Path to Neural Networks II

Image courtesy Vogel et al. [2018], Gharbi et al. [2019]

Today's Menu

Sample-based denoising

CNN-based approach to generate blue-noise samples

Normalizing Flows

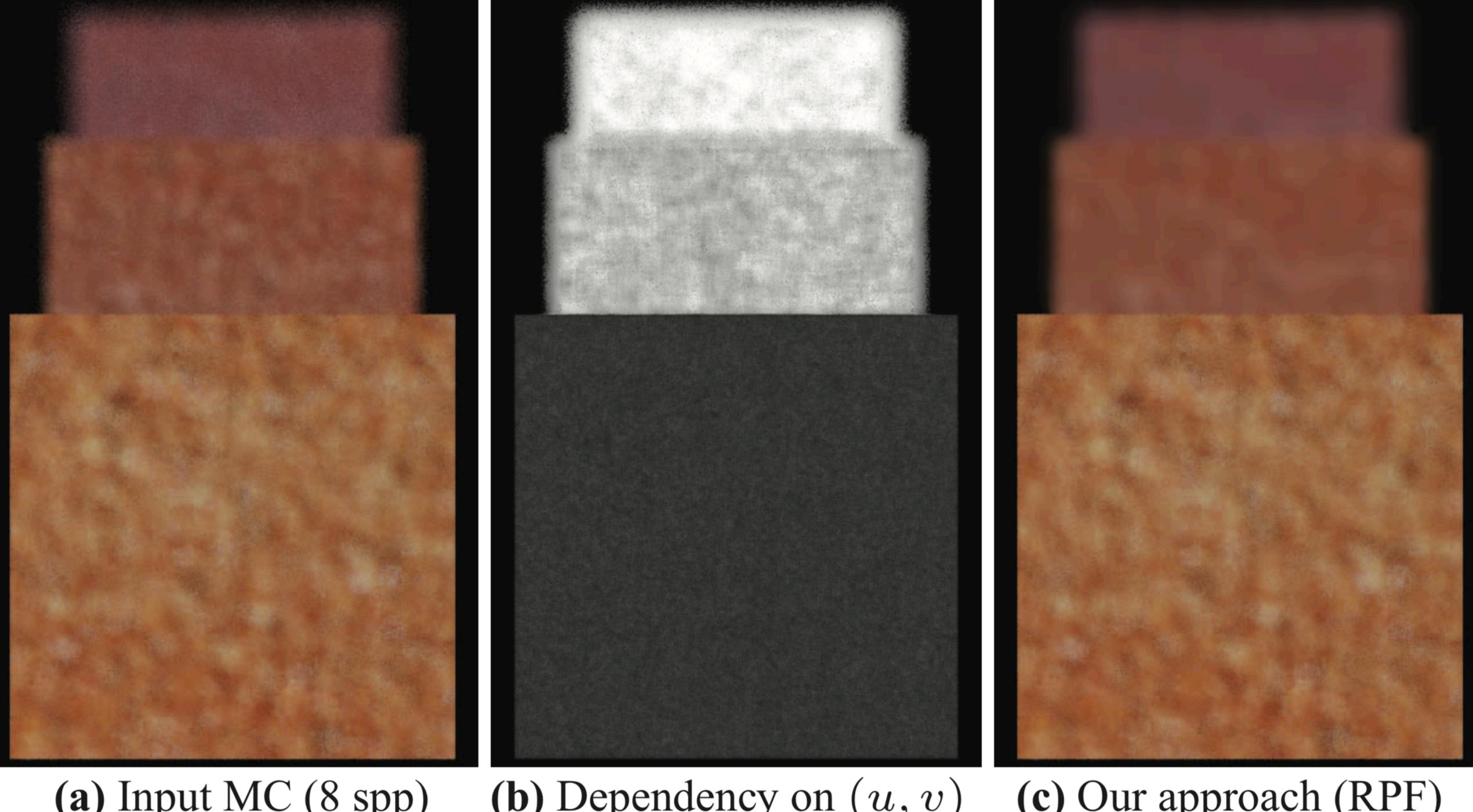
Path guiding using Normalizing Flows

Recap



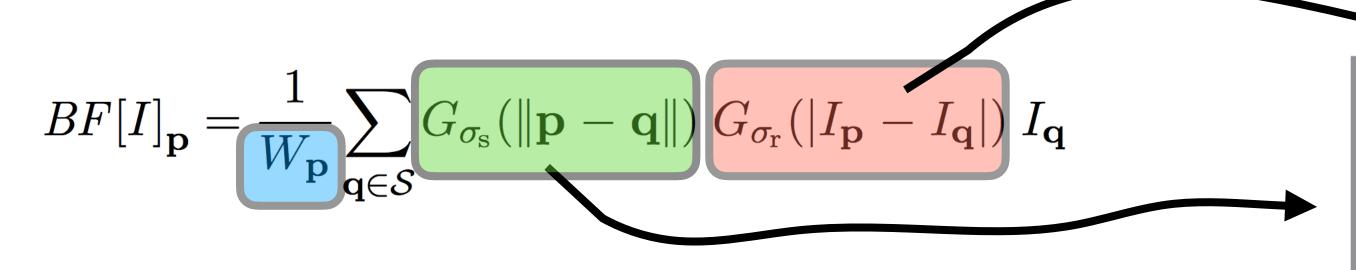
input Monte Carlo (8 samples/pixel)

after RPF (8 samples/pixel)

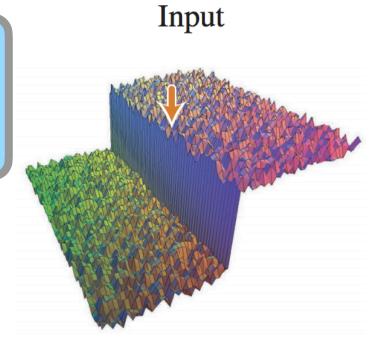


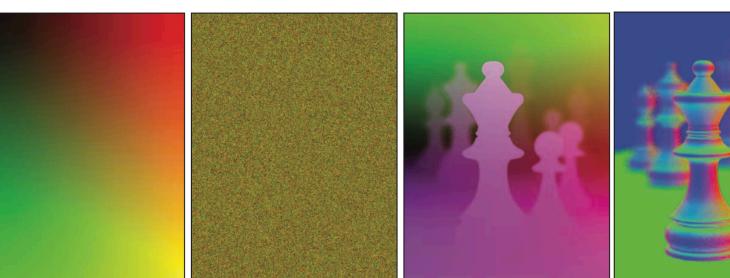
(a) Input MC (8 spp) (b) Dependency on (u, v) (c) Our approach (RPF)

Bilateral Filtering



$$W_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$$

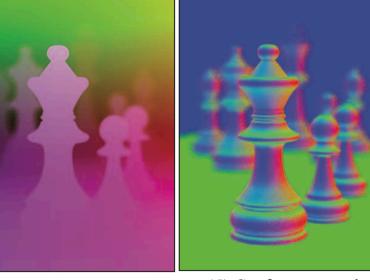




(a) Screen position

UNIVERSITÄT

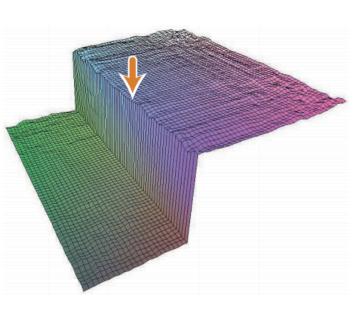
DES SAARLANDES

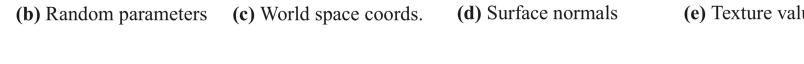


Spatial weight Range weight Multiplication of range

and spatial weights

Bilateral filter weights at the central pixel

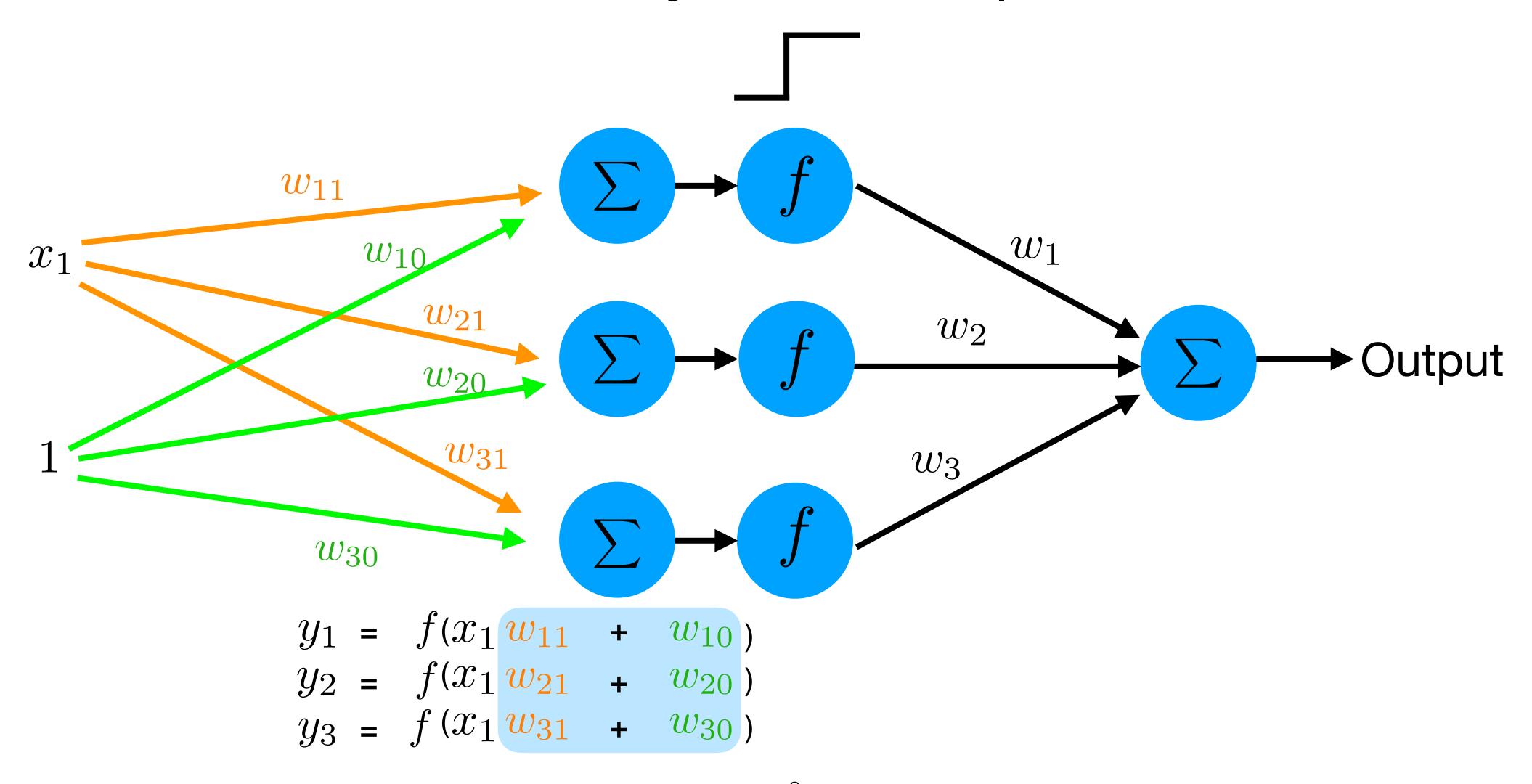




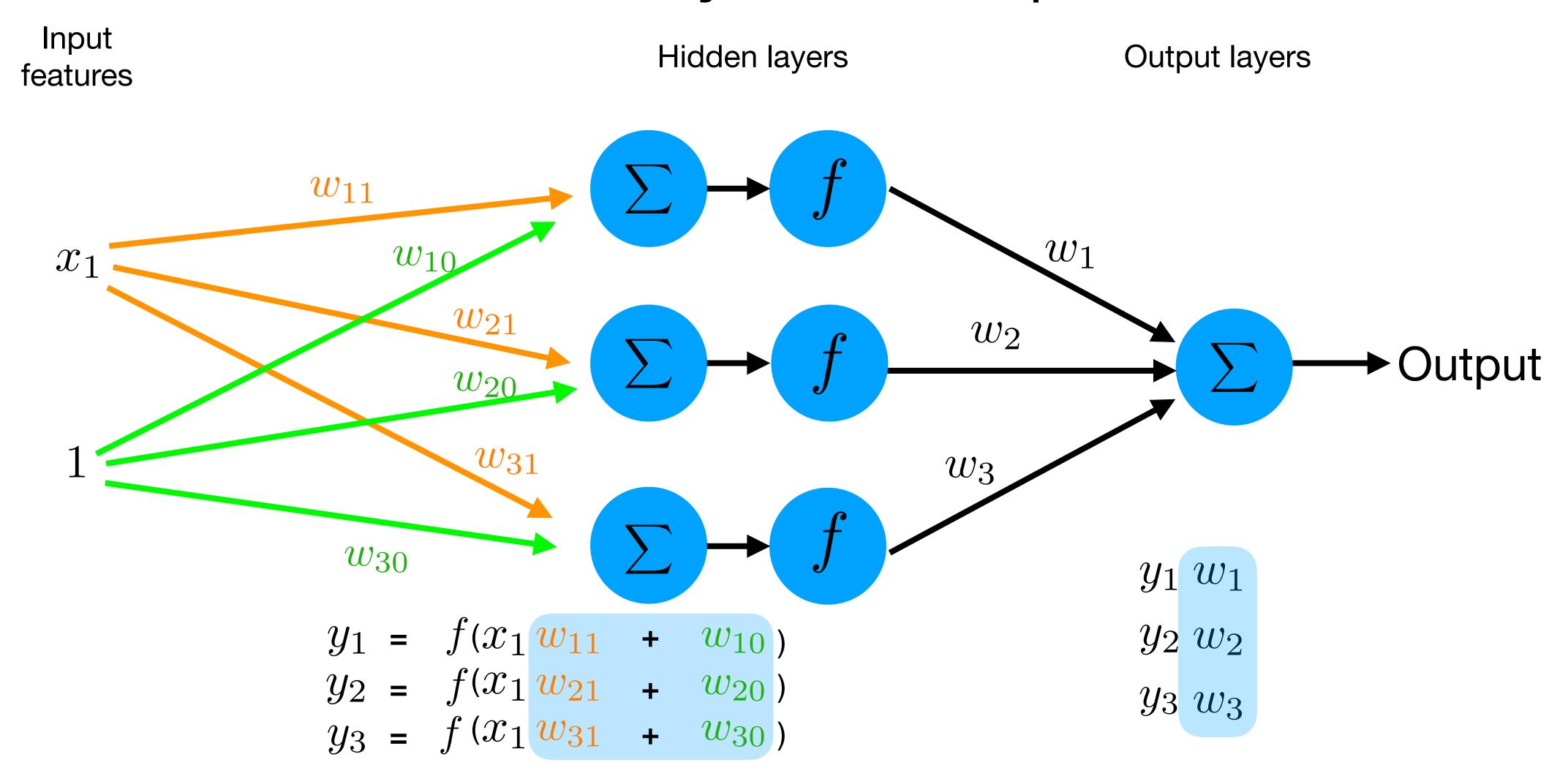
Bilateral Filtering of Features

$$w_{ij} = \exp\left[-\frac{1}{2\sigma_{\mathbf{p}}^{2}} \sum_{1 \leq k \leq 2} (\bar{\mathbf{p}}_{i,k} - \bar{\mathbf{p}}_{j,k})^{2}\right] \times \exp\left[-\frac{1}{2\sigma_{\mathbf{c}}^{2}} \sum_{1 \leq k \leq 3} \alpha_{k} (\bar{\mathbf{c}}_{i,k} - \bar{\mathbf{c}}_{j,k})^{2}\right] \times \exp\left[-\frac{1}{2\sigma_{\mathbf{f}}^{2}} \sum_{1 \leq k \leq m} \beta_{k} (\bar{\mathbf{f}}_{i,k} - \bar{\mathbf{f}}_{j,k})^{2}\right],$$

Multi-layer Perceptron

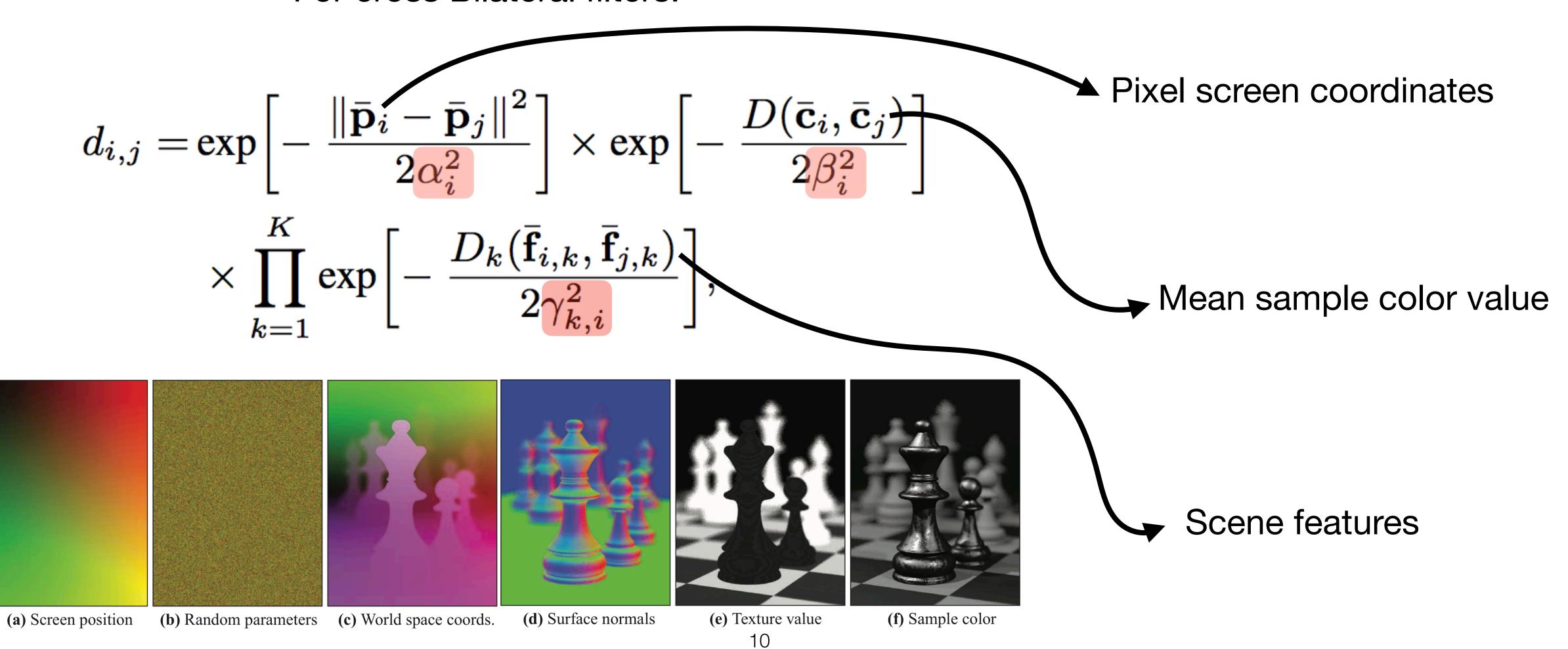


Multi-layer Perceptron



Filter weights

For cross Bilateral filters:



Our result with a cross-bilateral filter (4 spp)

Overview on Convolutional Neural Networks (CNNs)

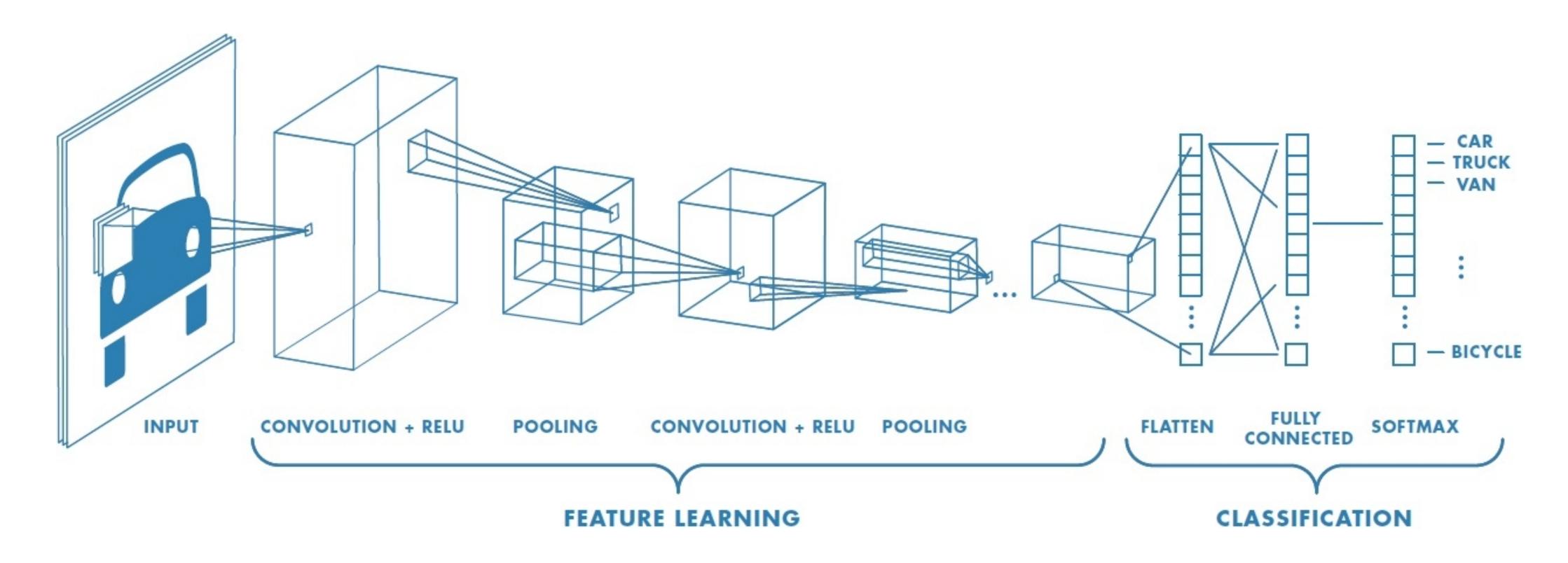
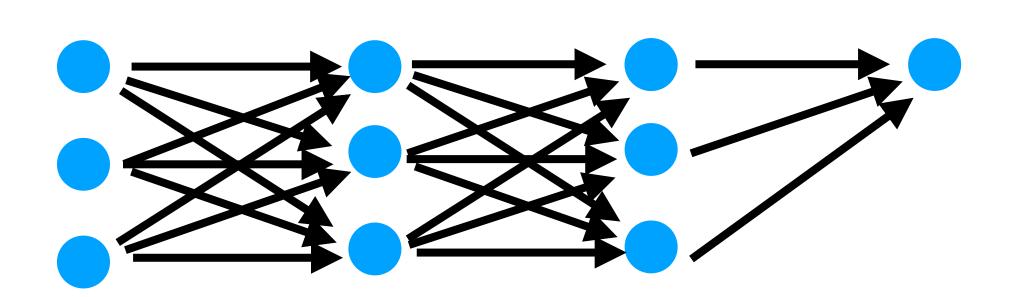


Image Courtesy: Mathworks (online tutorial)

Multi-layer Perceptron vs. CNNs

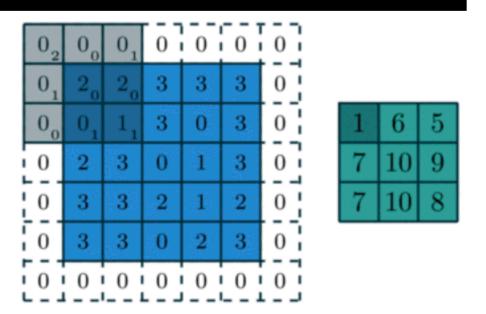
Multi-layer perceptron



All nodes are fully connected in all layers
In theory, should be able to achieve good quality
results in small number of layers.

Number of weights to be learnt are very high

CNNs

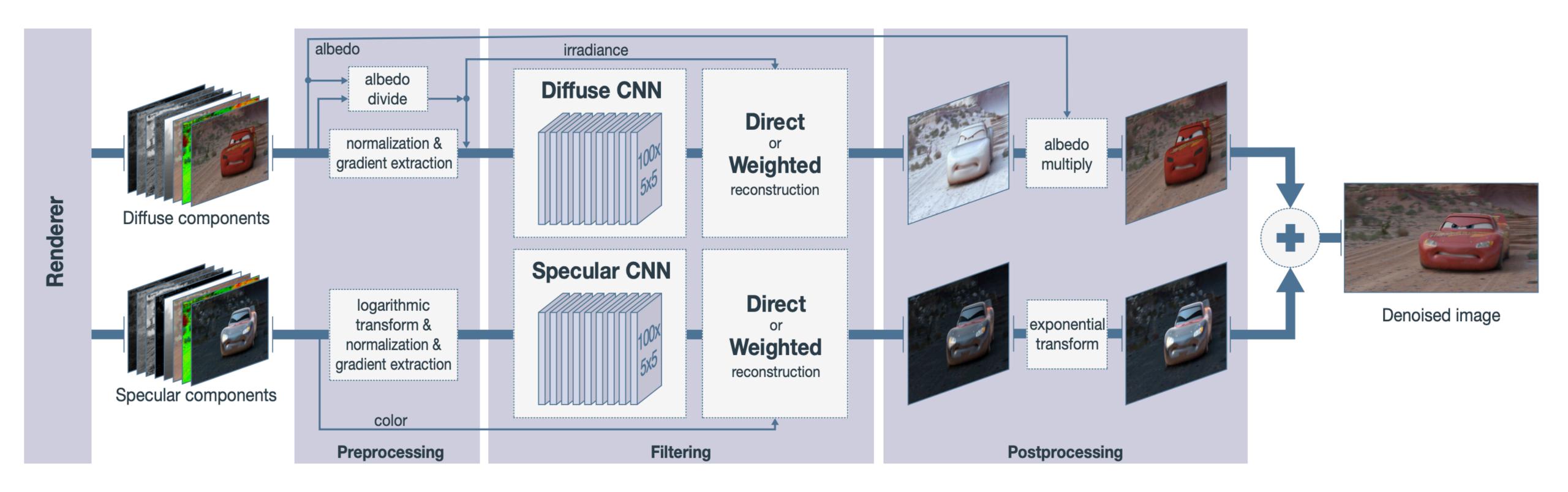


Weights are shared across layers

Requires significant number of layers to capture all the features (e.g. Deep CNNs)

Relatively small number of weights required

Kernel-Predicting Networks for Denoising Monte-Carlo Renderings



Recurrent AutoEncoder for Interactive Reconstruction

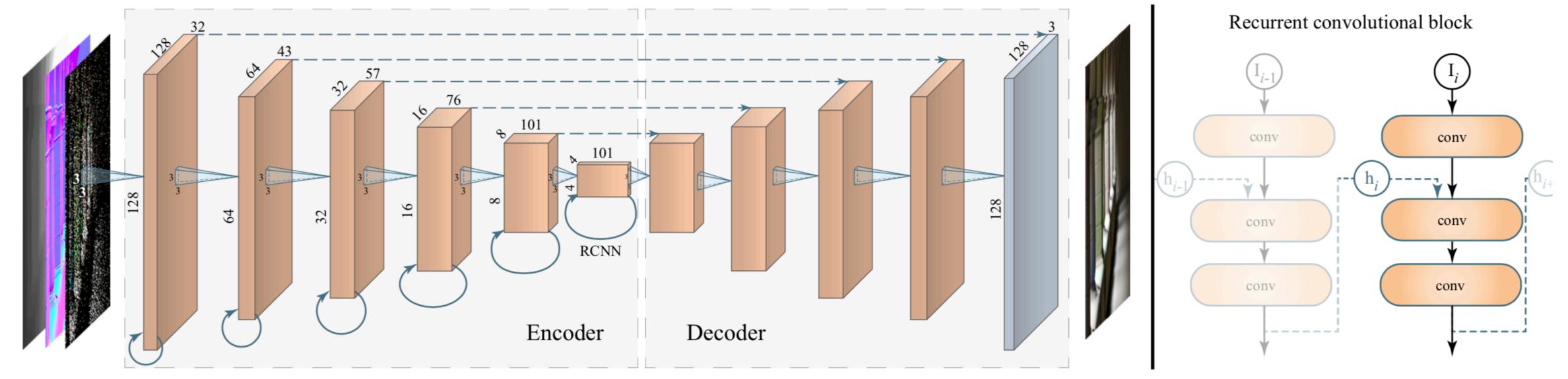
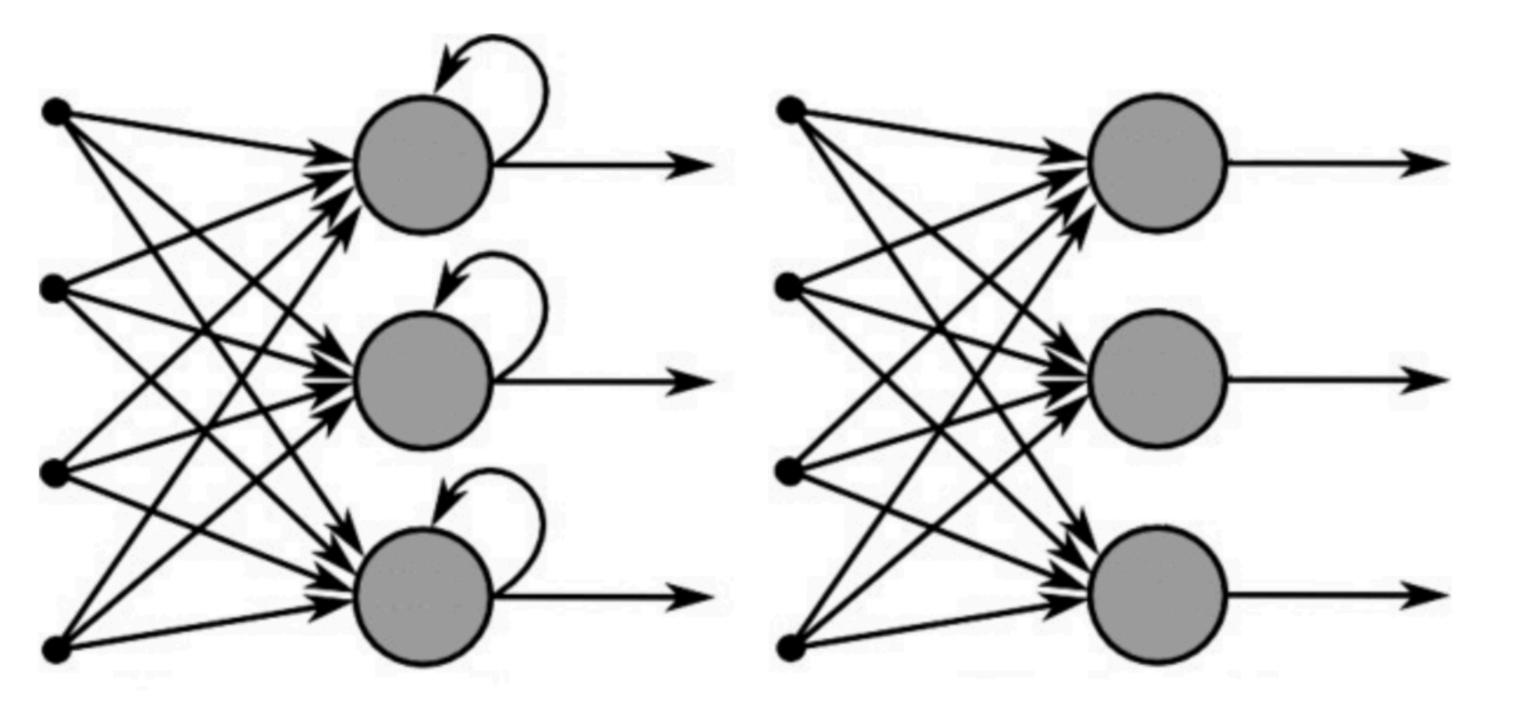


Fig. 2. Architecture of our recurrent autoencoder. The input is 7 scalar values per pixel (noisy RGB, normal vector, depth, roughness). Each encoder stage has a convolution and 2×2 max pooling. A decoder stage applies a 2×2 nearest neighbor upsampling, concatenates the per-pixel feature maps from a skip connection (the spatial resolutions agree), and applies two sets of convolution and pooling. All convolutions have a 3×3 -pixel spatial support. On the right we visualize the internal structure of the recurrent RCNN connections. I is the new input and h refers to the hidden, recurrent state that persists between animation frames.

Recurrent Neural Networks vs. Simple Feed-Forward NN

Source link



Recurrent Neural Network

Feed-Forward Neural Network

Loss Functions

Spatial Loss to emphasize more the dark regions

$$L_s = \frac{1}{N} \sum_{i=1}^{N} |P_i - T_i|$$

Temporal loss

$$L_{t} = \frac{1}{N} \sum_{i}^{N} \left(\left| \frac{\partial P_{i}}{\partial t} - \frac{\partial T_{i}}{\partial t} \right| \right)$$

High frequency error norm loss for stable edges

$$L_g = \frac{1}{N} \sum_{i}^{N} |\nabla P_i - \nabla T_i|$$

Final Loss is a weighted averaged of above losses

$$L = w_s L_s + w_g L_g + w_t L_t$$

Pixel-space
Kernel Predicting
Denoising

#Learnable Parameters?

How to compute "learnable" parameters?

Sample-based MC Denoising

How to compute "learnable" parameters?

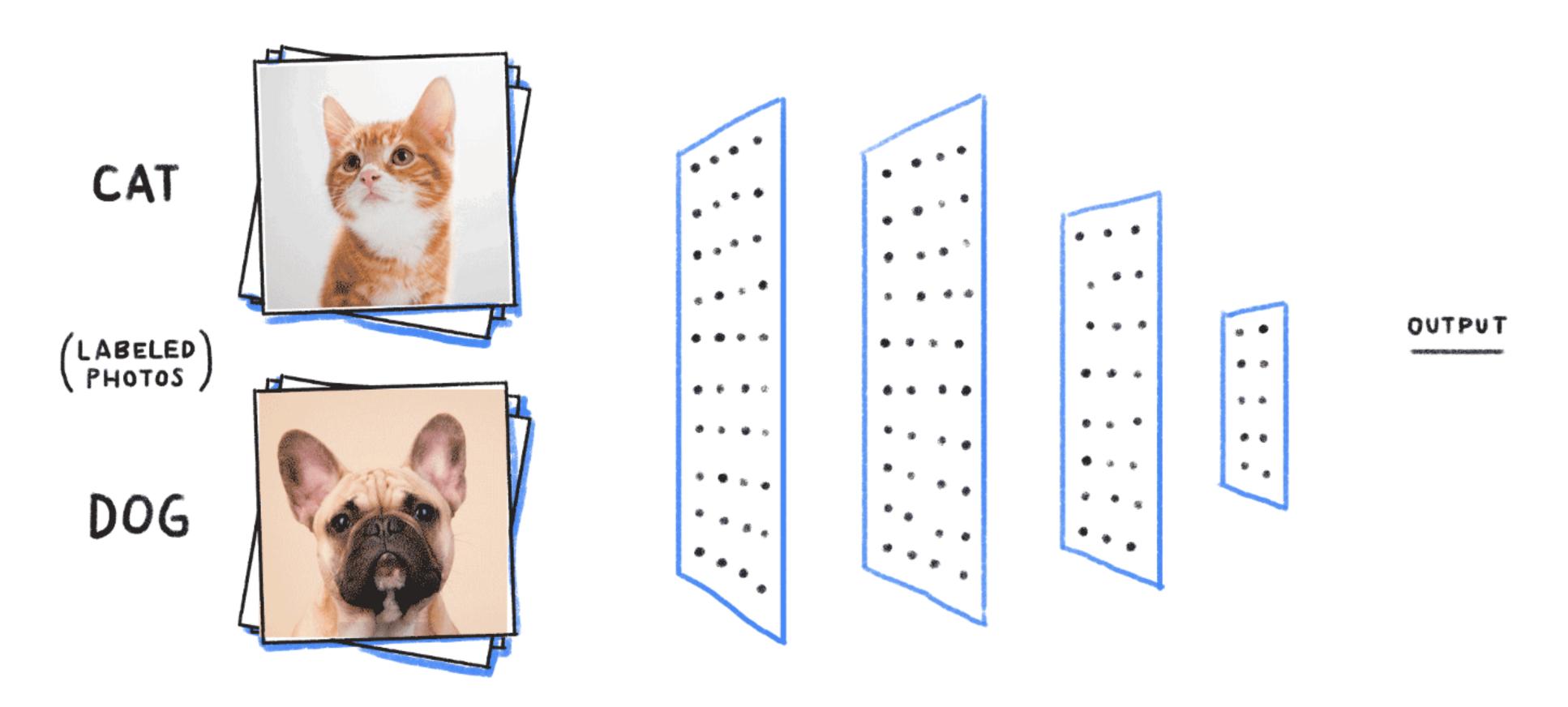


Image Source: Google

How to compute "learnable" parameters?

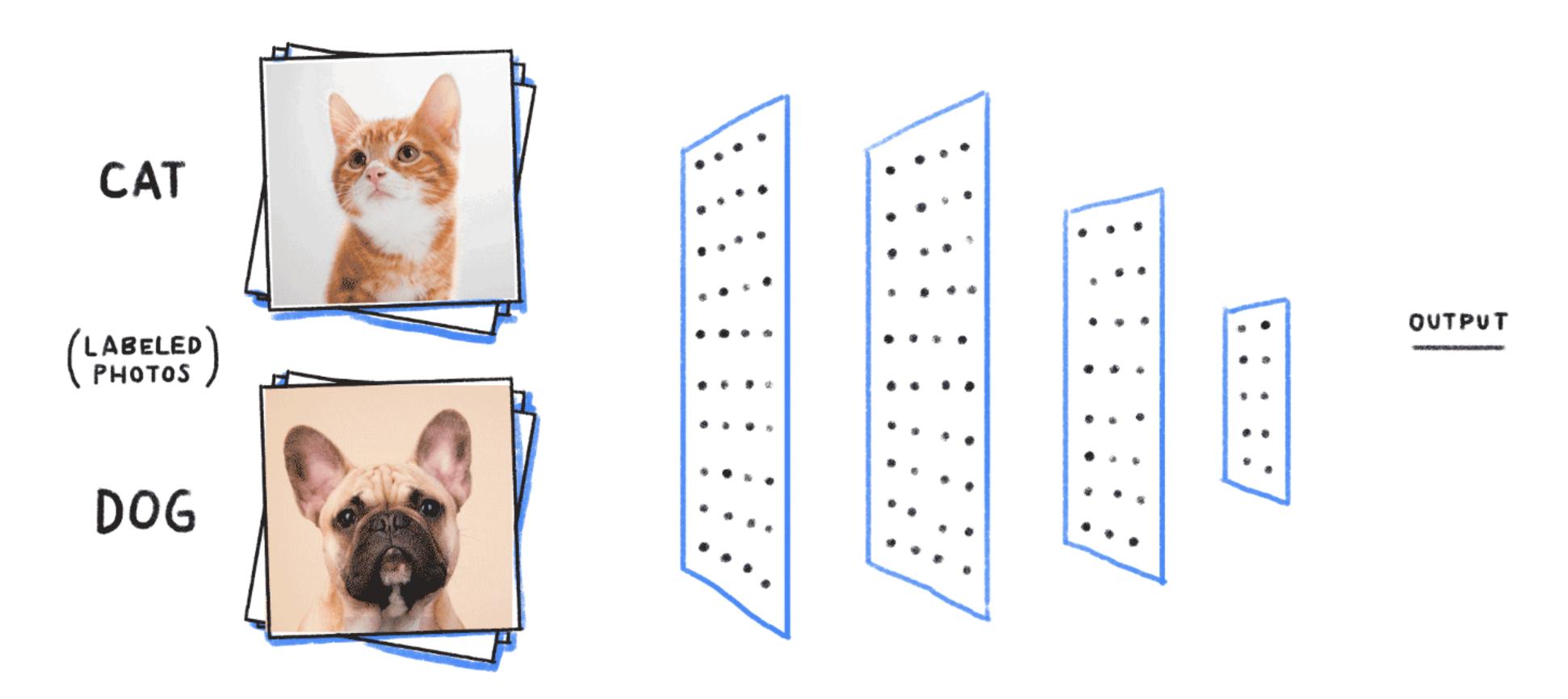


Image Source: Google

Feed-Forward Neural Network

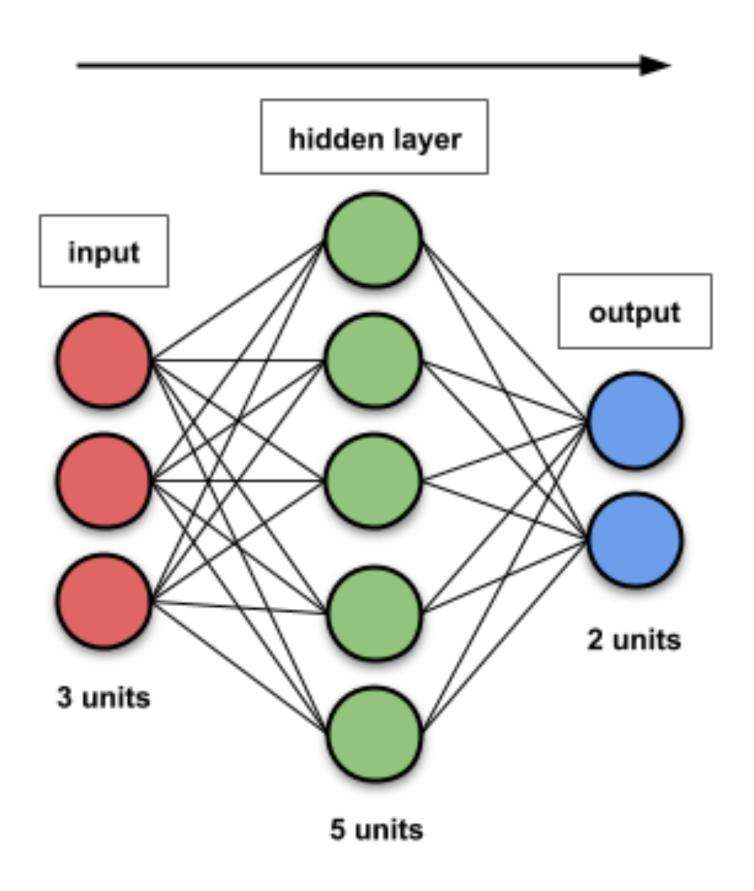
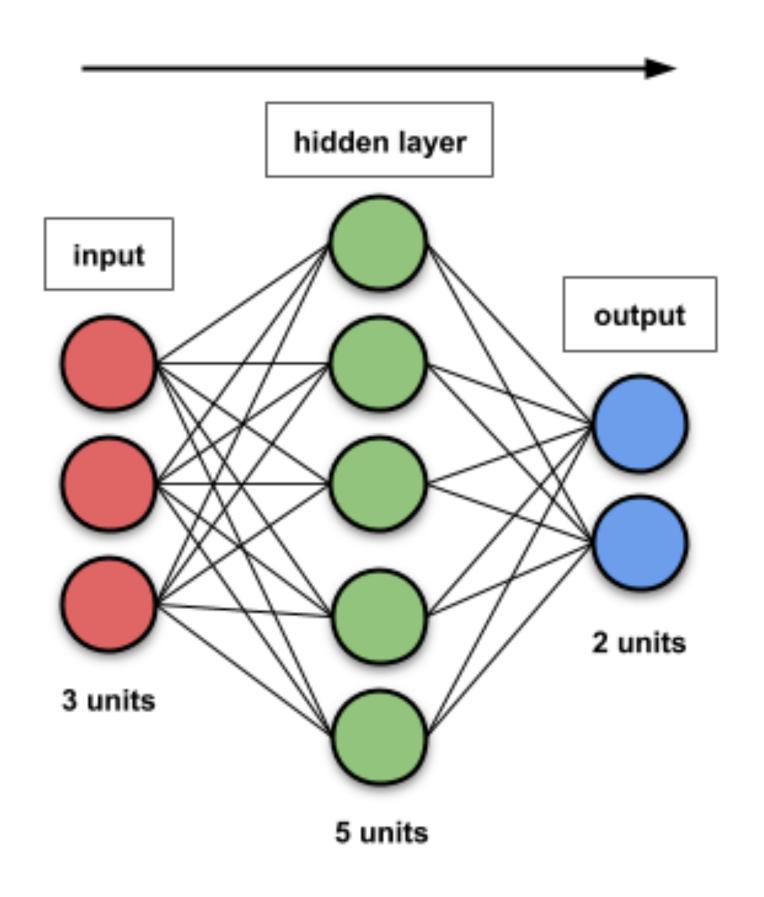


Image Source: towards-data-science

Feed-Forward Neural Network



$$(3 \times 5) + (5 \times 2) + (5 + 2) = 17$$
 parameters
weights biases

Image Source: towards-data-science

Feed-Forward Neural Network

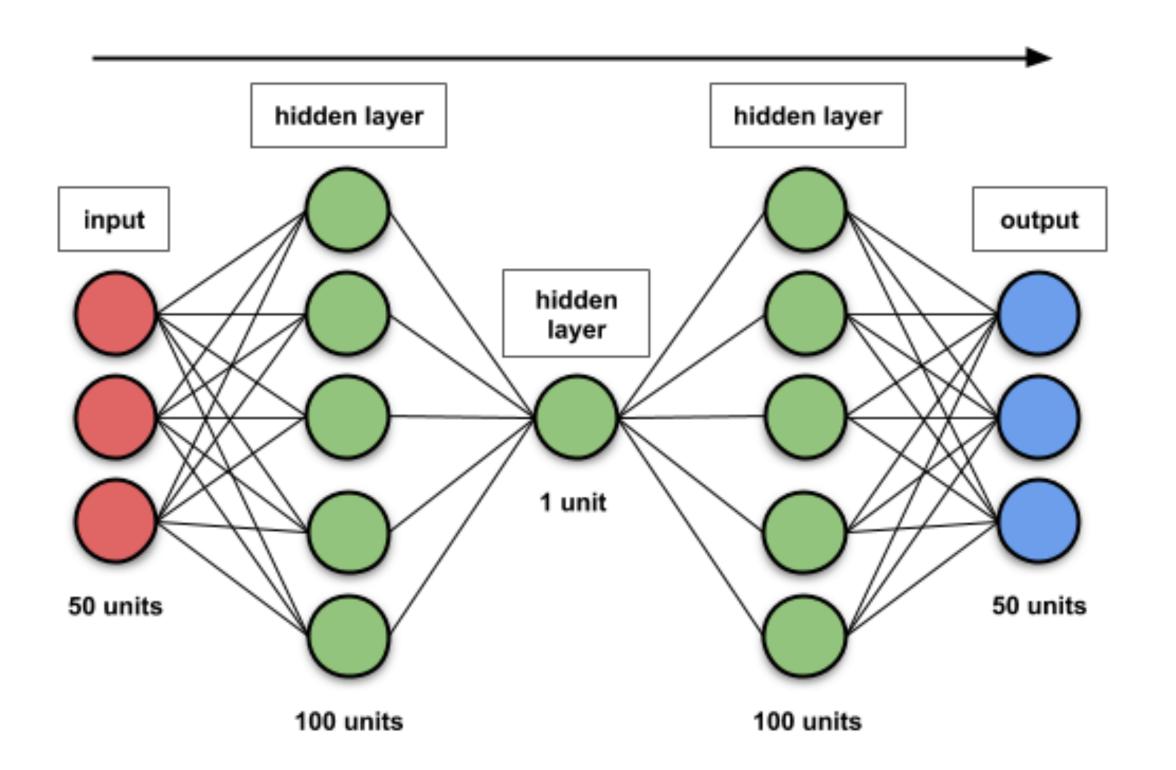


Image Source: towards-data-science

Pixel-space
Kernel Predicting
Denoising

#Learnable Parameters?

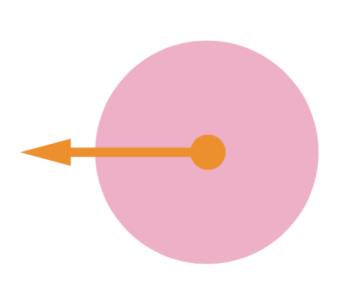
Sample-based MC Denoising

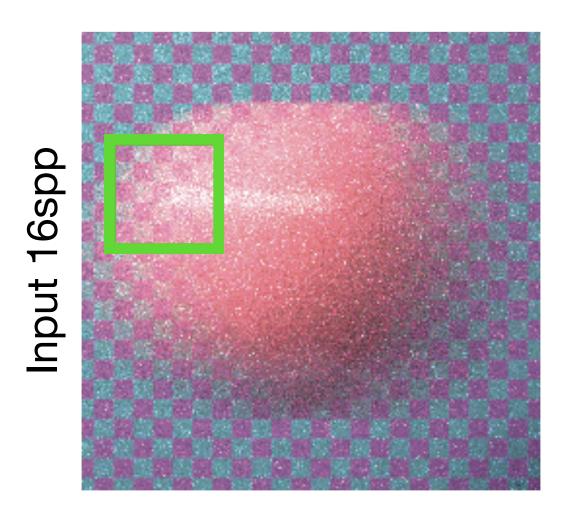
Sample-based Denoising Network

Michael Gharbi, Tzu-Mao Li, Miika Aittala, Jakko Lehtinen, Fredo Durand

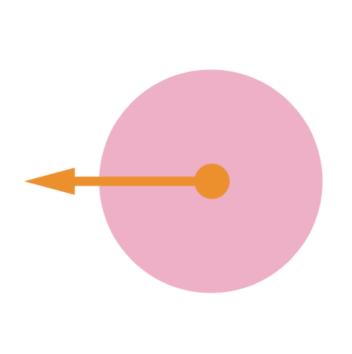
SIGGRAPH 2019

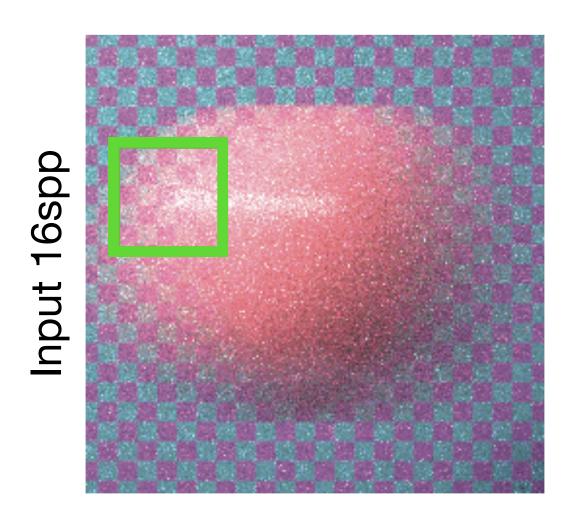
Multimodal distribution of sample features

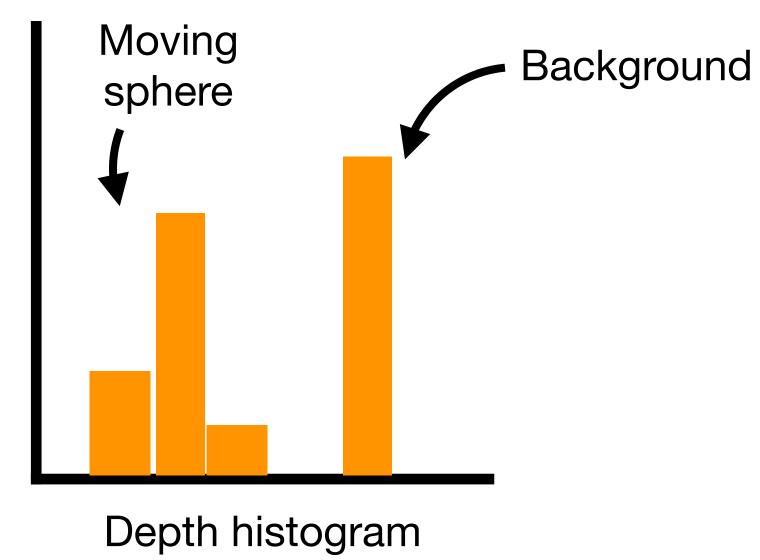




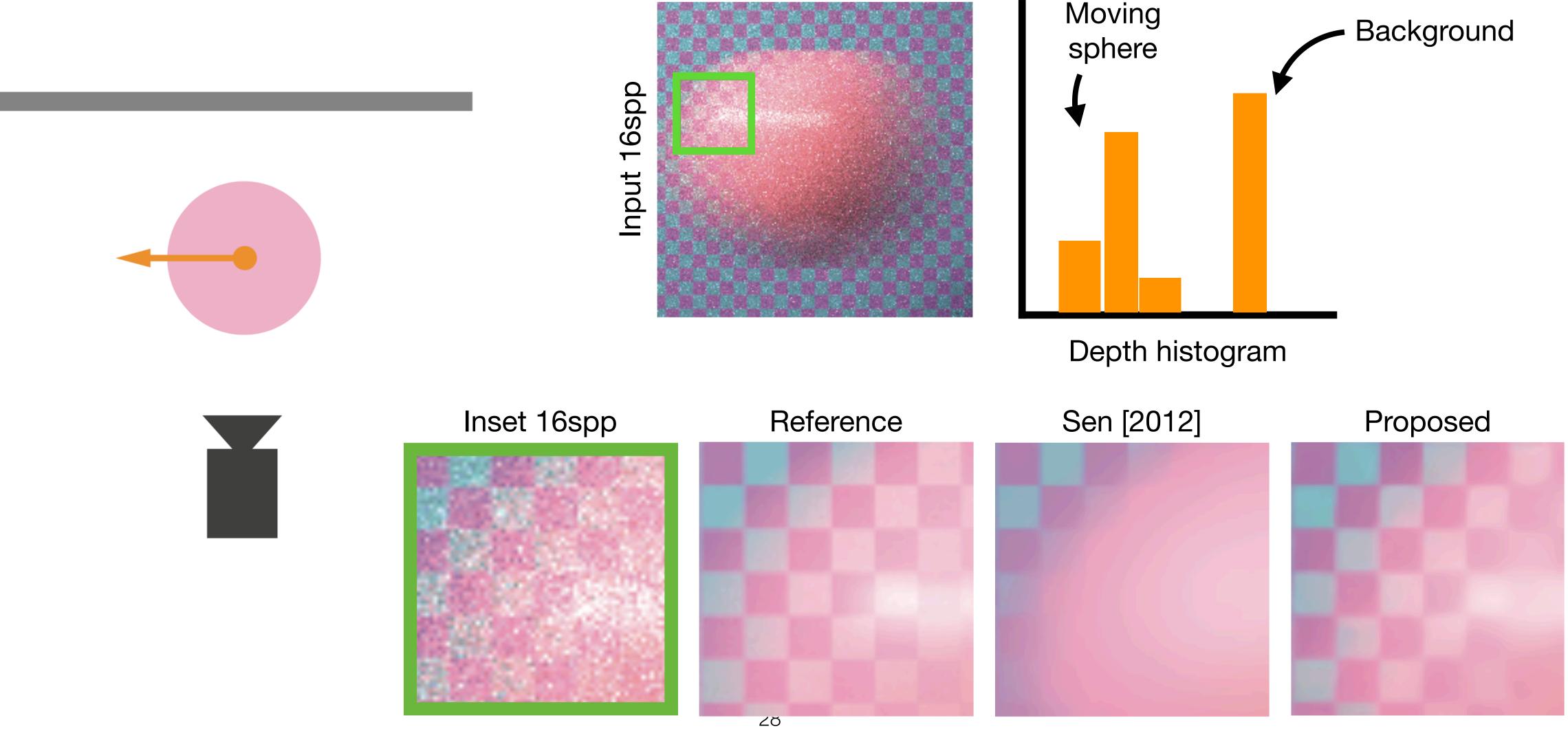
Multimodal distribution of sample features

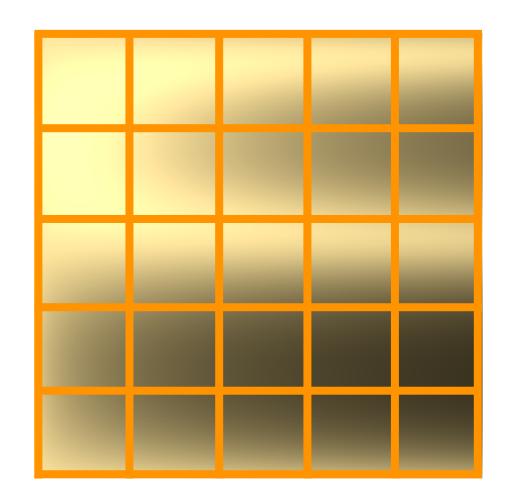


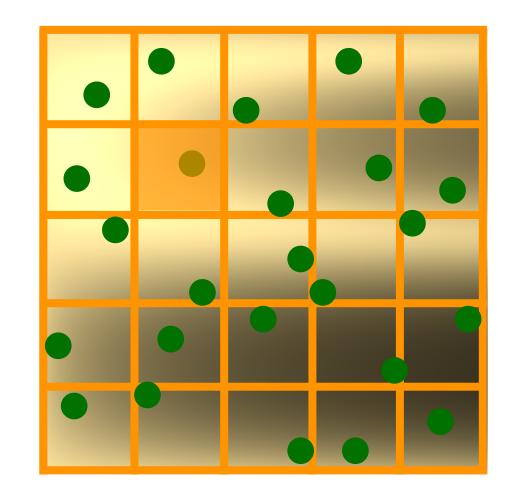


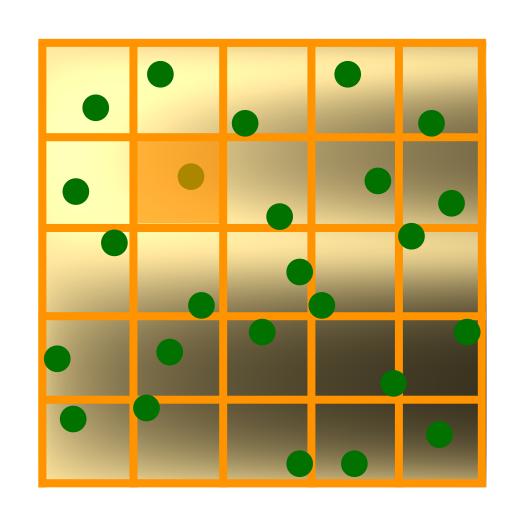


Multimodal distribution of sample features

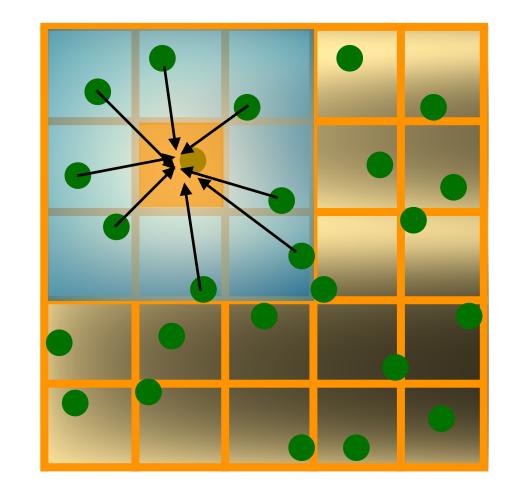






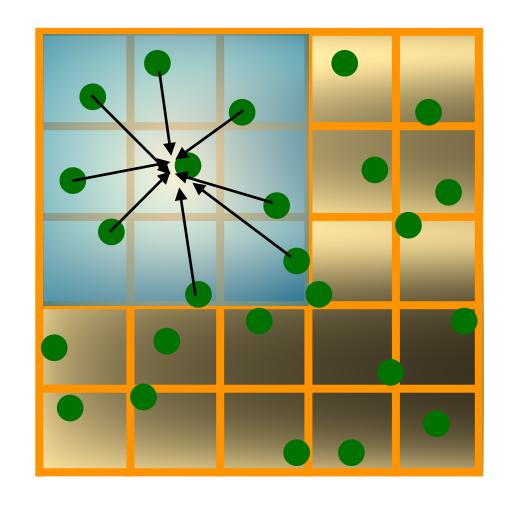


Kernel gather

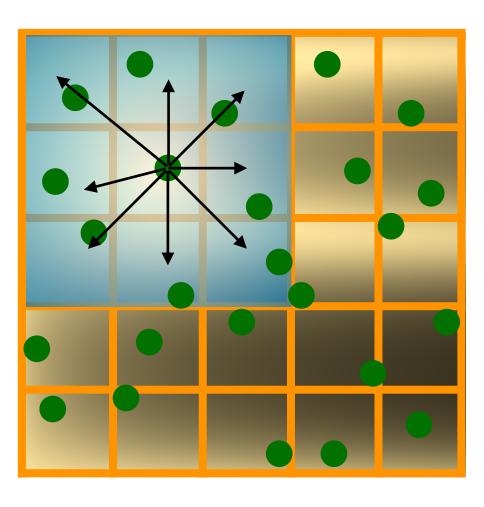


2D example

Kernel gather

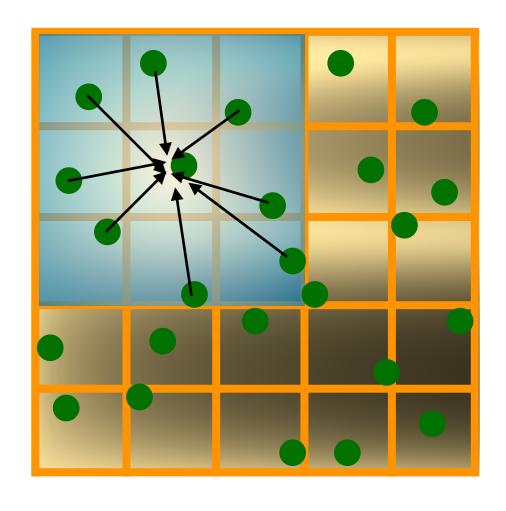


Kernel Splatting

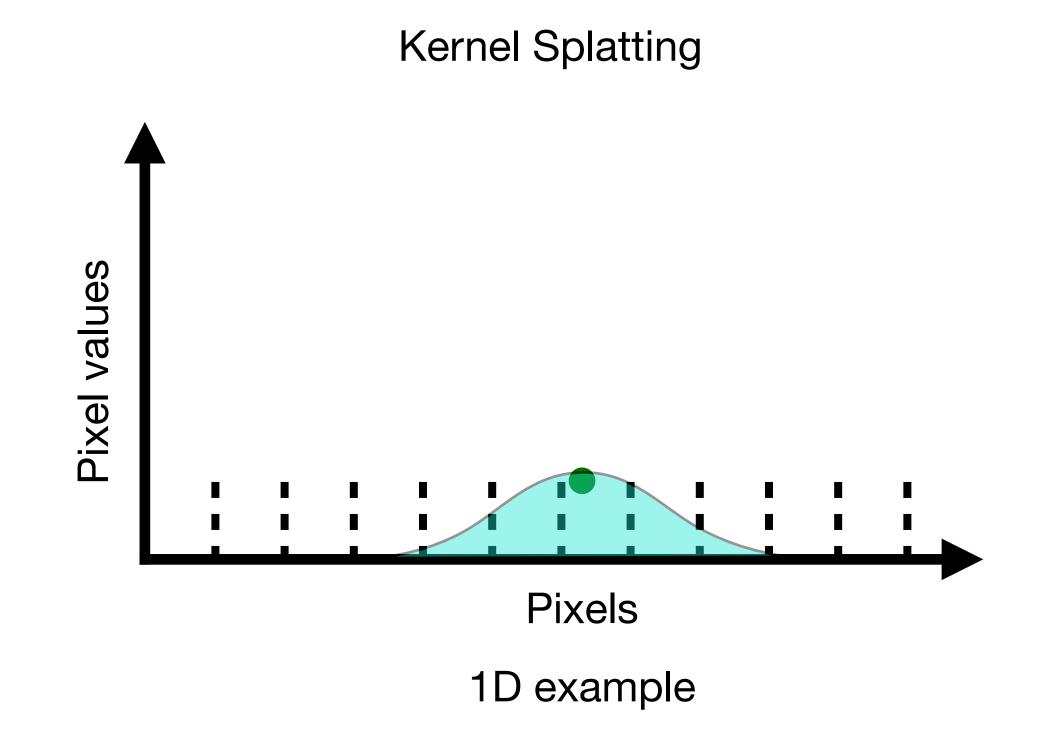


2D example 2D example

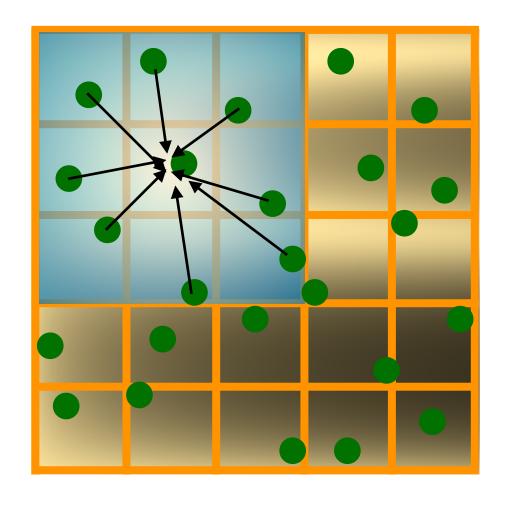
Kernel gather



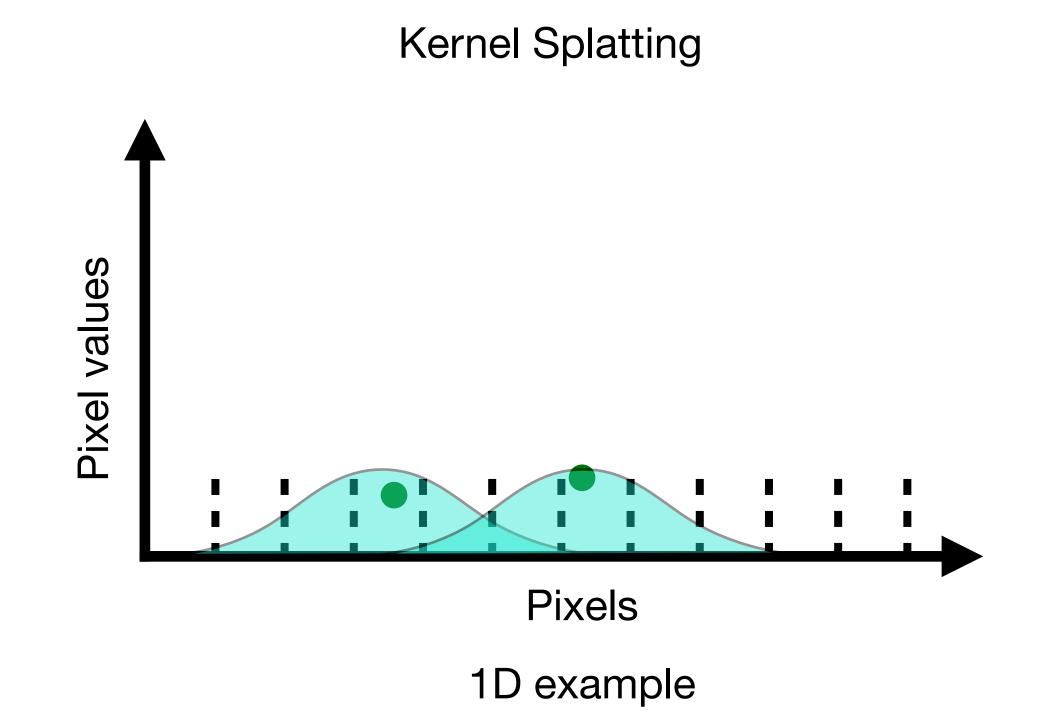
2D example



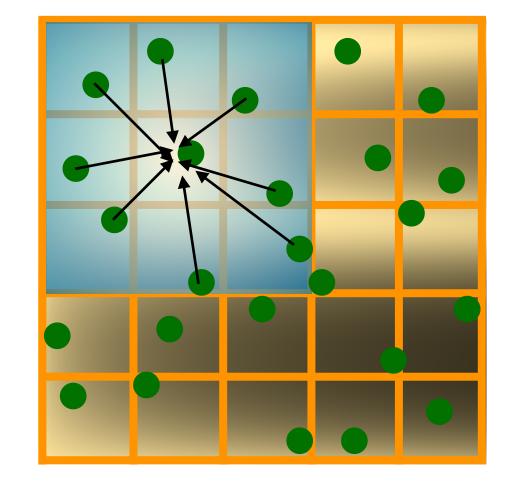
Kernel gather



2D example



Kernel gather

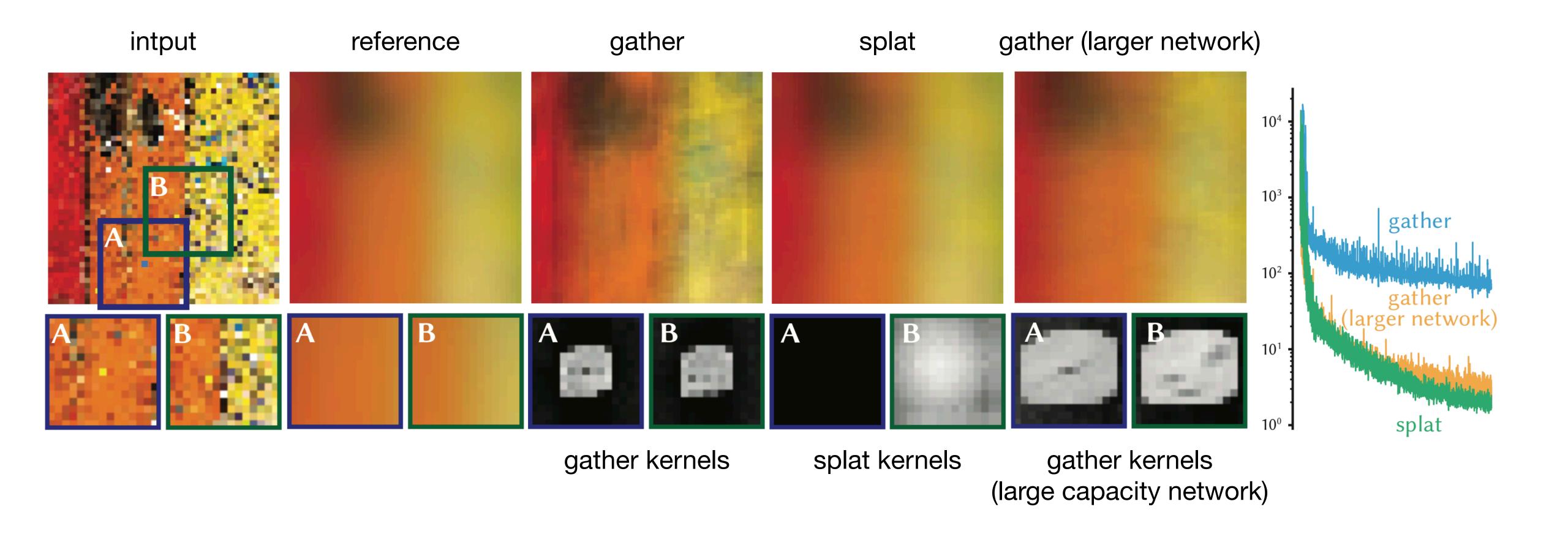


Kernel Splatting

Continue splatting kernels for the rest of the samples....

How do I contribute to nearby pixels, given all the samples around me?

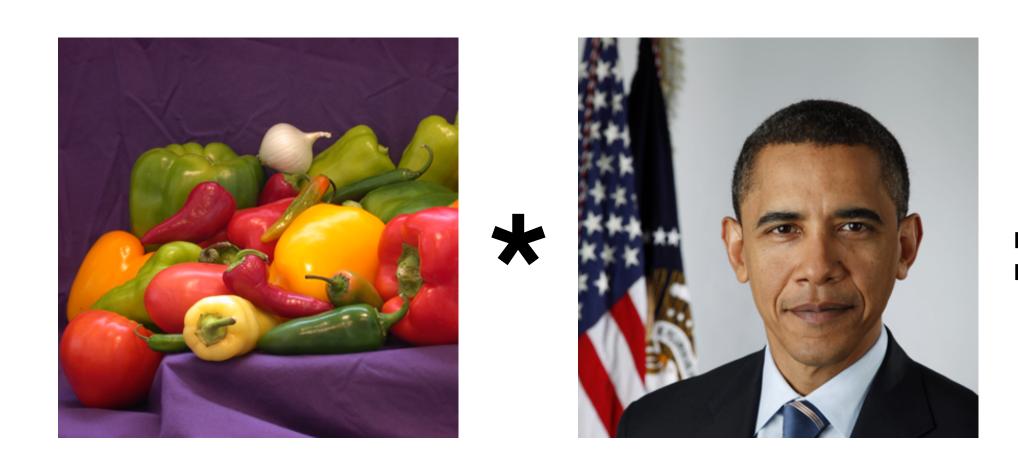
Network: Kernel Gather vs Splatting

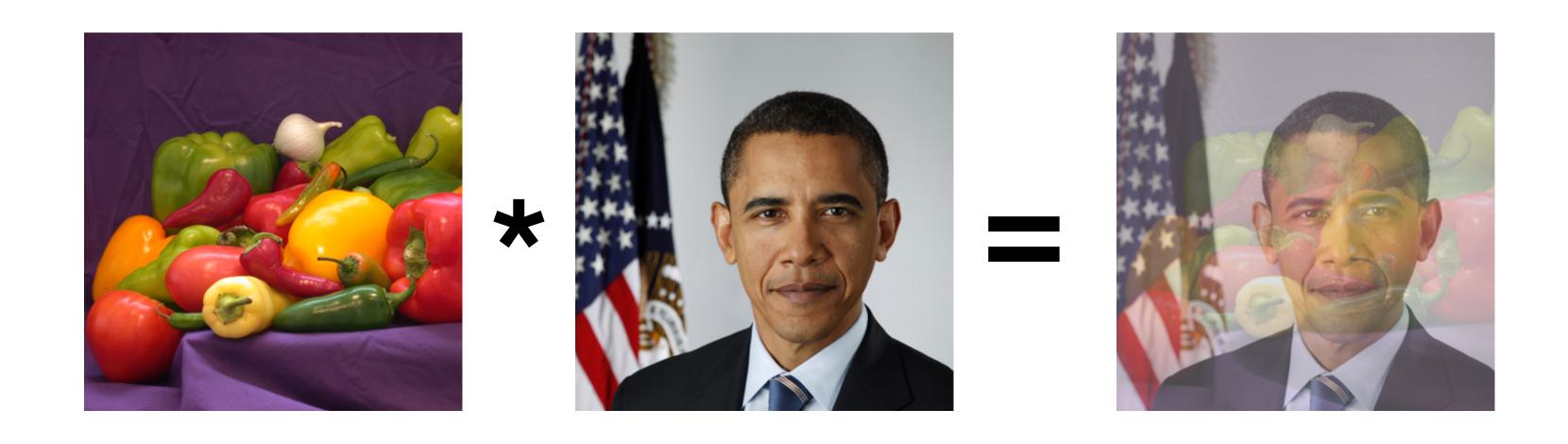


Permutation Invariance

Permutation Invariance

A model that produces the same output regardless of the order of elements in the input vector





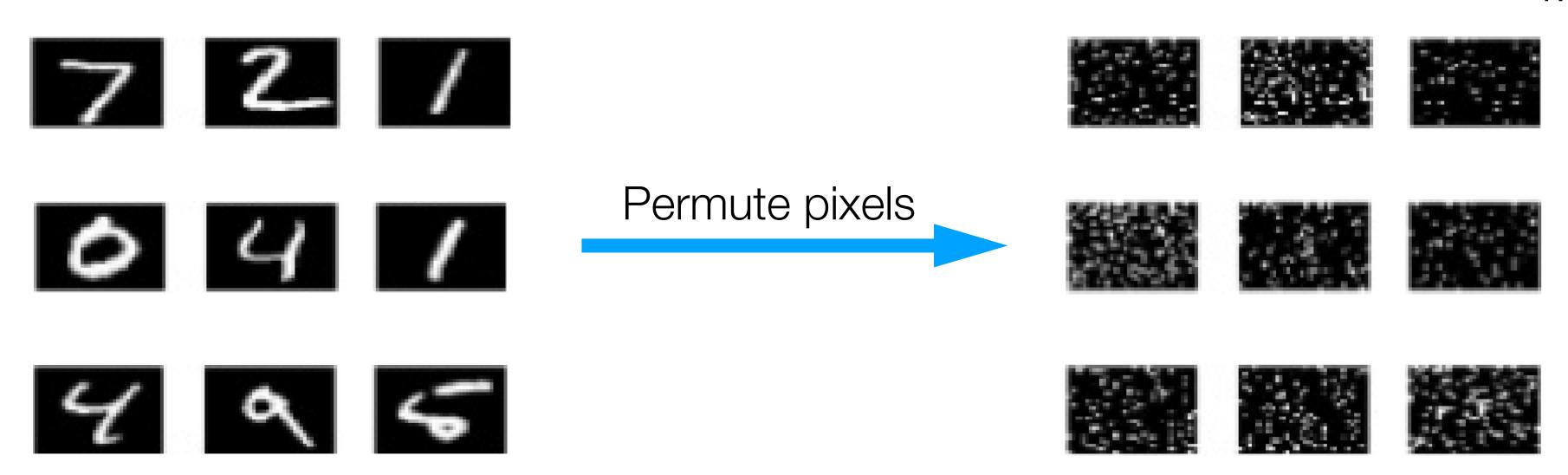
ot Permutation Invariance

ot Permutation Invariance

Permutation Invariance: Architectures

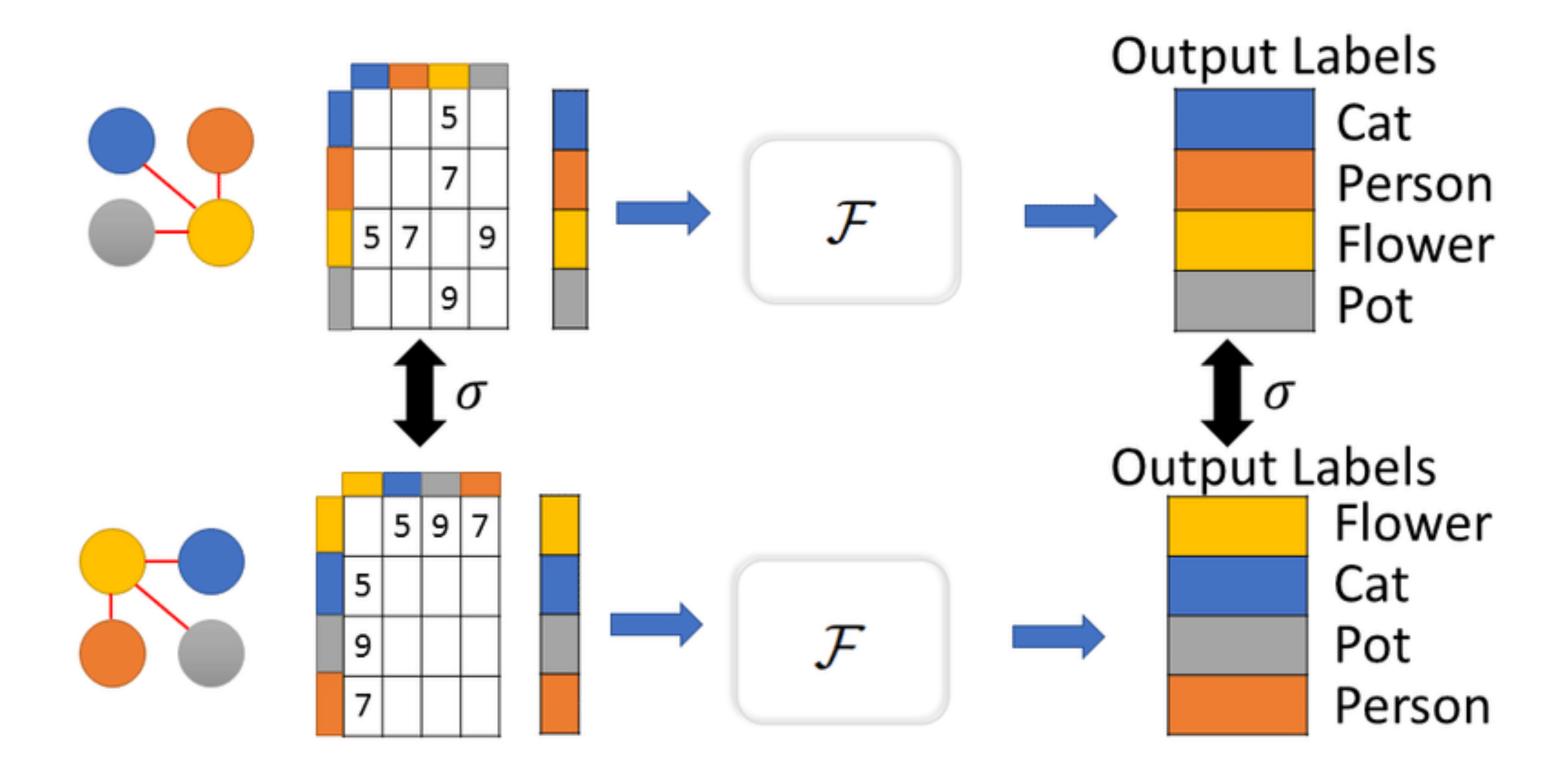
- A standard feedforward neural net such as multilayer perceptron (MLP) is insensitive to order of elements in input vector so it is inherently permutation insensitive
- However, both a Convnet and RNNs for instance make full use of input ordering they are permutation sensitive.

MNIST Dataset



Permuting pixels makes it difficult for humans to understand the images.

However, permutation invariant networks like MLP can detect digits irrespective of the order of pixels

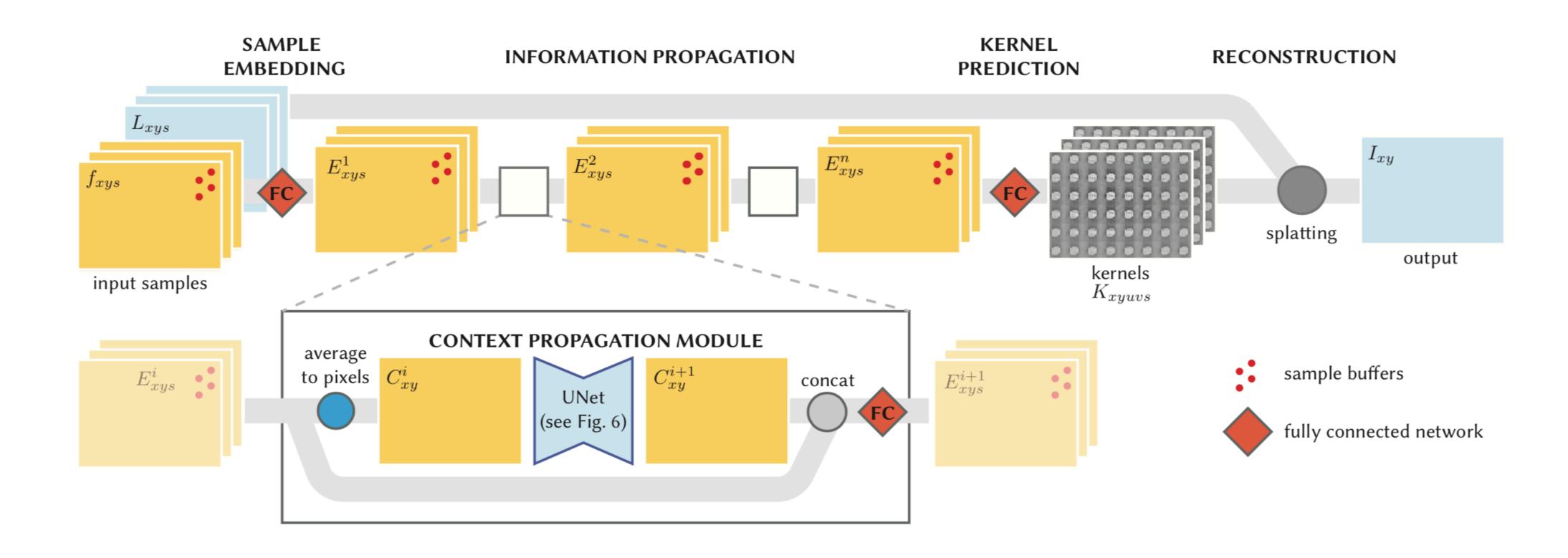


A graph labeling function F is graph permutation invariant (GPI) if permuting the names of nodes maintains the output. Herzig et al.[2018]

Permutation Invariance

- In MLPs, since each component is connected to each other, the order does not matter
- In structured convolutions, the order matters and therefore, it is not permutation invariant.

Proposed Network Architecture

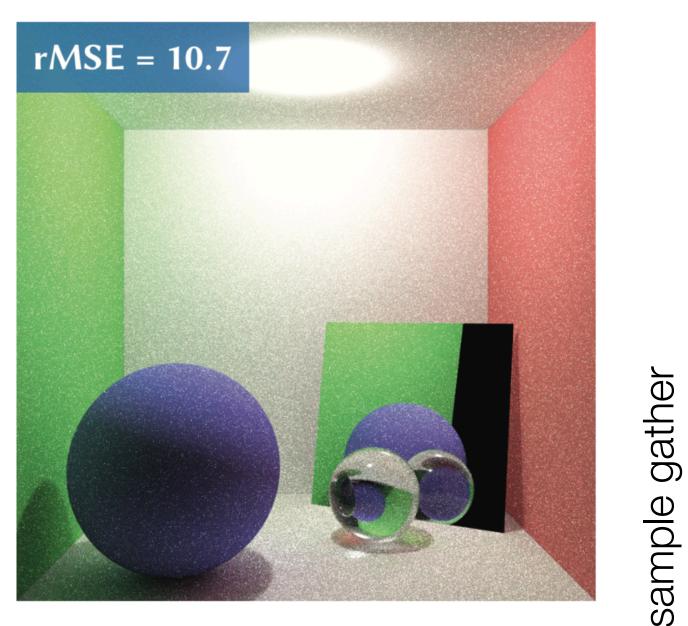


Dataset and Training Procedure

Procedurely generated dataset: 300,000 renderings with 128x128 resolution

Also generated input buffer (4, 32 spp), but this time also maintained auxiliary features

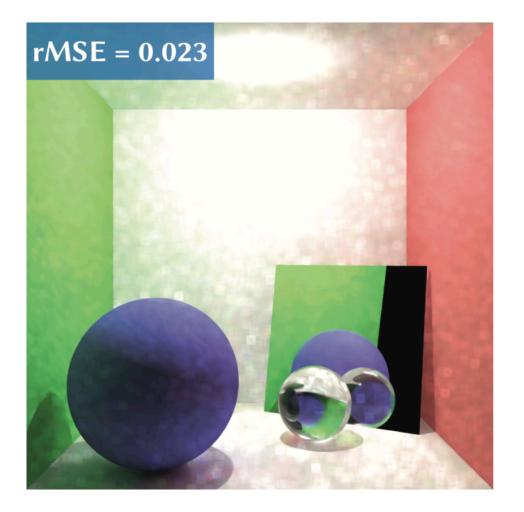
Reference was generated for 4096 samples



Input

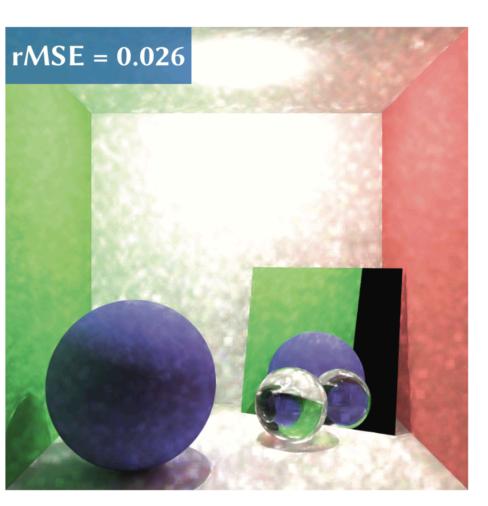
UNIVERSITÄT DES SAARLANDES

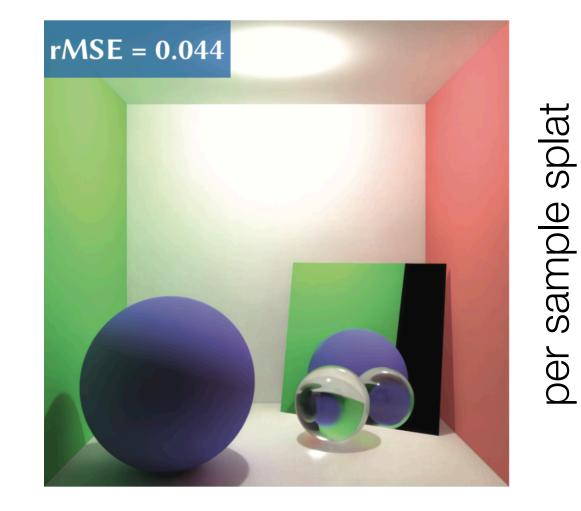
Splat vs Gather



per pixel gather

per sample



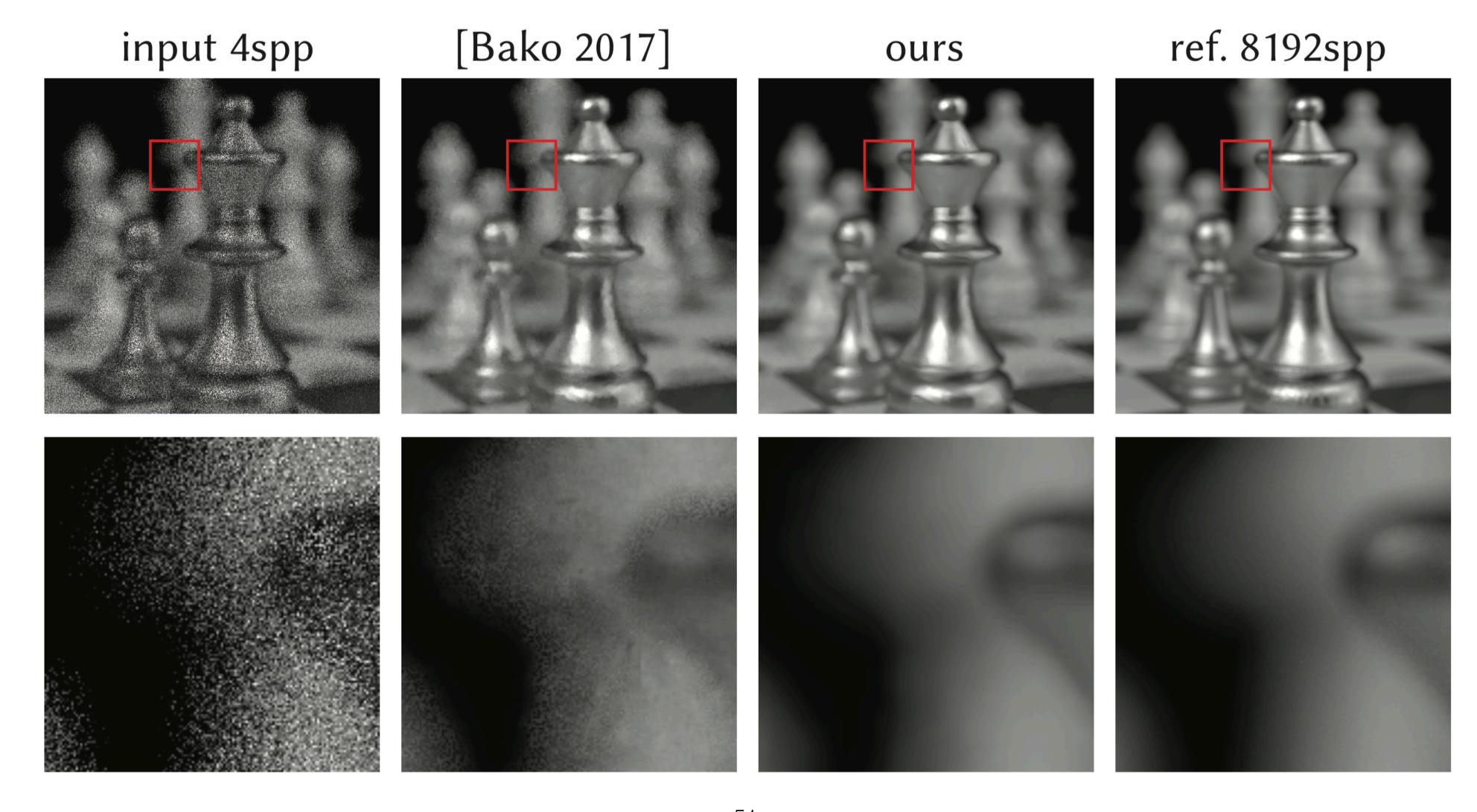


rMSE = 0.024

per pixel splat

Reference

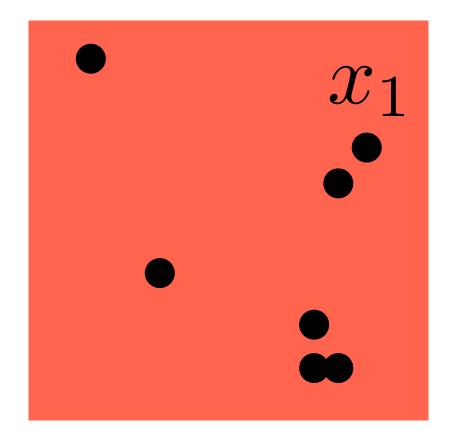
Results

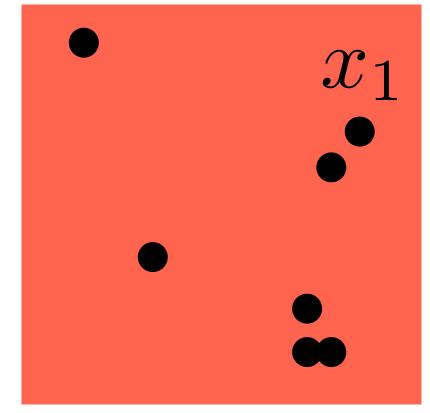


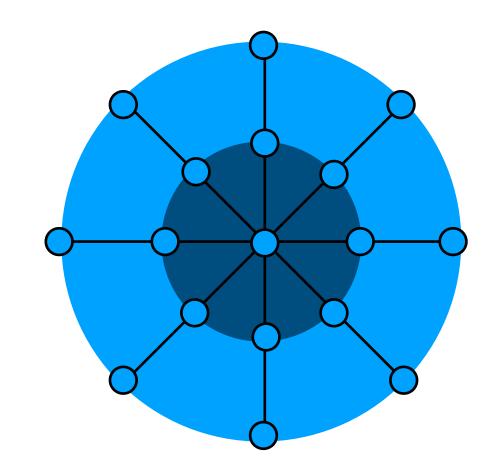
Network Architecture Comparisons

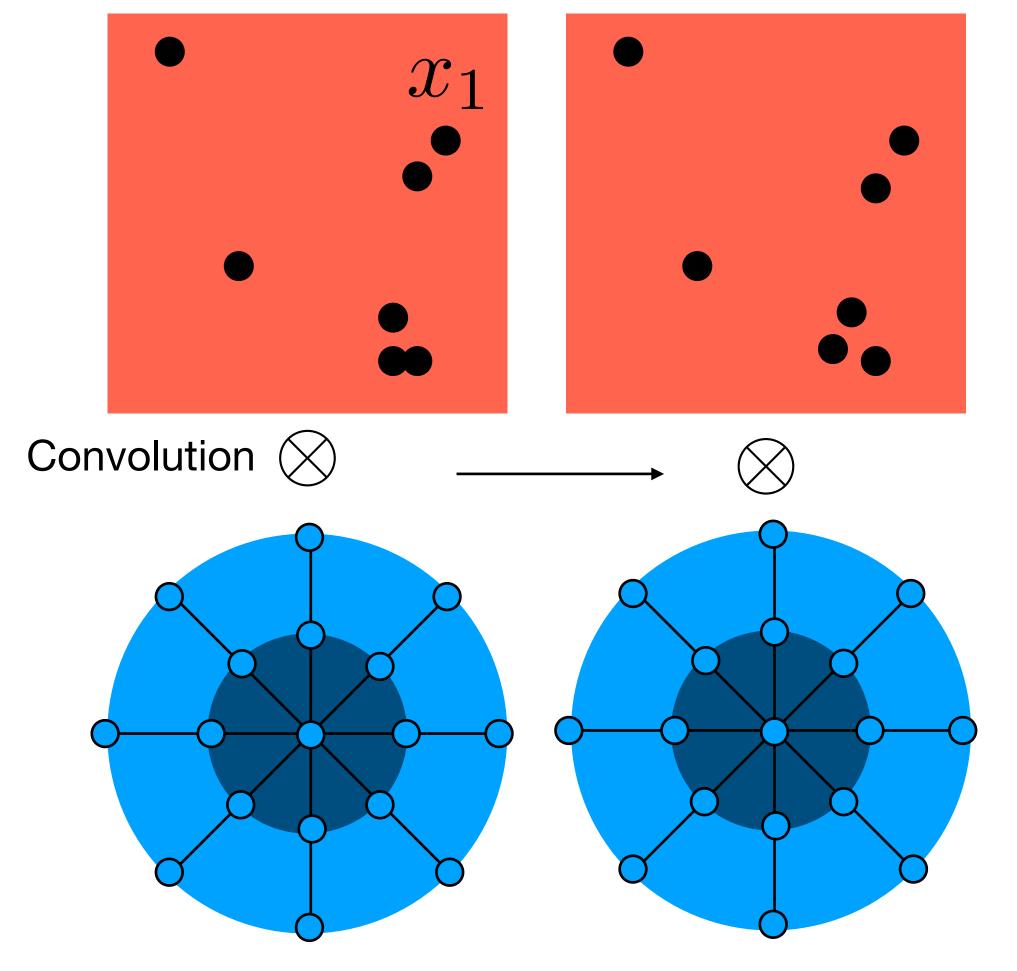
finetuned [Bako2017] reference 8192spp input reference 8192spp ours 32spp 16spp

(Deep) Convolutional Neural Networks



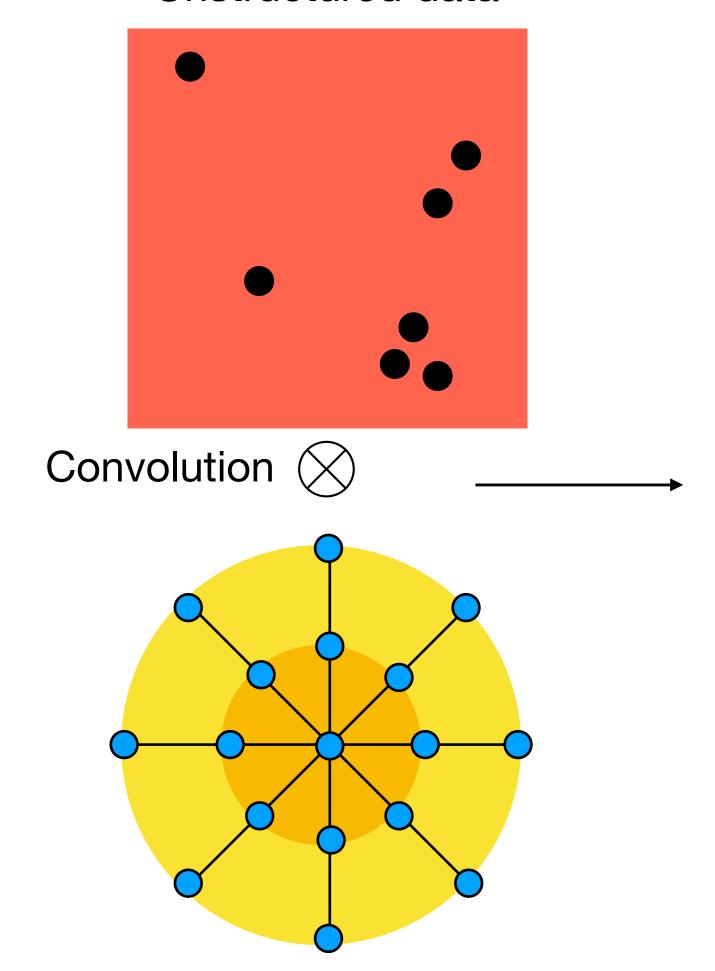


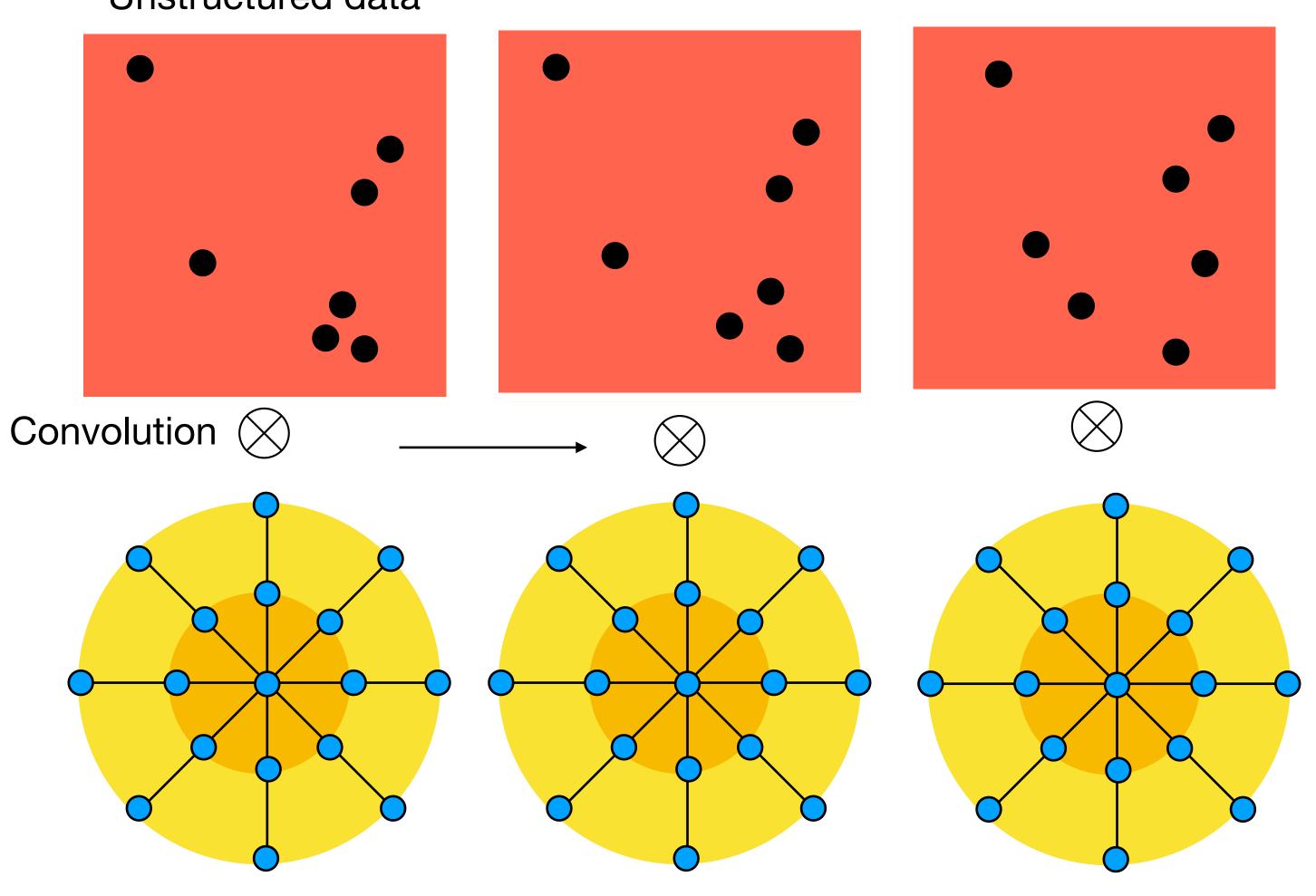




Based on Convolutional Neural Networks

 x_1 Loss function Convolution (X) Back-propagate





 ${\cal N}$ number of point samples

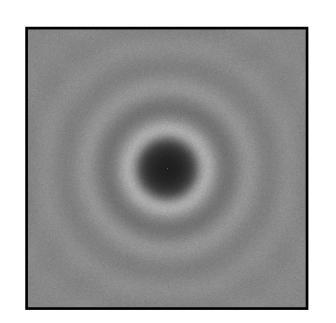
Based on Convolutional Neural Networks

Unstructured data Keep training the network! Convolution (X) Which Loss function can we use?

Spectral Loss Function

Spectral Loss at i-th training iteration

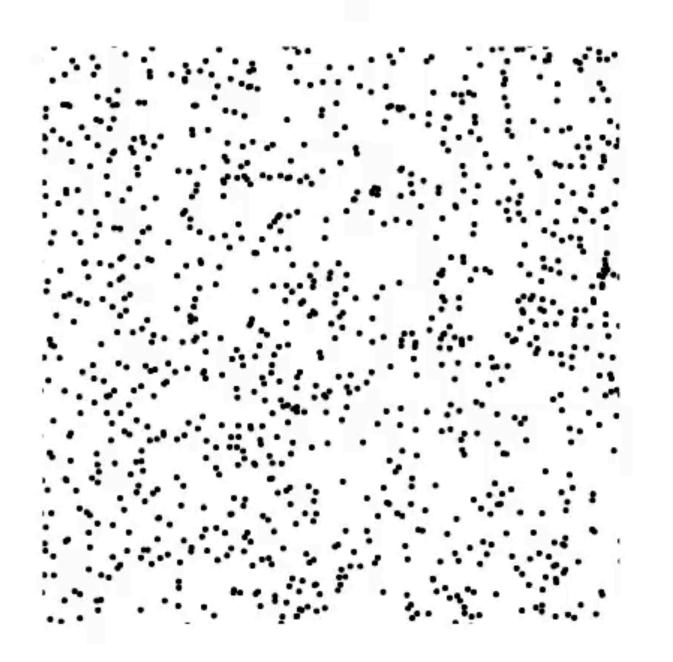
$$L_{\text{spectral}} = ||\langle \mathcal{P}_i(\nu) \rangle - \langle \mathcal{P}(\nu) \rangle||^2$$



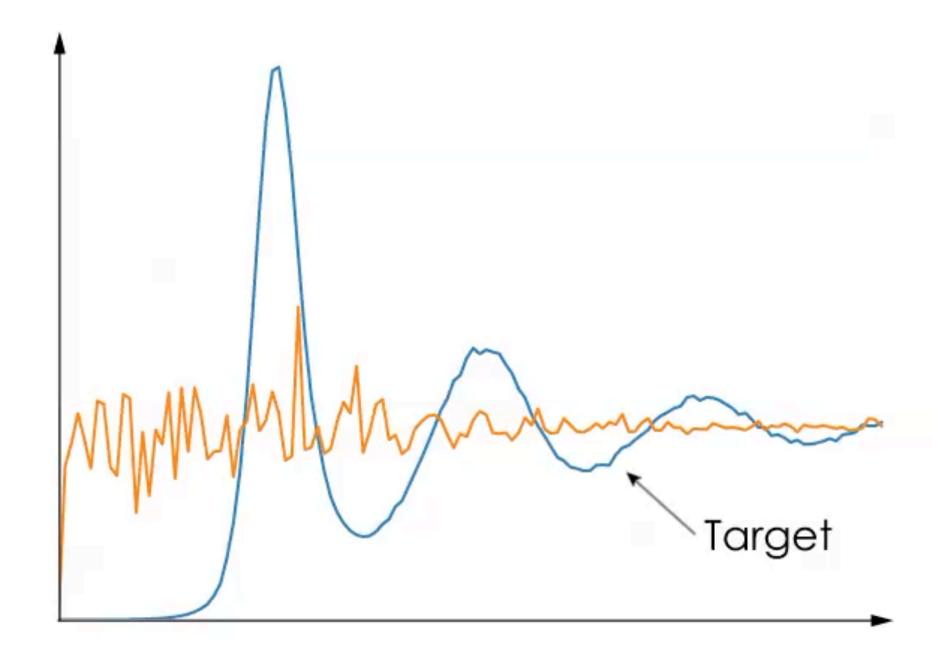
Radially averaged power

Training Process

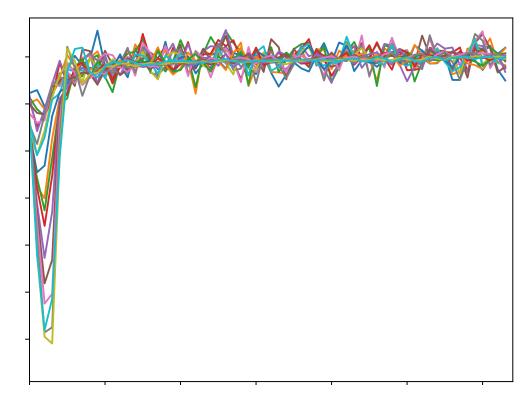
Points



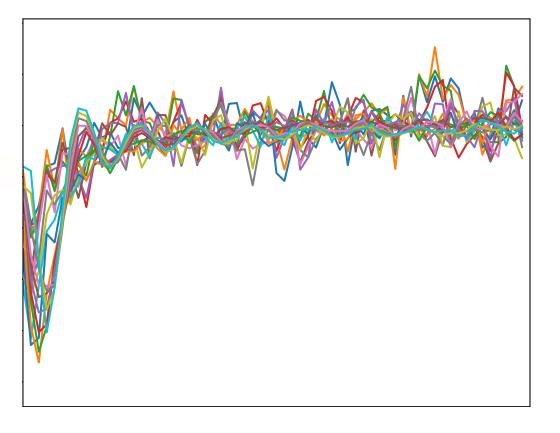
Power Spectrum



56x Slowdown



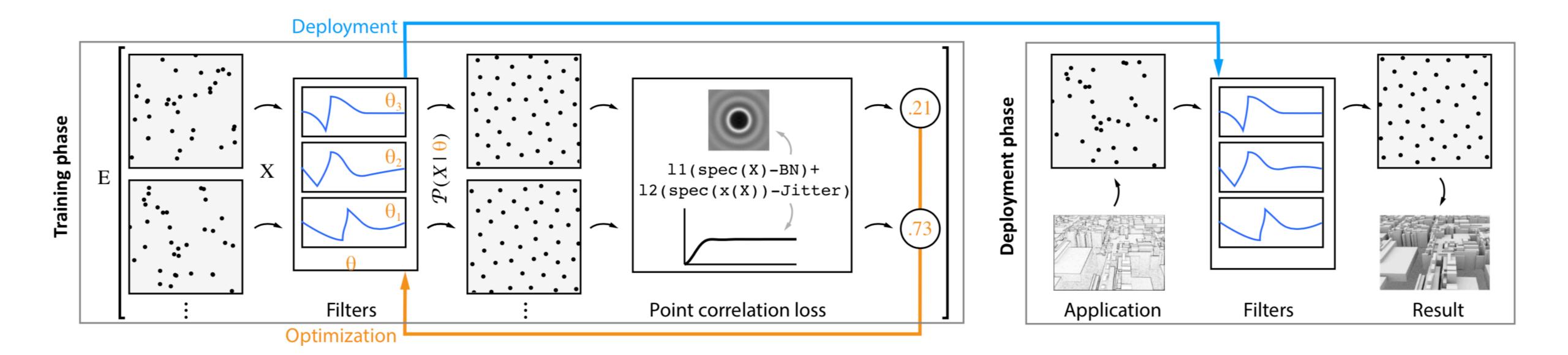
Kernels for BNOT (de Goes et al.[2012])

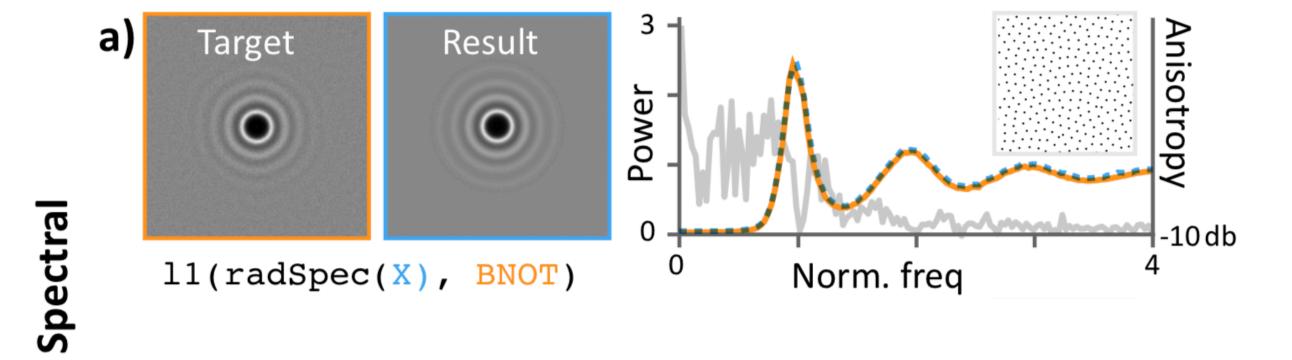


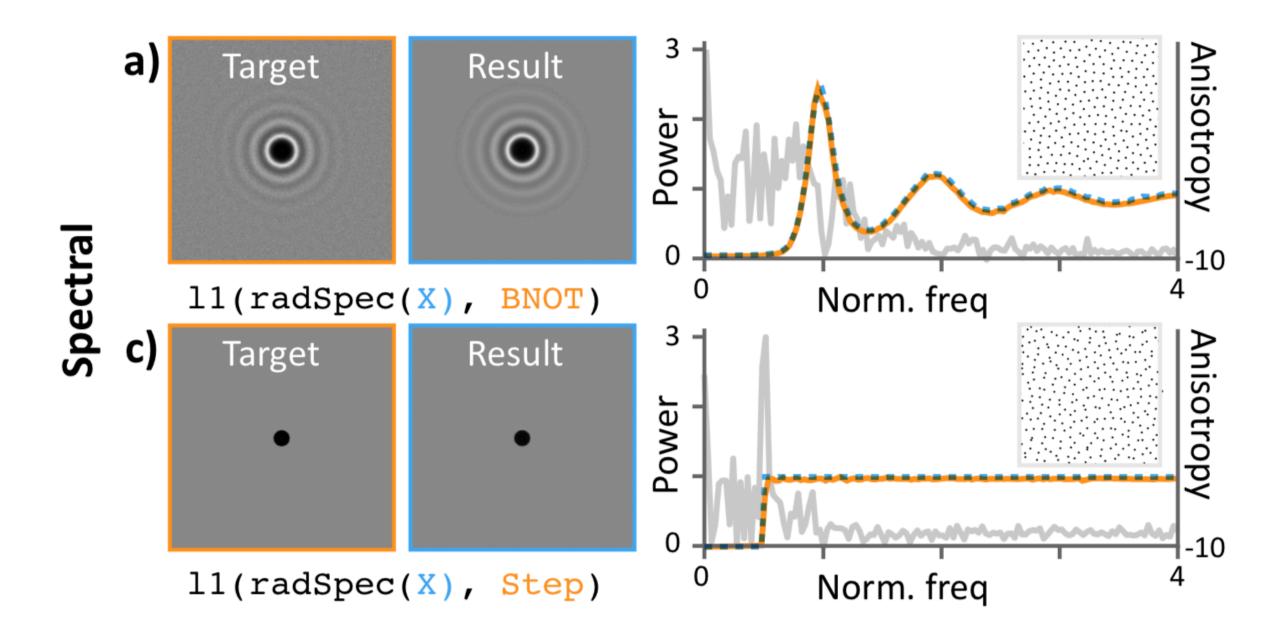
Kernels for Step (de Heck et al.[2013])

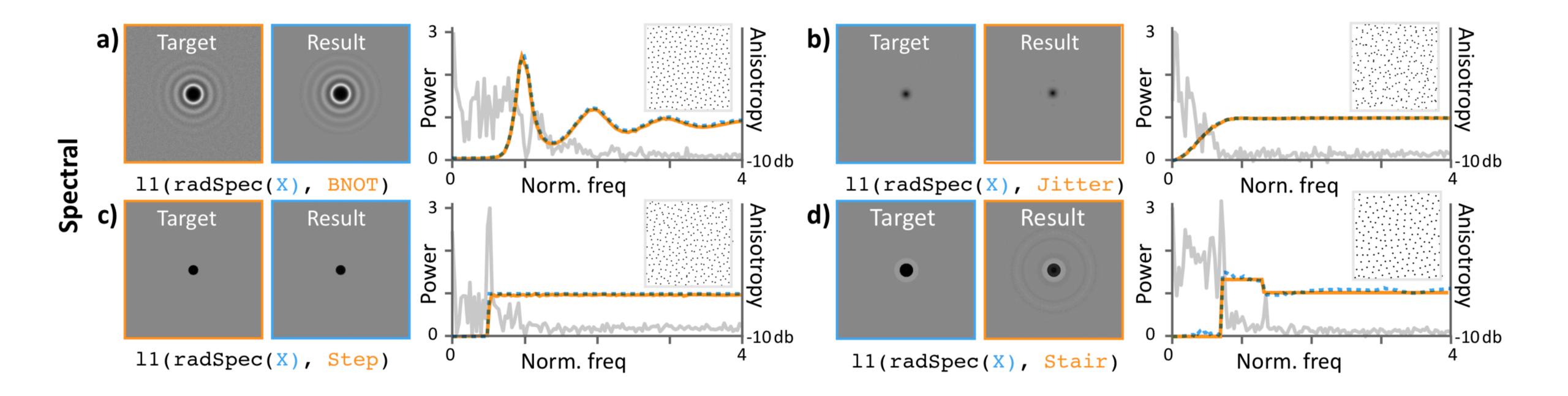
پ

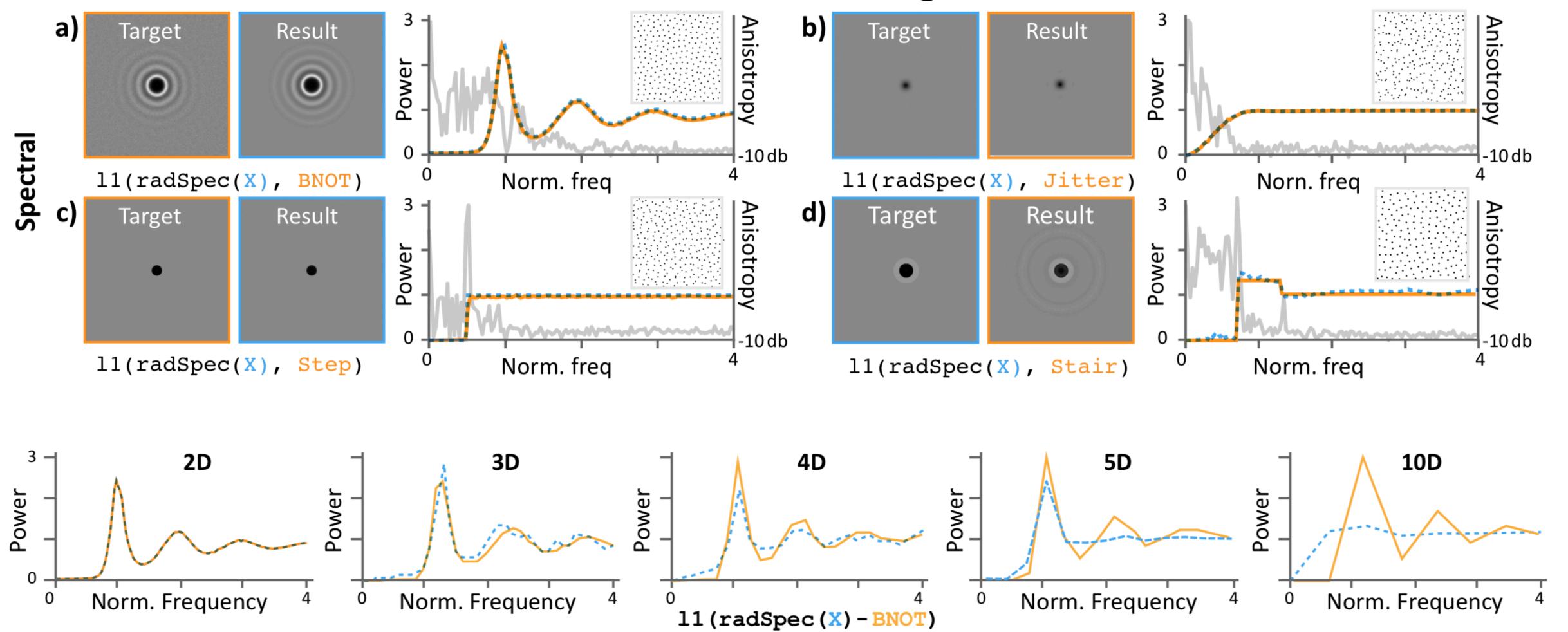
Architecture: Full pipeline









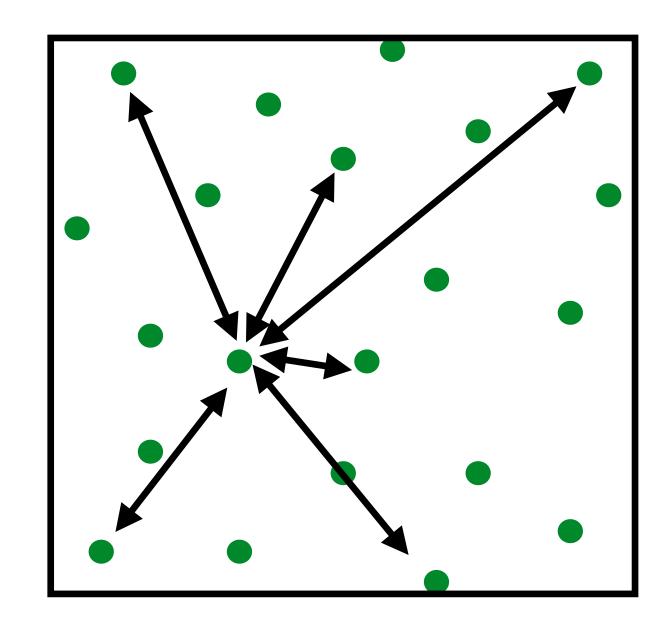


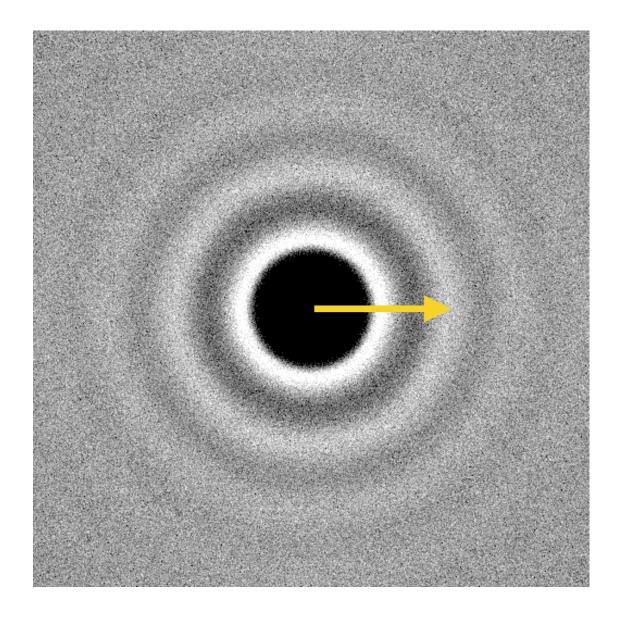
Spatial Loss Function

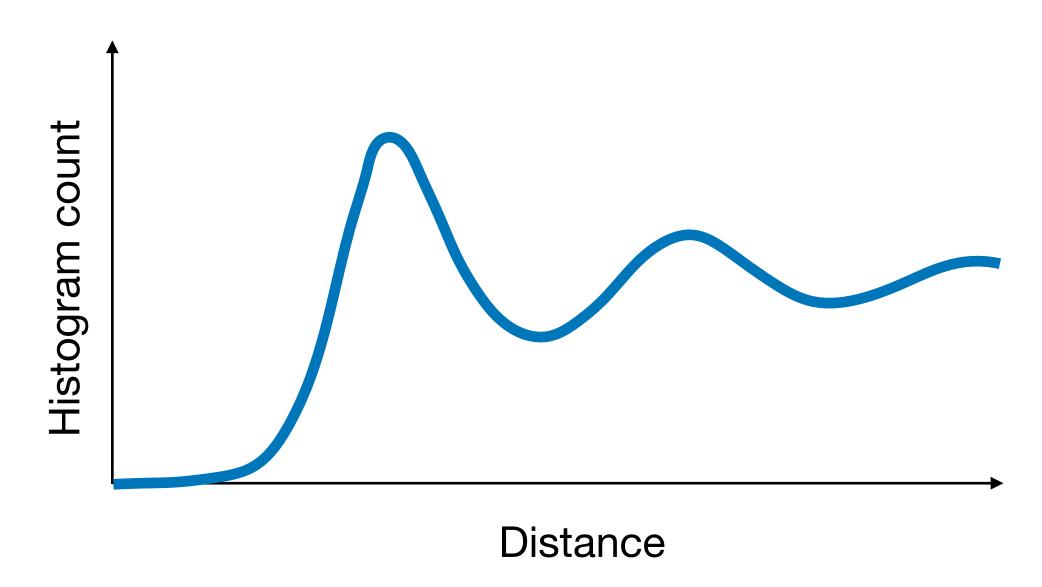
PCF Loss at i-th training iteration

Blue Noise

Spatial Domain





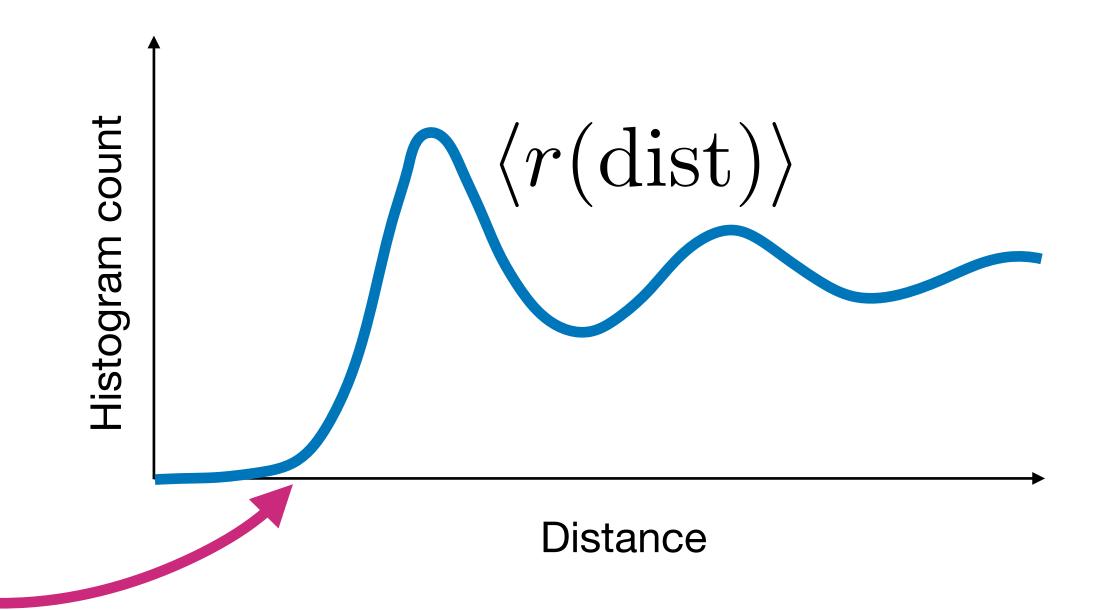


Samples

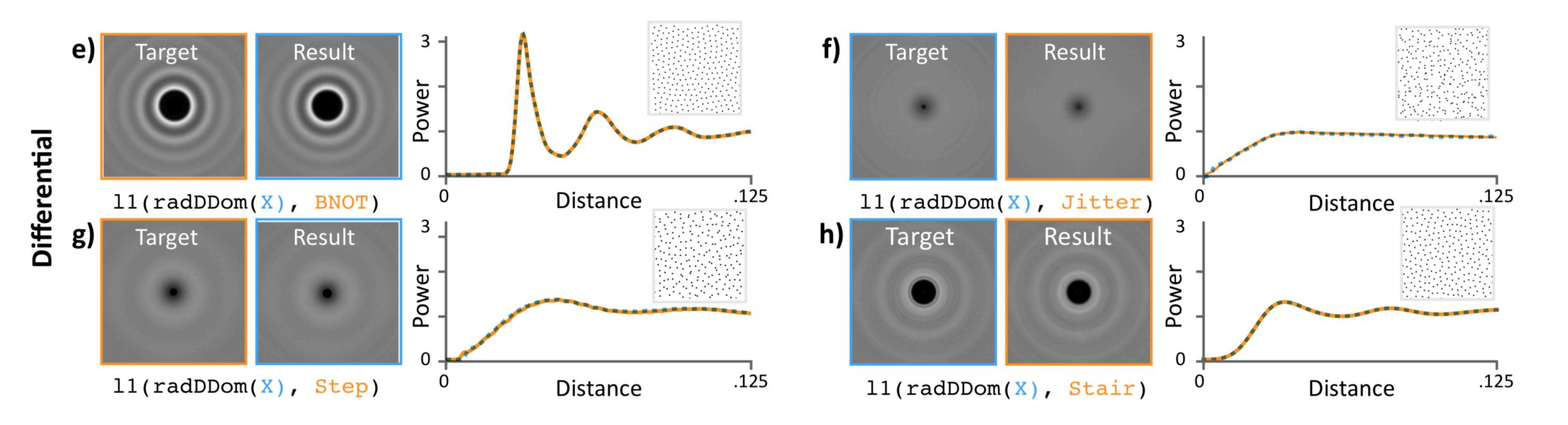
Loss Functions

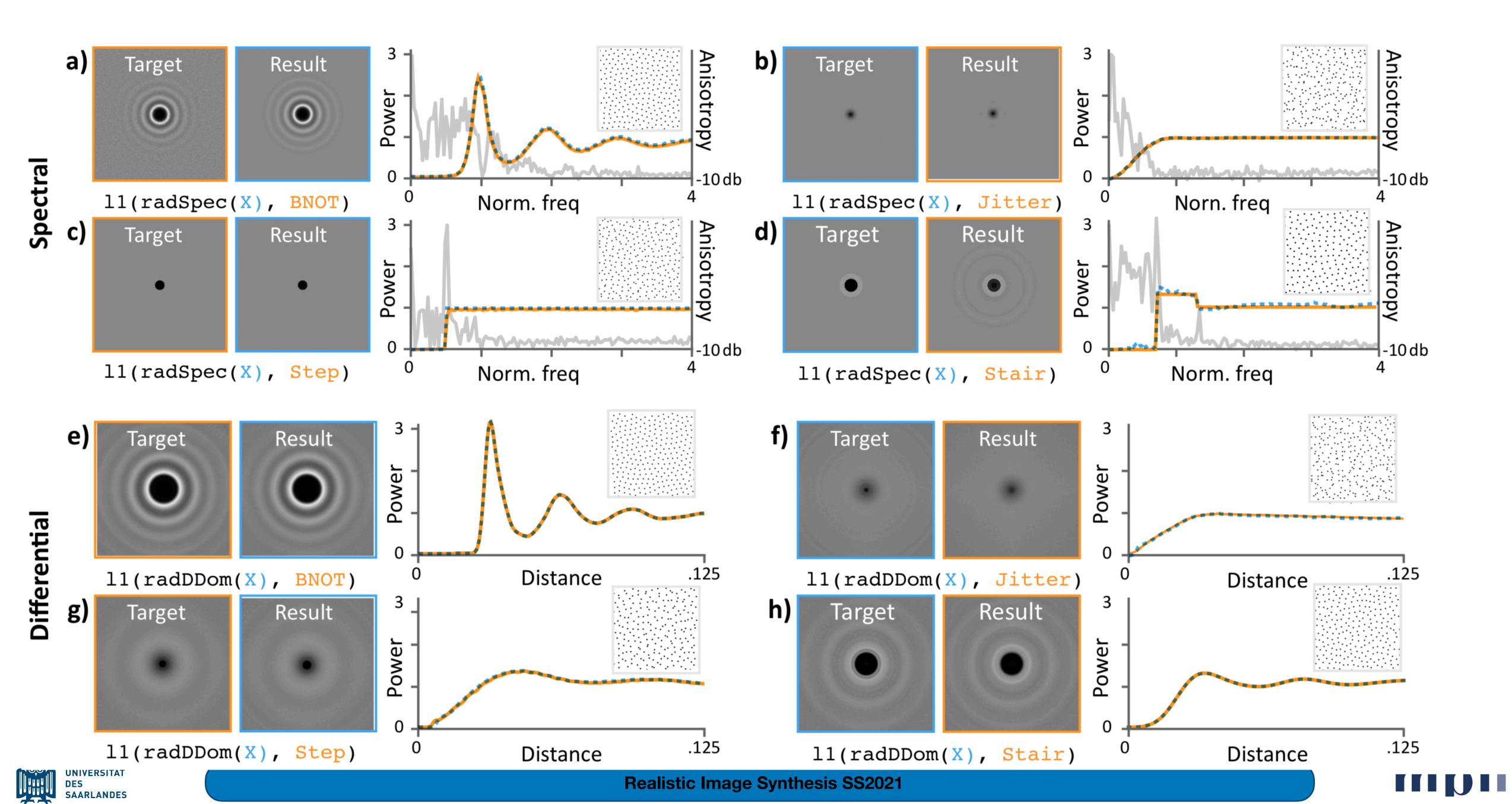
PCF Loss at i-th training iteration

$$L_{\text{PCF}} = ||\langle r_i(\text{dist})\rangle - \langle r(\text{dist})\rangle||^2$$

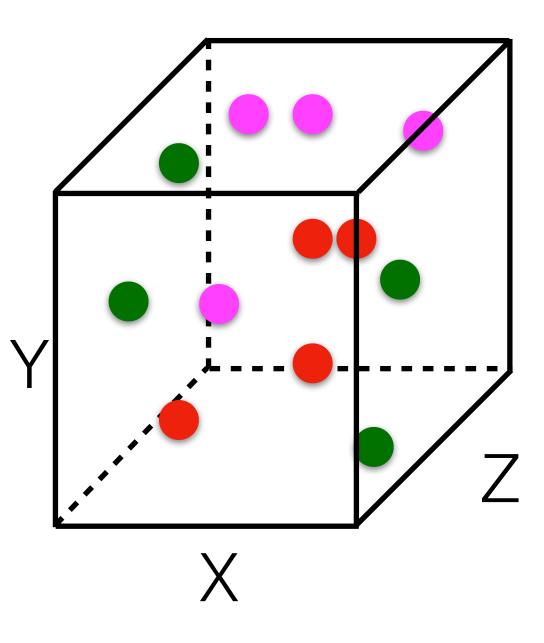


Spatial Target PCFs

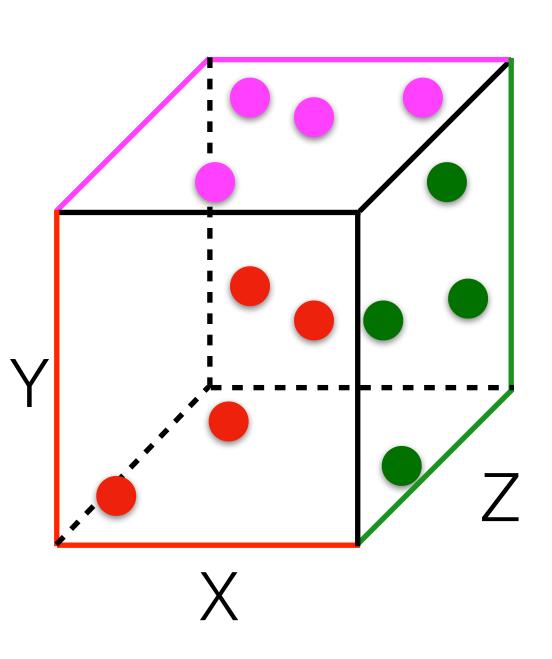


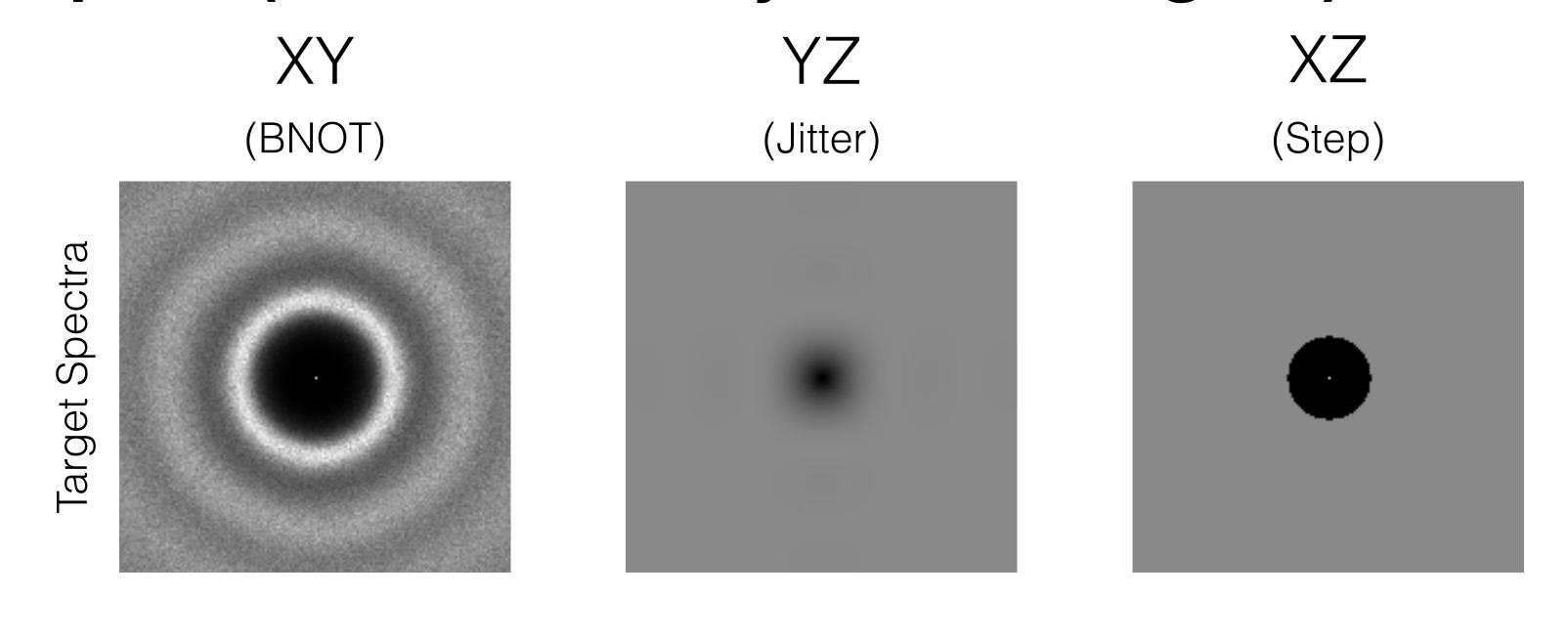


3D Point Samples (Different Projection Targets)

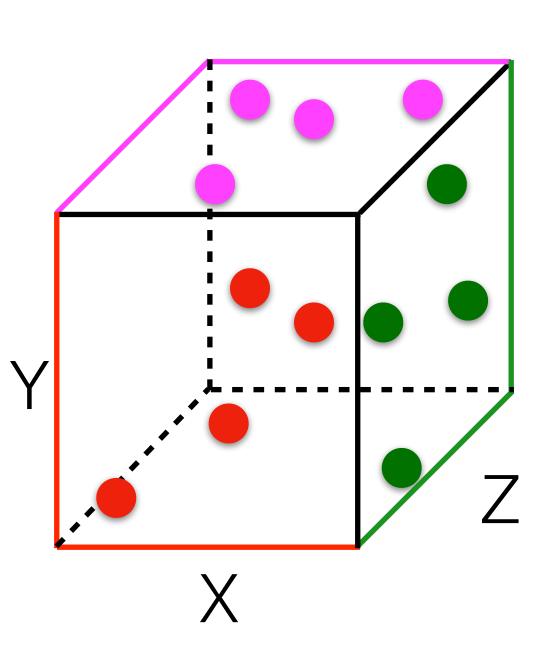


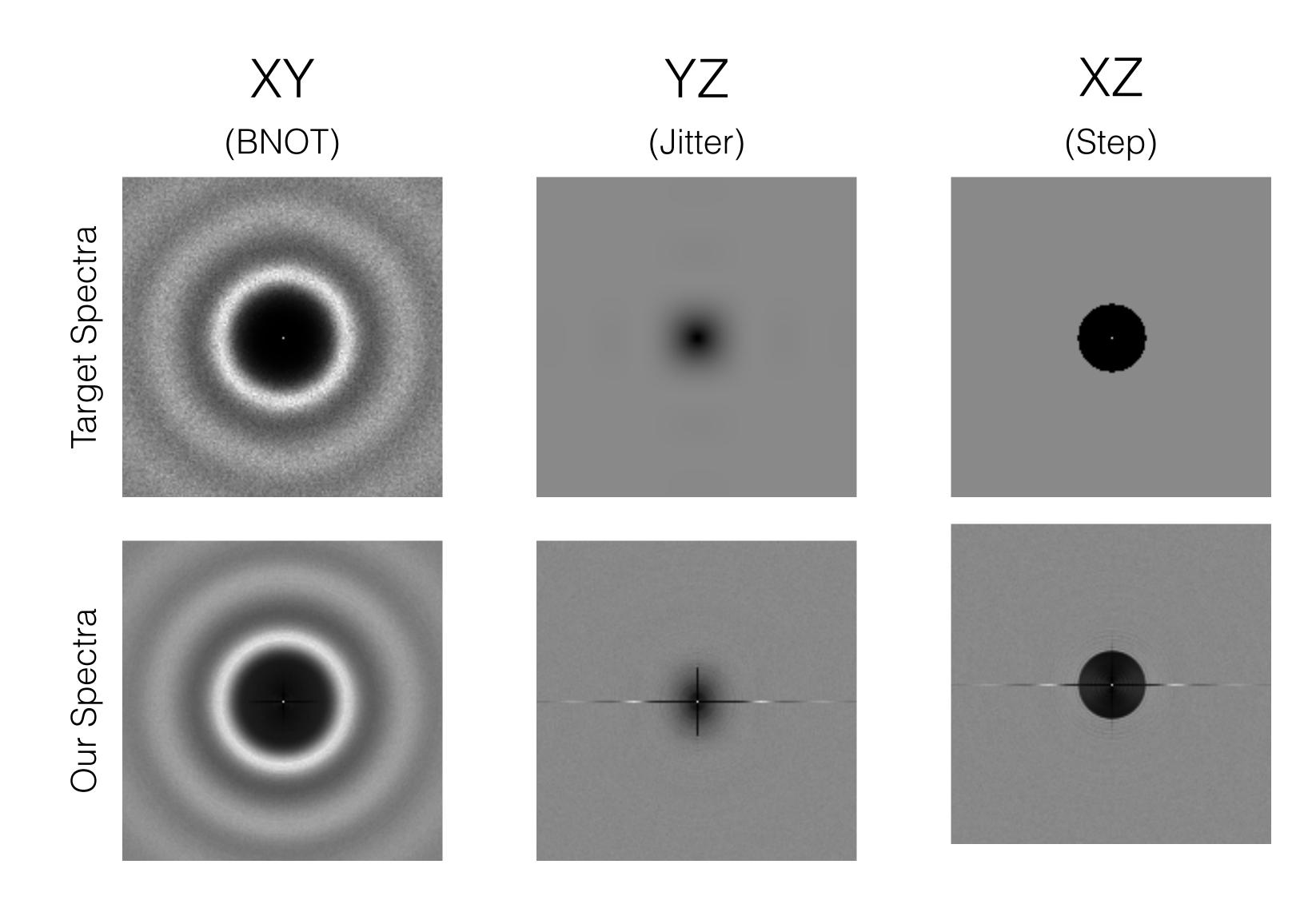
3D Point Samples (Different Projection Targets)



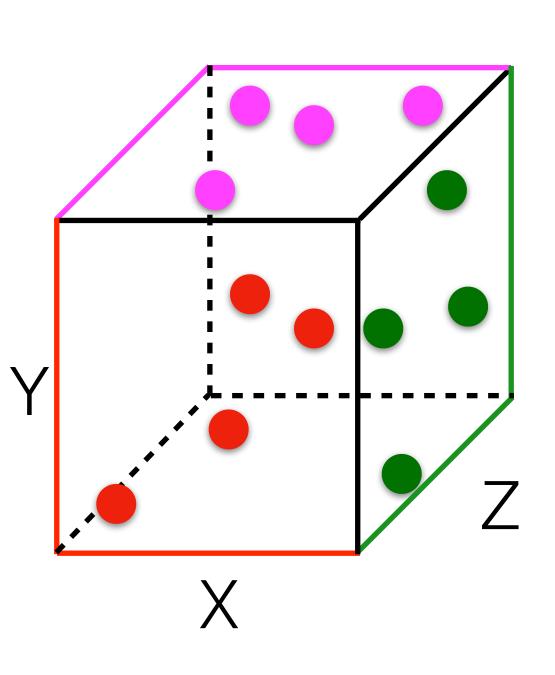


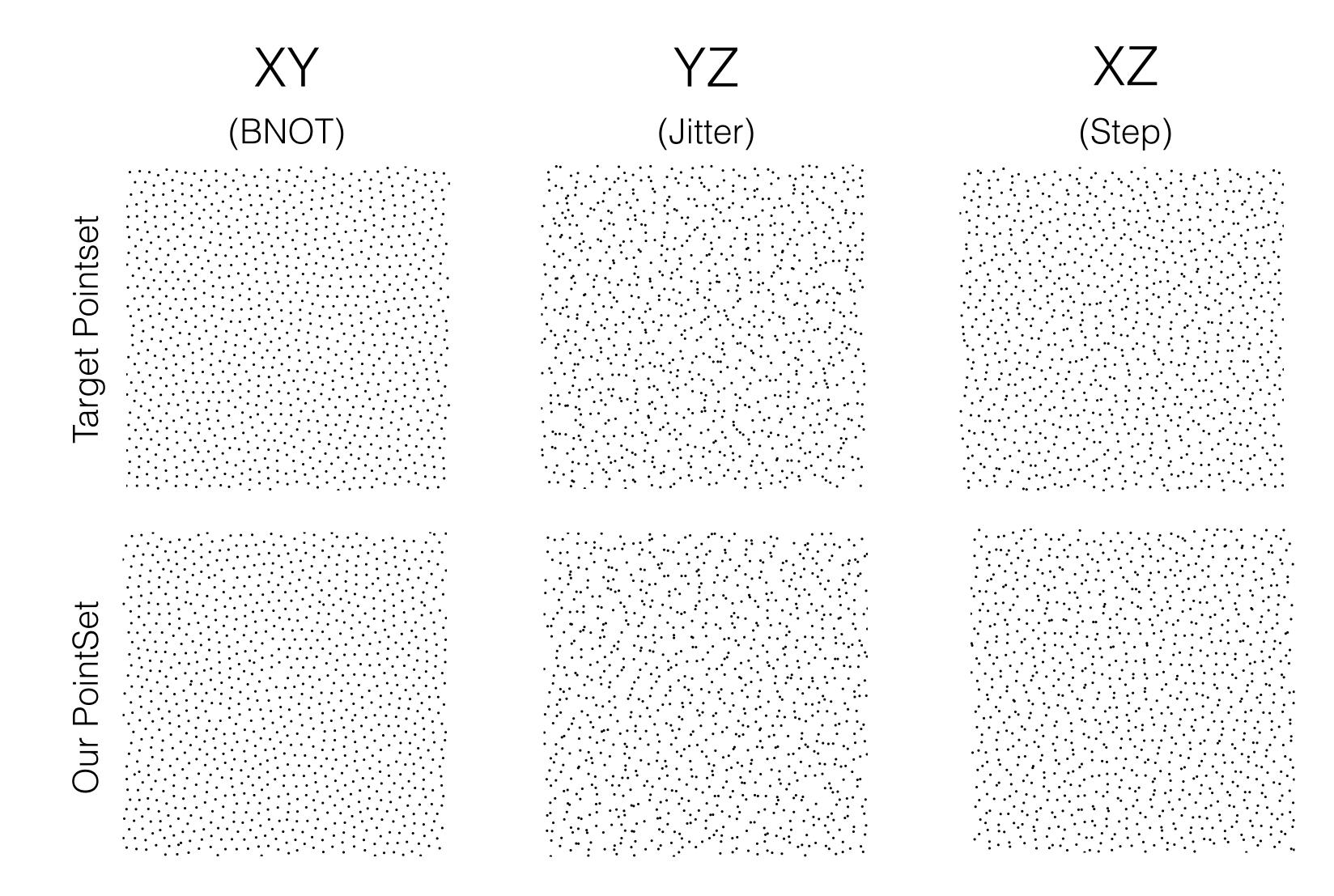
3D Point Samples (Different Projection Targets)





Point set: Projections are Preserved





Integrand

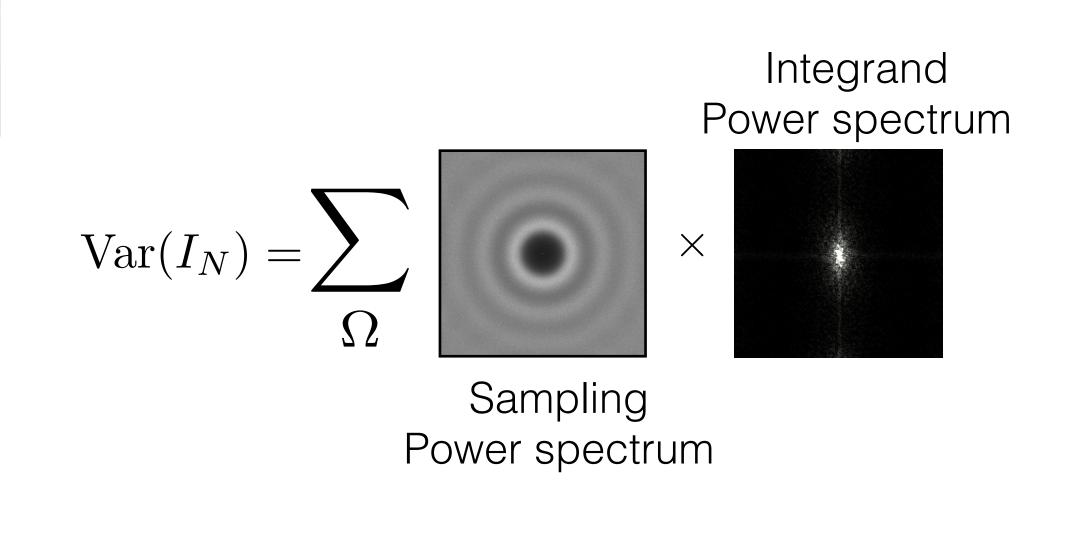
Exemplars

Output

Description:

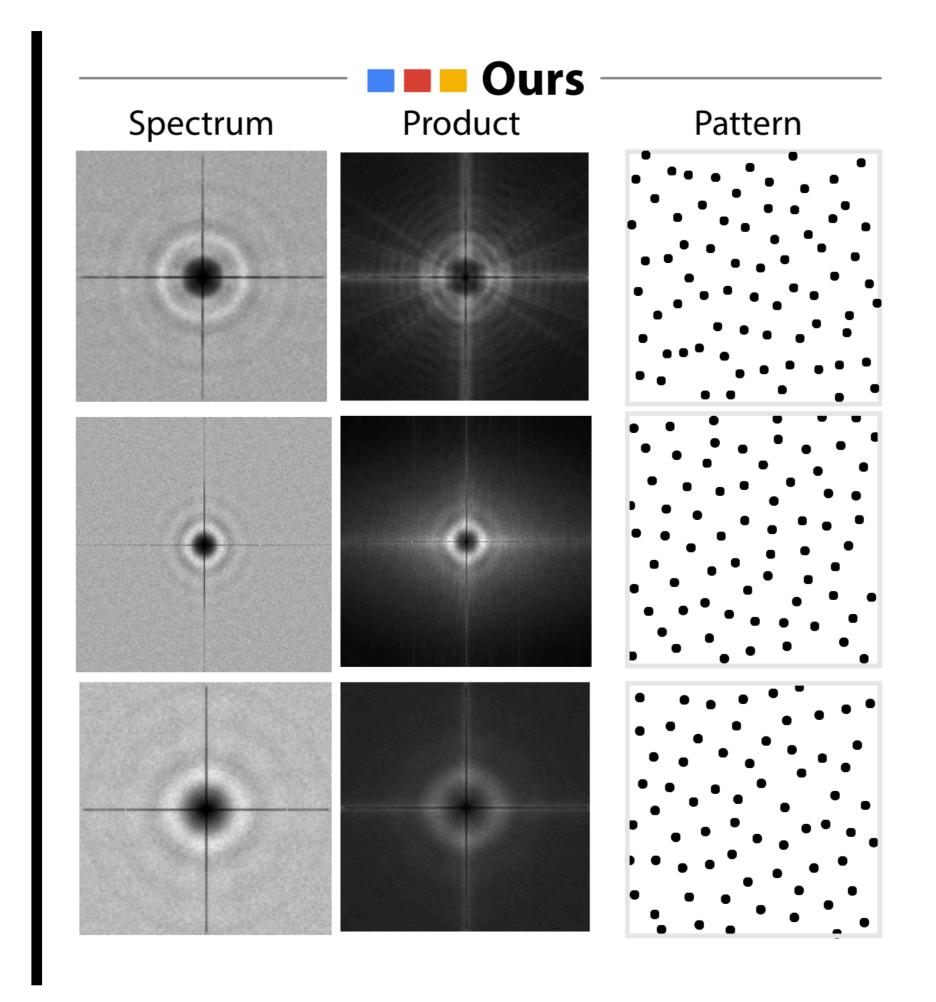
A second of the second of

Integrand **Exemplars** Spectrum

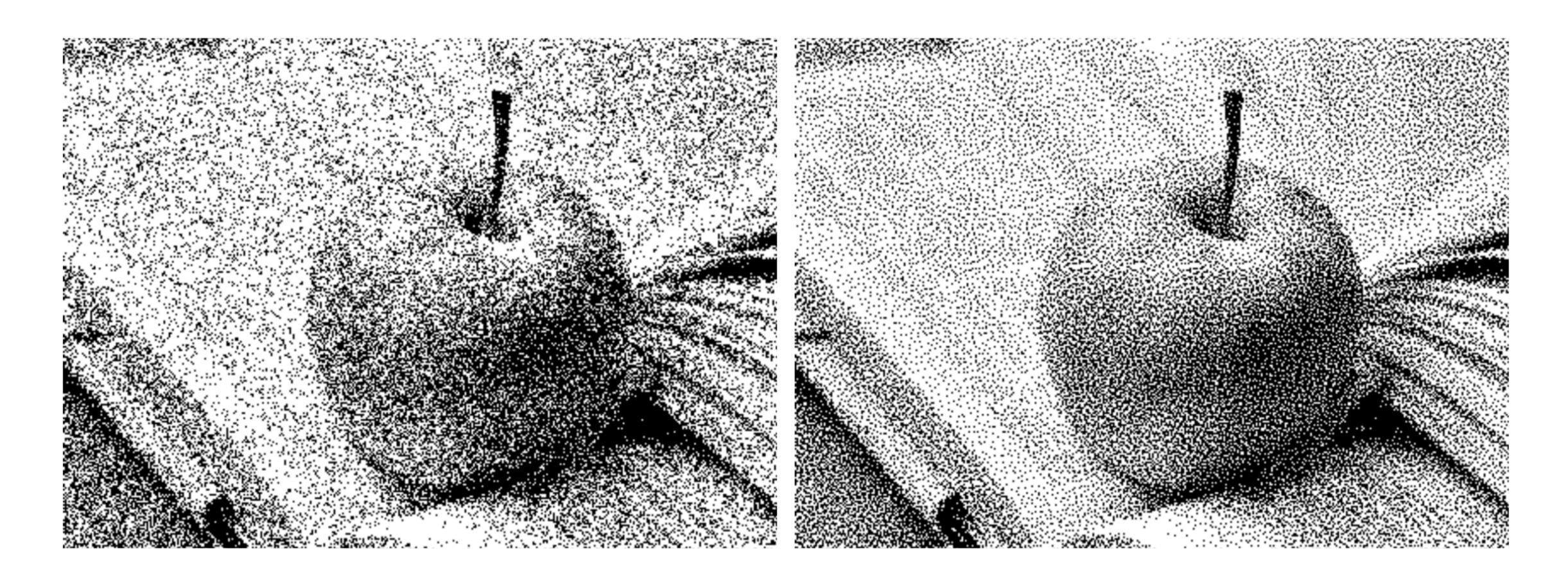


Integrand **Exemplars** Spectrum Shadow

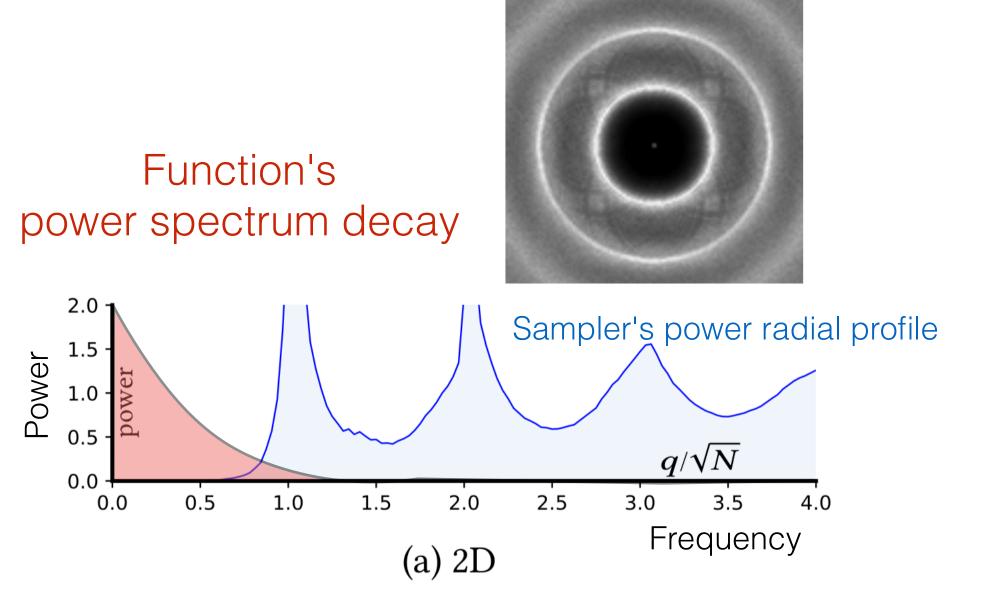
$$\mathrm{Var}(I_N) = \sum_{\Omega} \hspace{1cm} imes \hspace{1cm} i$$



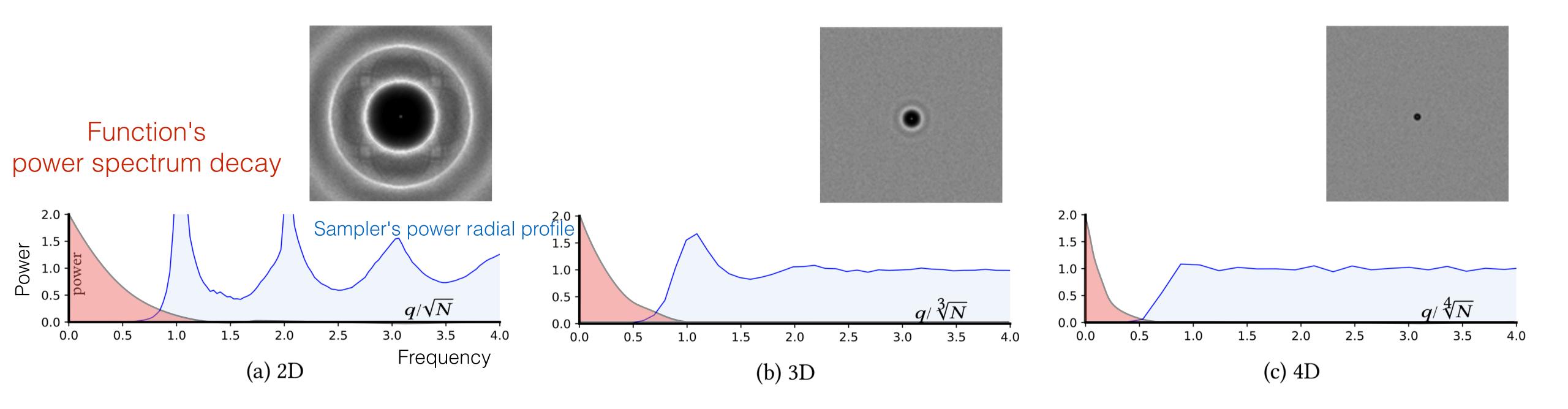
Blue Noise Dithering



using radially averaged loss

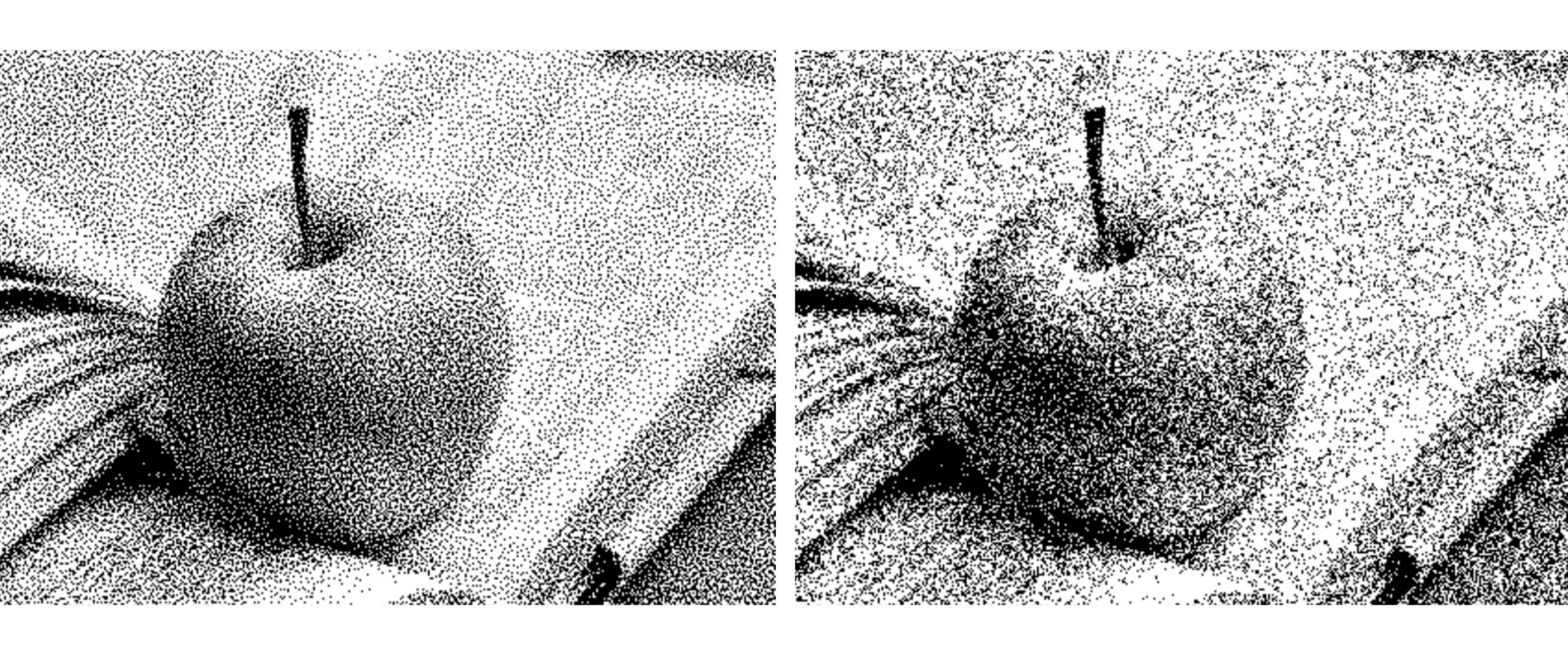


using radially averaged loss



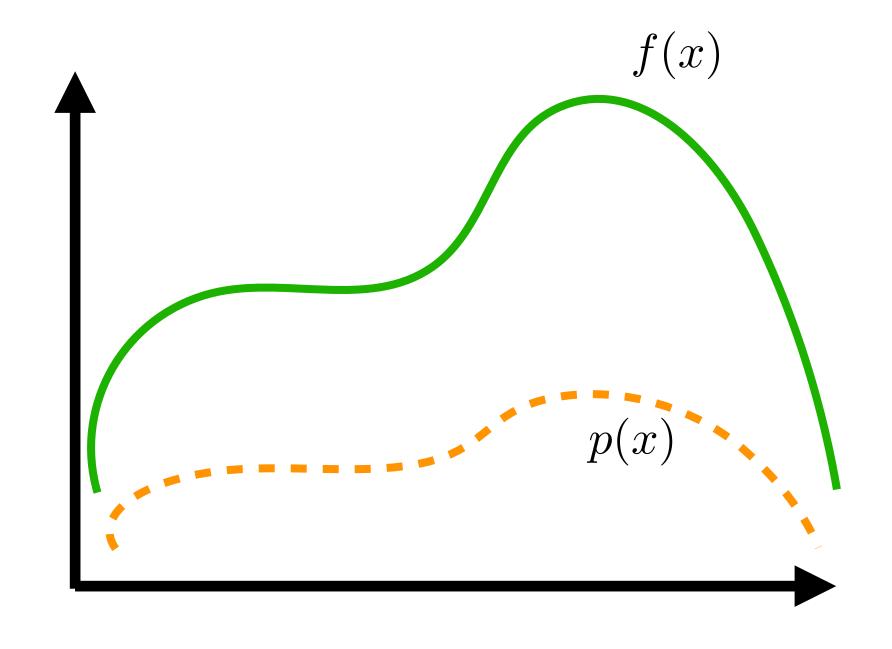
using radially averaged loss

Blue Noise Dithering



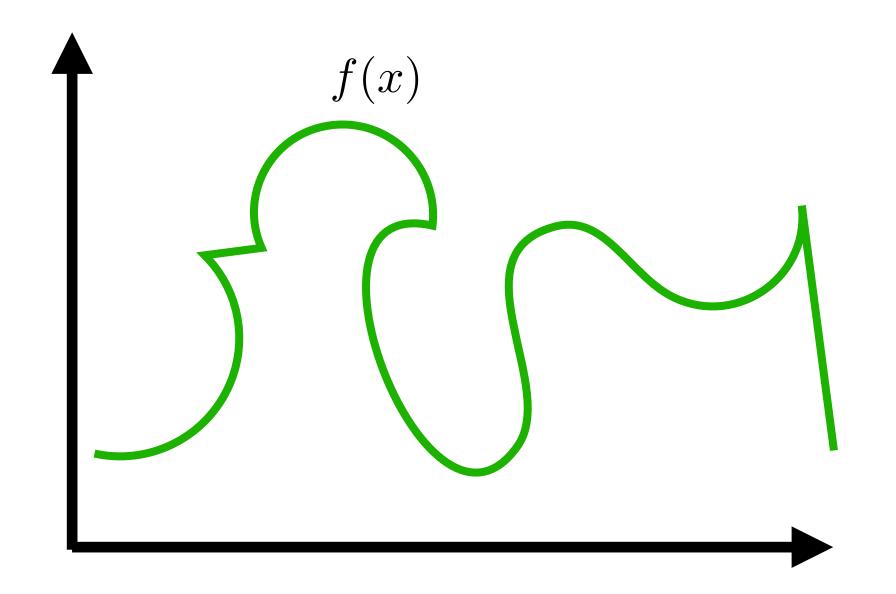
Normalizing Flows

Importance Sampling



$$I_N = \frac{1}{N} \sum_{k=1}^{N} \frac{f(x)}{p(x)}$$

Importance Sampling



$$I_N = \frac{1}{N} \sum_{k=1}^{N} \frac{f(x)}{p(x)}$$

$$p(x) = ???$$

Normalizing Flows

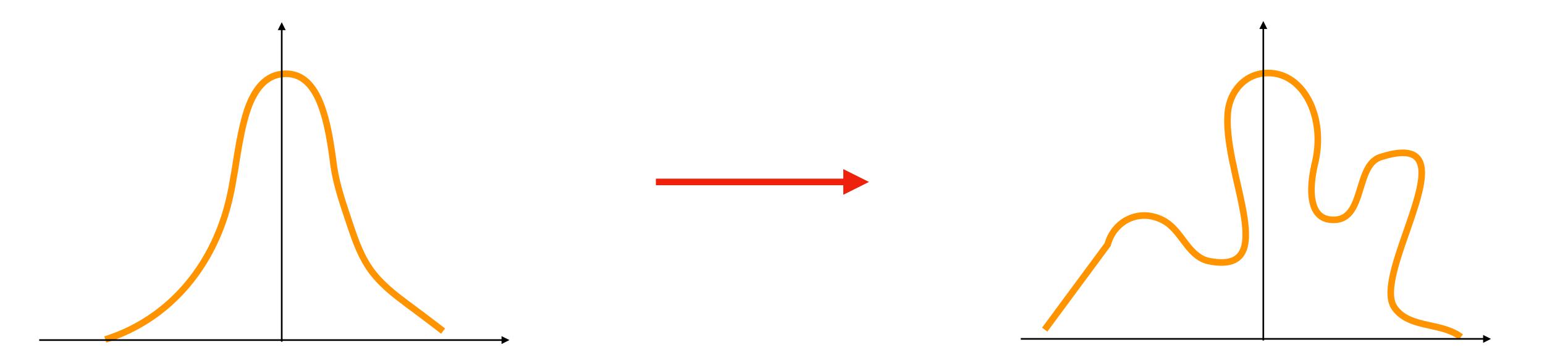
Normalizing Flows

Technique used in Machine learning to build complex probability distributions by transforming simple ones

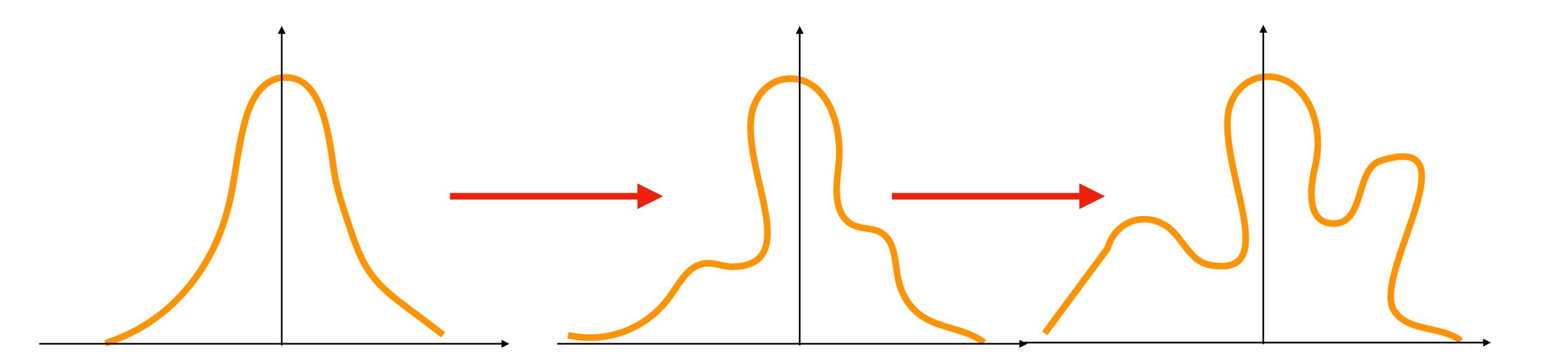
Used in the context of generative modeling

Generative modeling: learning without any target (unsupervised)

Complex Probability distributions from simple ones



Complex Probability distributions from simple ones



Normalizing Flows: Basic mathematical framework

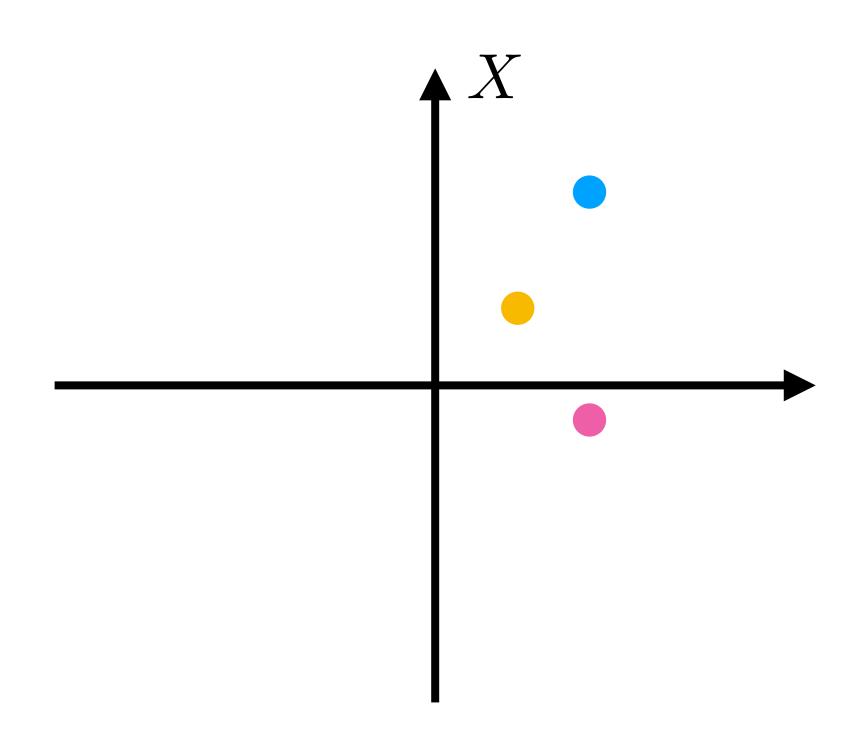
 $z \sim p_{ heta}(z)$

Given a continuous variable with a distribution

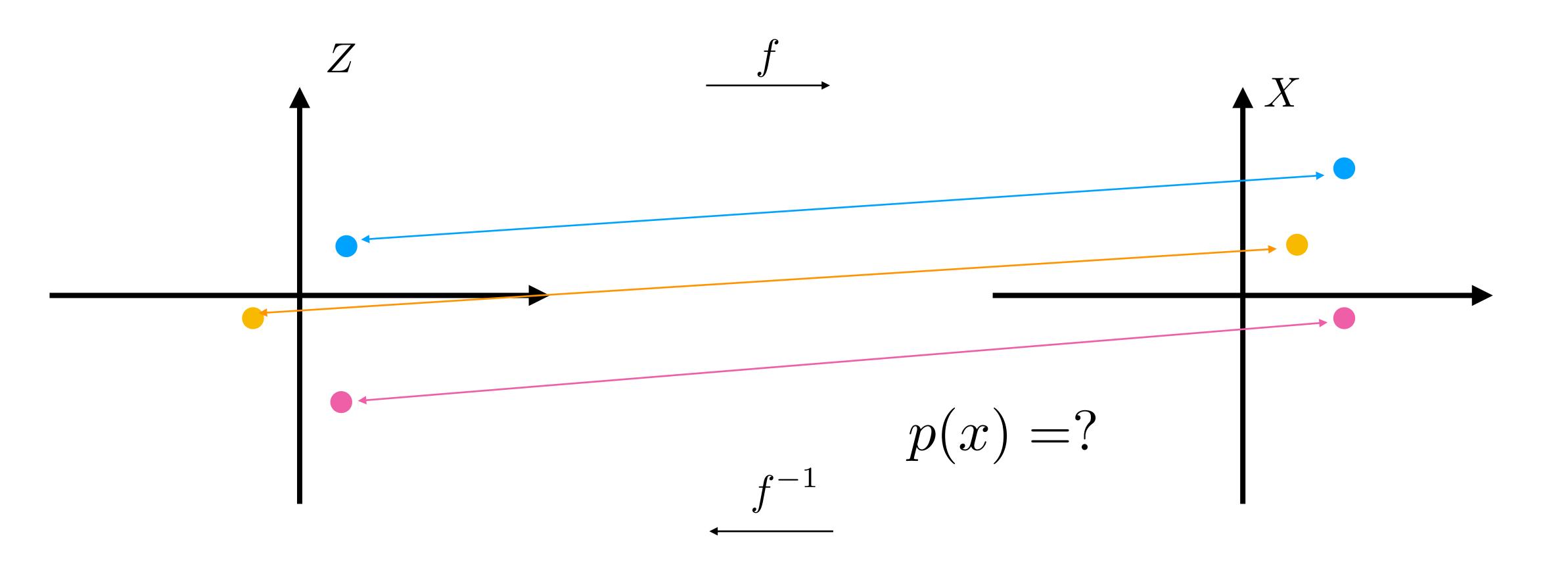
$$x=f_{ heta}(z)=f_k\circ\circ\circ f_2\circ f_1(z)$$
 New distribution obtained

each f_i is invertible (bijective)

Distributions



Distributions



Distributions

$$z \sim p_{ heta}(z)$$
 Given a continuous variable with a distribution

$$x = f_{\theta}(z) = f_k \circ \circ \circ f_2 \circ f_1(z)$$

each f_i is invertible (bijective)

$$p(x) = p(f^{-1}(x))$$

Change of Variables

$$f:Z\to X, f$$
 is invertible $p(z)$ defined over $z\in Z$

Change of variable formula says that:

$$p(x) = p(f^{-1}(x)) \left| \det \left(\frac{\partial f^{-1}(x)}{\partial x} \right) \right|$$

Change of Variables

 $f:Z\to X,f$ is invertible

p(z) defined over $z \in Z$

$$p(x) = p(f^{-1}(x)) \left| \det \left(\frac{\partial f^{-1}(x)}{\partial x} \right) \right|$$

$$p(x) = p(z) \left| det \left(\frac{\partial z}{\partial x} \right) \right|$$

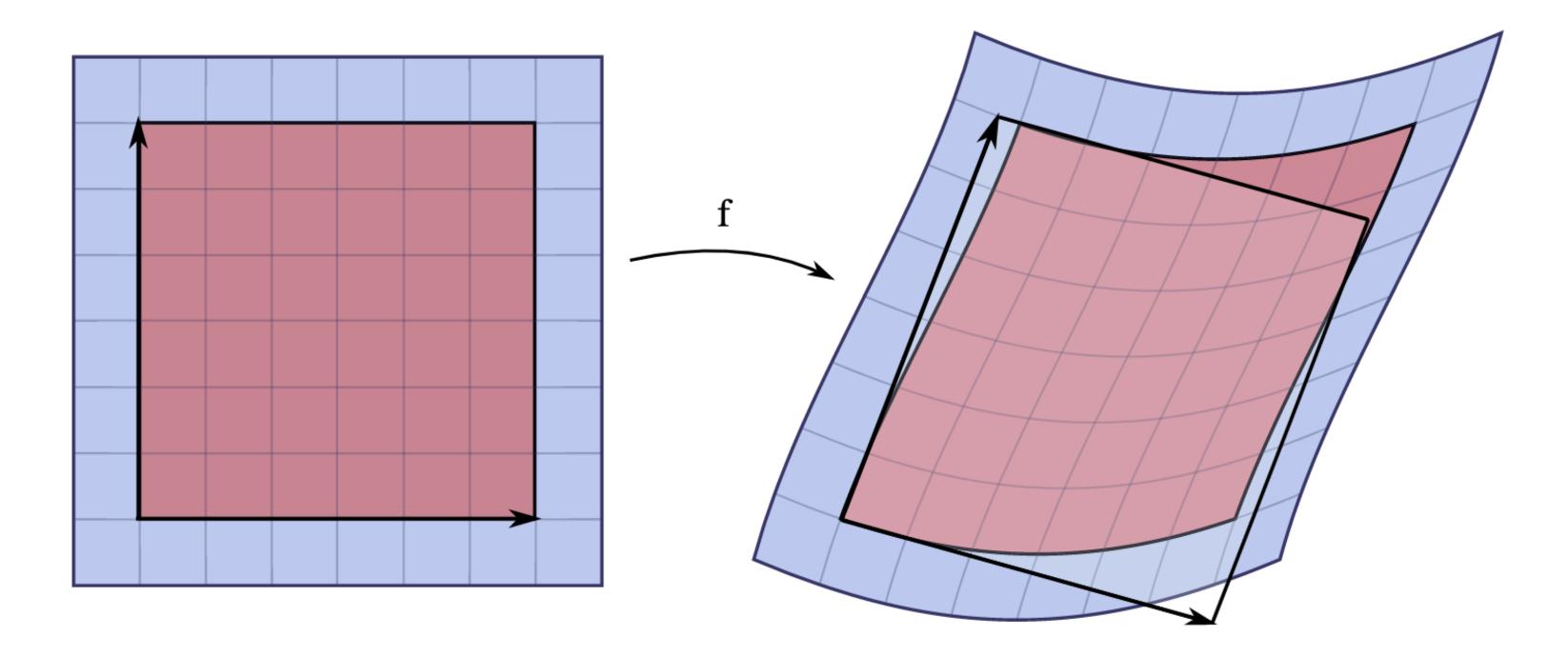
Jacobian Matrix

$$\mathbf{f}:\mathbb{R}^n o \mathbb{R}^m$$

$$\mathbf{J} = egin{bmatrix} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Jacobian Matrix

$$\mathbf{f}:\mathbb{R}^2 o\mathbb{R}^2$$



Jacobian determinant gives the ratio of the area of the approximating parallelogram to that of the original square.

Jacobian Matrix

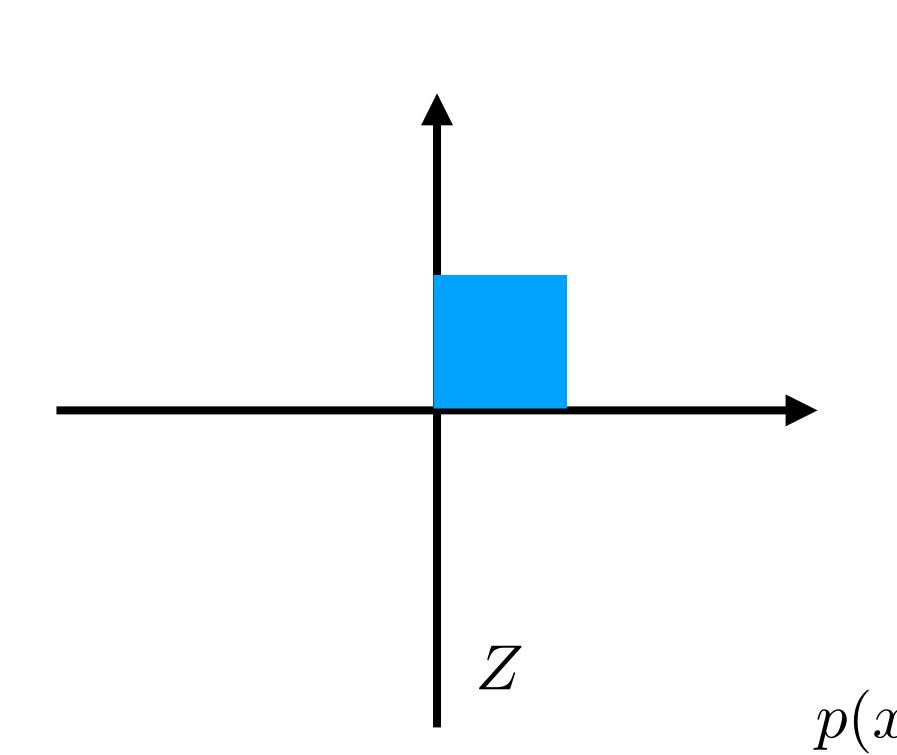
 $f:Z\to X, f$ is invertible p(z) defined over $z\in Z$

$$p(x) = p(f^{-1}(x)) \left| \det \left(\frac{\partial f^{-1}(x)}{\partial x} \right) \right|$$

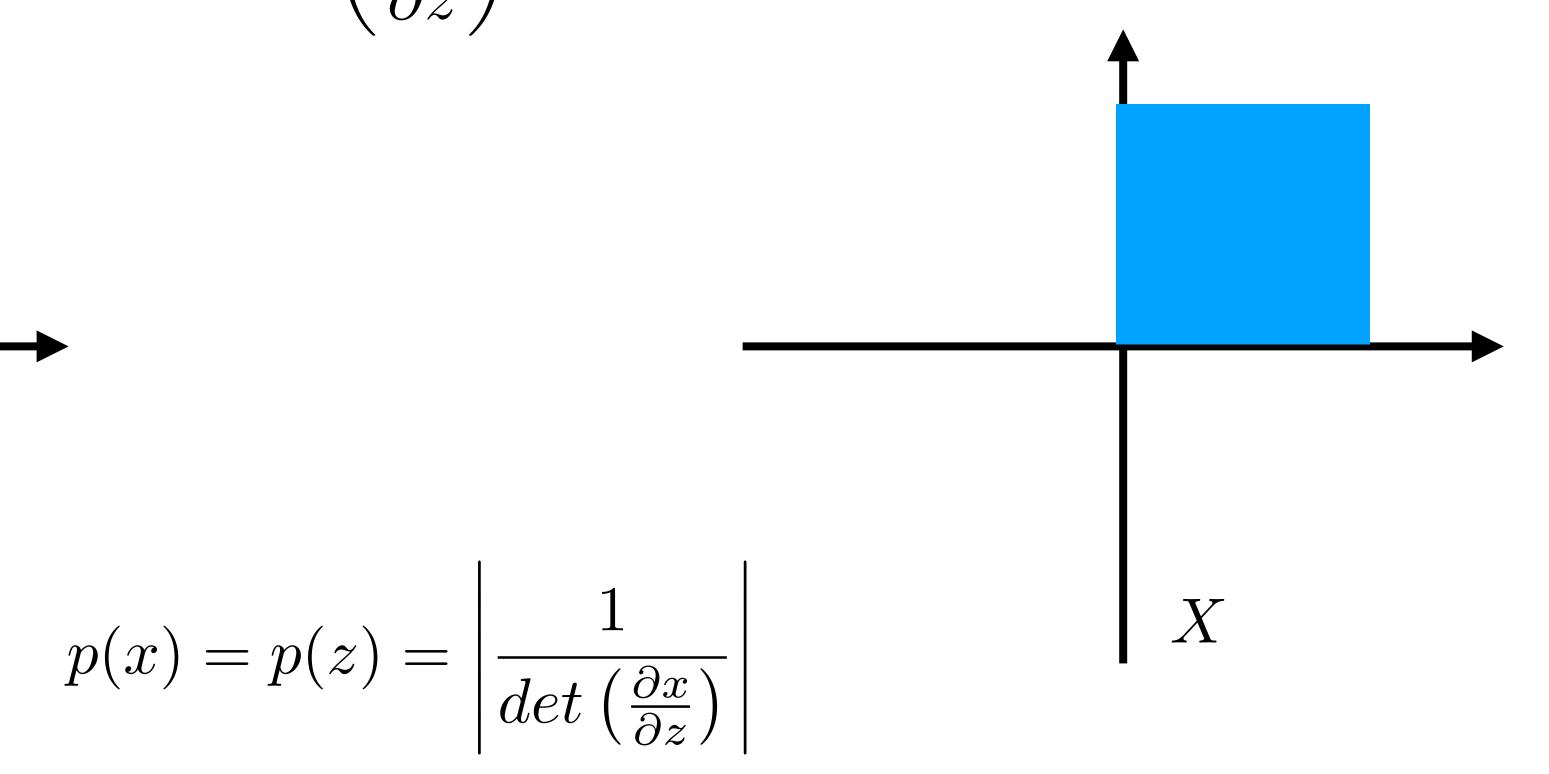
$$p(x) = p(z) \left| det \left(\frac{\partial z}{\partial x} \right) \right|$$

Invertible and Differentiable Mapping

 $f:Z\to X, f$ is invertible p(z) defined over $z\in Z$



$$det\left(\frac{\partial x}{\partial z}\right) = 4$$



Maximize Log-likelihood

 $f: Z \to X, f$ is invertible p(z) defined over $z \in Z$

$$\log p(x) = \log p(z) + \log \left| \det \left(\frac{\partial f^{-1}(x)}{\partial x} \right) \right|$$

Maximize Log-likelihood

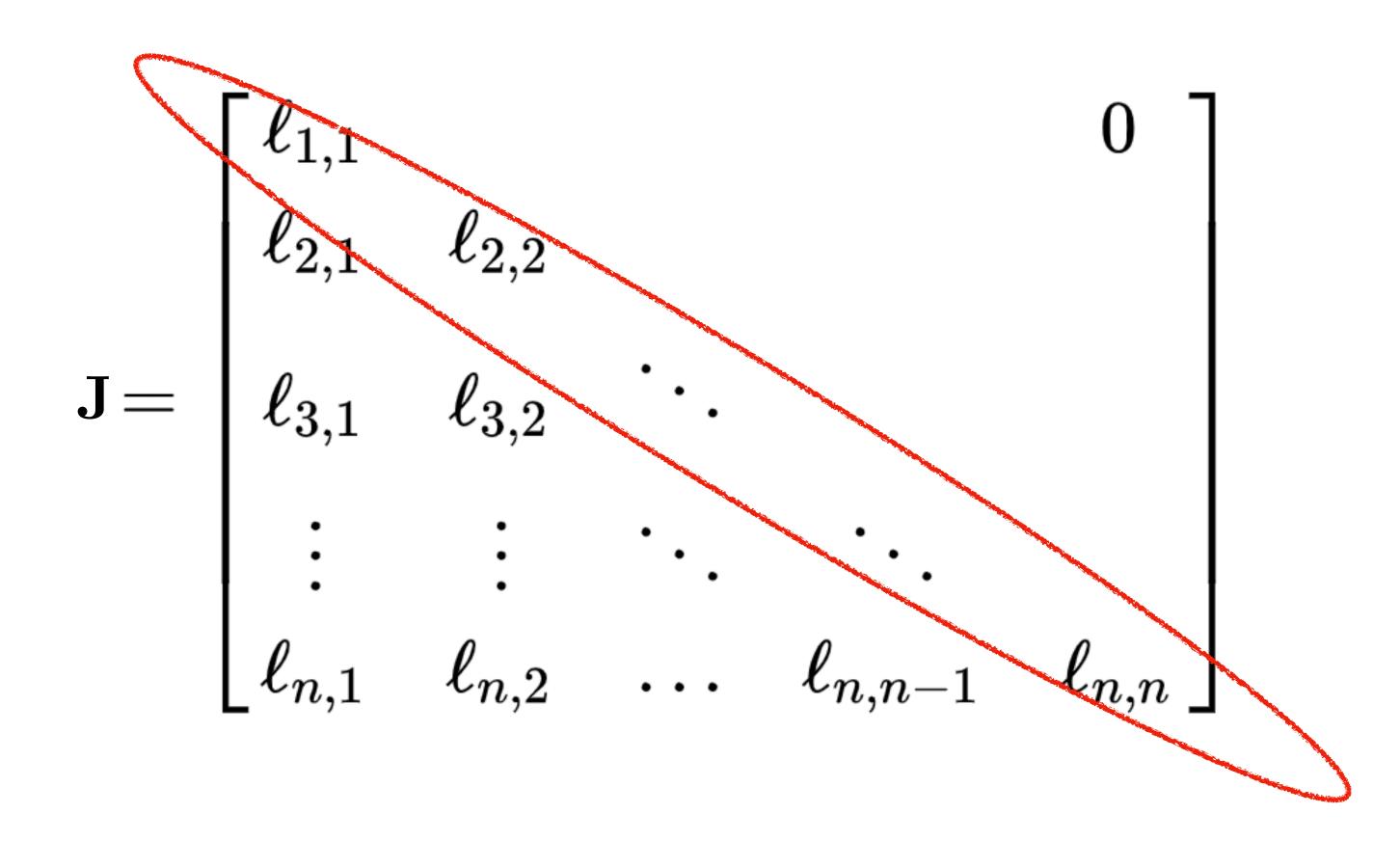
 $f: Z \to X, f$ is invertible p(z) defined over $z \in Z$

$$\log p(x) = \log p(z) + \log \left| \det \left(\frac{\partial f^{-1}(x)}{\partial x} \right) \right|$$

$$\log p(x) = \log p(z) + \sum_{i=1}^{K} \log \left| \det \left(\frac{\partial f^{-1}(x)}{\partial x} \right) \right|$$

Jacobian: Lower Triangular Matrix

 $f: Z \to X, f$ is invertible p(z) defined over $z \in Z$



How to ensure lower-triangular Jacobian matrix?

 $z \in \mathbb{R}^D$

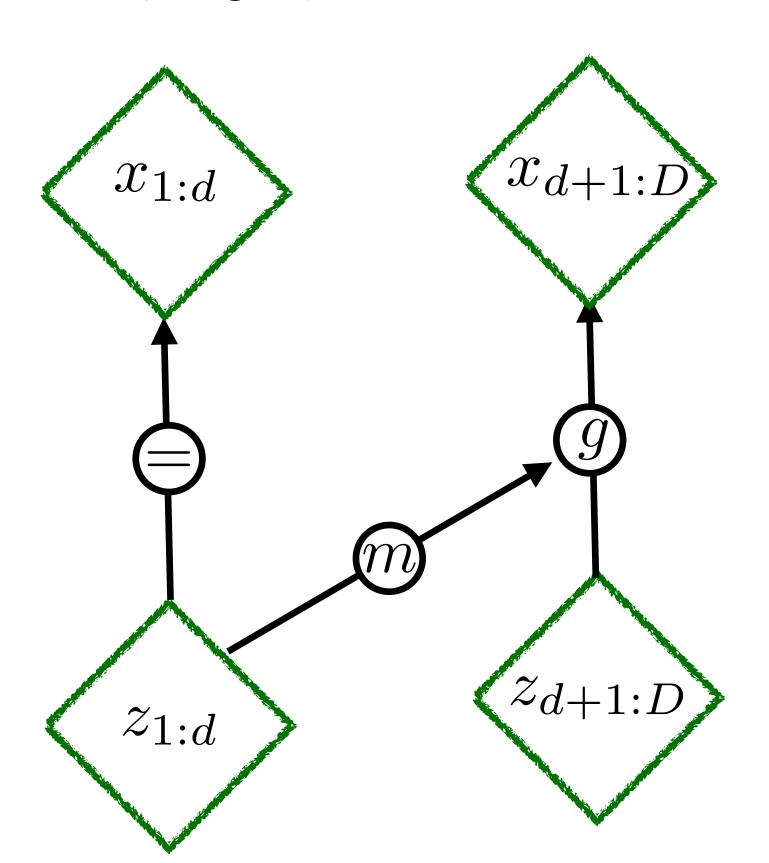
 $z_{1:d}$

 $z_{d+1:D}$

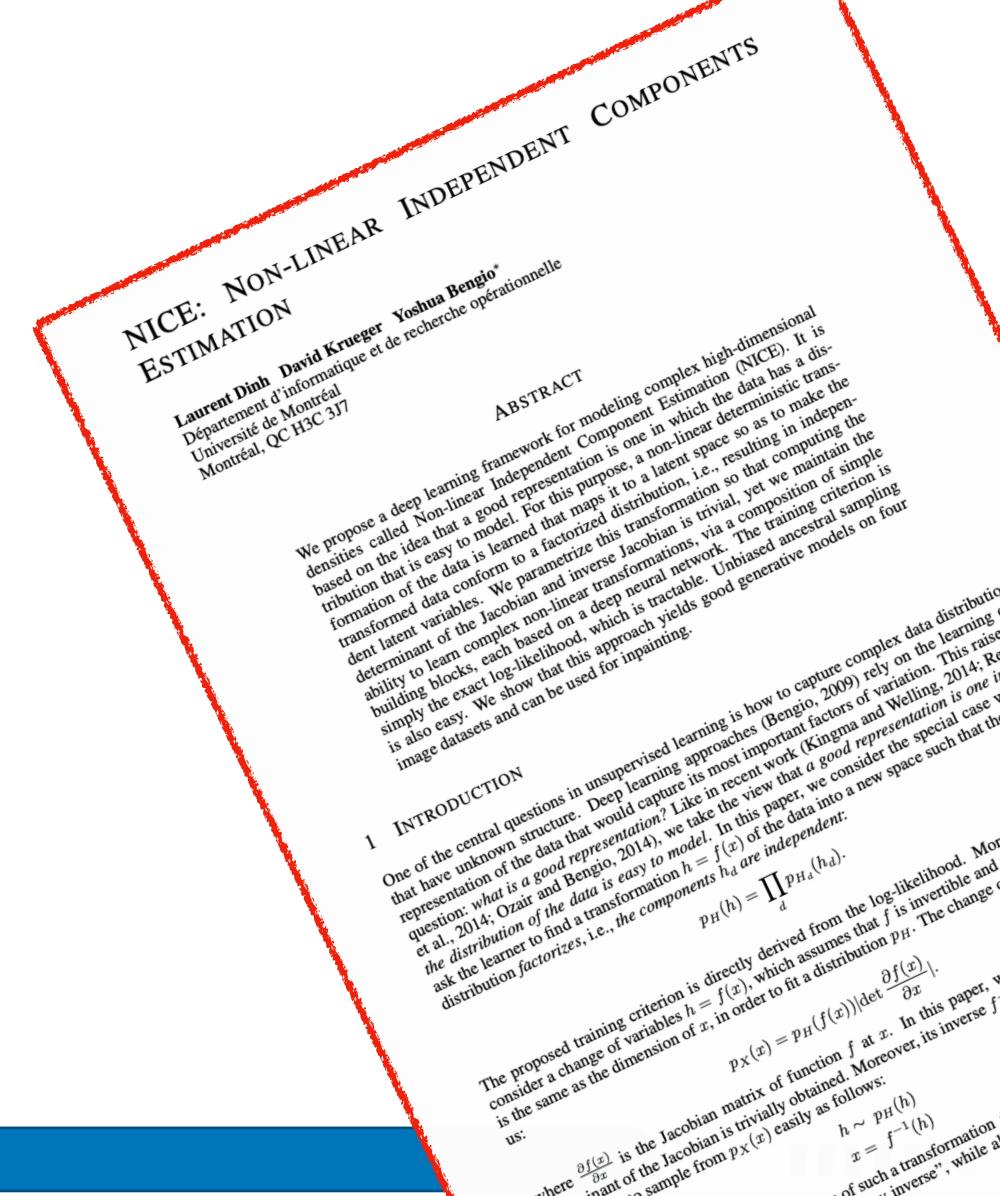
How to ensure lower-triangular Jacobian

matrix?

Coupling layer



$$z \in \mathbb{R}^D$$

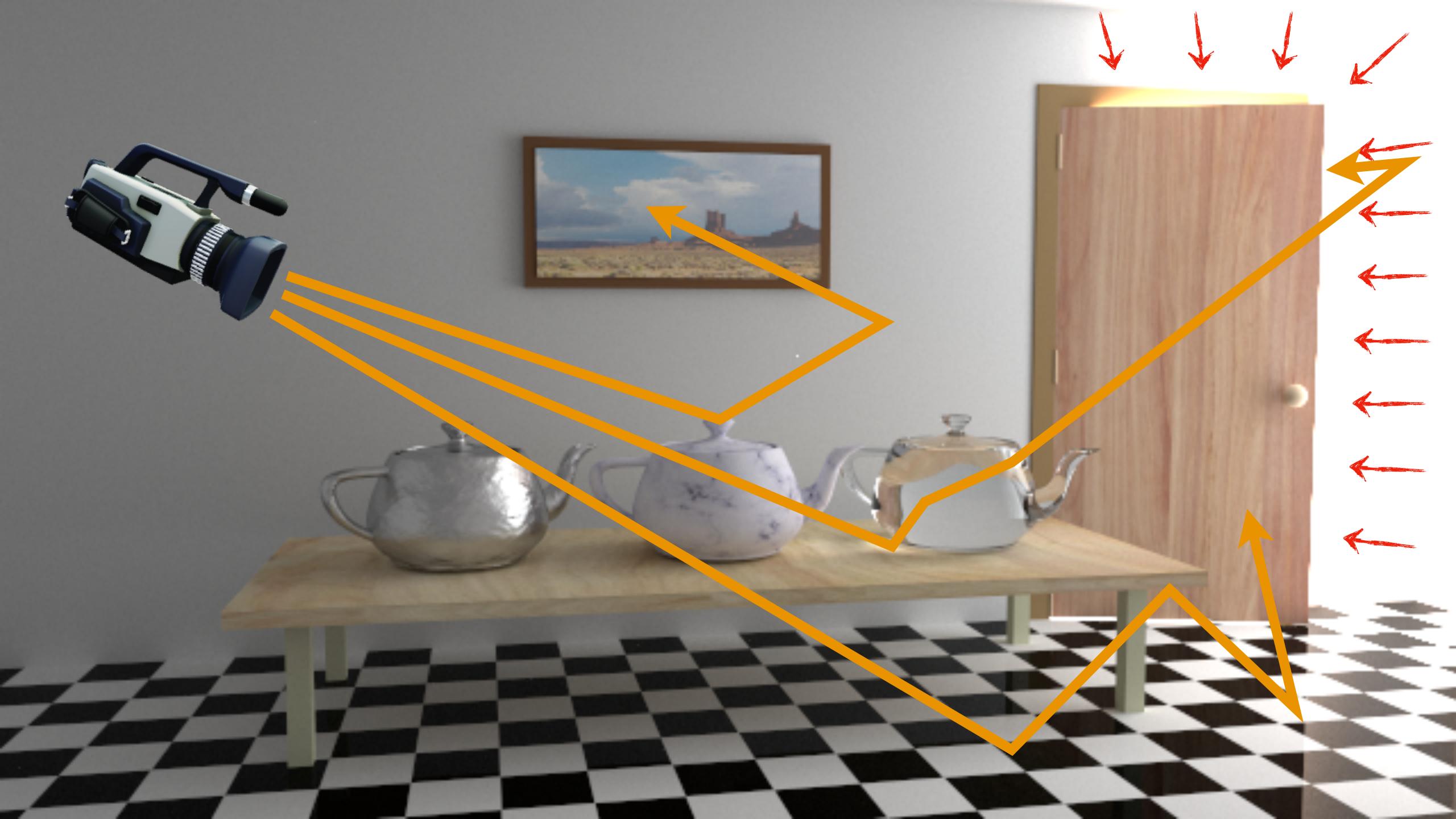


Neural Importance Sampling

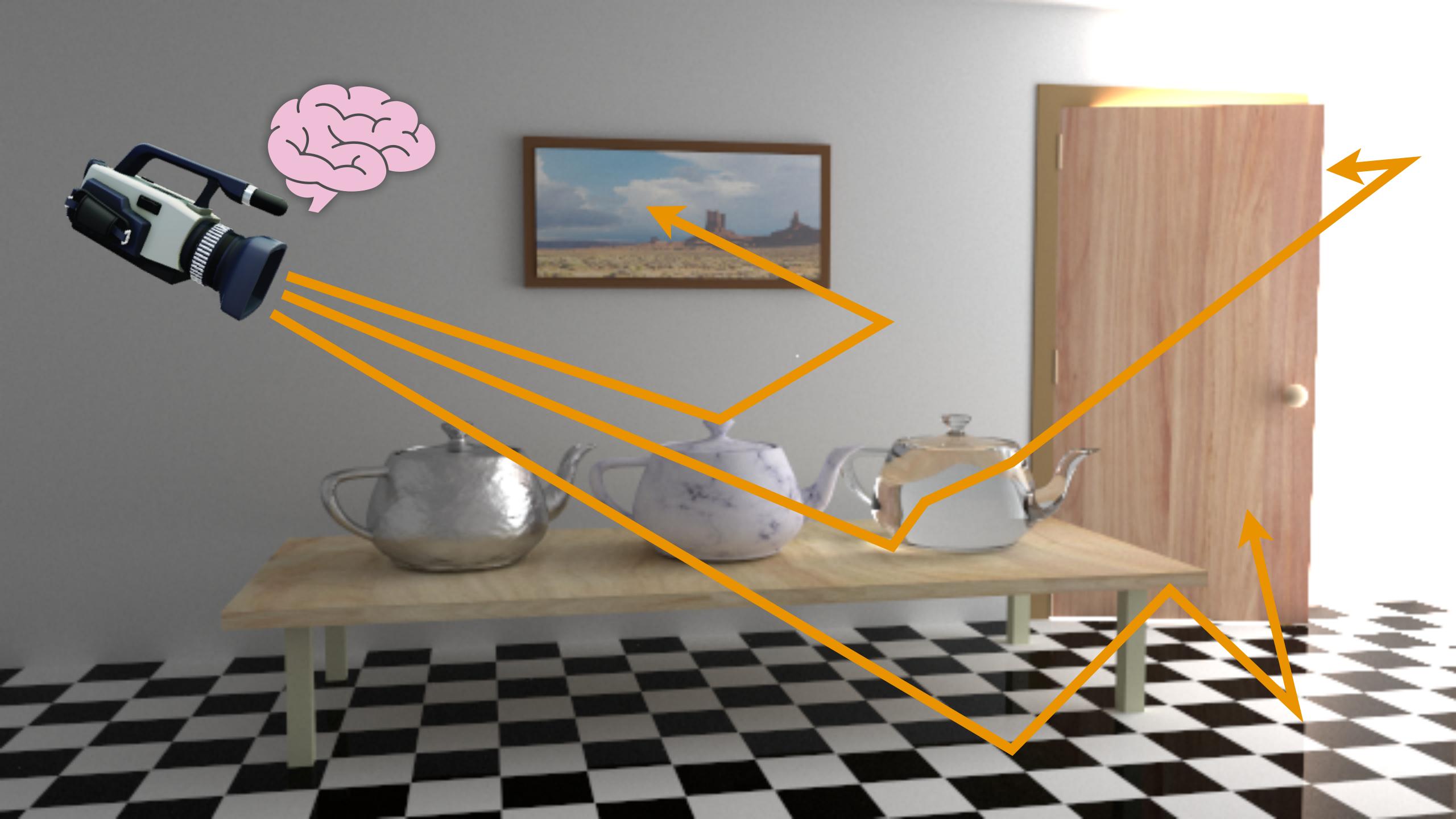
Thomas Müller Brian McWilliams Fabrice Rousselle Markus Gross Jan Novák

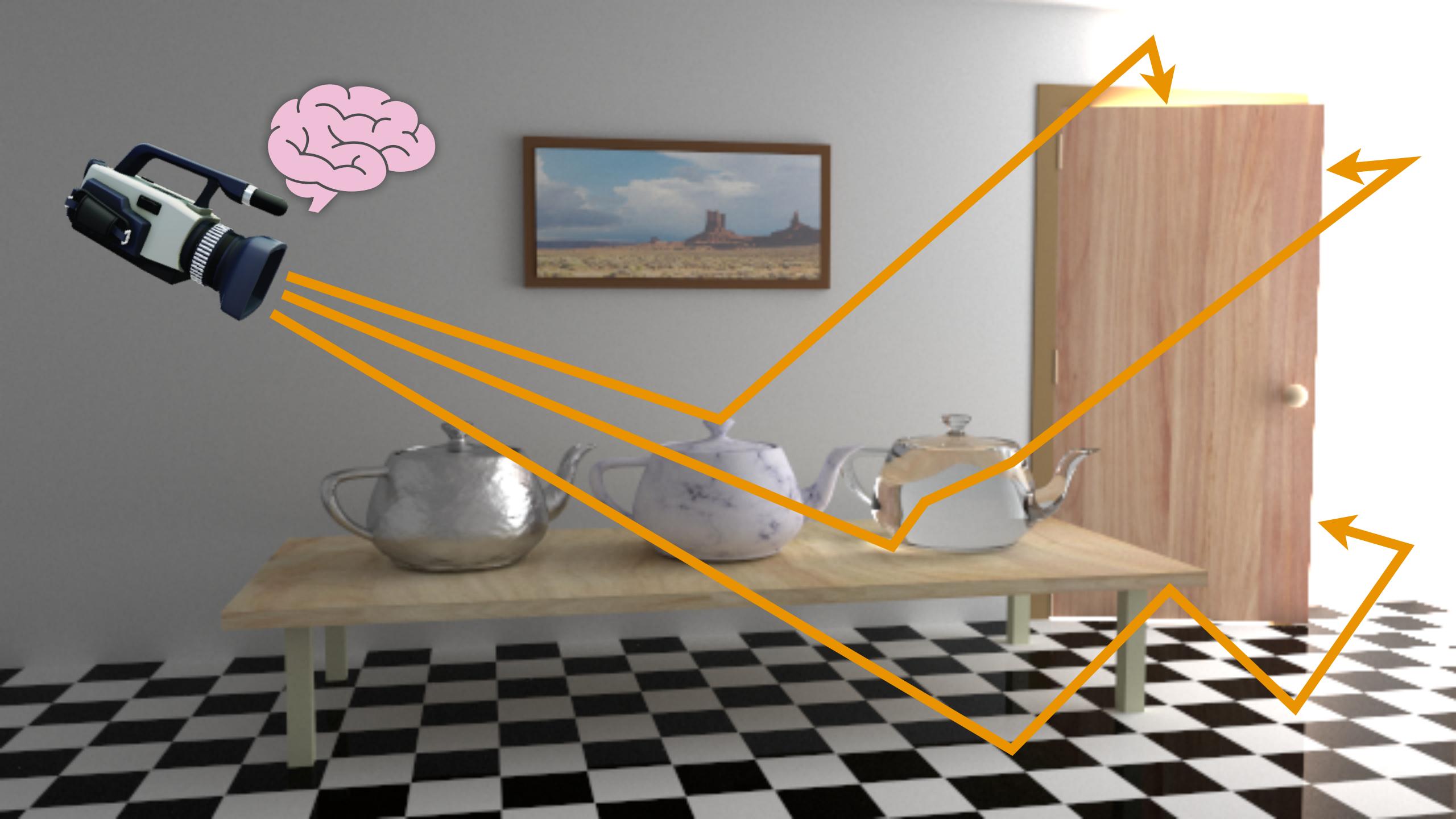
Affiliation:

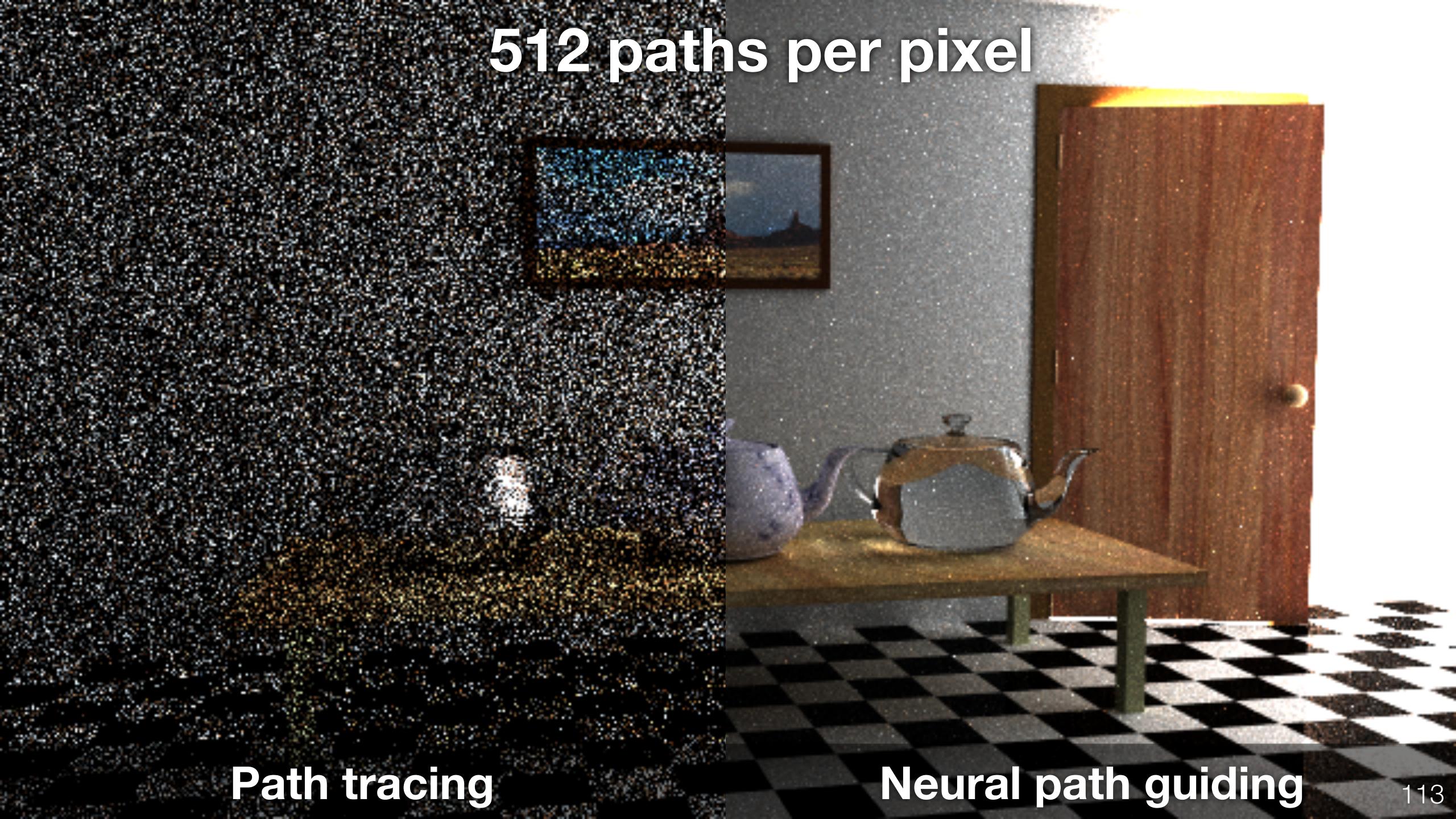
Work done while at:



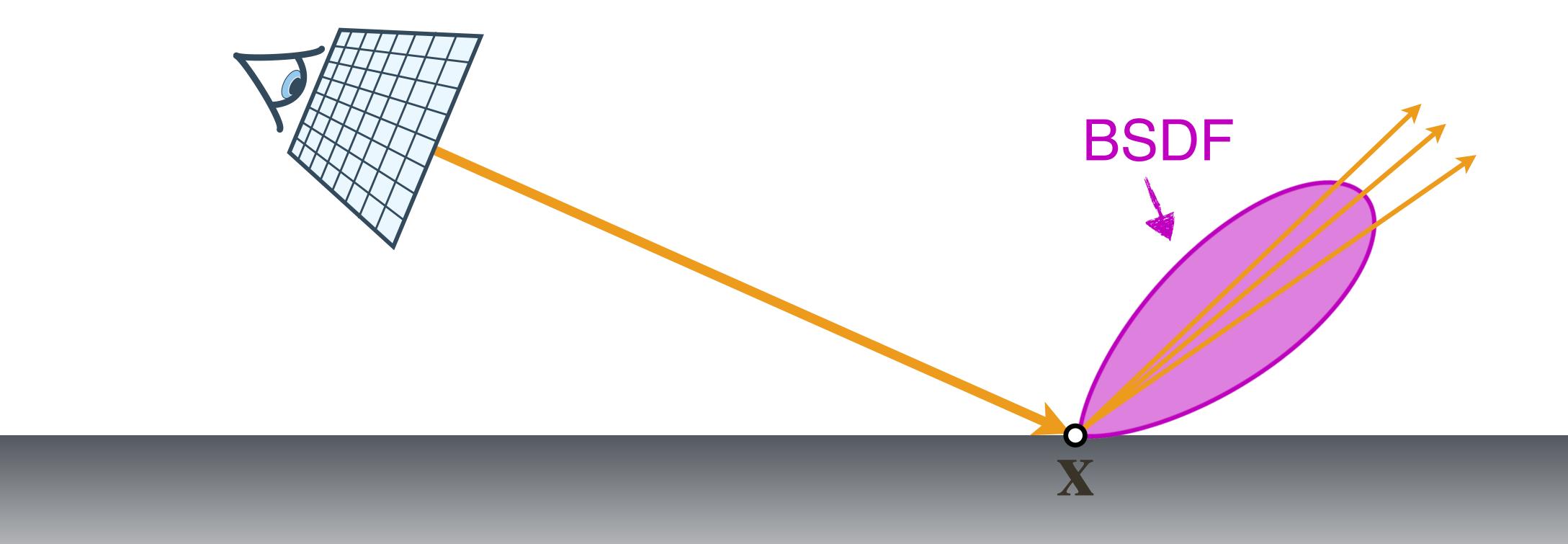
Render time: sometimes >100 cpu-hours



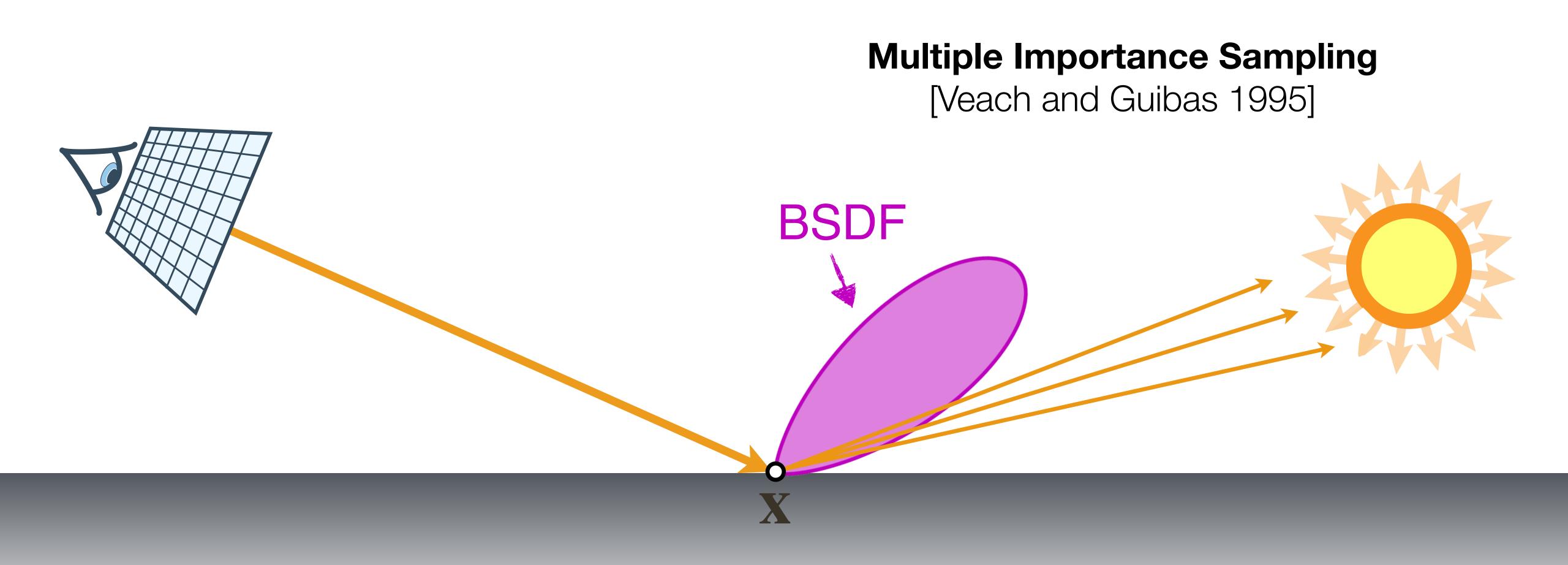




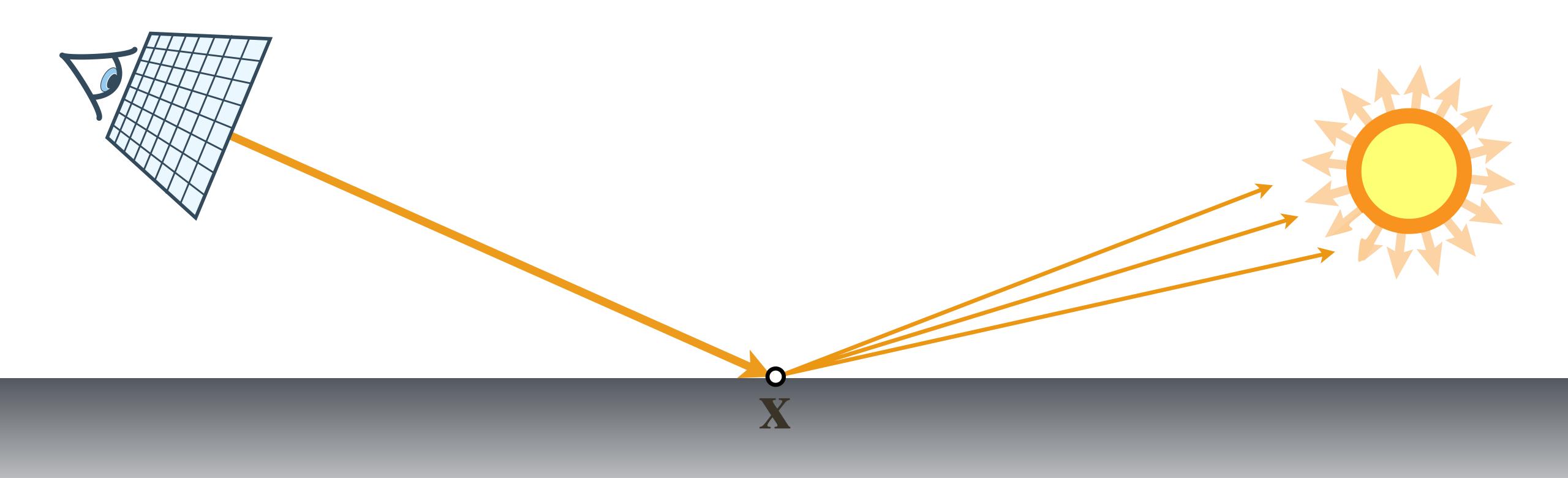
Path tracing: BSDF sampling



Path tracing: direct-illumination sampling

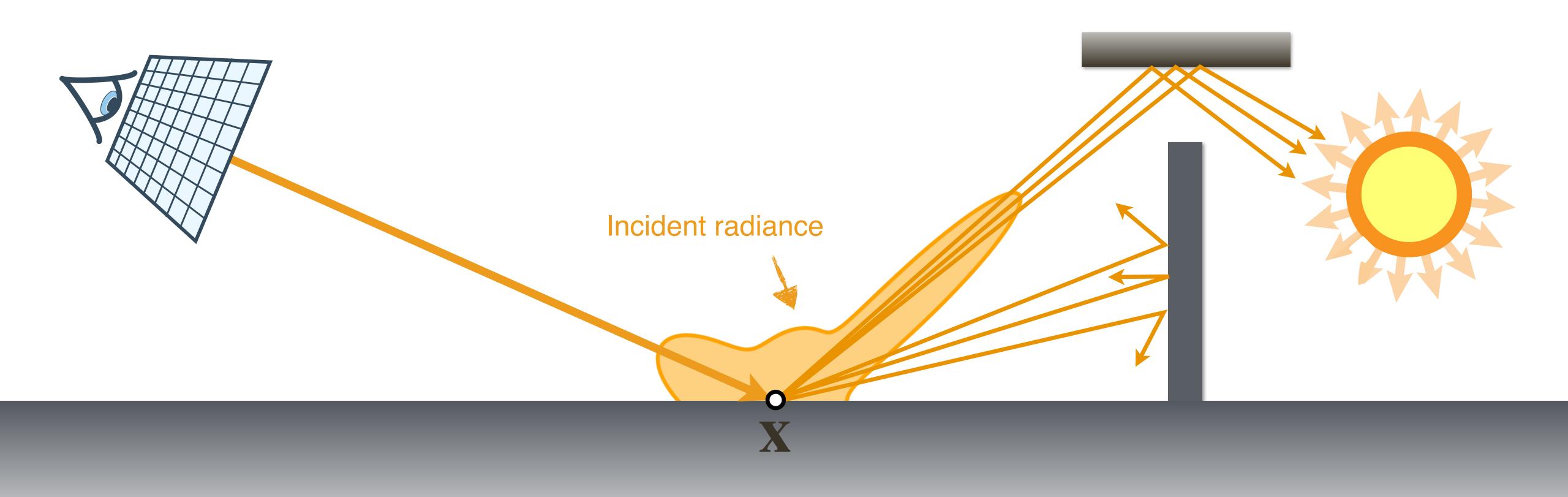


Where is path guiding useful?

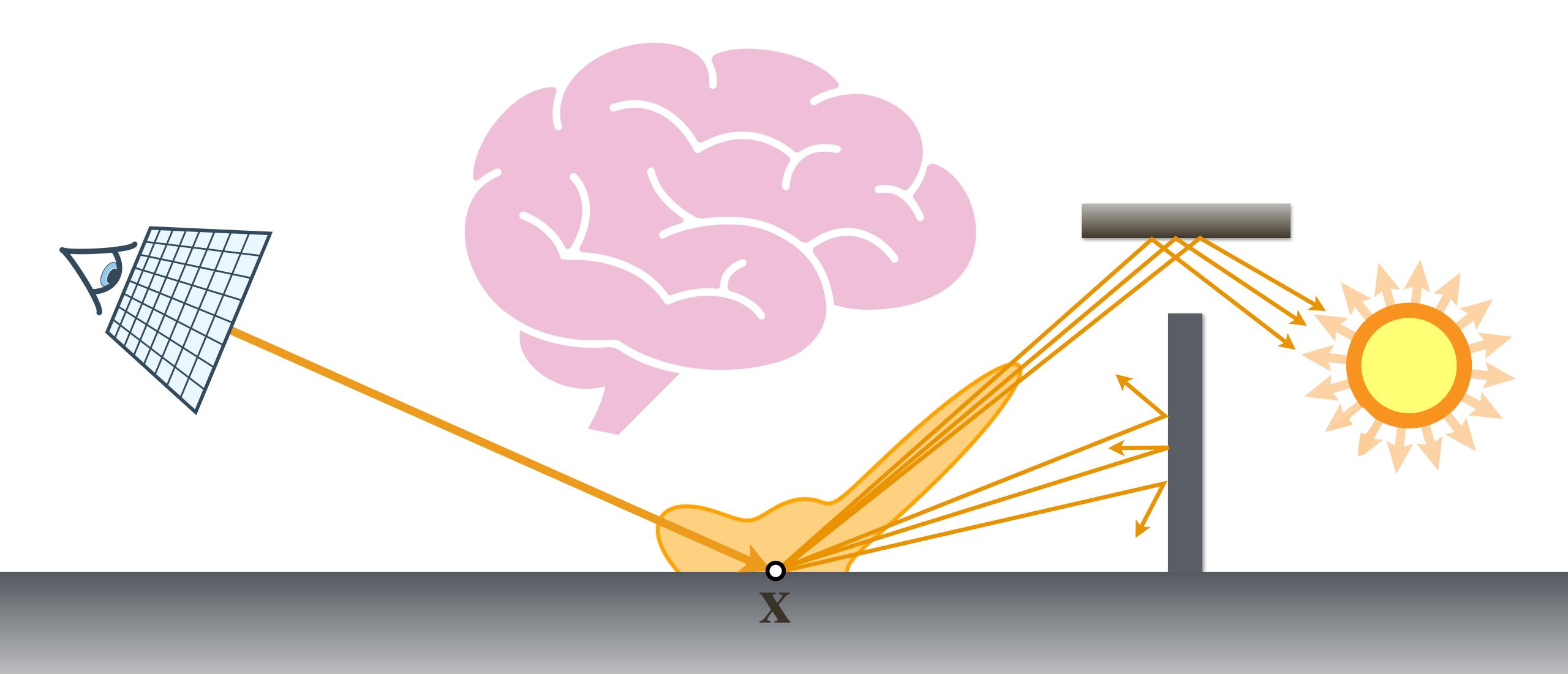


Where is path guiding useful?

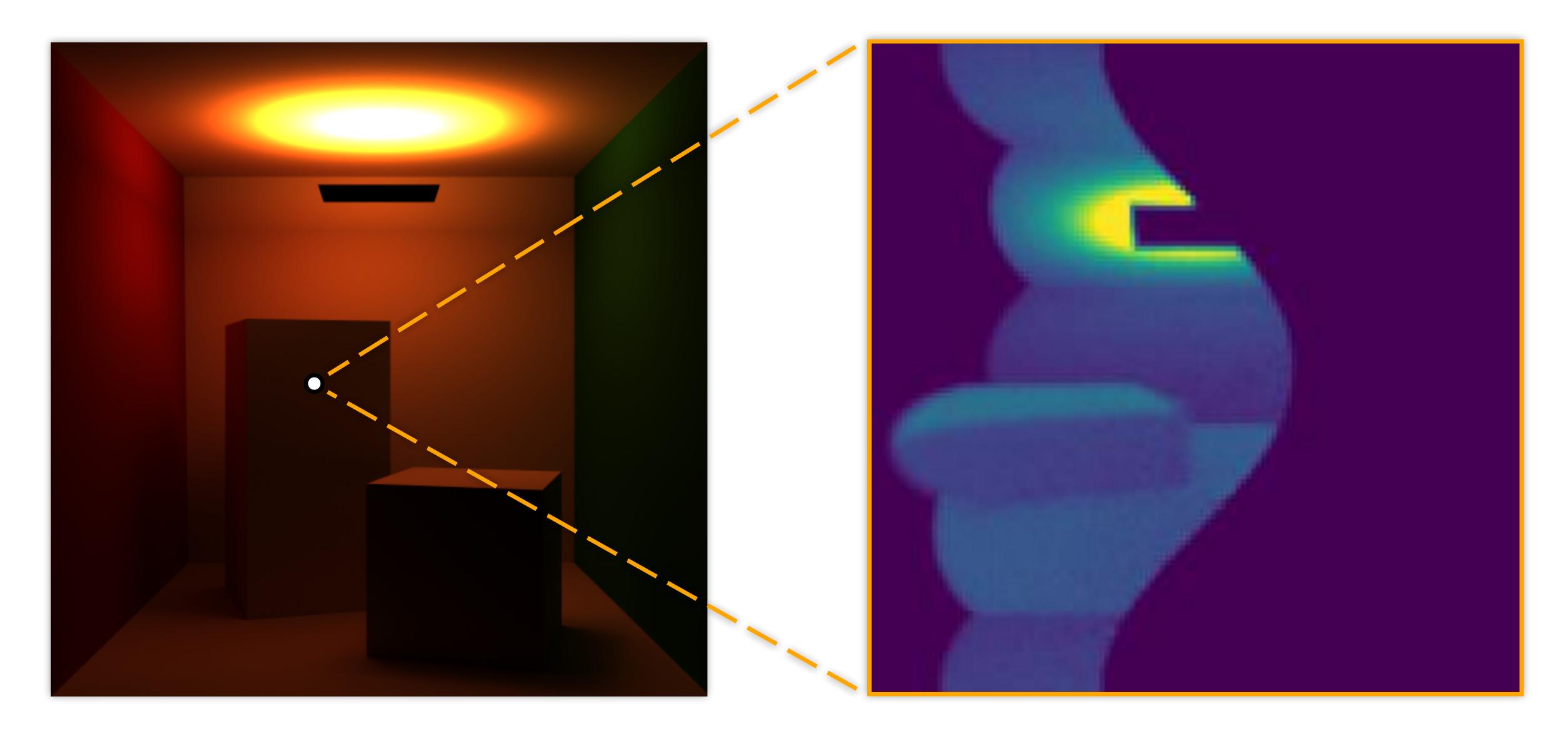
Goal: Sample proportional to incident radiance.



Where is path guiding useful?

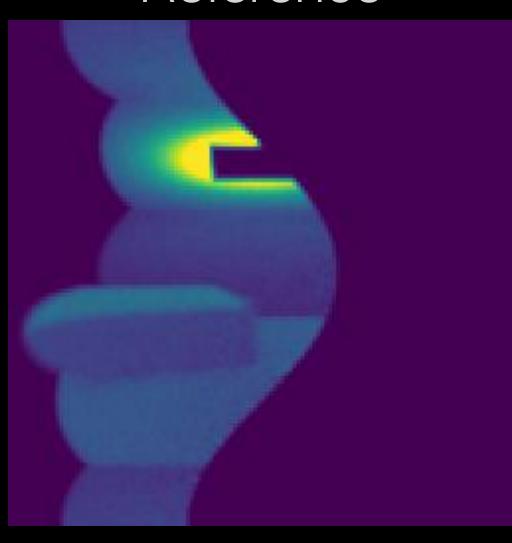


Learning incident radiance in a Cornell box

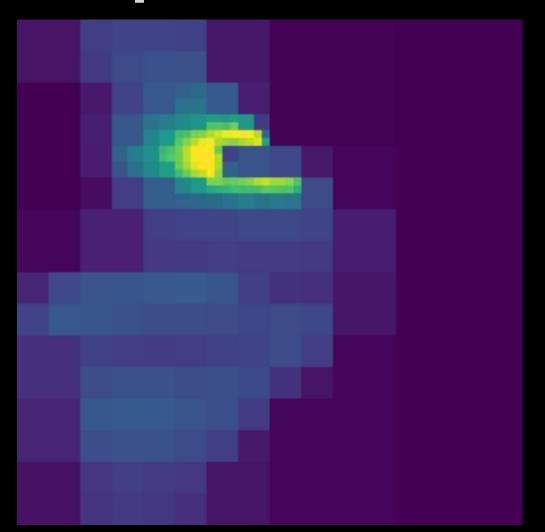


Neural networks as function approximators

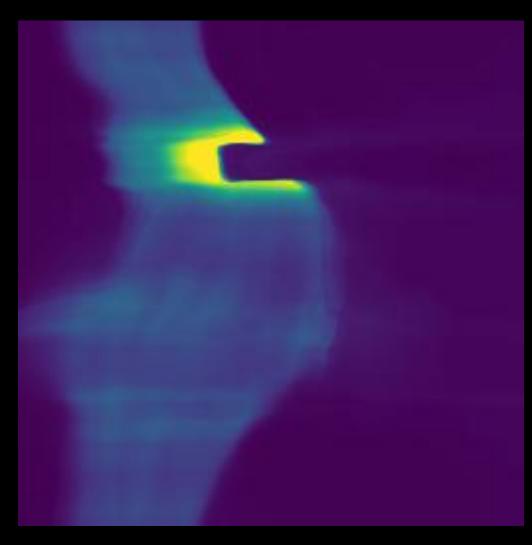
Reference



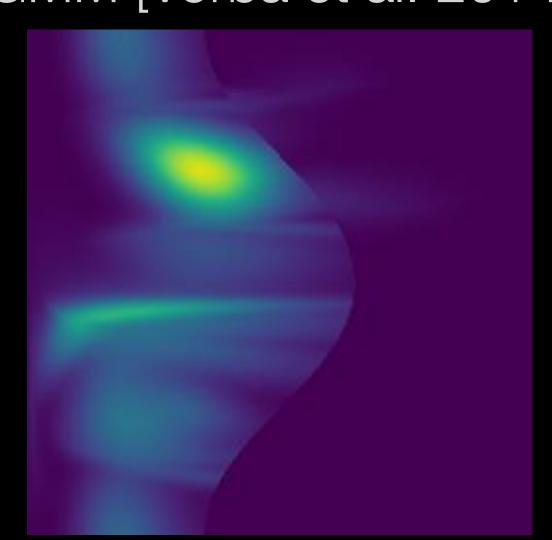
SD-tree [Müller et al. 2017]



Neural Network

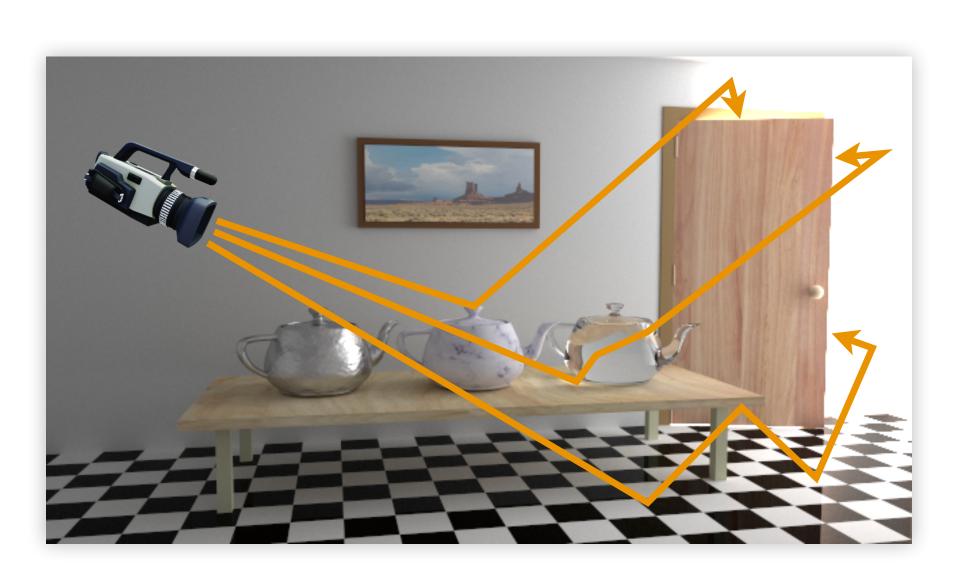


GMM [Vorba et al. 2014]

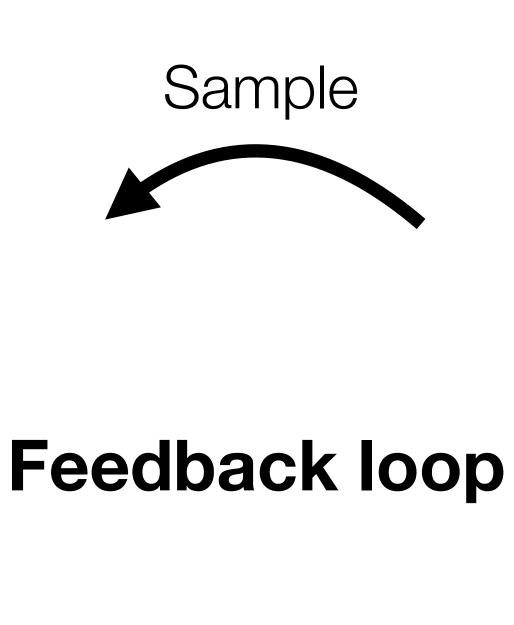


Directional distribution Neural network Reference SD-tree Gaussian mixture

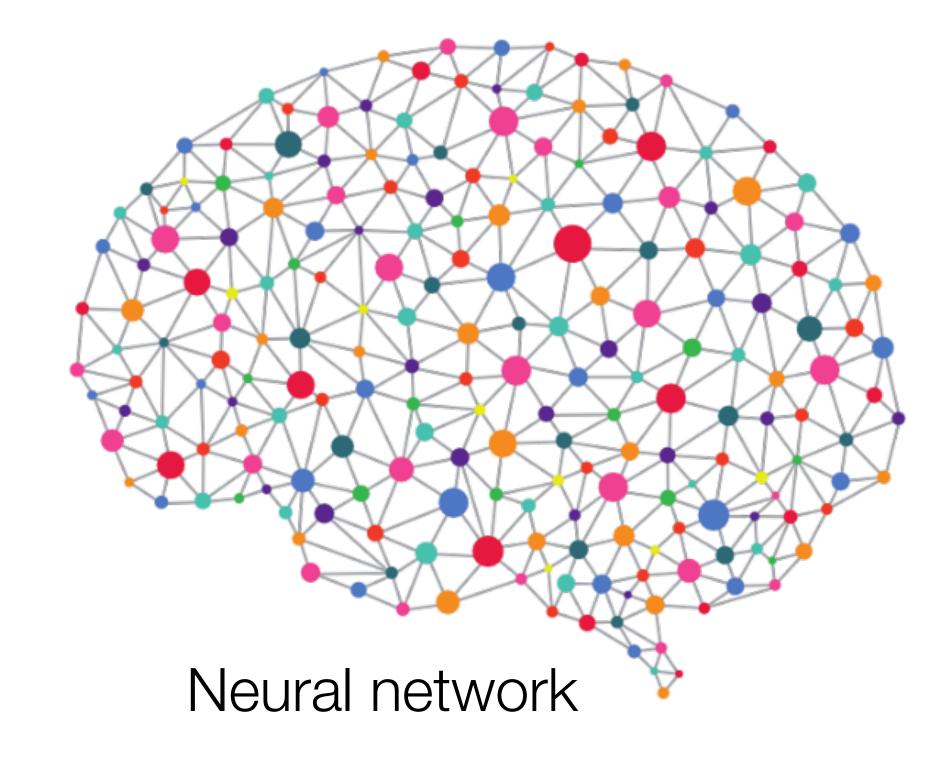
Neural path guiding overview



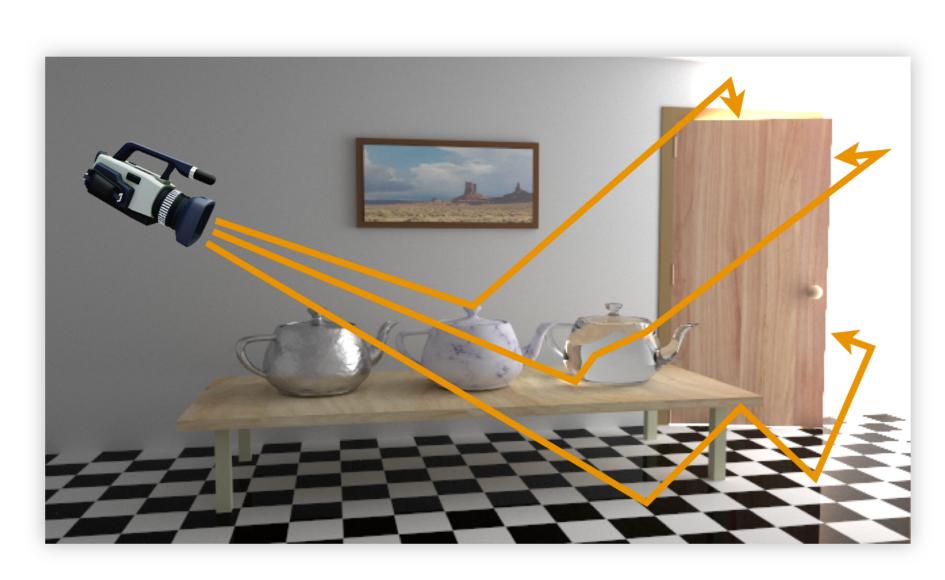
Path tracer



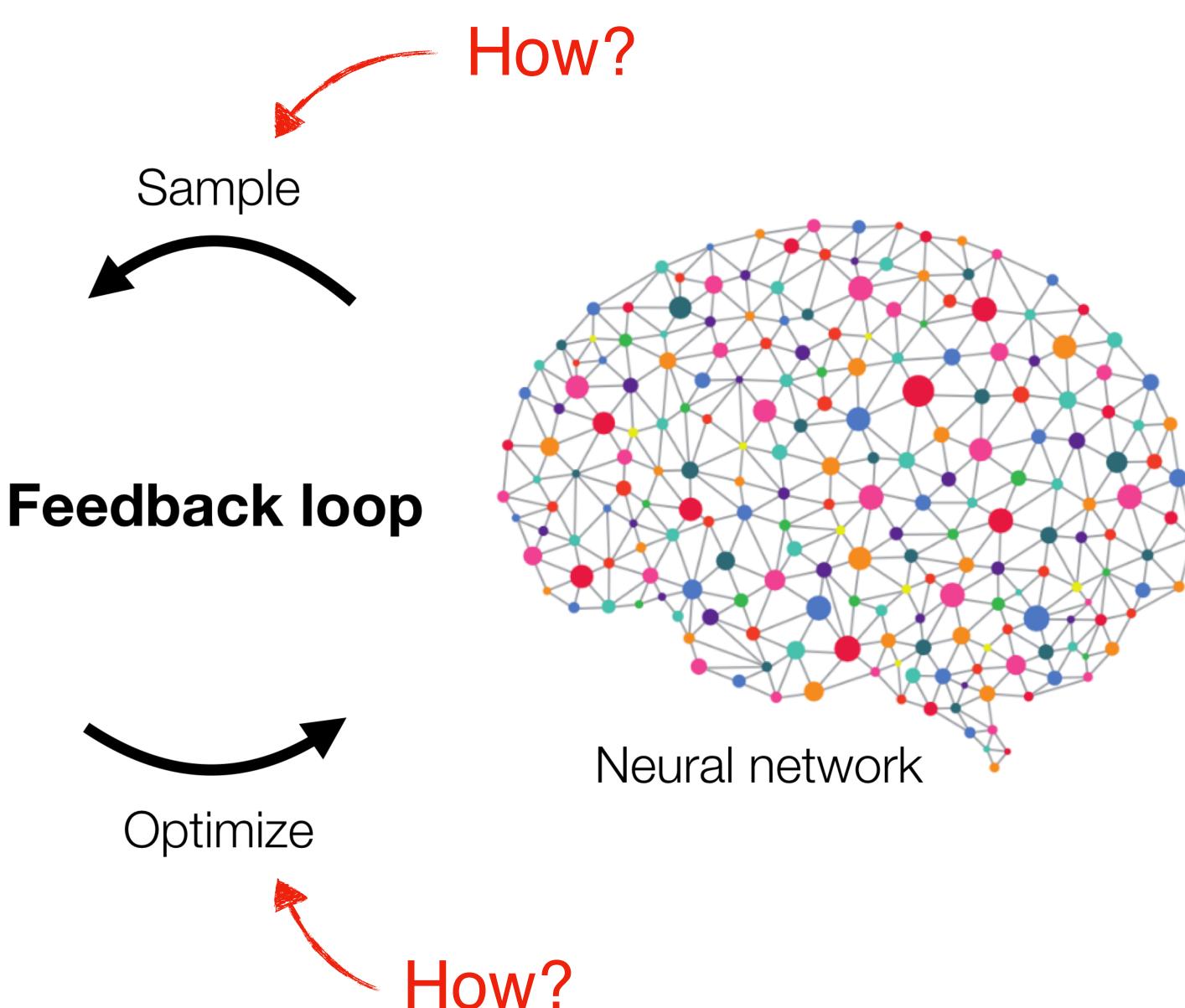




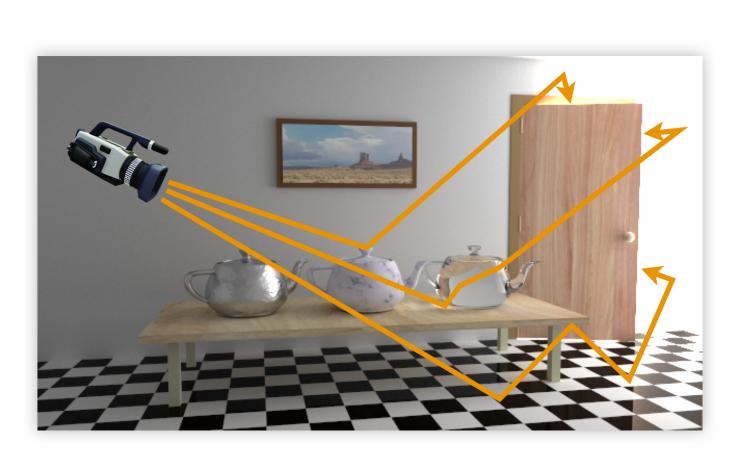
Neural path guiding overview



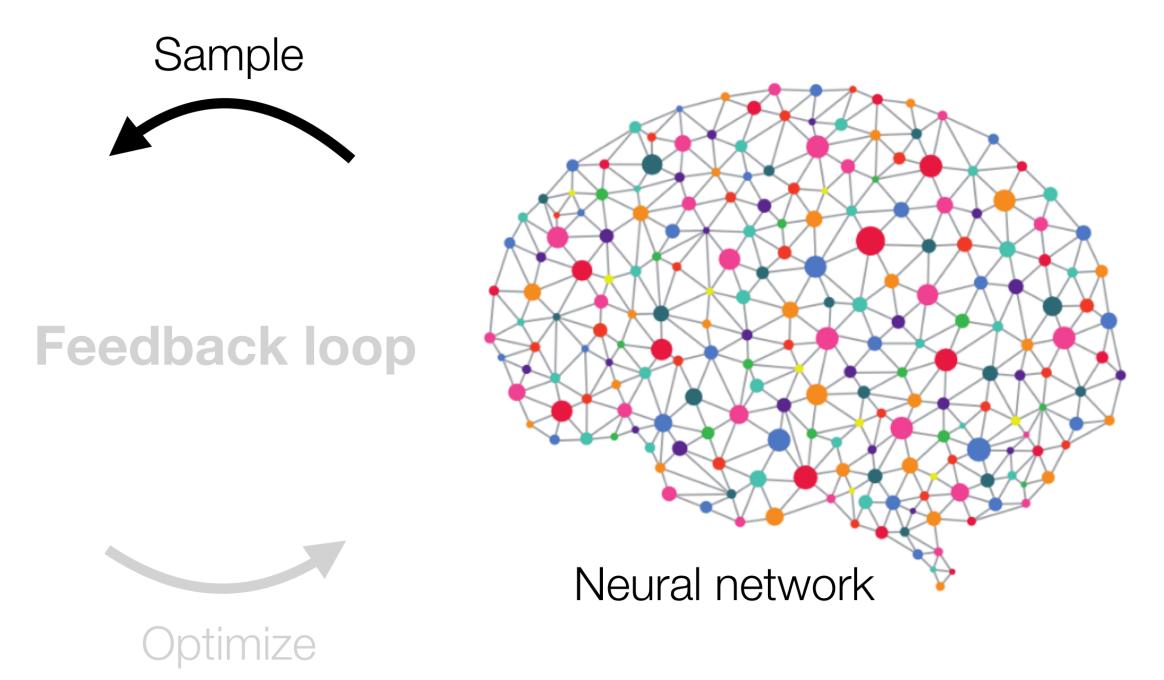
Path tracer



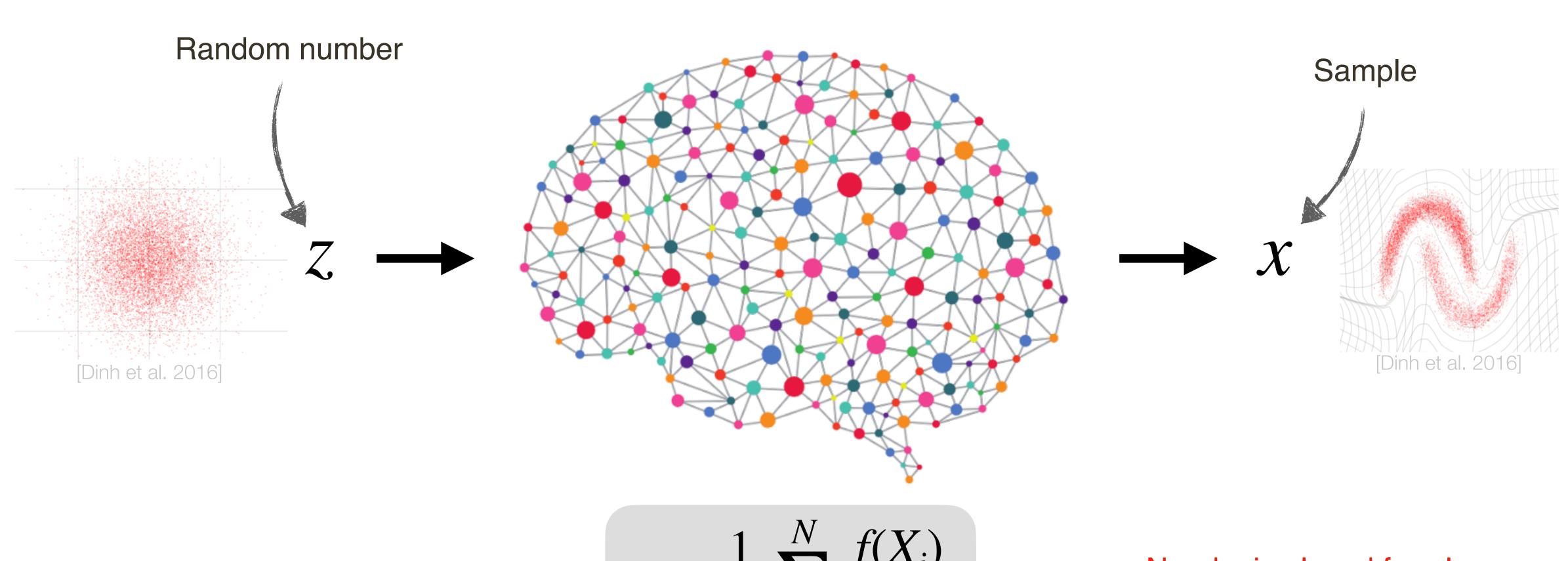
How to draw samples?



Path tracer



Goal: warp random numbers to good distribution with NN

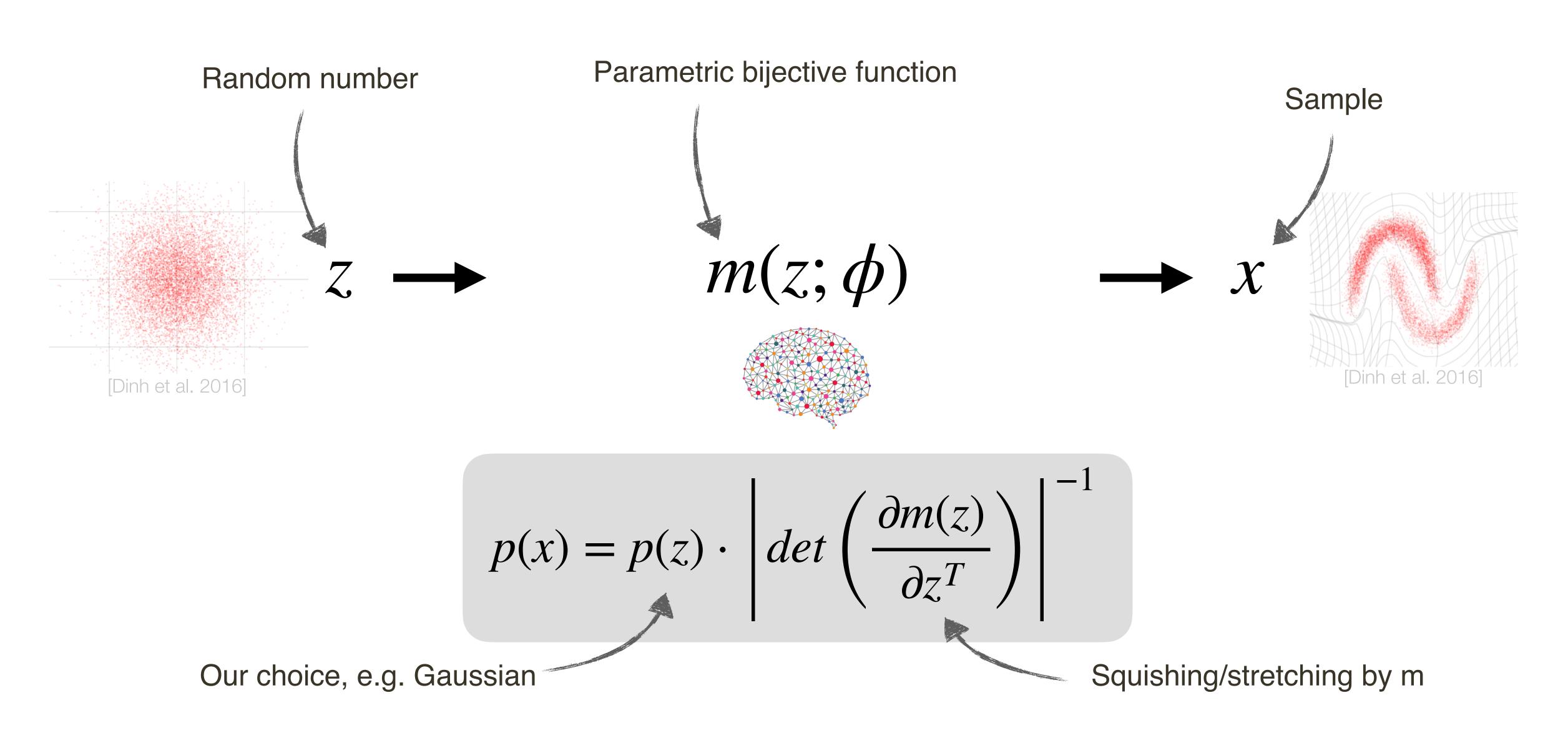


Monte Carlo estimator

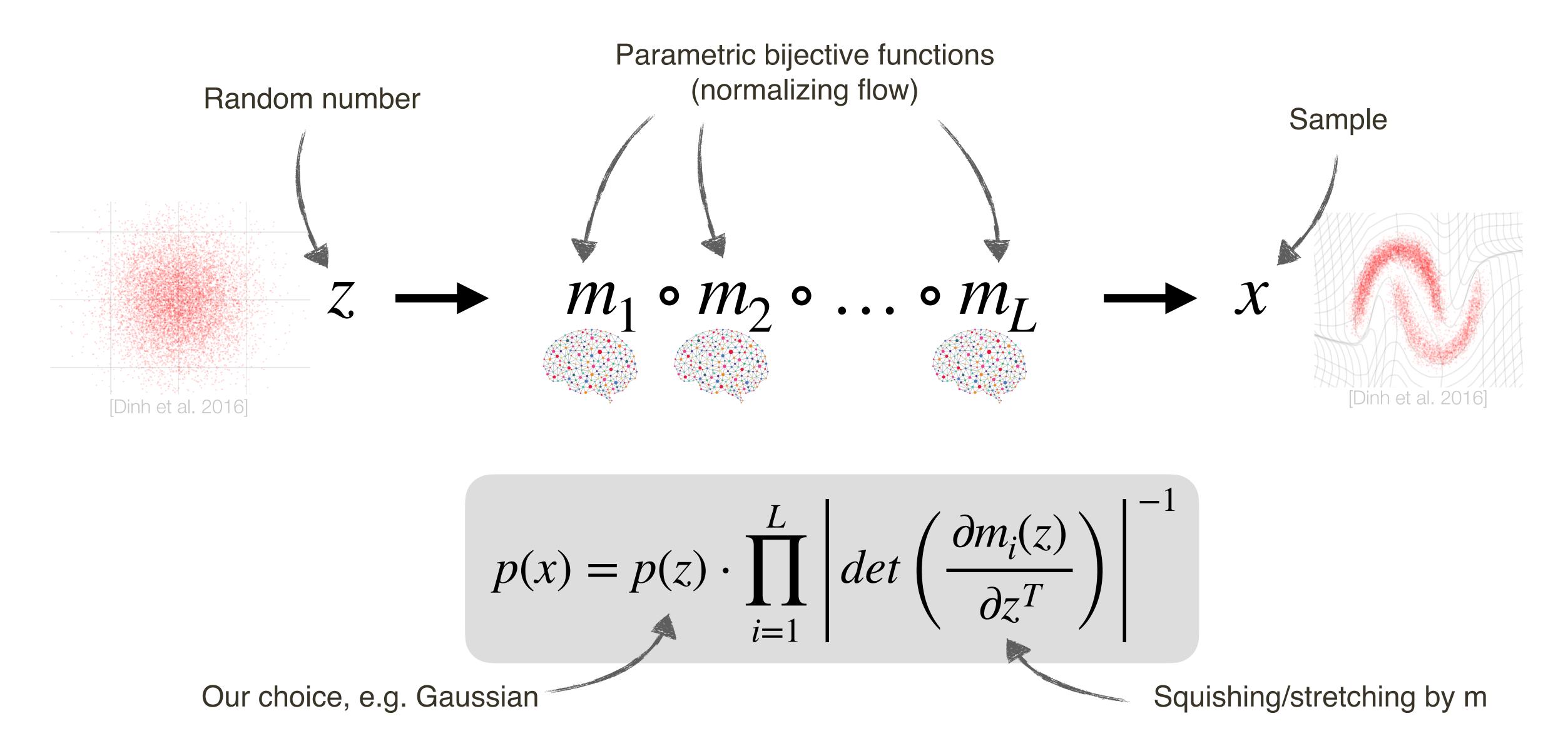
$$F \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}$$

Need p in closed form!Addressed by "normalizing flows"

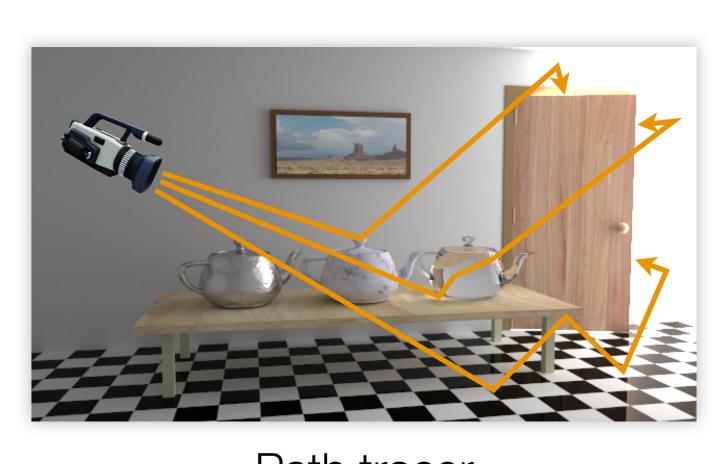
Parameterizing a bijection allows using the change-of-variable formula



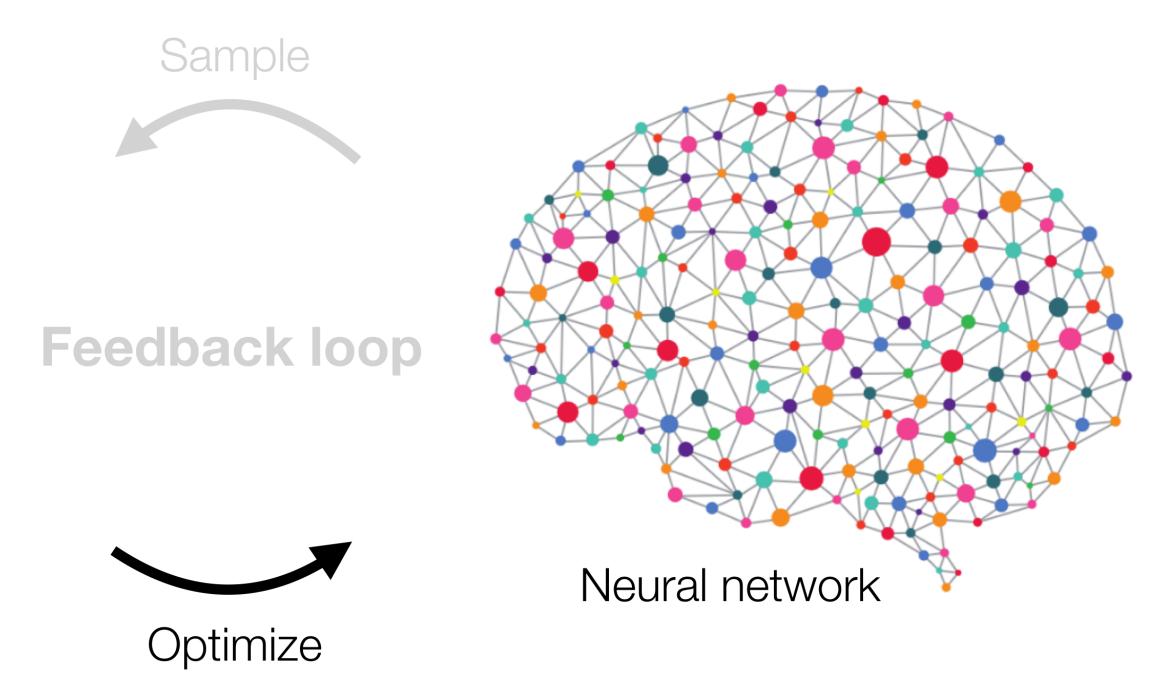
A chain of simple bijections can model complicated functions



How to optimize?

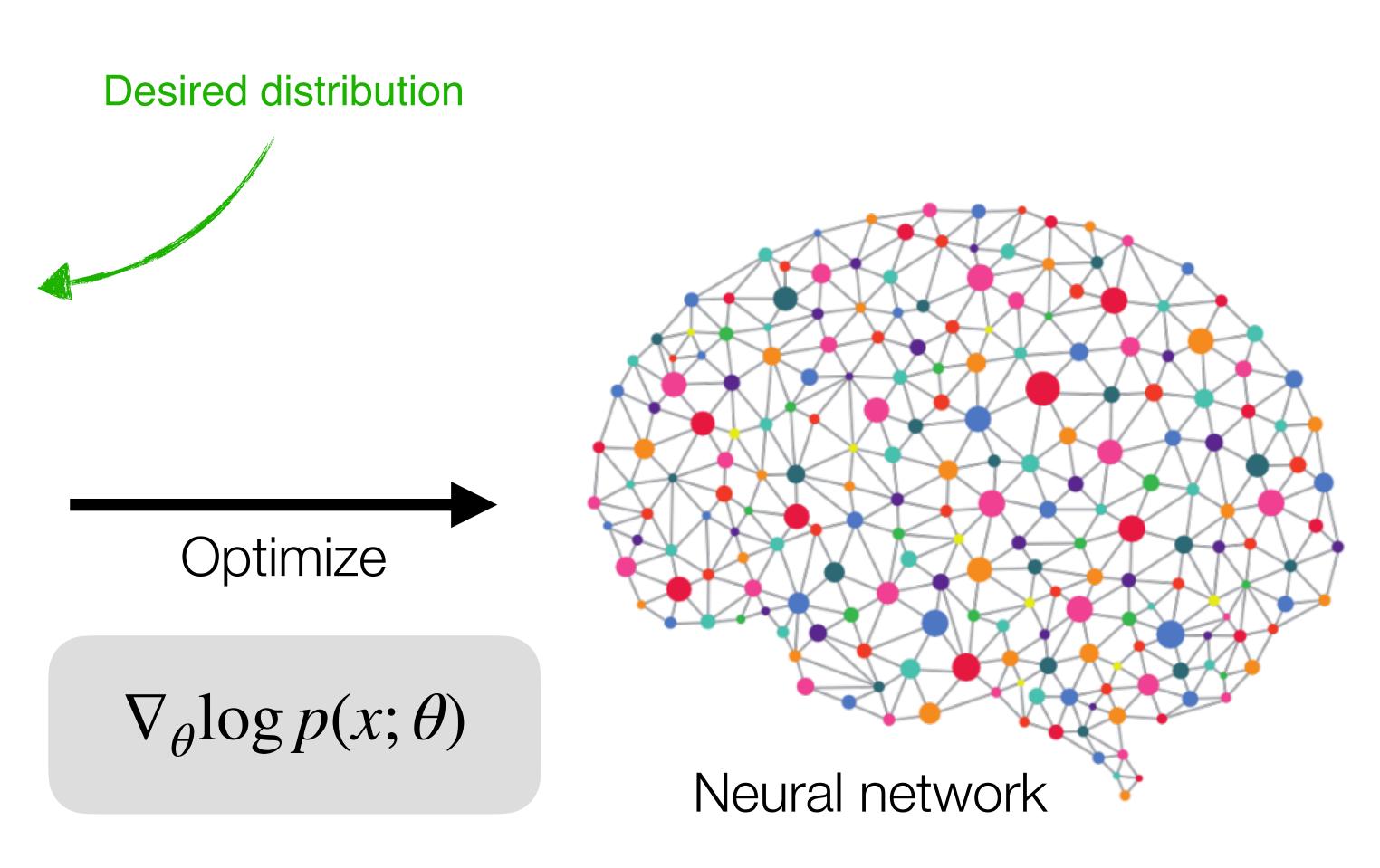


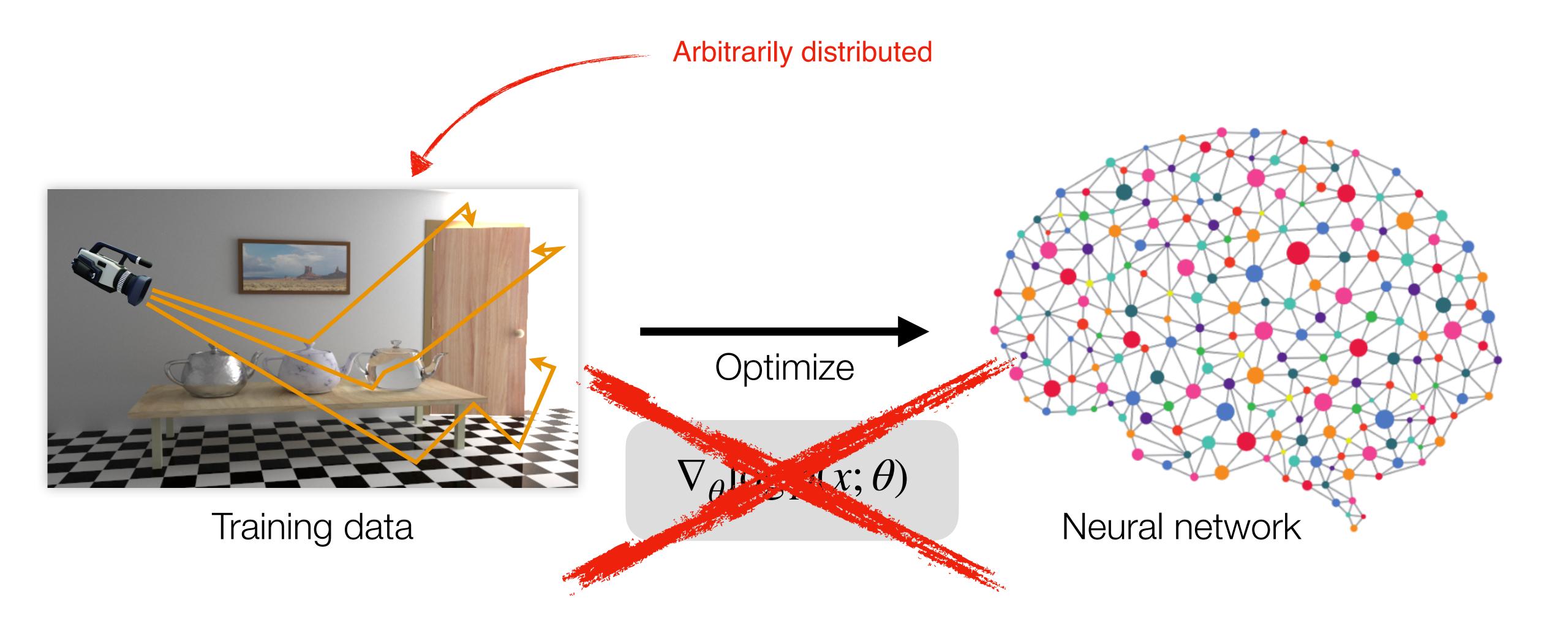
Path tracer



Training with data from the correct distribution is simple

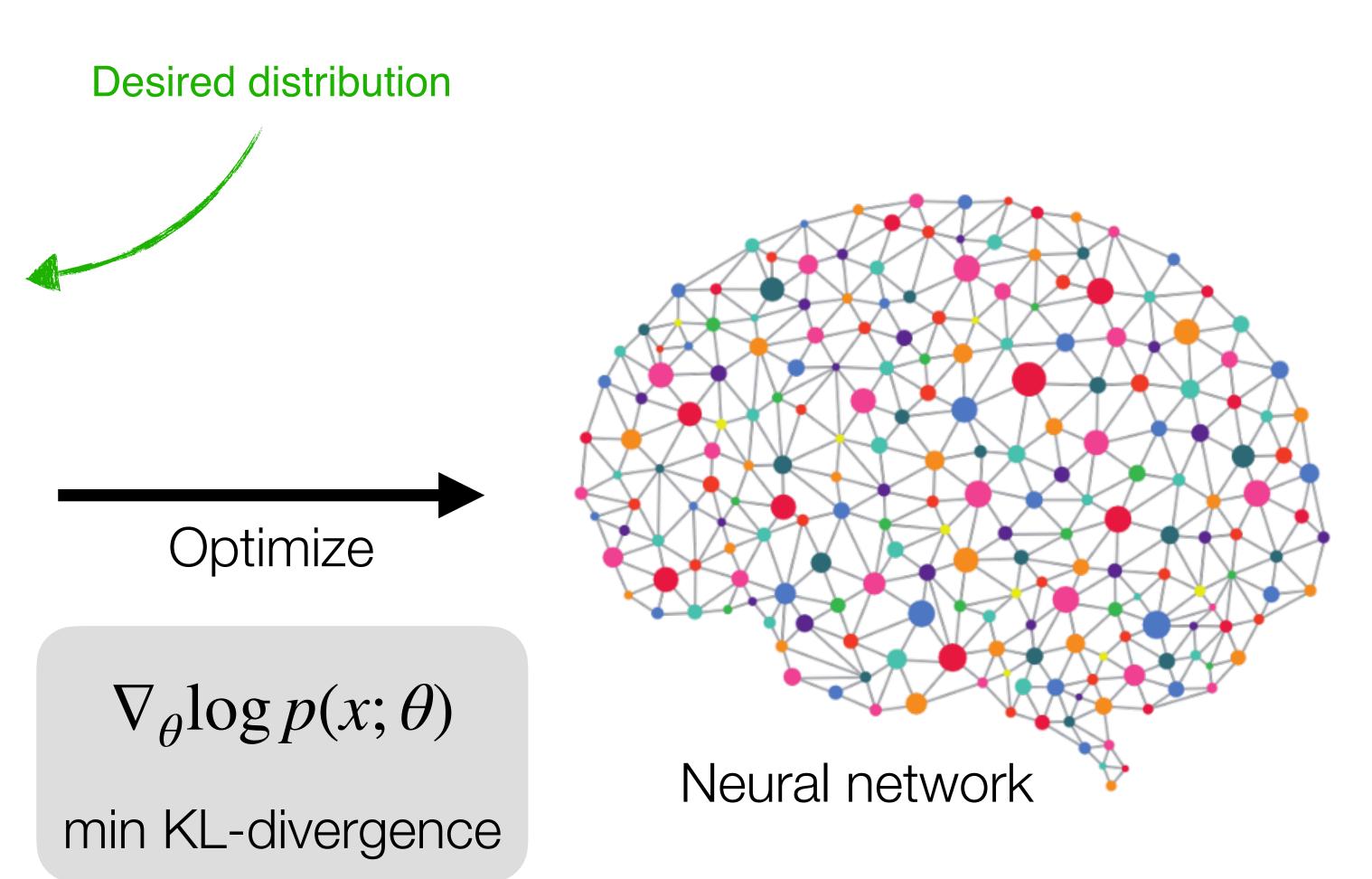
Training data

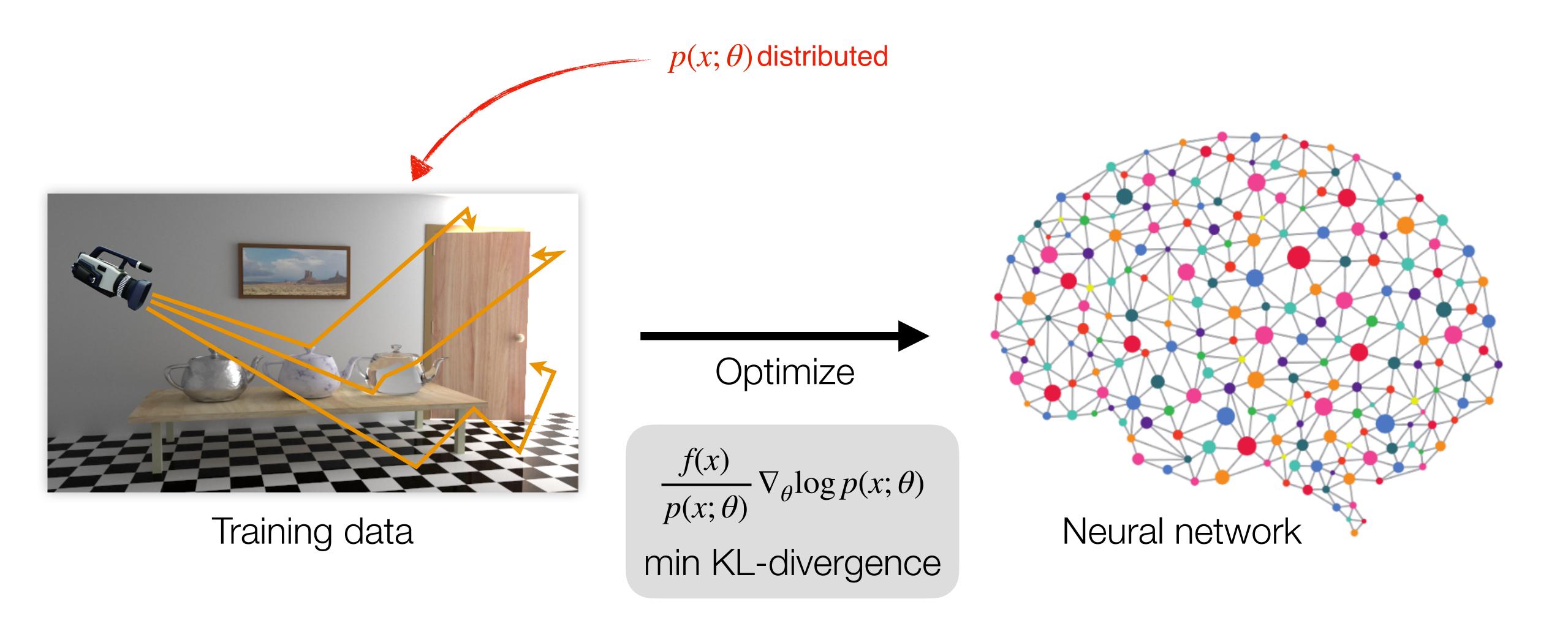


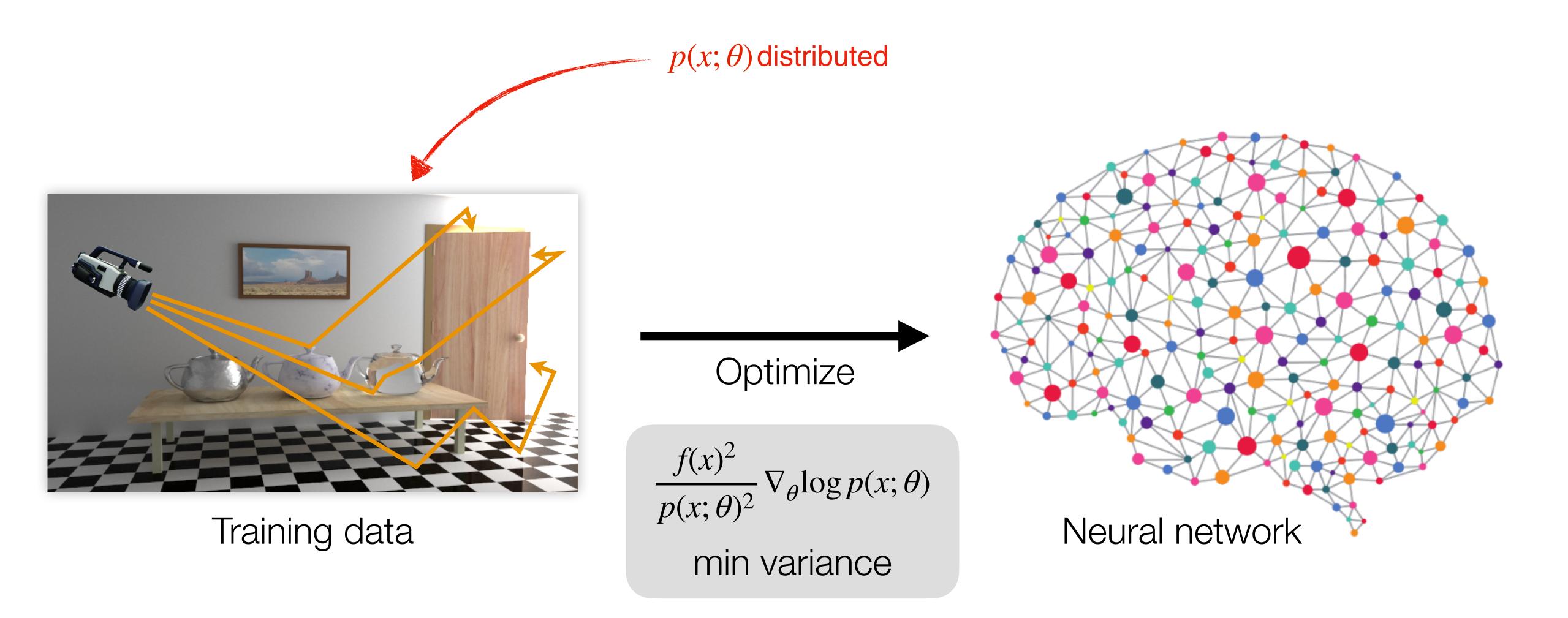


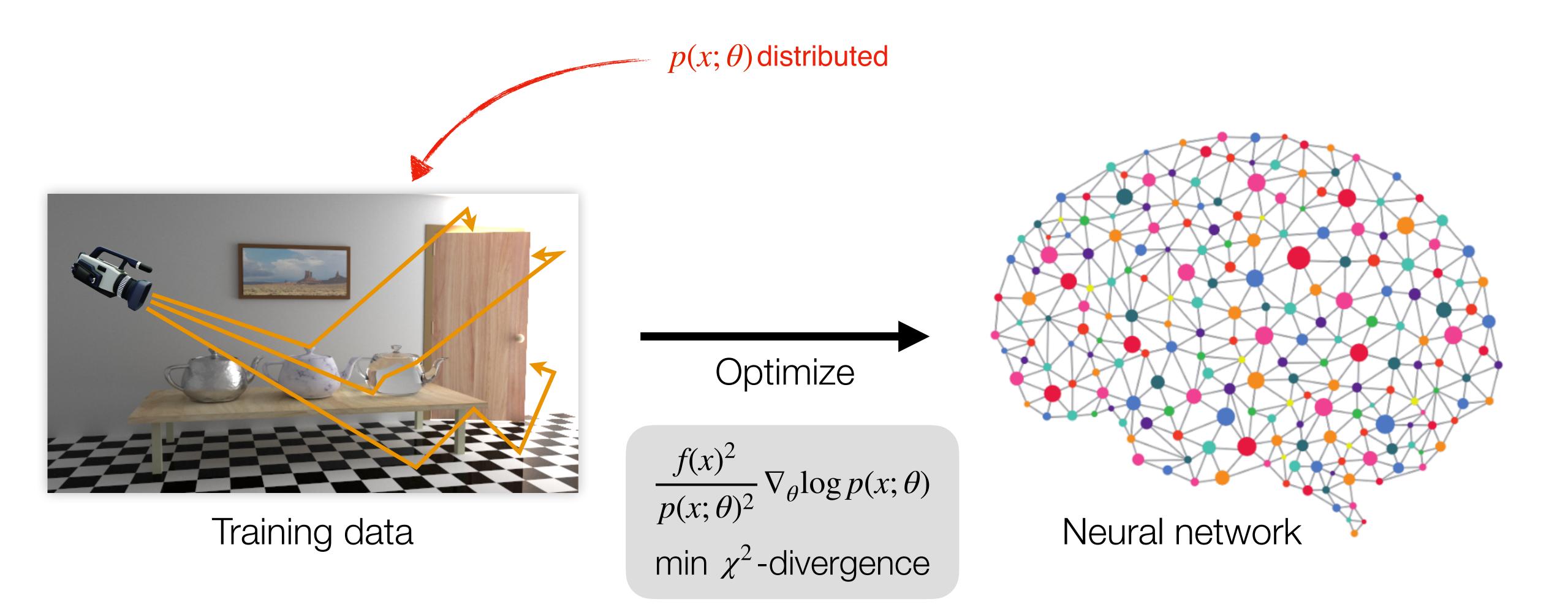
Training with data from the correct distribution is simple

Training data

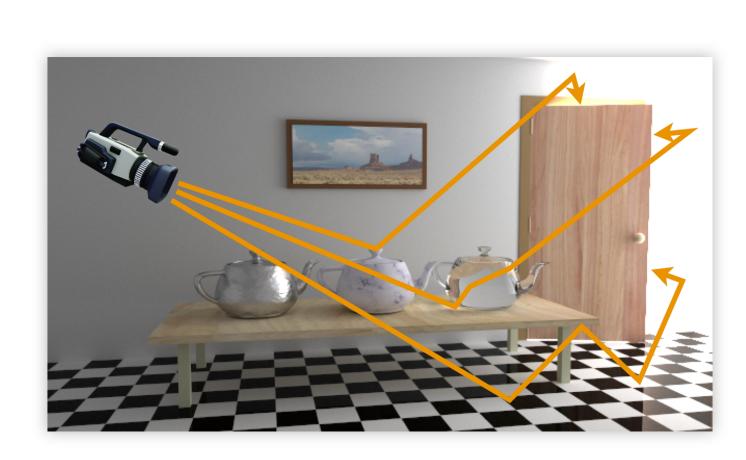




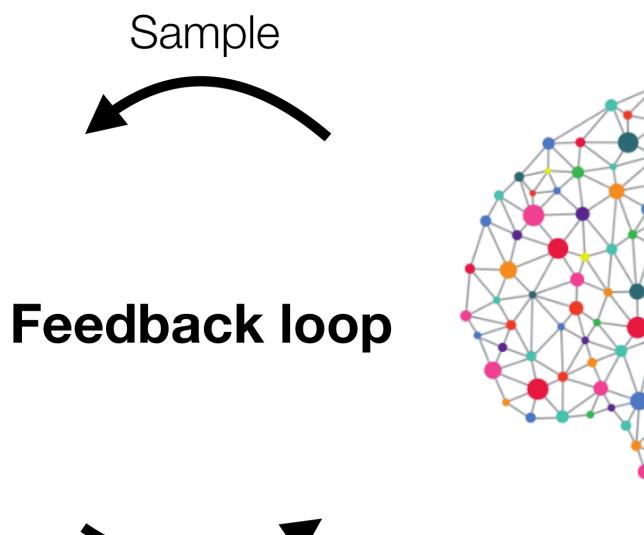


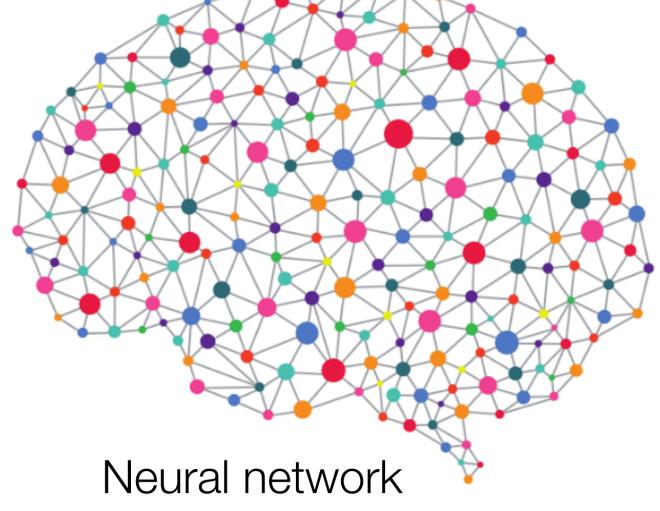


Putting it together...

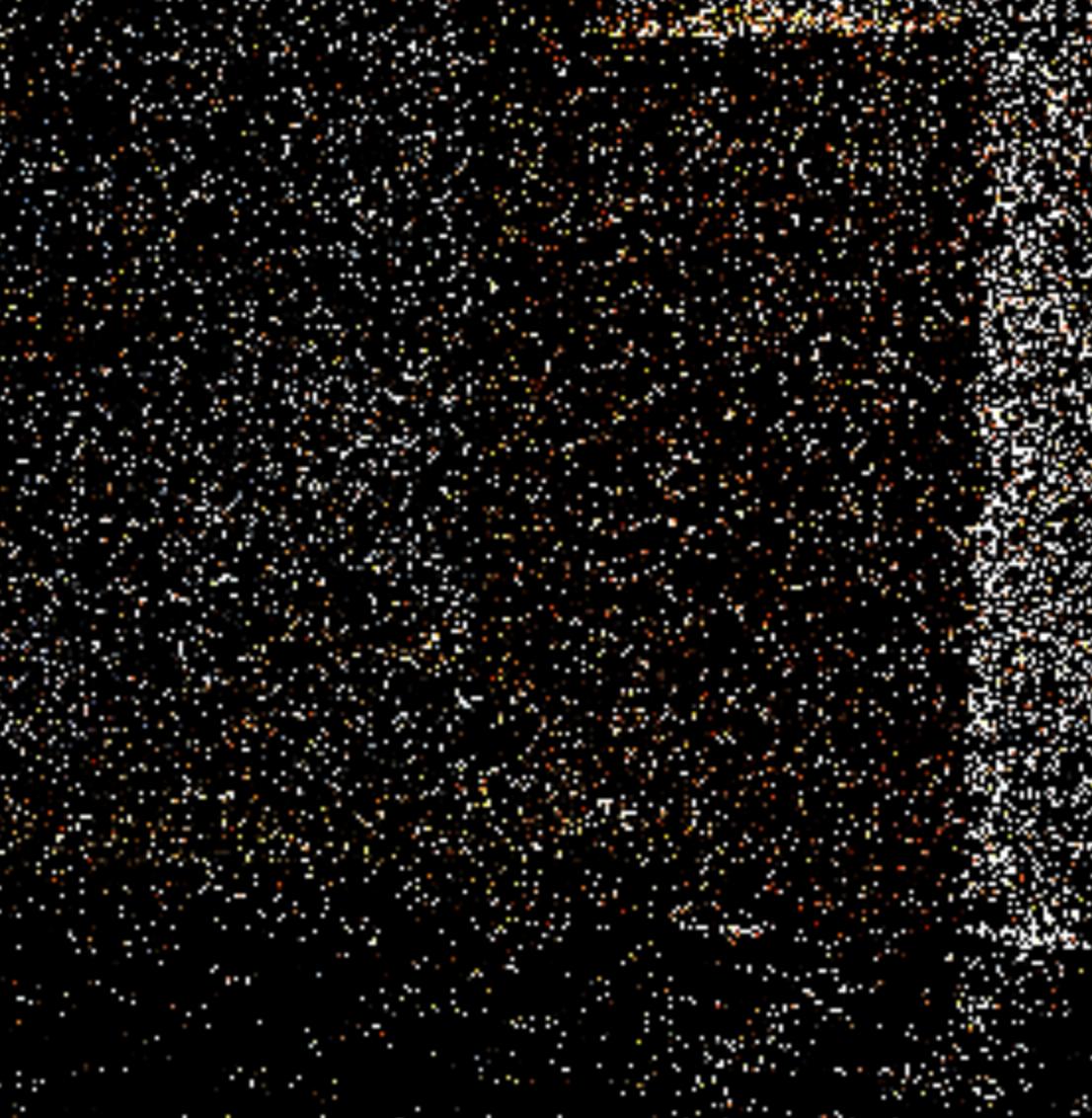


Path tracer

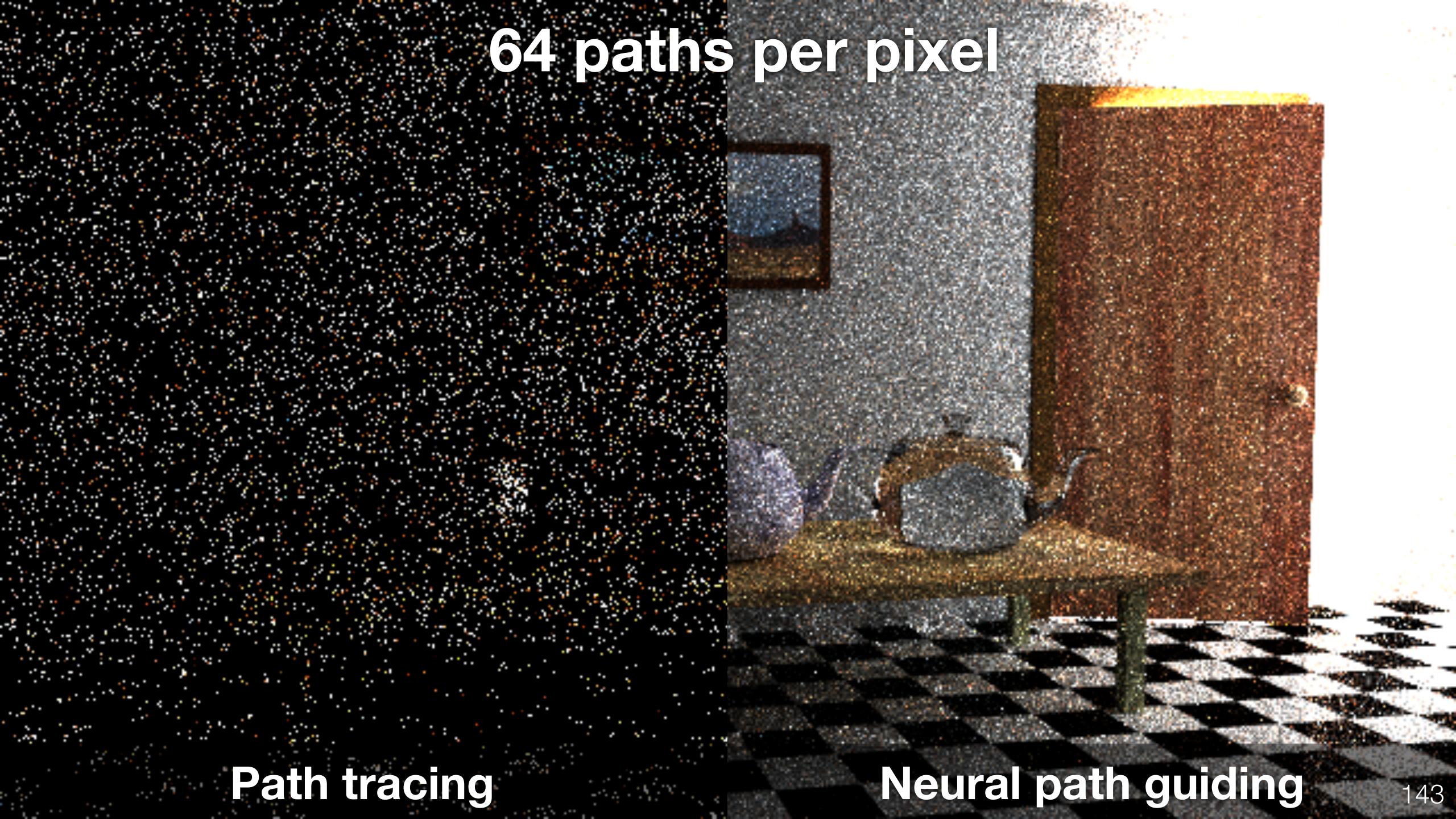




Optimize

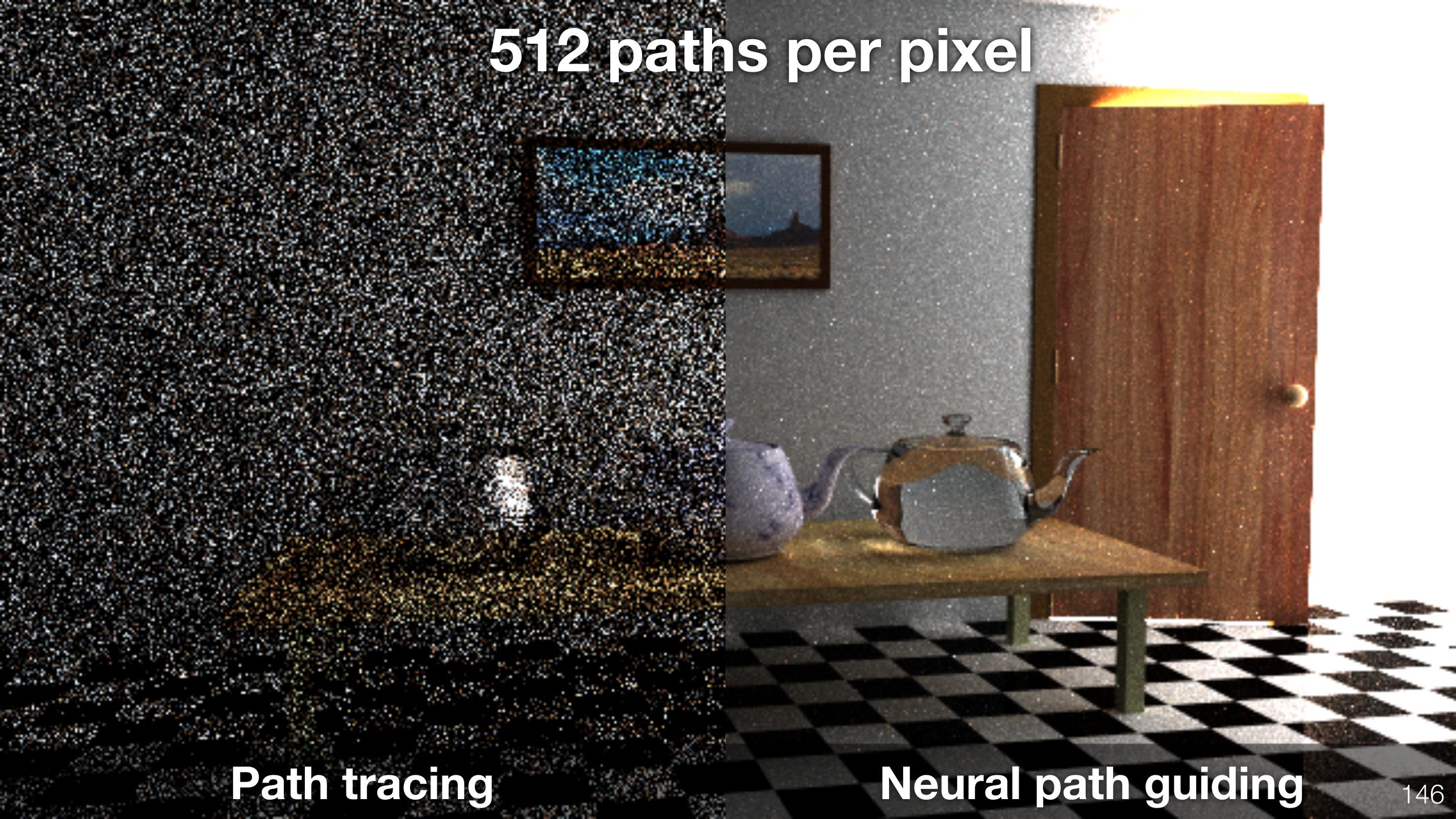


32 paths per pixel Neural path guiding Path tracing



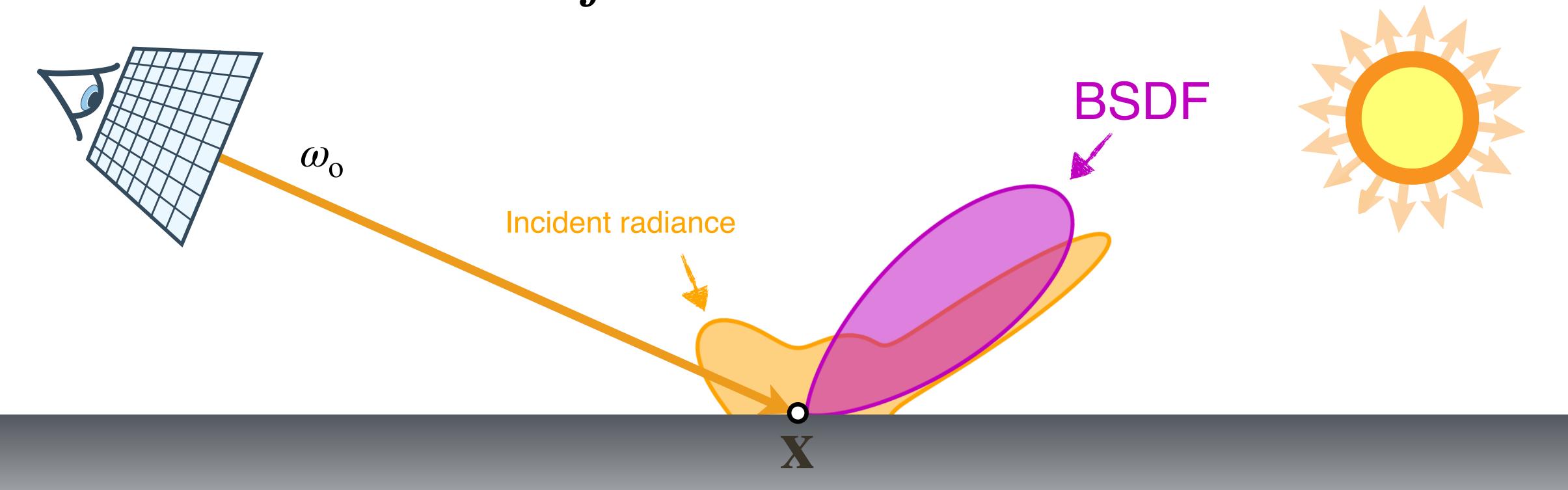
128 paths per pixel Path tracing Neural path guiding 144

256 paths per pixel Path tracing Neural path guiding 145

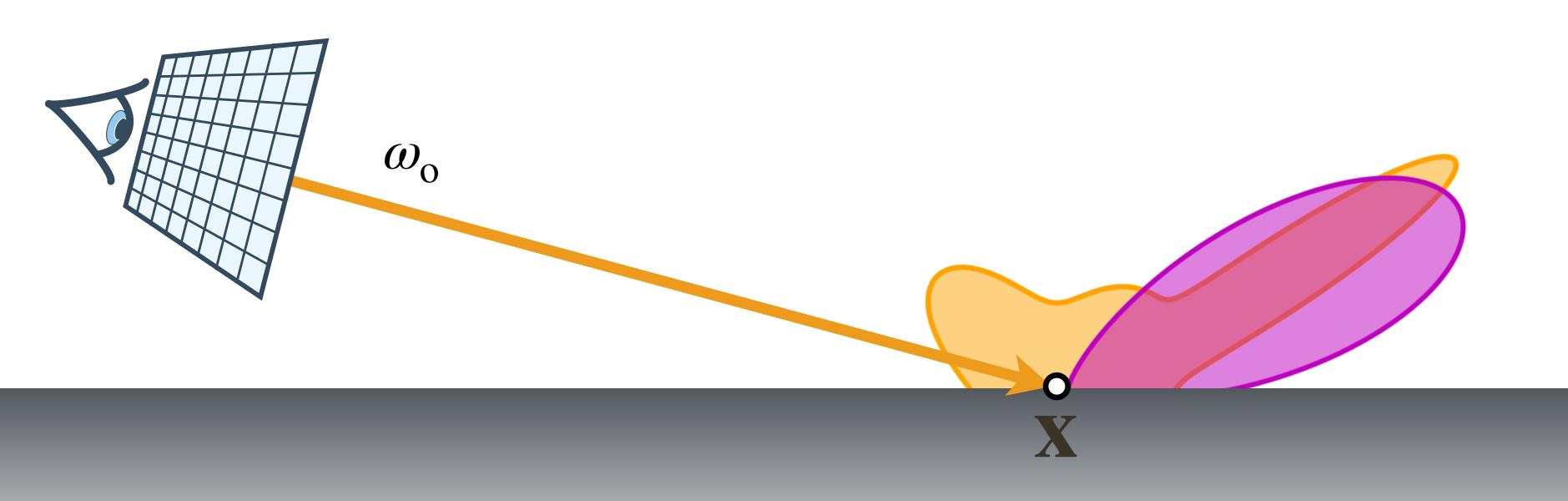


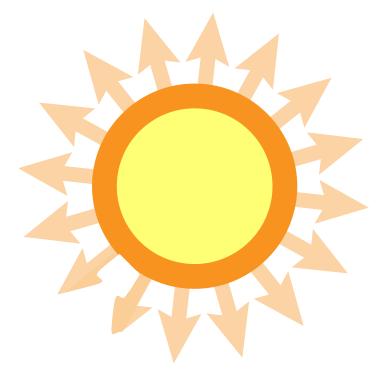
Product guiding

$$L_{\rm r}(\mathbf{x}, \omega_{\rm o}) = \int L_{\rm i}(\mathbf{x}, \omega_{\rm i}) f(\mathbf{x}, \omega_{\rm i}, \omega_{\rm o}) \cos \theta \ d\omega_{\rm i}$$

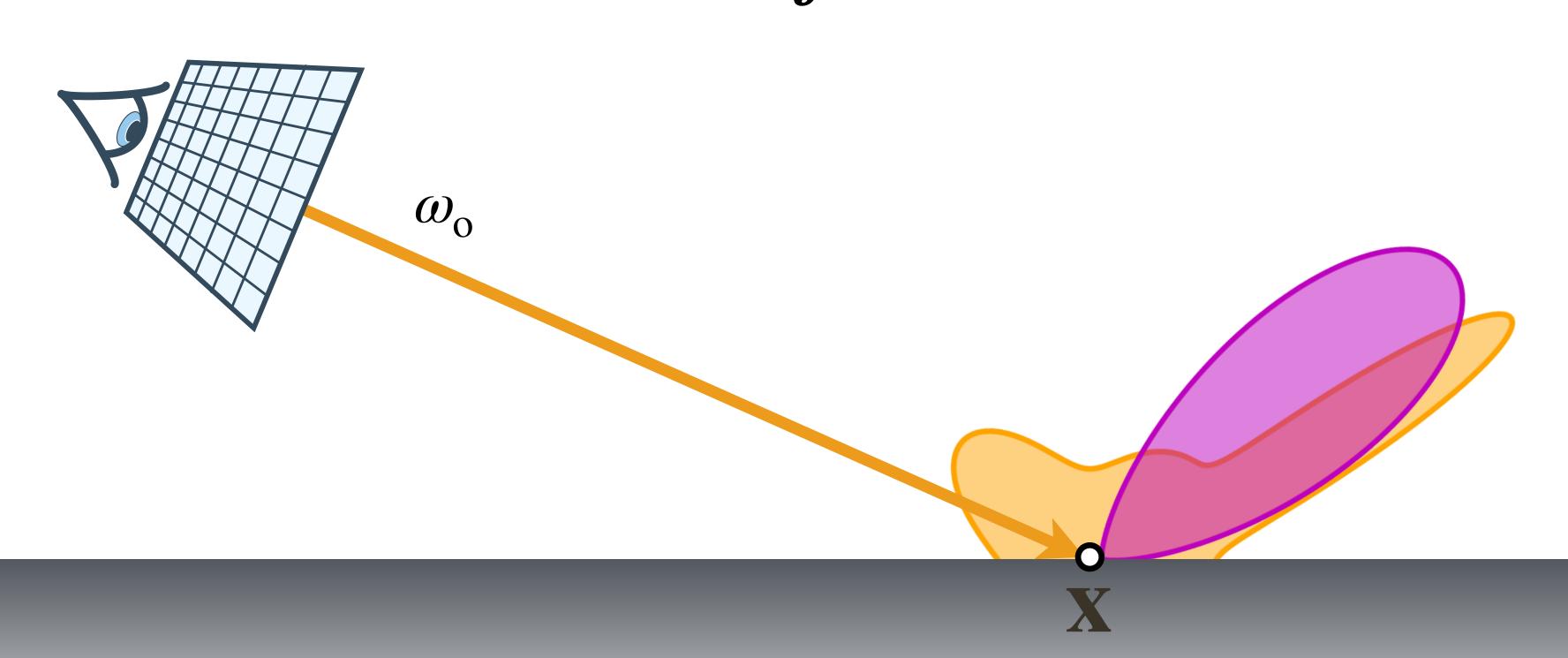


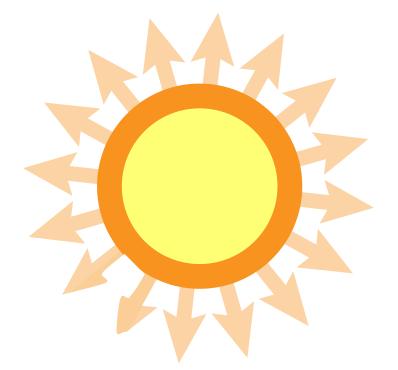
$$L_{r}(\mathbf{x}, \omega_{o}) = \int_{\mathbf{L}_{i}} L_{i}(\mathbf{x}, \omega_{i}) f(\mathbf{x}, \omega_{i}, \omega_{o}) \cos \theta \ d\omega_{i}$$



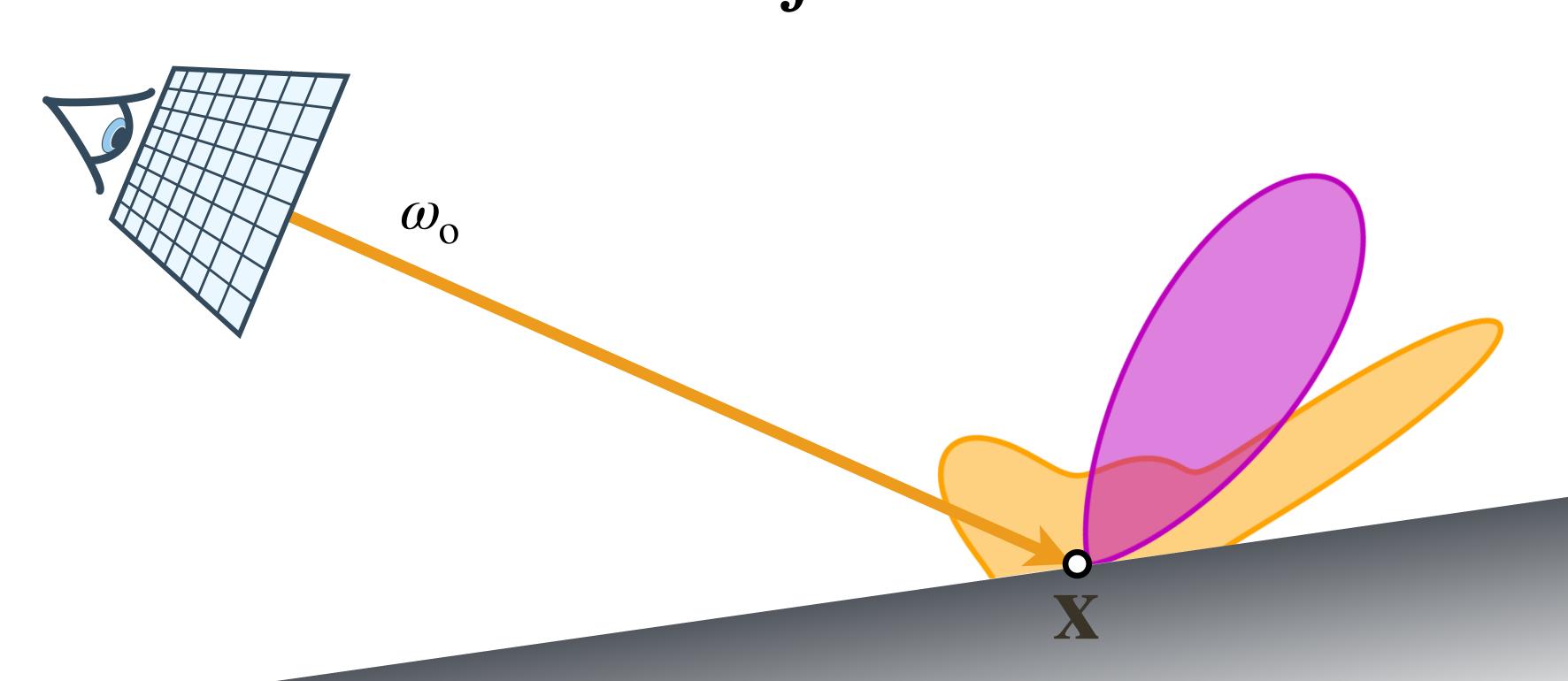


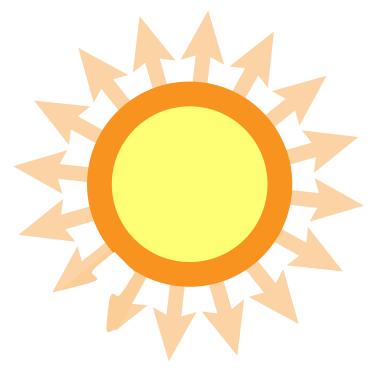
$$L_{\rm r}(\mathbf{x}, \omega_{\rm o}) = \begin{bmatrix} L_{\rm i}(\mathbf{x}, \omega_{\rm i}) f(\mathbf{x}, \omega_{\rm i}, \omega_{\rm o}) \cos \theta \ d\omega_{\rm i} \end{bmatrix}$$



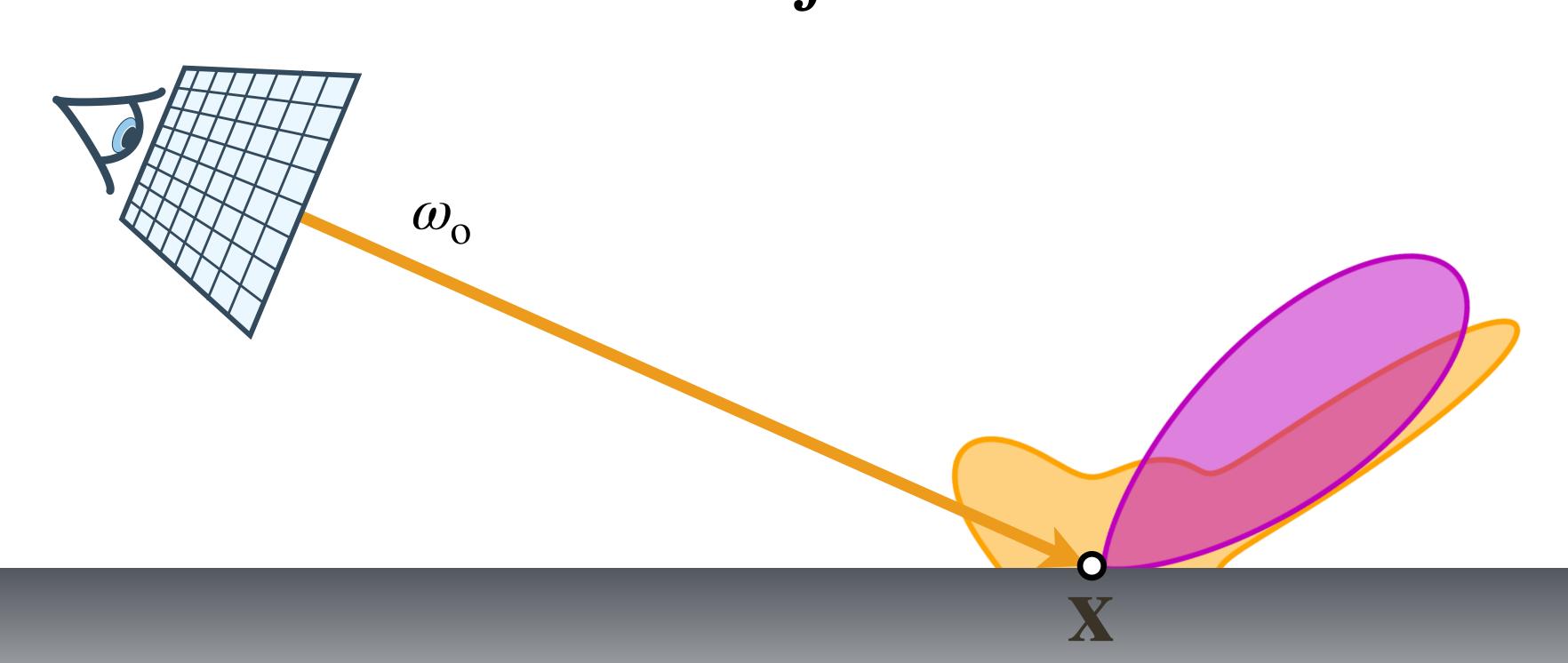


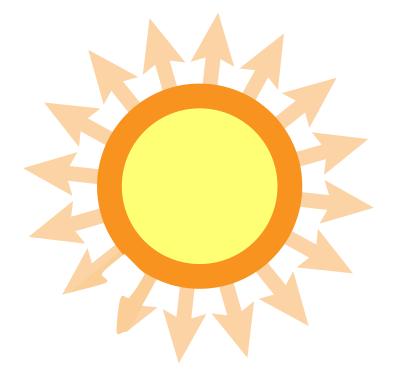
$$L_{\rm r}(\mathbf{x}, \omega_{\rm o}) = \begin{bmatrix} L_{\rm i}(\mathbf{x}, \omega_{\rm i}) f(\mathbf{x}, \omega_{\rm i}, \omega_{\rm o}) \cos \theta \ d\omega_{\rm i} \end{bmatrix}$$



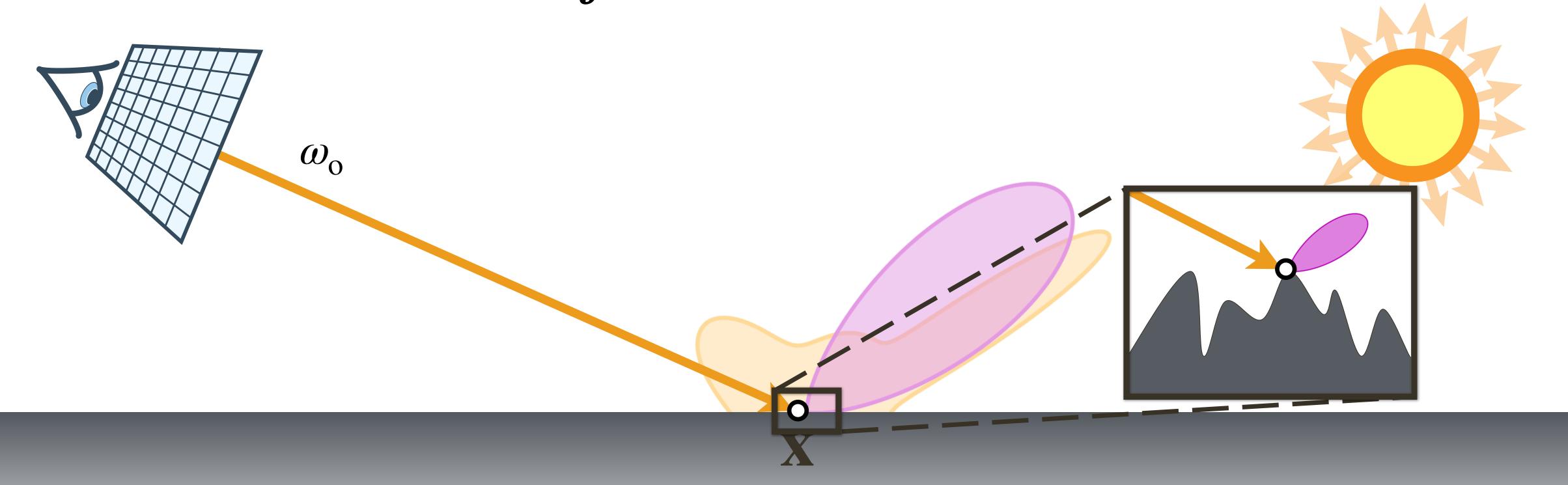


$$L_{r}(\mathbf{x}, \omega_{o}) = \int_{\mathbf{L}_{i}} L_{i}(\mathbf{x}, \omega_{i}) f(\mathbf{x}, \omega_{i}, \omega_{o}) \cos \theta \ d\omega_{i}$$

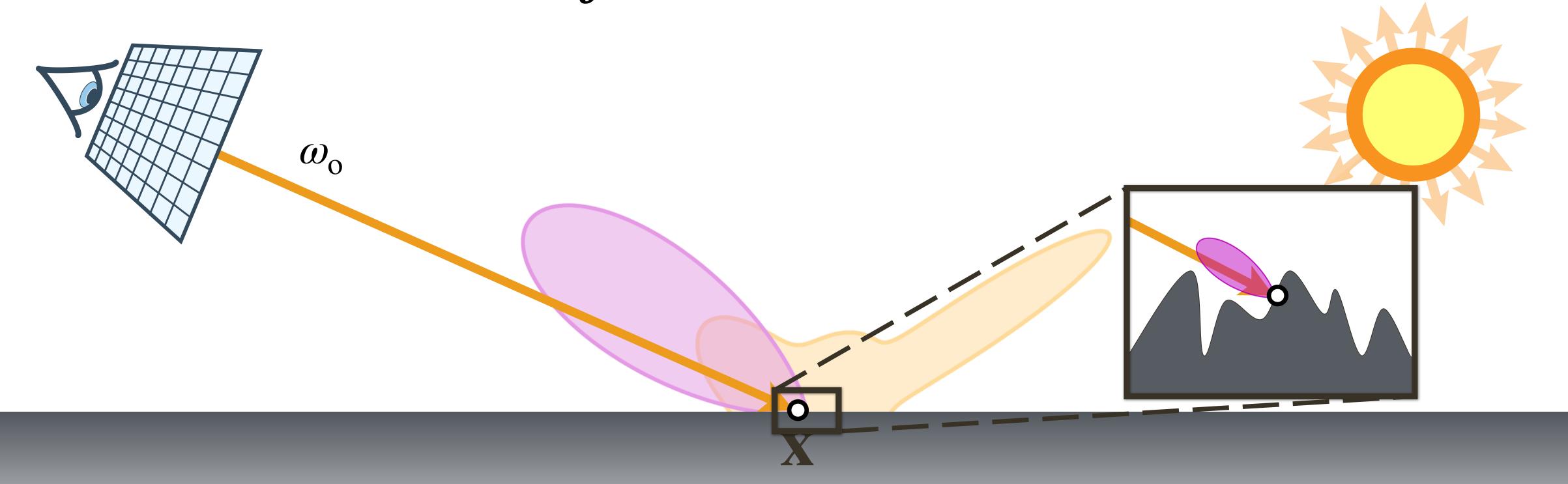




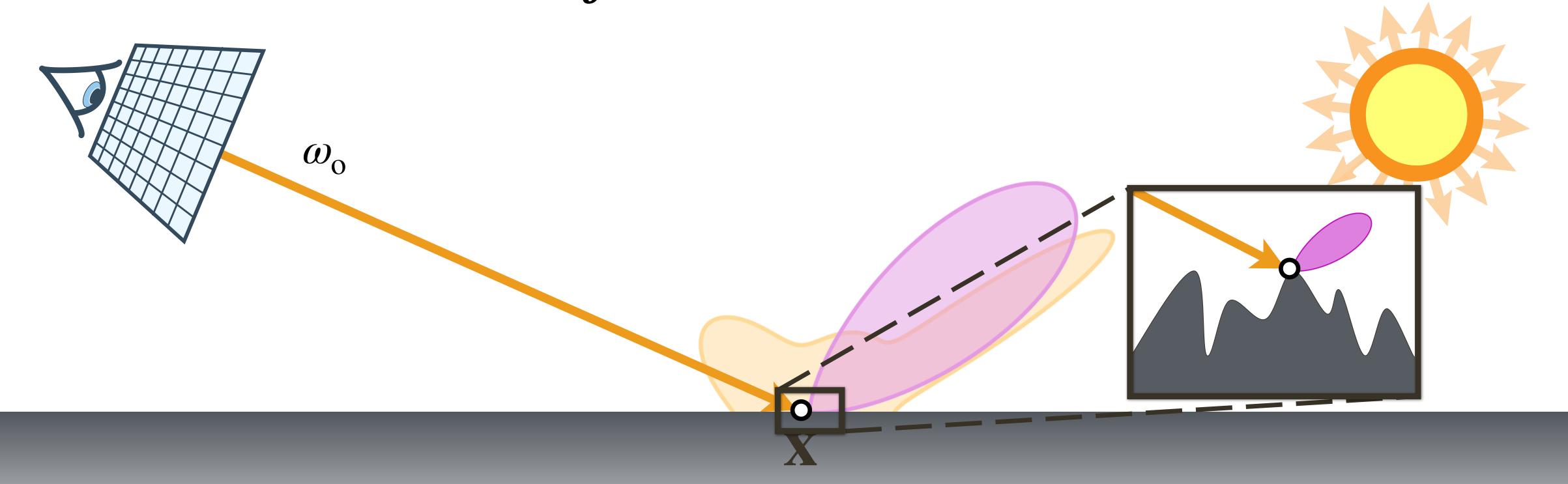
$$L_{r}(\mathbf{x}, \omega_{o}) = \int L_{i}(\mathbf{x}, \omega_{i}) f(\mathbf{x}, \omega_{i}, \omega_{o}) \cos \theta \ d\omega_{i}$$



$$L_{r}(\mathbf{x}, \omega_{o}) = \int L_{i}(\mathbf{x}, \omega_{i}) f(\mathbf{x}, \omega_{i}, \omega_{o}) \cos \theta \ d\omega_{i}$$

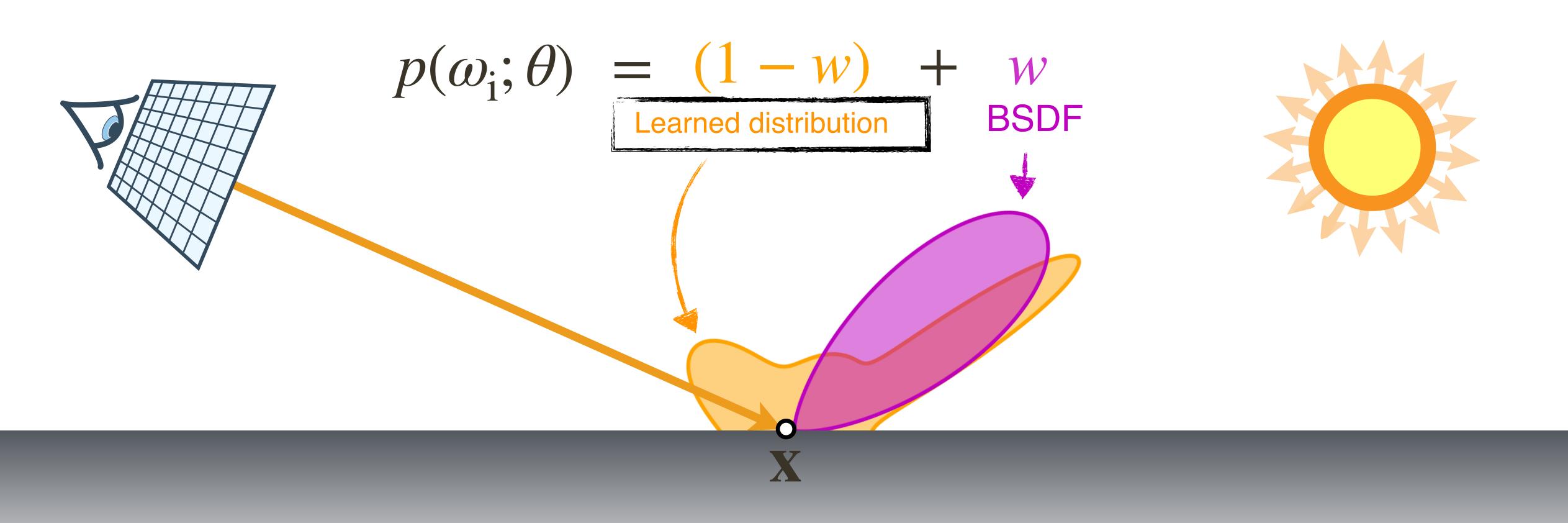


$$L_{r}(\mathbf{x}, \omega_{o}) = \int L_{i}(\mathbf{x}, \omega_{i}) f(\mathbf{x}, \omega_{i}, \omega_{o}) \cos \theta \ d\omega_{i}$$

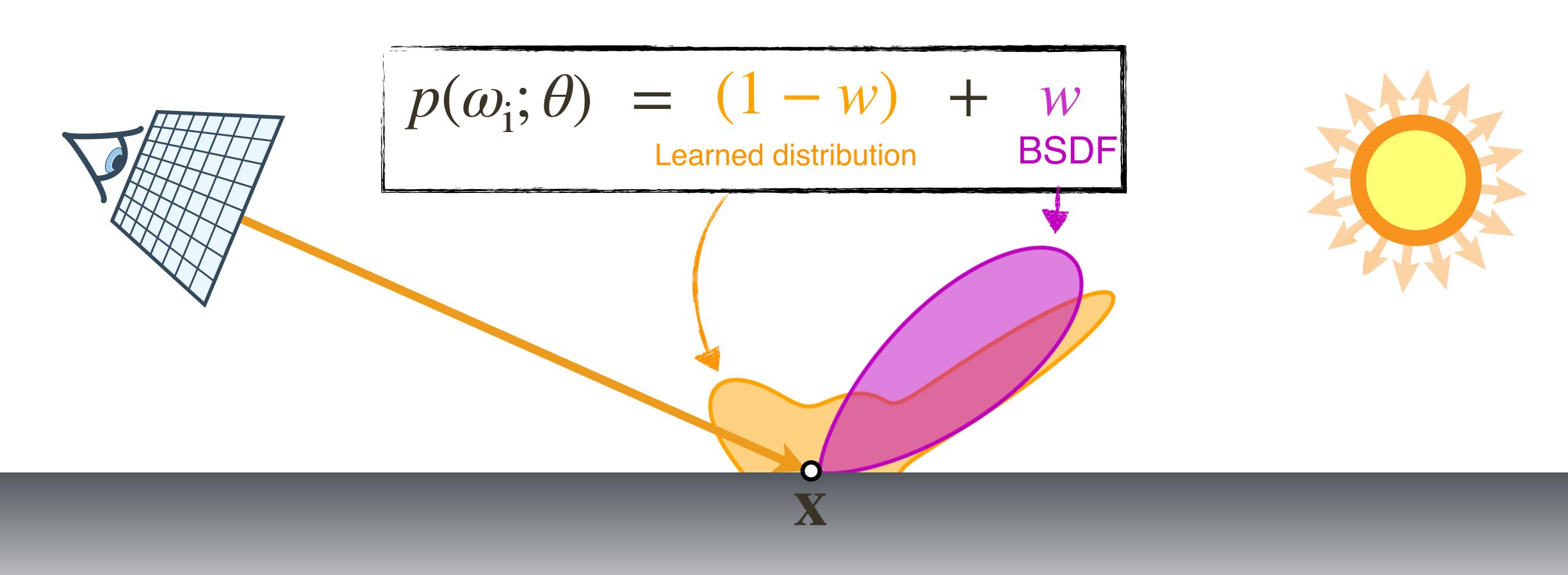


MIS optimization

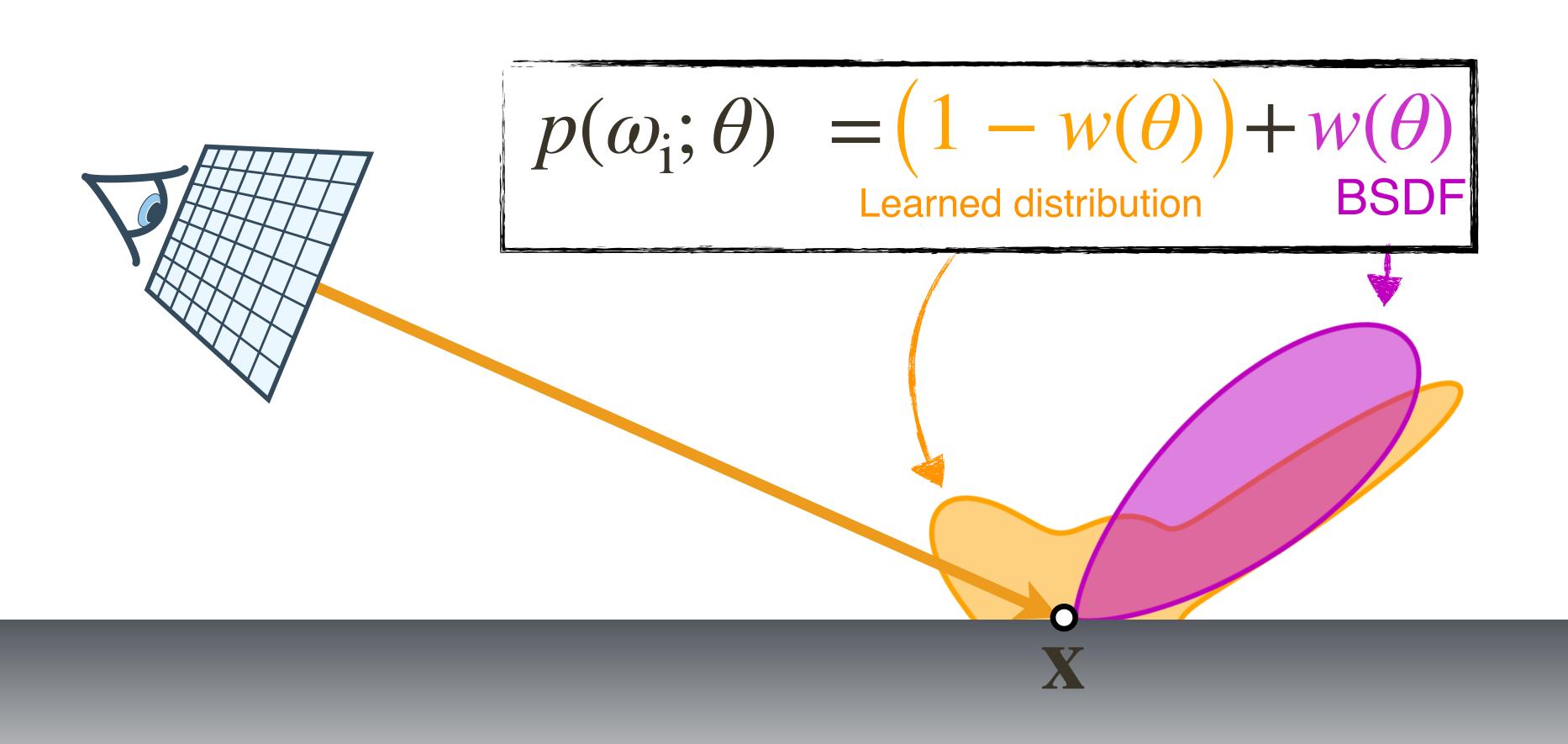
MIS-aware optimization

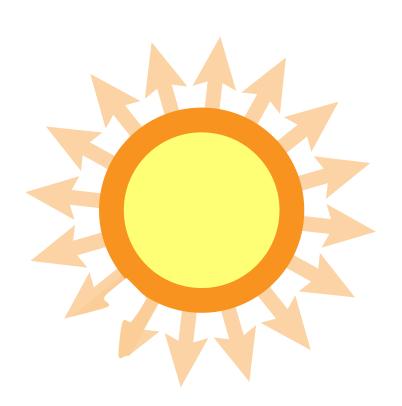


MIS-aware optimization

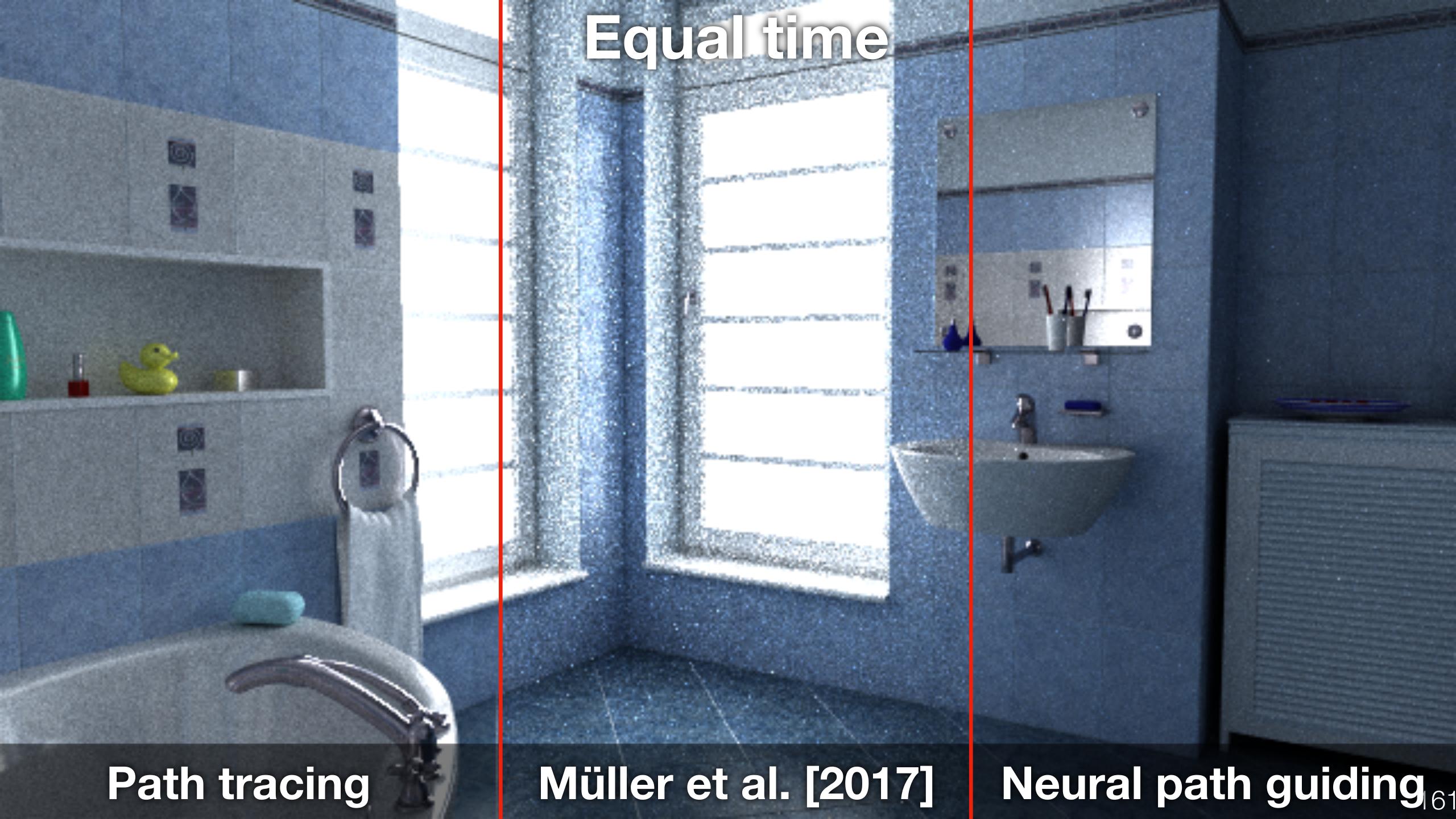


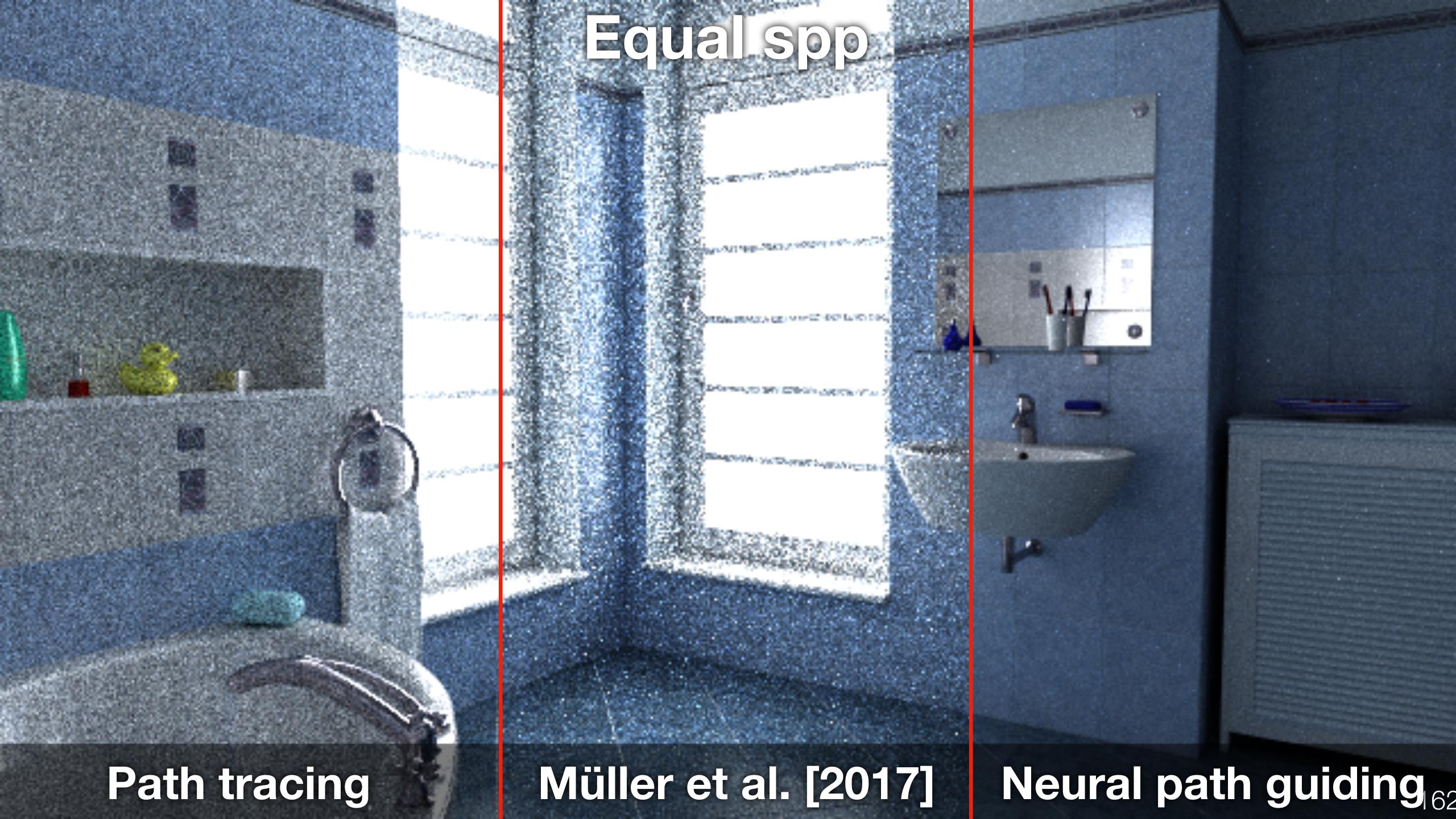
MIS-aware optimization

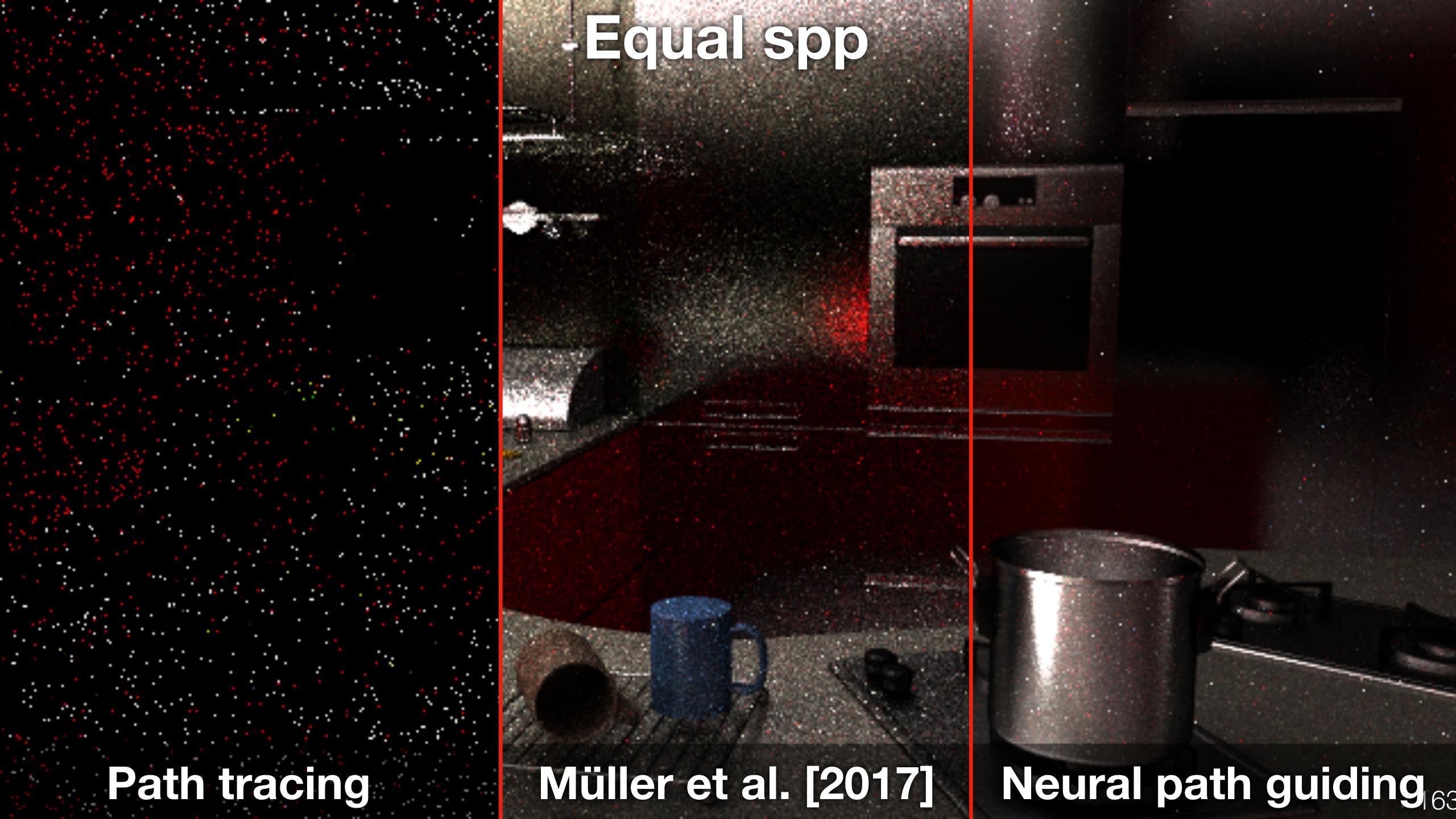




BESUITS







Conclusion

- Neural networks can drive unbiased MC integration
- Complicated integrands (e.g. product path guiding)
- Computational cost of neural path guiding is high, but quality is state of the art

References

A frequency analysis of light transport, Durand et al. SIGGRAPH 2005

Frequency Analysis and Sheared Reconstruction for Rendering Motion Blur, Egan et al. SIGGRAPH 2009

Temporal Light Field Reconstruction for Rendering Distribution Effects, Lehtinen et al. SIGGRAPH 2011

On Filtering the Noise from the Random Parameters in Monte Carlo Rendering, Sen and Darabi 2012

A Machine Learning Approach for Filtering Monte Carlo Noise, Kalantari et al. SIGGRAPH 2015

Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder, Chaitanya et al. SIGGRAPH 2017

Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al. SIGGRAPH 2017

Sample-based Monte Carlo Denoising using a Kernel-Splatting Network, Gharbi et al. SIGGRAPH 2019

NICE: Non-linear Independent Components Estimation

Normalizing Flows: An Introduction and Review of Current Methods

Neural Importance Sampling SIGGRAPH 2019

Acknowledgements

I would like to thank Thomas Muller and colleagues to make their slides available online

