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Overview

Radiance regression functions for global illumination

Contrastive learning in path manifolds

Neural radiance Fields

Neural control variates

Non-exponential transmittance model for volumetric scene representations

Compositional neural scene representations for shading inference
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Radiance regression functions
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Pre-computed Radiance Transfer (PRT) methods

Precomputes the global light transport
Stores the resulting PRT for fast rendering
Challenging scenarios: dynamic viewpoint and lighting

- €.9., dynamic local lights & glossy interreflections
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Real-time PRT renderings

Glossy inter-reflections & dynamic lights
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Radiance Regression Functions

A function that returns the indirect illumination value for each surface point given
the viewing direction and lighting condition.

RRF is learned using non-linear regression
Dataset: training samples precomputed by offline rendering

Results in a real-time rendering of precomputed global illumination
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Radiance Regression Functions

First component

Basic attributes: surface position (2D), location of light source (2D) and the viewing
direction (2D)

— not sufficient to capture spatially-variant surface properties
Augmented attributes: surface normals and material properties

RRF directly approximates global illumination: highly complex and non-linear 6D
function

Existing PRT methods only exploits nonlinear coherence in some dimensions and
perform dense sampling in the other dimensions.
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Radiance Regression Functions

Second component

Partition the space and fit a separate RRF for each of the subspaces

Multiple small MLPs that collectively and efficiently represent indirect illumination
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Radiance Regression Functions
Full pipeline

Render caustics, sharp indirect shadows, high-frequency glossy reflections

The precomputed network only depends on surface and not the underlying surface
meshing

Makes it more scalable than PRT methods

Shows 30FPS with 512x512 images

Efficiency depends on screen size and not the scene
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Radiance Regression Functions
MLP structure

input layer  1%'hidden layer 2"*hidden layer output layer
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Radiance Regression Functions
MLP structure

Activation function: hyperbolic tangent function
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tanh(z) = 1
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Radiance Regression Functions

Results

Ground truth: Path tracer RRF: augmented attributes

RRF: basic + SVBRF
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Radiance Regression Functions

Results Only indirect components shown

Path tracer RRF method Difference wrt ref.

RRF: aungeS
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Contrastive learning path manifolds
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Contrastive path learning
SIGGRAPH 2021

Converts reference pixel colors to dense pseudo labels for light paths

A convolutional path-embedding network:

- Induces a low-dimensional manifold of paths by iteratively clustering intra-class
embeddings,

- while discriminating inter-class embeddings using gradient descent
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Previous reconstruction methods
SIGGRAPH 2021

Previous methods use auxiliary features at first bounce: normals, depth, texture

Some methods use indirect features (manually) for specular or non-specular
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Challenge

A representation of light propagation is inherently high-dimensional

Learning meaningful patterns between high-dimensional paths and reference
images Is still challenging:

— due to the low correlation and high sparsity of path samples

Recent methods show that deep neural networks often struggle to explore the
sparse space
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Proposed framework

AiIms to extract compact and useful embeddings of high-dimensional path features
to remedy the sparsity of path space

Leverages contrastive approaches of existing deep architectures:

— which cluster input data foe tasks like classification and regression
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Path space contrastive learning

Sample-based convolutional network
(transforms path descriptors
to a low-dimensional space)
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Extracts a path descriptor:
a sequence of the path’s Poorly-structured manifold space

radiometric quantities
at each vertex

Use reference colors to cluster
paths with similar pixel color
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Manifold vs. Regression learning

This paper proposes direct sample-to-sample correlation to discriminate
overlapped path distributions

Previous methods:
— Image-space regression: learns correlation between input and target pixels

— sample-space model: learns correlation between input samples and target pixels
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Path space contrastive learning

Joint manifold-regression training framework

/- - - - - -"-"=--=-=-"-=-"=-=-=-"=-"=-=--"==-"/==="==-"/7==--"/=-""/"=-"/=-"/"==-"/=-"/"="==-"/=-"/™==-""/==-"=="//—,sm I
Manifold Learning Module (b) reference radiance pseudo labeling  (c) path disentangling loss |
A |

Ly |

; S | A > O |

,, ) e :

{® — e T R o :

embe d ding '@ : : : R CcascC . NCgative |

network (F) case #2: positive A :

// ................................................... >» O :

. ﬂ¢ I

T .................................................. I

hd : reference pixel ] > O :
path aescriptors, p radiance > |

------------------------------------------------------------

Reconstruction Network

concat | reconstruction :
> > —>( regression loss )«—

model (R)

/

G-buffer, g noisy radiance, [ reference radiance, [



Results: Path space contrastive learning

input LBMC LBMC-Manifold (ours)  reference 64K spp
Rell.2 0.2656 Rell.2 0.0466

e Rell.2 0.0177 Rell.2 0.0149 .

T




Neural radiance flelds
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NeRF

Mildenhall et al. 2020
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NeRF pipeline

Mildenhall et al. 2020

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
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Neural control variates
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What are control variates”?

Recap
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What are control variates”?

Recap
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What are control variates”?

Recap
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What are control variates”?

Recap

I = /g(x)dm + / (f(zx) —g(x))dx g(x): control variate
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What are control variates”?

Recap
I = /g(x)dm + / (f(x) —g(x))dx g(x): control variate

I=G+ / (f(z) - g(x)) da
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What are control variates”?

Recap
I = /g(x)dm + / (f(x) —g(x))dx g(x): control variate

=G+ [ (@)~ glw) da G = [ gla)de
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What are control variates”?

Recap

I = /g(x)dm + / (f(z) —g(x))dr g(x): control variate

=G+ [ (@)~ glw) da G = [ gla)ie
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What are control variates”?

Recap

I = /g(x)dm + / (f(z) —g(x))dr g(x): control variate
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What are control variates”?

How they impact the estimator?
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What are control variates”?

How they impact the estimator?
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. (a) Neural control variate
2

/(c) Heuristic

termination

Learned control
variate g = f

Learned PDF
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Unbiased

NCV

Biased

NCV + heuristic CV Integral

Reference
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Spatially-correlated transmittance
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Spatially-correlated media

Impact on rendering

Uncorrelated media Positively-correlated media negatively-correlated media
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Non-exponential transmittance

Transmittance function as a function of distance

Negative Correlation Uncorrelated Positive Correlation
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Volumetric scene representations

Transmittance function as a function ot distance

Volumetric representations are useful for complex scenes
Becoming popular for level of detall and scene reconstruction

Traditional exponential transmittance model cannot capture correlations In visiblility
across volume elements
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Volumetric scene representations

Transmittance due to different visiblility
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Volumetric scene representations

Transmittance due to different visiblility
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Volumetric scene representations

Transmittance due to different visiblility

1 Volume

2D Scene
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Volumetric scene representations

Transmittance due to different visiblility
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Volumetric scene representations

Basics

Volumetric scene representation has gain a lot of momentum for inverse rendering
(NeRF 2020)

Volumetric representation results in more convex optimisation problem than directly
optimising surface geometries

Volumetric representation is smooth and, unlike surface rendering, does not require
any special treatment for visibility derivatives
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Volumetric scene representations
Applications

Prefiltering for level of detall
Scene reconstruction using differentiable rendering

Neural rendering (NeRF)
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Volumetric scene representations
Applications

&

MSE = 0.53 MSE = 0.23

1283

MSE = 0.49 MSE = 0.11

Input scene Hybrid LoD Vicini et al. [2021] Reference
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Neural scene representations Tor
shading inference
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Neural scene representation for shading inference
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Neural scene representation for shading inference

B Scene Neural Renderer Indirect Lighting
Representation
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neural rendering

observation

© 2020 SIGGRAPH. ALL RIGHTS RESERVED
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neural rendering

observation

© 2020 SIGGRAPH. ALL RIGHTS RESERVED
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Neural scene representation for shading inference

w/o representation w/ representation reference
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