance Sampling

IN =
1

N

NX

i=1

f(x)g(x)

p(x)

p(x) / ???

IN =
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Variance reduction: Multiple Importance sampling

Multiple Importance Sampling

IN =

Balance heuristic:

Power heuristic:
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Rendering Equation
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Lo(x,!o) = Le(x,!o) + Lr(x,!o)

James Kajiya, The Rendering Equation, SIGGRAPH 1986

Outgoing emitted reflected
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Rendering Equation

92

Lo(x,!o) = Le(x,!o) + Lr(x,!o)

reflected

Z

H2

fr(x,!0,!i)Li(x,!i)| cos ✓i|d!i

Outgoing emitted
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Rendering Equation: Light Transport

In vaccum, radiance is constant along rays


We can relate out-going radiance to the incoming radiance

93
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<latexit sha1_base64="G4iVENdpOGqKAh9B35sjF9VO44U="></latexit>

Lo(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)Li(x,!)| cos ✓0|d!0
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Rendering Equation
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<latexit sha1_base64="9WcSyHR4MtBwEsbq2E6/ER7rL+I="></latexit>

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!),�!0)| cos ✓0|d!0

Only outgoing radiance on both sides 

- we drop the "o" subscript


- Becomes Fredholm equation of the second kind (recursive)

ray tracing function
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L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Light source

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0

ray tracing function
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Light source

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Rendering Equation
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Light source

x

! Integrate over 

the hemisphere

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Light source

x

! Integrate over 

the hemisphere!0

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Rendering Equation
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Light source

x

! Integrate over 

the hemisphere!0

r(x,!0)

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Rendering Equation
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Light source

x

! Integrate over 

the hemisphere!0

r(x,!0)
�!0

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Rendering Equation
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Light source

x

! Integrate over 

the hemisphere!0

L(r(x,!0),�!0)

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Rendering Equation
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Light source

x

! Integrate over 

the hemisphere!0

L(r(x,!0),�!0)

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Rendering Equation
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Light source

x

! Integrate over 

the hemisphere!0

L(r(x,!0),�!0)

recursion

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Light source

x

! Integrate over 

the hemisphere!0

L(r(x,!0),�!0)
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Z
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f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Light source

x

! Integrate over 

the hemisphere!0

Le(r(x,!
0),�!0)

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Light source

x

!

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Light source

x

!
!0

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Light source

x

!
!0

r(x,!0)

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Light source

x

!
!0

r(x,!0)�!0

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Light source

x

!
!0

�!0

L(r(x,!0),�!0)

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0
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Light source

x

!
!0

�!0

L(r(x,!0),�!0)

recursion

L(x, ~!) = Le(x, ~!) +

Z

H2

f(x, ~!0, ~!)L(r(x, ~!0),�~!0)| cos ✓0|d~!0



Questions?

Gaussian Material Synthesis by ZsoInai-Feher, Wonka, Wimmer [SIGGRAPH 2018]
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Light source

x
L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0
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Path Tracing
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0



Realistic Image Synthesis SS2021

Path Tracing

120

Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0
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Path Tracing Algorithm
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Lo(x,!o) = Le(x,!o) + Lr(x,!o)
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Partitioning the Integrand
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Direct Illumination: sometimes better estimated by sampling the 
emissive surfaces


Let's estimate direct illumination separately from indirect 
illumination, then add the two 


  - i.e., shoot shadow rays (direct) and gather rays (indirect)


  - be careful not to double count!
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Direct Illumination: sometimes better estimated by sampling the 
emissive surfaces


Let's estimate direct illumination separately from indirect 
illumination, then add the two 


  - i.e., shoot shadow rays (direct) and gather rays (indirect)


  - be careful not to double count!
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Direct Illumination: sometimes better estimated by sampling the 
emissive surfaces


Let's estimate direct illumination separately from indirect 
illumination, then add the two 


  - i.e., shoot shadow rays (direct) and gather rays (indirect)


  - be careful not to double count!

Partitioning the Integrand

Also known as Next Event Estimation (NEE)
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0

Path Tracing Algorithm with NEE
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0

Path Tracing Algorithm with NEE
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0

Path Tracing Algorithm with NEE
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0

Path Tracing Algorithm with NEE
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0

Path Tracing Algorithm with NEE
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0

Path Tracing Algorithm with NEE
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0

Path Tracing Algorithm with NEE
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0

Path Tracing Algorithm with NEE
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Light source

x

⇡ Le(x,!) +
f(x,!0,!)L(r(x,!0),�!0) cos ✓0

p(!0)

L(x,!) = Le(x,!) +

Z

H2

f(x,!0,!)L(r(x,!0),�!0) cos ✓0d!0

Avoid 

double count!

Path Tracing Algorithm with NEE
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Path Tracing Algorithm with NEE
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L(x,!) = Le(x,!) + Ldir(x,!) + Lind(x,!)
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L(x,!) = Le(x,!) + Ldir(x,!) + Lind(x,!)

Path Tracing Algorithm with NEE
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L(x,!) = Le(x,!) + Ldir(x,!) + Lind(x,!)

Path Tracing Algorithm with NEE
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L(x,!) = Le(x,!) + Ldir(x,!) + Lind(x,!)

Path Tracing Algorithm with NEE
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Path-wise Visualization
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Path: 0
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Path-wise Visualization
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Path: 0 Path: 1 Path: 2 Path: 3

Path: 4
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Path: 0 Path: 1 Path: 2 Path: 3
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Path-wise Visualization
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Path: 0 Path: 1 Path: 2 Path: 3

Path: 4 Path: 5 Path: 6
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Path-wise Visualization

141

Path: 0 Path: 1 Path: 2 Path: 3

Path: 4 Path: 5 Path: 6 All Paths added
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When we do stop recursion?

142

Truncating at some fixed depth introducing bias 

Solution: Russian roulette
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Russian Roulette

143

Probabilisticaly terminate the recursion


New estimator: evaluate original estimator X with 
probability P (but reweighted), otherwise return zero: 

Xrr =

(
X
P ⇠ < P

0 otherwise

X
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Russian Roulette

144

This will increase variance! 

 - but it will improve efficiency if P is chosen so that the 
samples that are expensive, but are likely to make small 
contribution, are skipped 
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Microfacet BSDFs
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BRDF
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Bidirectional Reflectance Distribution Function

fr



Realistic Image Synthesis SS2021

BRDF Properties
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Real/Physically plausible BRDFs obey:


- Energy conservation:
Z

H2
fr(x, ~!i, ~!r) cos ✓id~!i  1, 8 ~!r
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BRDF Properties
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Real/Physically plausible BRDFs obey:


- Energy conservation:


 - Helmholtz reciprocity:

Z

H2
fr(x, ~!i, ~!r) cos ✓id~!i  1, 8 ~!r

fr(x, ~!i, ~!r) = fr(x, ~!r, ~!i)

fr(x, ~!i $ ~!r)
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Conductors vs. Dielectrics
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CloudsMercuryCrystal rocks

Conductors: Materials that conduct electricity, e.g. metal

Dielectrics: Materials that does not conduct electricity, e.g., water, mineral oil, air 
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Conductors vs. Dielectrics
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Gold GlassIronCopper

CloudsMercuryCrystal rocks
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Smooth conducting material Smooth dielectric material

Conductors vs. Dielectrics
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152

Smooth conducting material Smooth dielectric material

Rough conducting material Rough dielectric material

Conductors vs. Dielectrics
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Three Levels of Detail
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Macro Scale

Netflix

Scene geometry

Key Idea: transition from individual interactions to statistical averages 
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Meso Scale
Detail at intermediate scale 
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Three Levels of Detail
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Macro Scale

Netflix

Scene geometry

Key Idea: transition from individual interactions to statistical averages 
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Meso Scale
Detail at intermediate scale 

Three Levels of Detail

153

Micro Scale
Roughness

Macro Scale

Netflix

Scene geometry

Key Idea: transition from individual interactions to statistical averages 
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Phong BRDF
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Reflection direction distributed over an exponentiated cosine lobe:


~!r

fr

~n

~!iincident direction

mirror-reflection  
direction
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Phong BRDF
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Reflection direction distributed over an exponentiated cosine lobe:


~!r

~!o

fr

~n

~!iincident direction outgoing direction

mirror-reflection  
direction
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Phong BRDF
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Reflection direction distributed over an exponentiated cosine lobe:


fr(~!o, ~!i) =
e+ 2

2⇡
( ~!r · ~!o)

e

~!r = (2~n(~n · ~!i)� ~!i)

~!r

~!o

fr

~n

~!iincident direction outgoing direction

mirror-reflection  
direction
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Blinn-Phong BRDF
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Reflection direction distributed over an exponentiated cosine lobe:


~!o

fr

~n

~!iincident direction outgoing direction
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Blinn-Phong BRDF
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Reflection direction distributed over an exponentiated cosine lobe:


~!r = (2~n(~n · ~!i)� ~!i)
~!o

fr

~n

~!iincident direction outgoing direction

: half-vector

fr(~!o, ~!i) =
e+ 2

2⇡
(~!h · ~n)e

~!h
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Blinn-Phong BRDF
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Reflection direction distributed over an exponentiated cosine lobe:


~!r = (2~n(~n · ~!i)� ~!i)
~!o

fr

~n

~!iincident direction outgoing direction

: half-vector

fr(~!o, ~!i) =
e+ 2

2⇡
(~!h · ~n)e

~!h

~!h =
~!i + ~!o

||~!i + ~!o||
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Rough Surfaces
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Empirical glossy models have limitations:


 - not physically-based


 - (often) not reciprocal 
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Empirical glossy models have limitations:


 - not physically-based


 - (often) not reciprocal 

 - not energy-preserving (can be normalized): many conflicting normalizations in the  

literature 

 - (often) no Fresnel effects 

 - cannot accurately model appearance of many glossy surfaces 
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Rough Surfaces
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Empirical glossy models have limitations:


 - not physically-based


 - (often) not reciprocal 

 - not energy-preserving (can be normalized): many conflicting normalizations in the  

literature 

 - (often) no Fresnel effects 

 - cannot accurately model appearance of many glossy surfaces 

Blinn-Phong was first step in the right direction


Can do Better
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Microfacet Theory
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In geometric-optics-based approaches, rough surfaces can be modeled as a 
collection of small microfacets.  

Surfaces comprised of microfacets are often modeled as heightfields, where 
the distribution of facet orientations is described statistically 
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Microfacet Theory

164

Assume surface consists of tiny facets 

Assume that the differential area being viewed/illuminated is relatively large 
compared to the size of microfacets 

A facet can be perfectly specular or diffuse 
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Torrance-Sparrow Model
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Developed by Torrance & Sparrow in 1967 

Originally used in the physics community 
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Developed by Torrance & Sparrow in 1967 

Originally used in the physics community 

Adapted by Cook & Torrance and Blinn for graphics 

- added ambient and diffuse terms 
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Torrance-Sparrow Model

167

Developed by Torrance & Sparrow in 1967 

Originally used in the physics community 

Adapted by Cook & Torrance and Blinn for graphics 

- added ambient and diffuse terms 

Explain off-specular peaks 

Assumes surface is composed of many micro-grooves, each of which is a 
perfect mirror
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Torrance-Sparrow Model
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Slides material borrowed from multiple resources. 


Thanks to Wojciech Jarosz for making his rendering 
lectures available online
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f(~!i, ~!o) =
F (~!h, ~!o) ·D(~!h) ·G(~!i, ~!o)

4|(~!i · ~n)(~!o · ~n)|

General Microfacet Model
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f(~!i, ~!o) =
F (~!h, ~!o) ·D(~!h) ·G(~!i, ~!o)

4|(~!i · ~n)(~!o · ~n)|

Fresnel coefficient

General Microfacet Model
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f(~!i, ~!o) =
F (~!h, ~!o) ·D(~!h) ·G(~!i, ~!o)

4|(~!i · ~n)(~!o · ~n)|

Microfacet 
distributionFresnel coefficient

General Microfacet Model
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f(~!i, ~!o) =
F (~!h, ~!o) ·D(~!h) ·G(~!i, ~!o)

4|(~!i · ~n)(~!o · ~n)|

Fresnel coefficient
Microfacet 
distribution shadowing/masking

General Microfacet Model
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General Microfacet Model
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f(~!i, ~!o) =
F (~!h, ~!o) ·D(~!h) ·G(~!i, ~!o)

4|(~!i · ~n)(~!o · ~n)|

Fresnel coefficient
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Fresnel Term

174
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General Microfacet Model
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f(~!i, ~!o) =
F (~!h, ~!o) ·D(~!h) ·G(~!i, ~!o)

4|(~!i · ~n)(~!o · ~n)|

Microfacet 
distribution
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Microfacet Distribution
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~!i

~!o
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Microfacet Distribution
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~!i

~!o
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Microfacet Distribution
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~!i

~!o
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Microfacet Distribution
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~!i

~!o



Realistic Image Synthesis SS2021

Microfacet Distribution
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~!i

~!o

How much of the surface reflects?



Realistic Image Synthesis SS2021

Microfacet Distribution

181

What fraction of the surface participates in the reflection?

1) difficult to say (need an actual micro surface to compute this, tedious..)

2) Solve using principles of statistical physics

- Is there anything general we can say about the surface when  
there are many bumps?
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Microfacet Distribution

182

Fraction of facets facing each direction

Probability density function over projected solid angle (must be normalized): 
Z

H2

D(~!h) cos ✓hd~!h = 1
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Beckmann-Spizzichino Model

183

The slopes follow a Gaussian distribution

Let's express slope distribution w.r.t. directions

D(~!h) =
1

⇡↵2 cos4 ✓h
exp�

tan2✓h
↵2
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Beckmann-Spizzichino Model
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The slopes follow a Gaussian distribution

Let's express slope distribution w.r.t. directions

D(~!h) =
1

⇡↵2 cos4 ✓h
exp�

tan2✓h
↵2
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f(~!i, ~!o) =
F (~!h, ~!o) ·D(~!h) ·G(~!i, ~!o)

4|(~!i · ~n)(~!o · ~n)|

shadowing/masking

General Microfacet Model
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Microfacet Distribution: Masking effect
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 Masking effect:

The microfacet of interest not visible to the viewer due to occlusions 
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 Masking effect:

The microfacet of interest not visible to the viewer due to occlusions 
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Microfacet Distribution: Shadowing effect
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Light does not reach the microfacet

 Shadowing effect:



Realistic Image Synthesis SS2021

Microfacet Distribution: Shadowing/Masking
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Light bounces among the facets before reaching the viewer
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Light bounces among the facets before reaching the viewer
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Microfacet Distribution: Shadowing/Masking
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Light bounces among the facets before reaching the viewer
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Microfacet Distribution: Interreflection

191

Interreflection

Light bounces among the facets before reaching the viewer
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Microfacet Distribution: Interreflection
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Interreflection

Light bounces among the facets before reaching the viewer
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Reading

• PBRT Section 8.4 

• GGX Distribution, Walter et al. (EGSR 2007) 

• Isotropic and anisotropic microfacet distributions  

• Oren–Nayar model, a "directed-diffuse" microfacet model, 
with perfectly diffuse (rather than specular) microfacets.  

• Ashikhmin-Shirley model, allowing for anisotropic reflectance, 
along with a diffuse substrate under a specular surface

192

http://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models.html#fig:microfacet
https://www.cs.cornell.edu/~srm/publications/EGSR07-btdf.pdf
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Reading

• PBRT Section 8.4


• GGX Distribution, Walter et al. (EGSR 2007)

193
PBRT v3 [2016]

Isotropic microfacet distribution Anisotropic microfacet distribution

http://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models.html#fig:microfacet
https://www.cs.cornell.edu/~srm/publications/EGSR07-btdf.pdf
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Slides material borrowed from multiple resources.  

Special thanks to Wojciech Jarosz for making his rendering 
lectures available online


