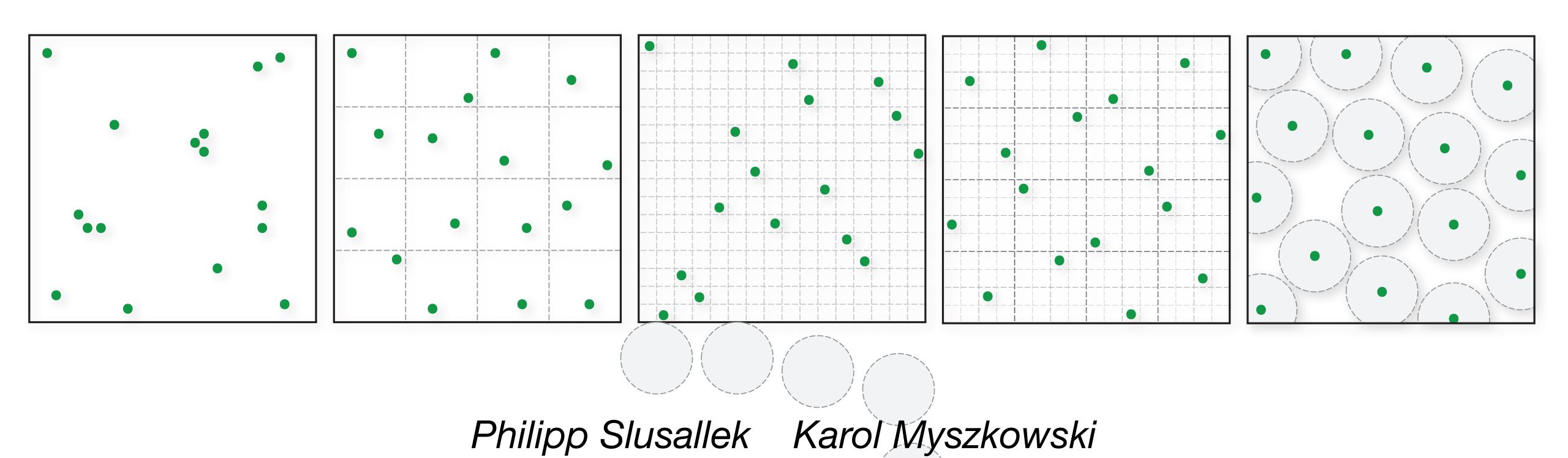
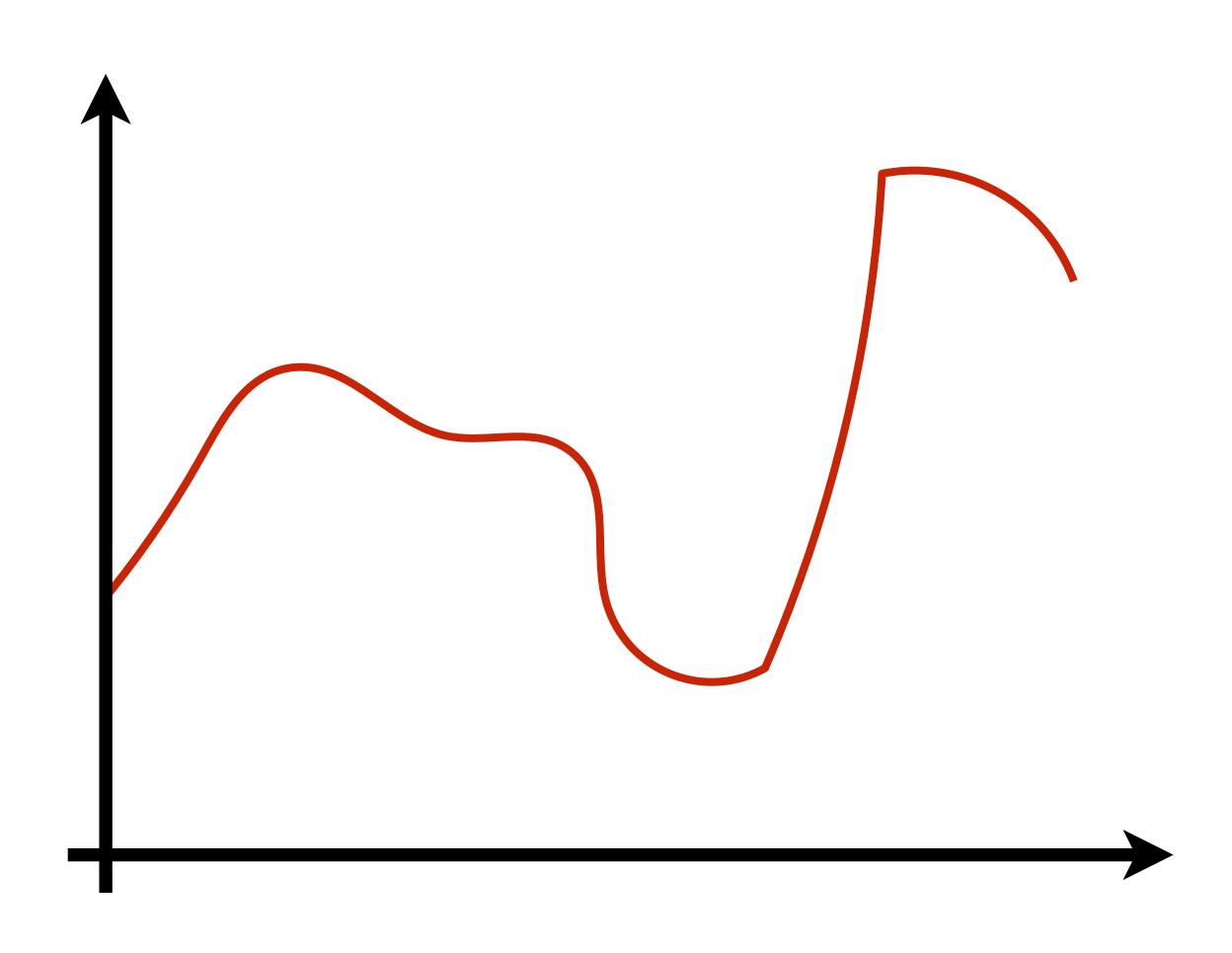
ADVANCED SAMPLING



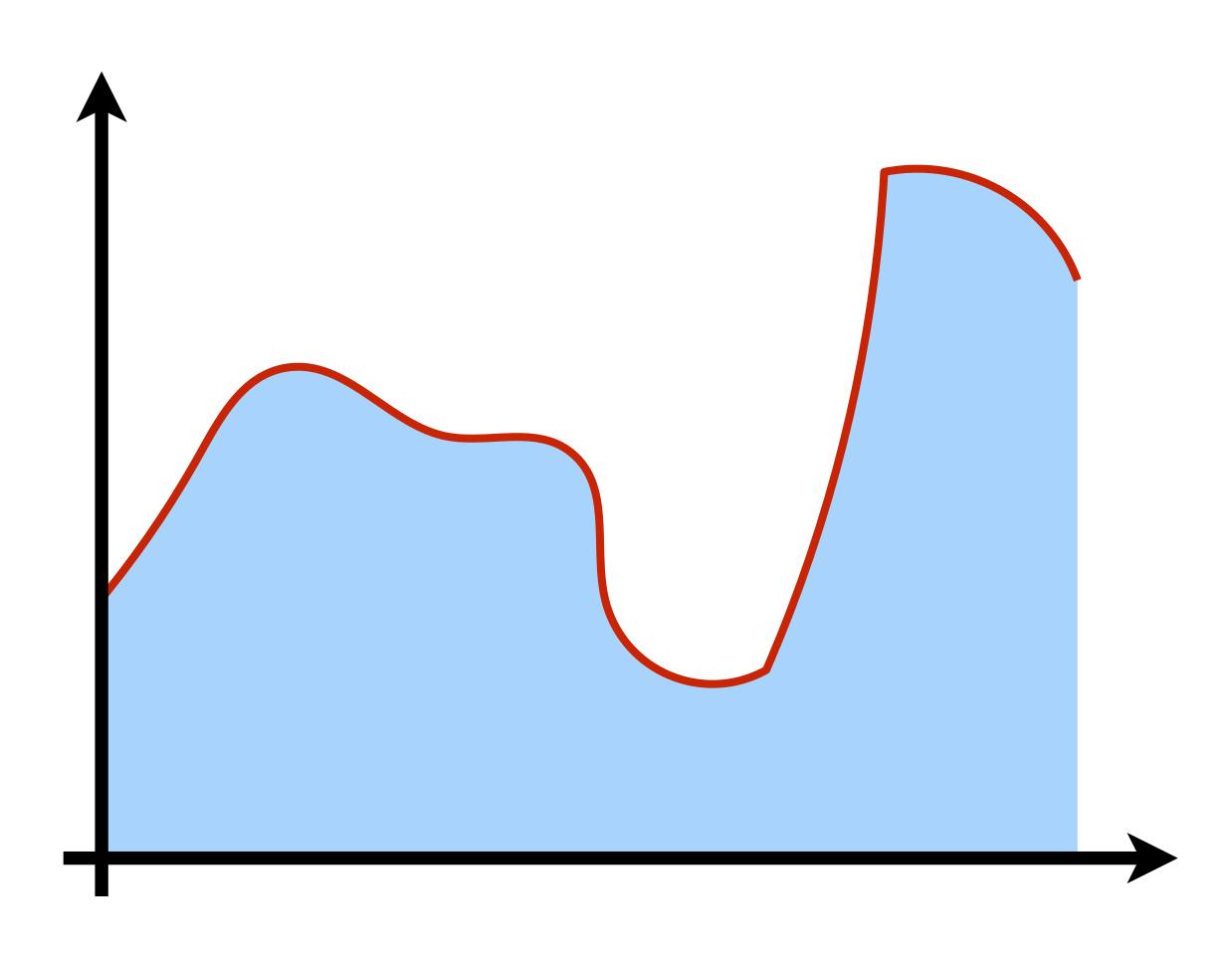
Gurprit Singh

$$I = \int_D f(x) \, \mathrm{d}x$$

$$I = \int_D f(x) \, \mathrm{d}x$$

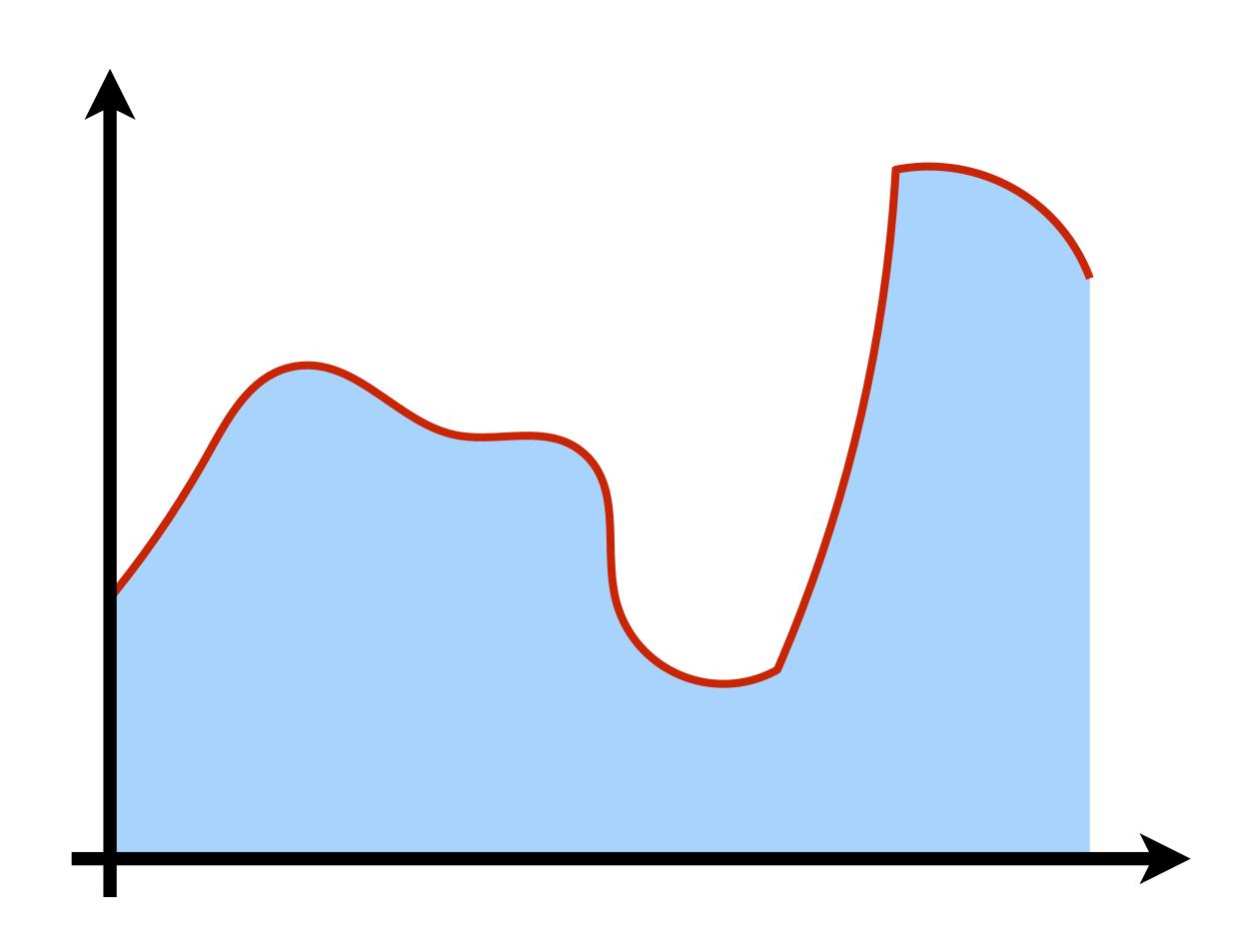


$$I = \int_D f(x) \, \mathrm{d}x$$



$$I = \int_{D} f(x) dx$$

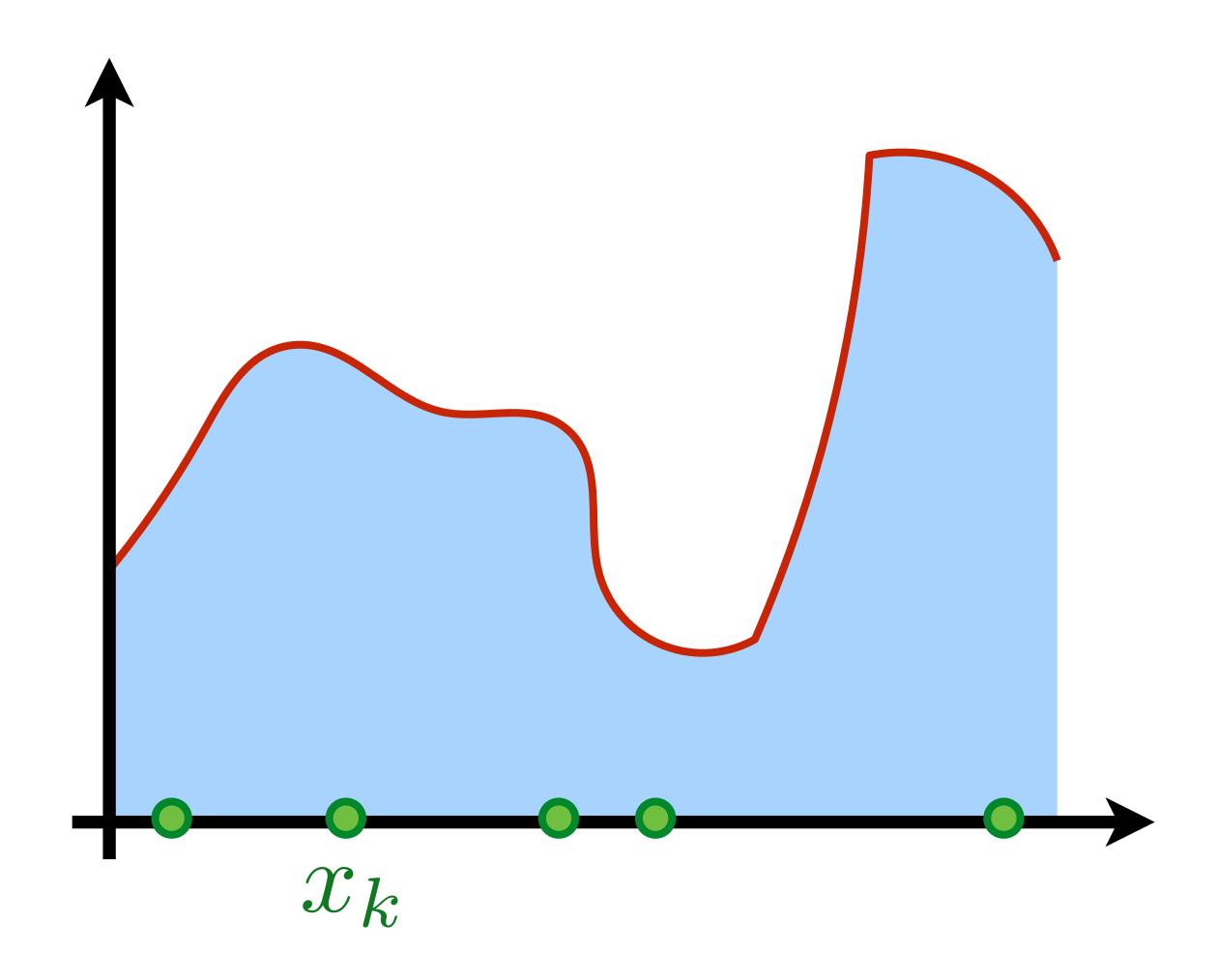
$$\approx \int_{D} f(x) \mathbf{S}(x) dx$$



$$I = \int_D f(x) dx$$

$$\approx \int_D f(x) \mathbf{S}(x) dx$$

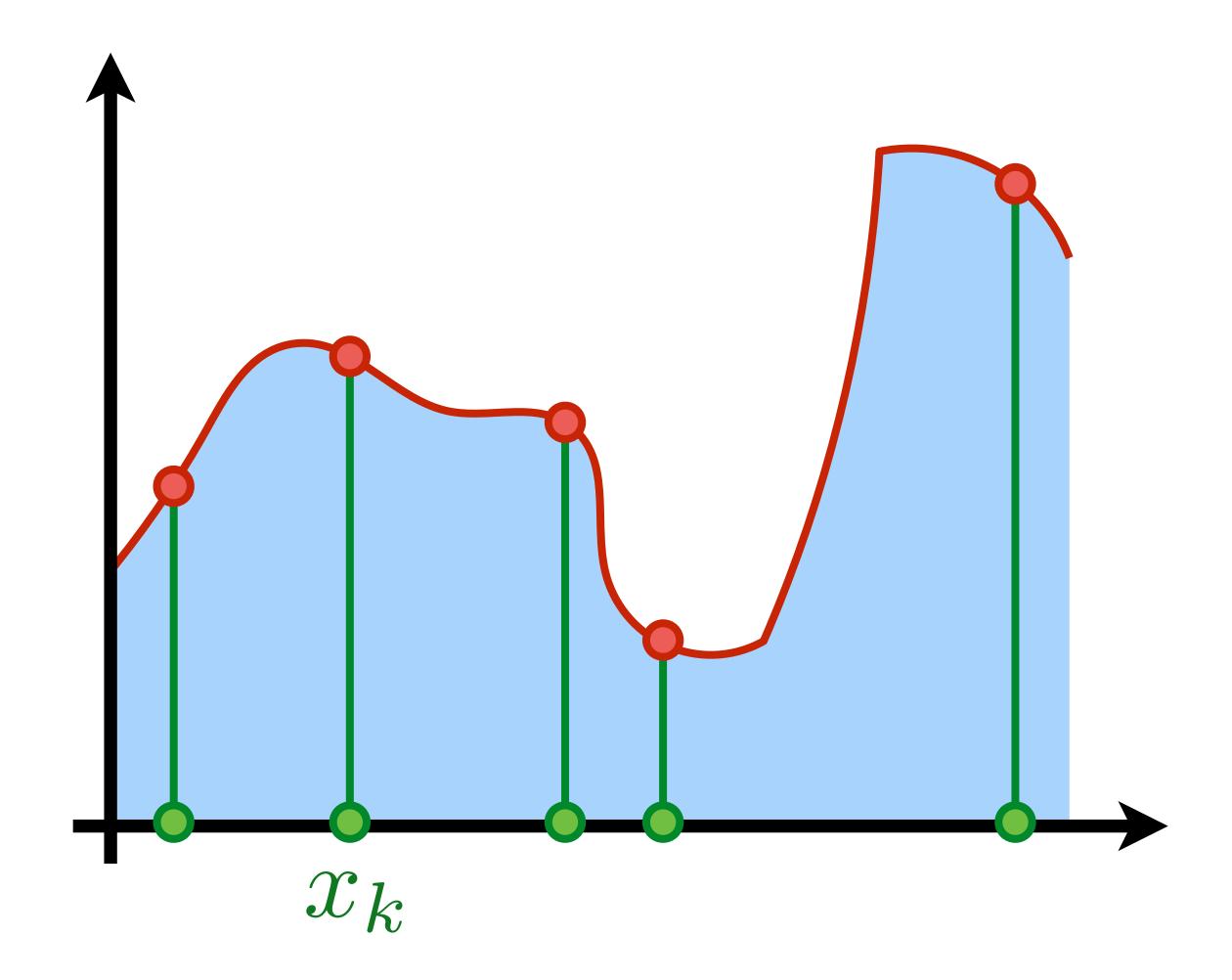
$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$



$$I = \int_{D} f(x) dx$$

$$\approx \int_{D} f(x) \mathbf{S}(x) dx$$

$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$

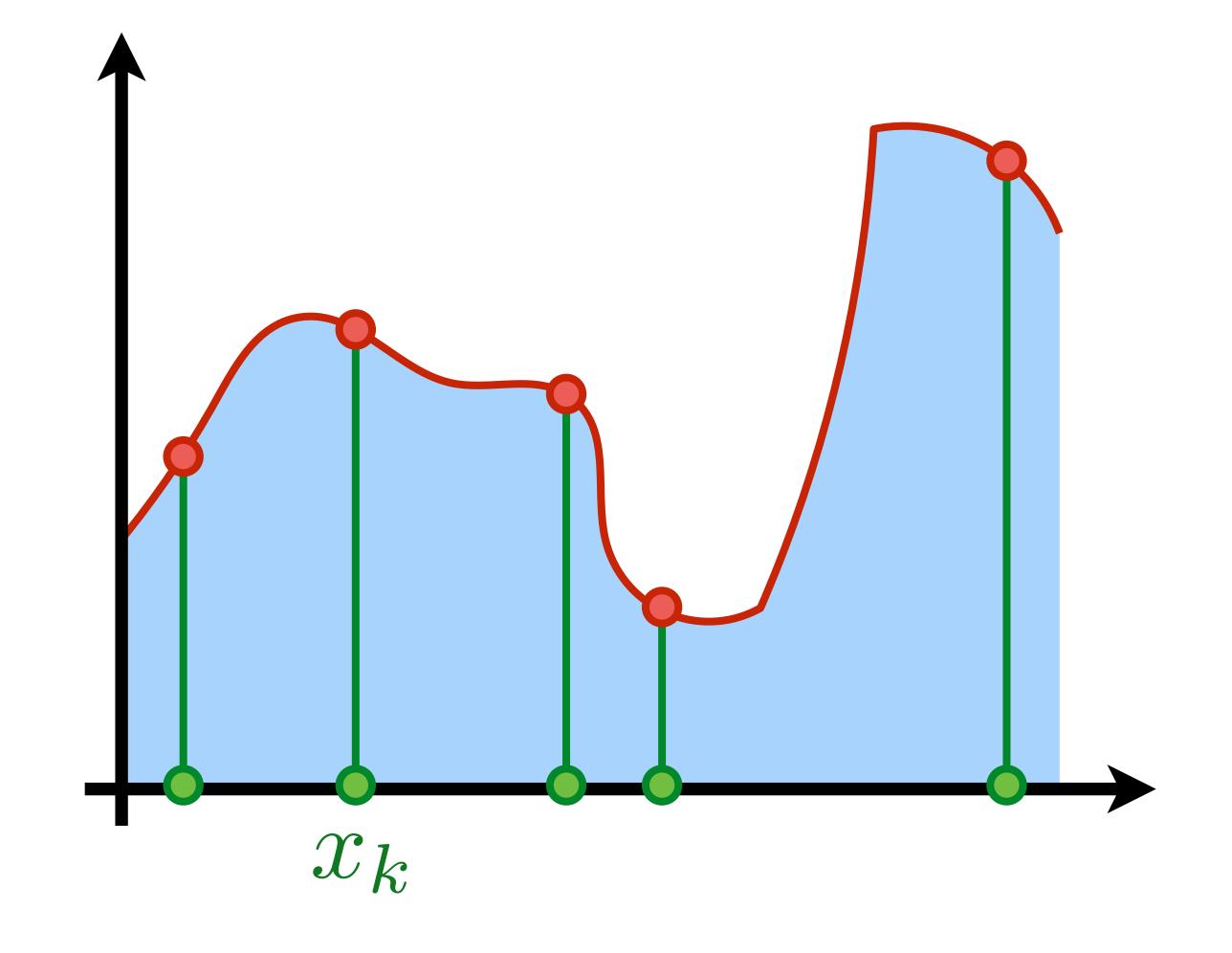


$$I = \int_{D} f(x) dx$$

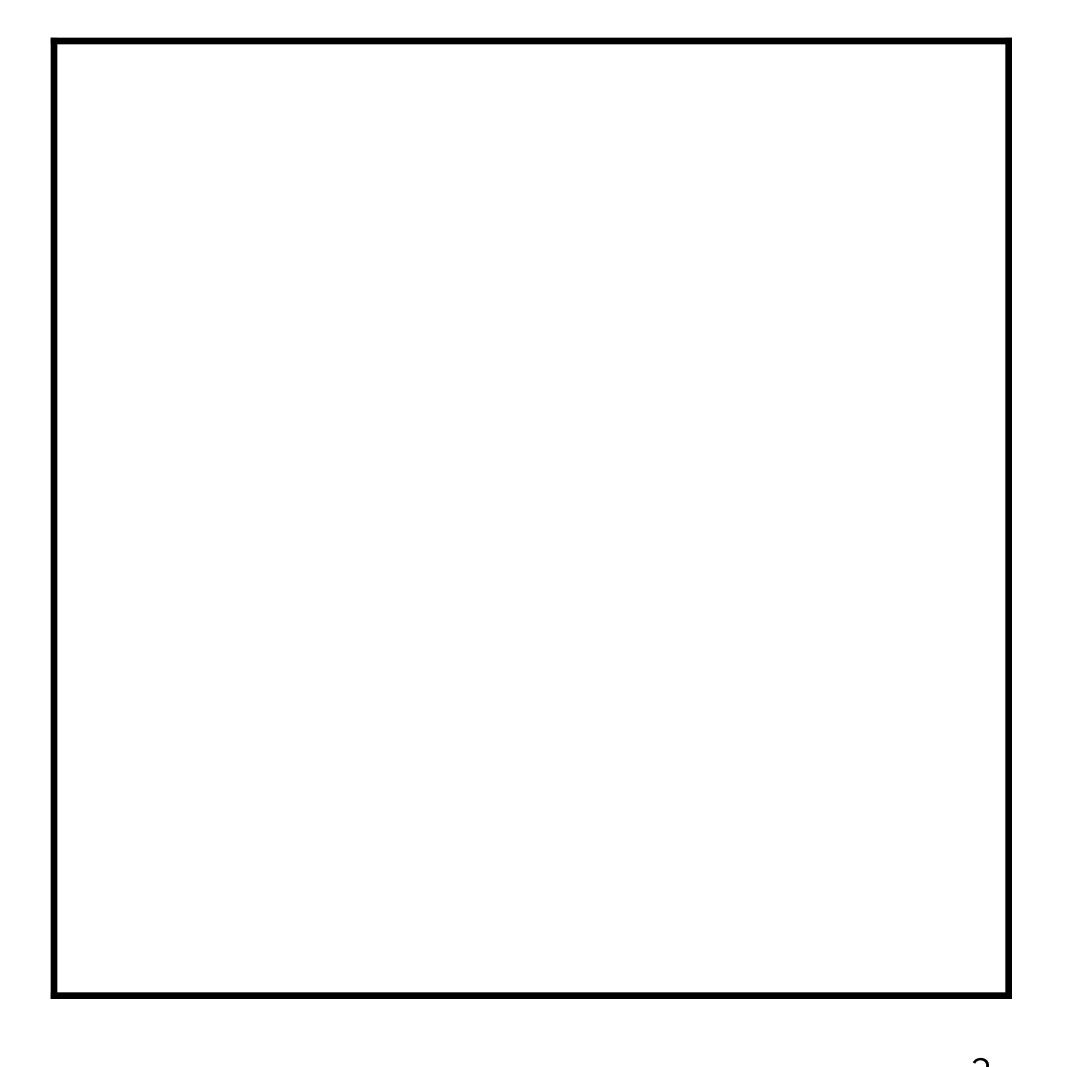
$$\approx \int_{D} f(x) \mathbf{S}(x) dx$$

$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$

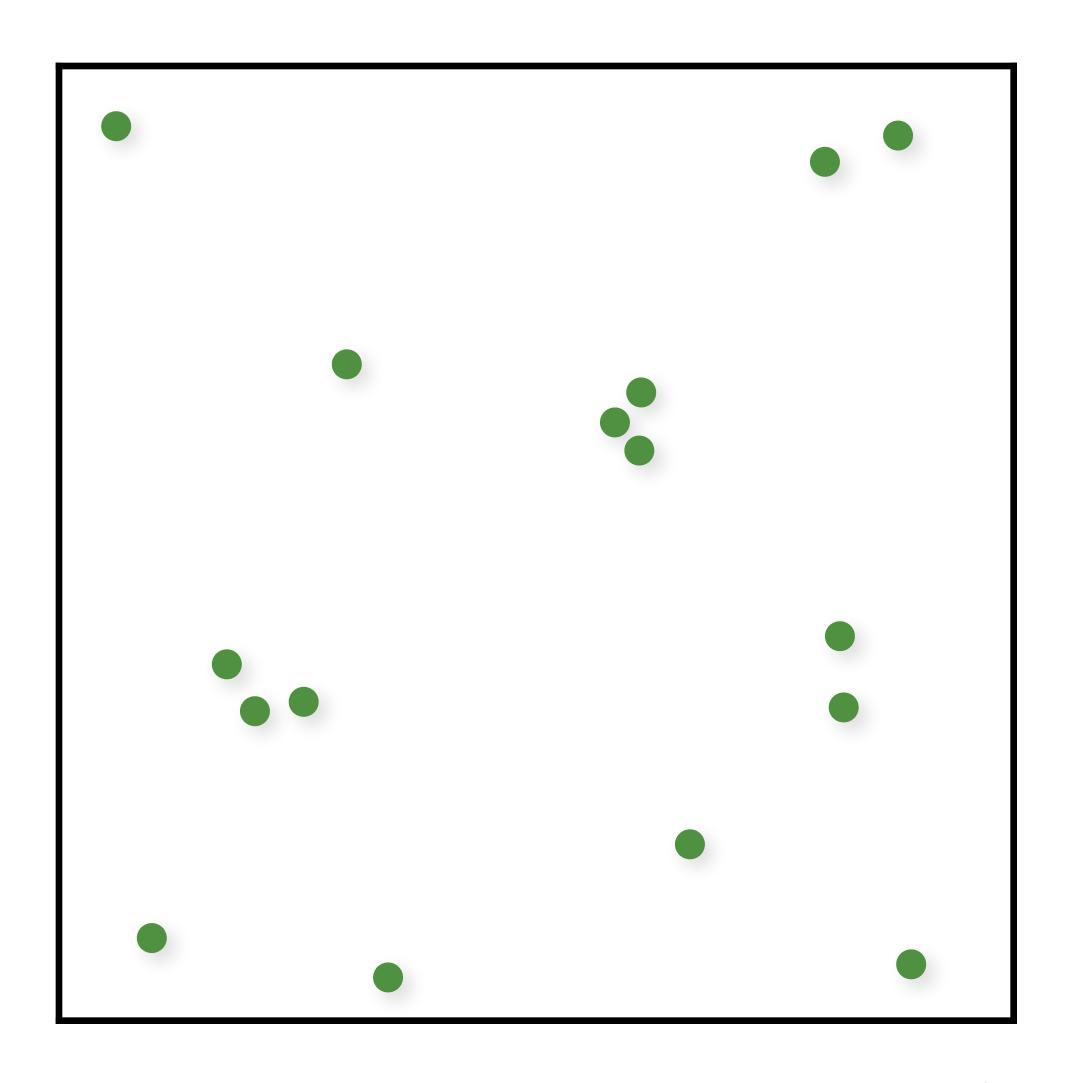
How to generate the locations x_k ?




```
for (int k = 0; k < num; k++)
{
    samples(k).x = randf();
    samples(k).y = randf();
}</pre>
```

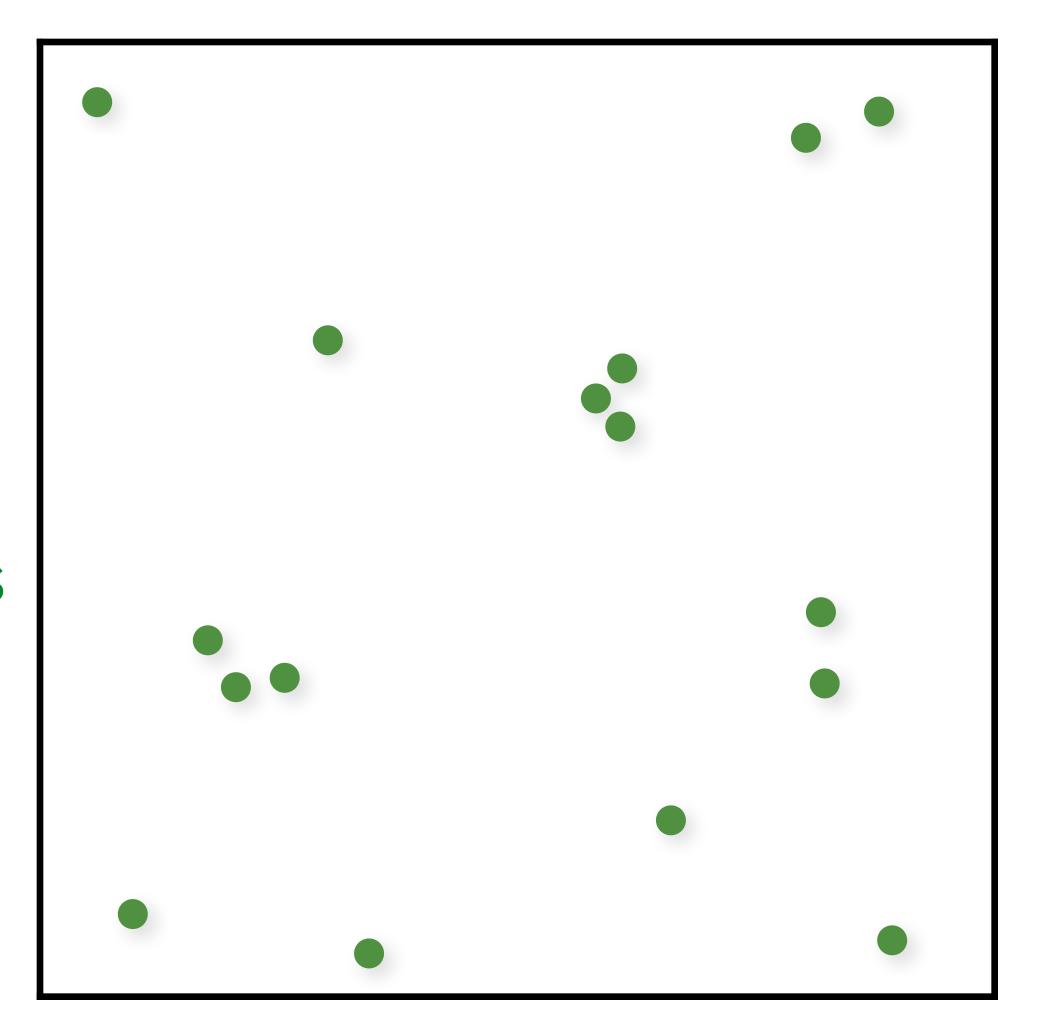



```
for (int k = 0; k < num; k++)
{
    samples(k).x = randf();
    samples(k).y = randf();
}</pre>
```



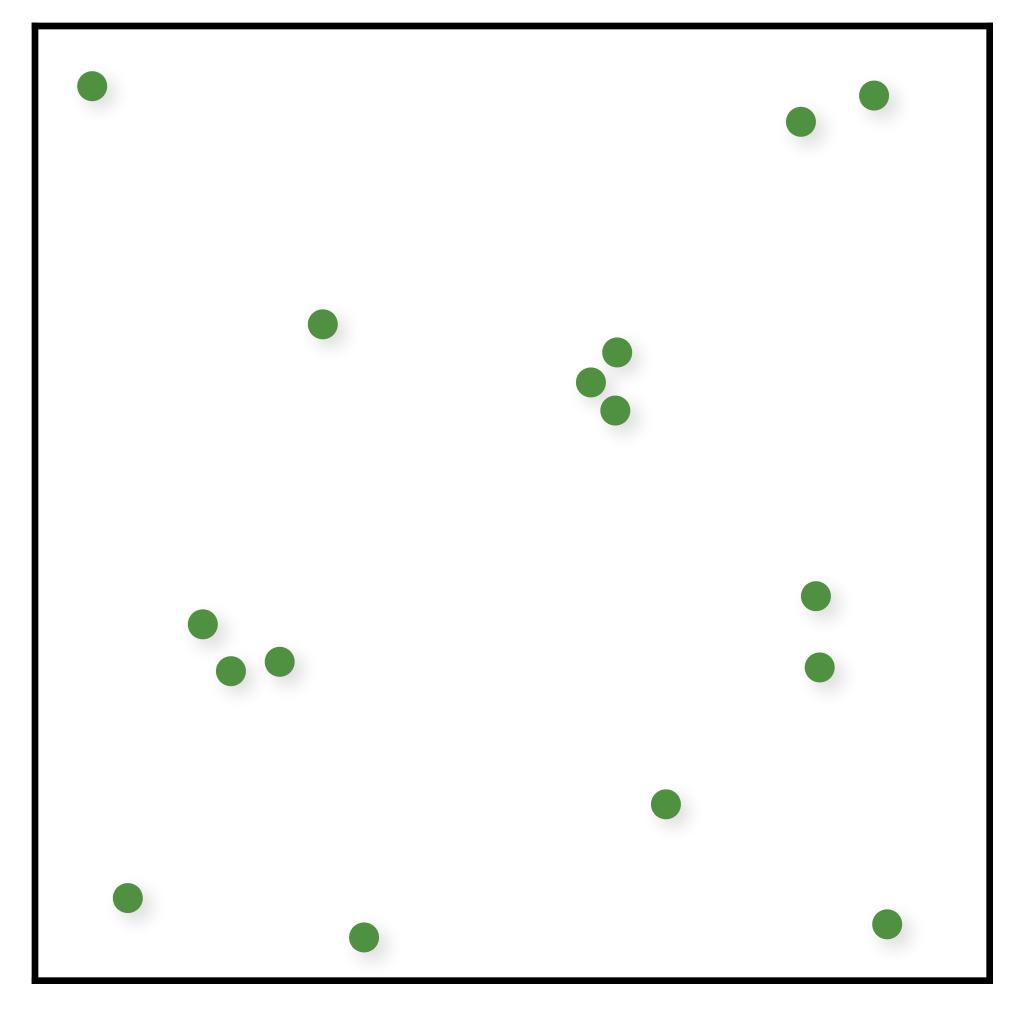

```
for (int k = 0; k < num; k++)
{
    samples(k).x = randf();
    samples(k).y = randf();
}</pre>
```

Trivially extends to higher dimensions



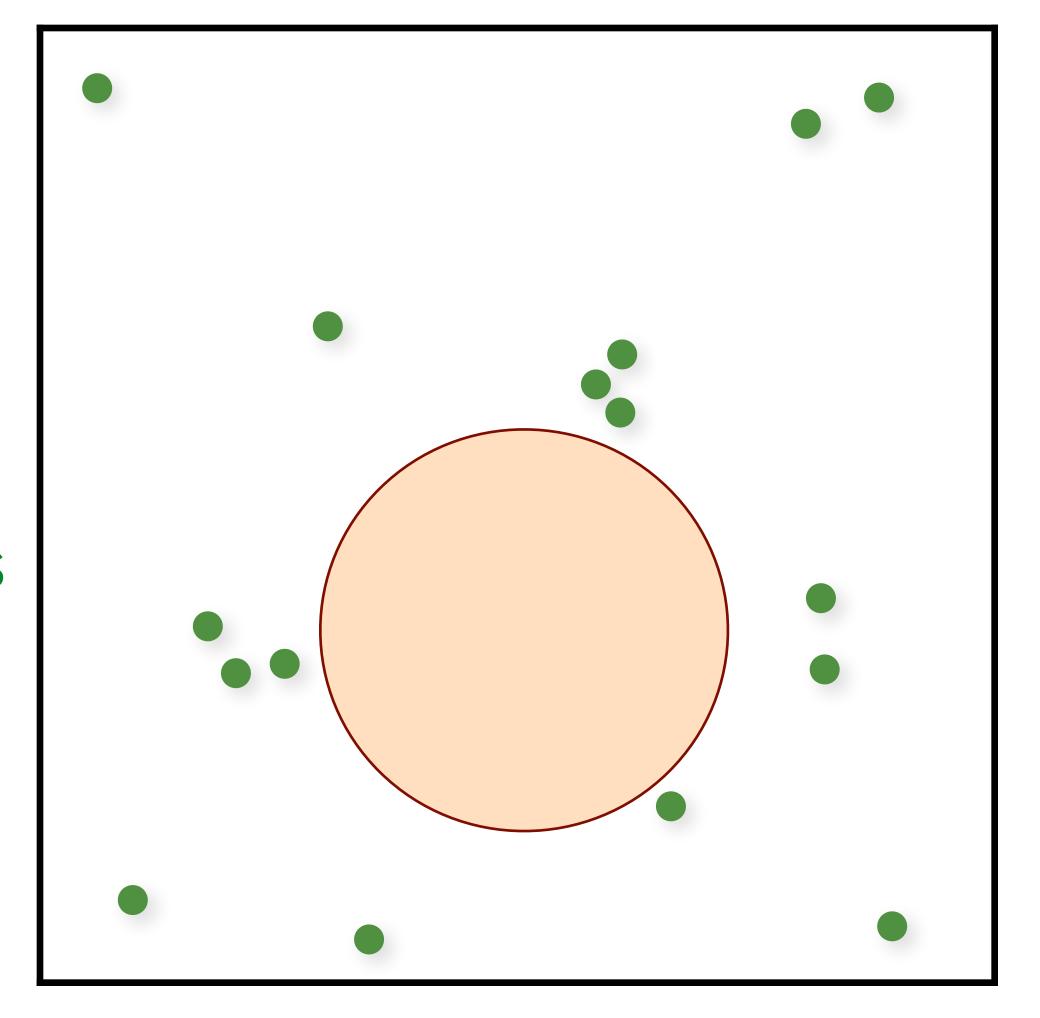

```
for (int k = 0; k < num; k++)
{
    samples(k).x = randf();
    samples(k).y = randf();
}</pre>
```

- Trivially extends to higher dimensions
- Trivially progressive and memory-less



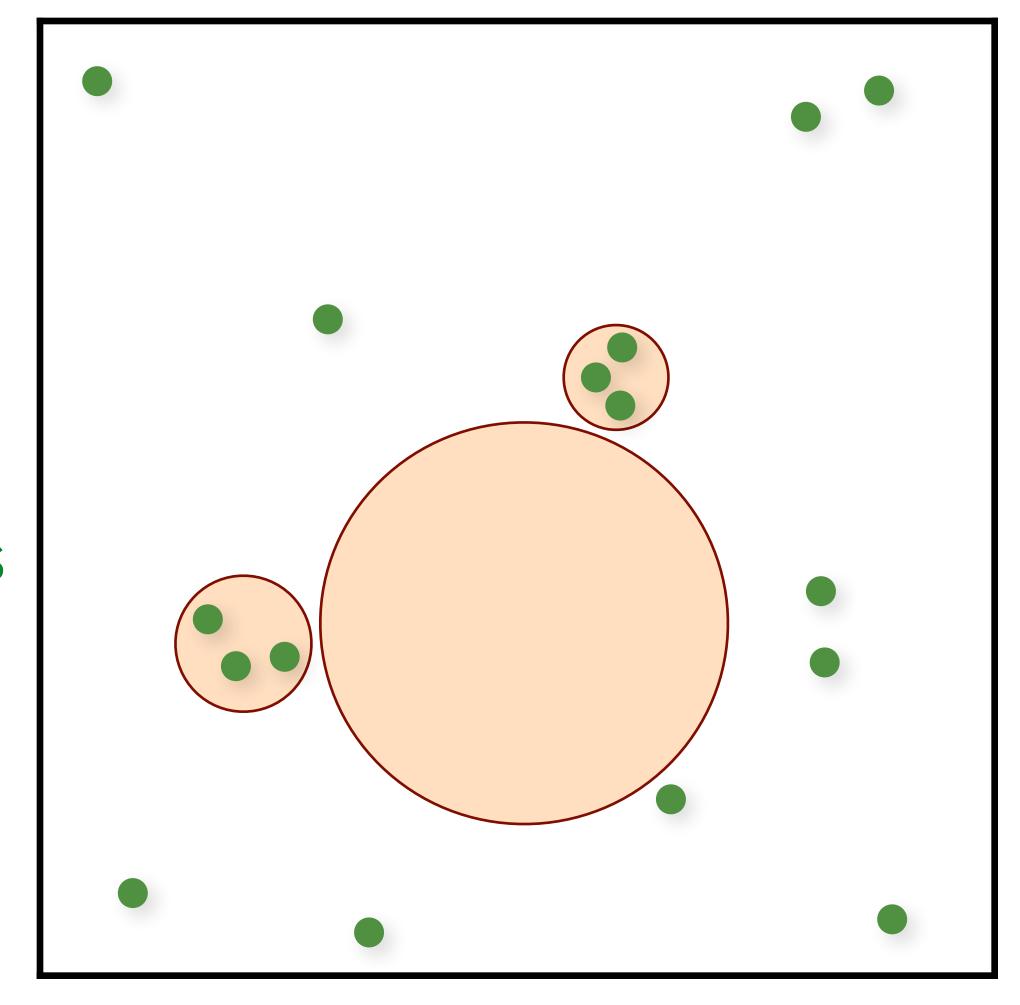

```
for (int k = 0; k < num; k++)
{
    samples(k).x = randf();
    samples(k).y = randf();
}</pre>
```

- Trivially extends to higher dimensions
- Trivially progressive and memory-less
- X Big gaps




```
for (int k = 0; k < num; k++)
{
    samples(k).x = randf();
    samples(k).y = randf();
}</pre>
```

- Trivially extends to higher dimensions
- Trivially progressive and memory-less
- Big gaps
- **X** Clumping



Input Image

Power Spectrum

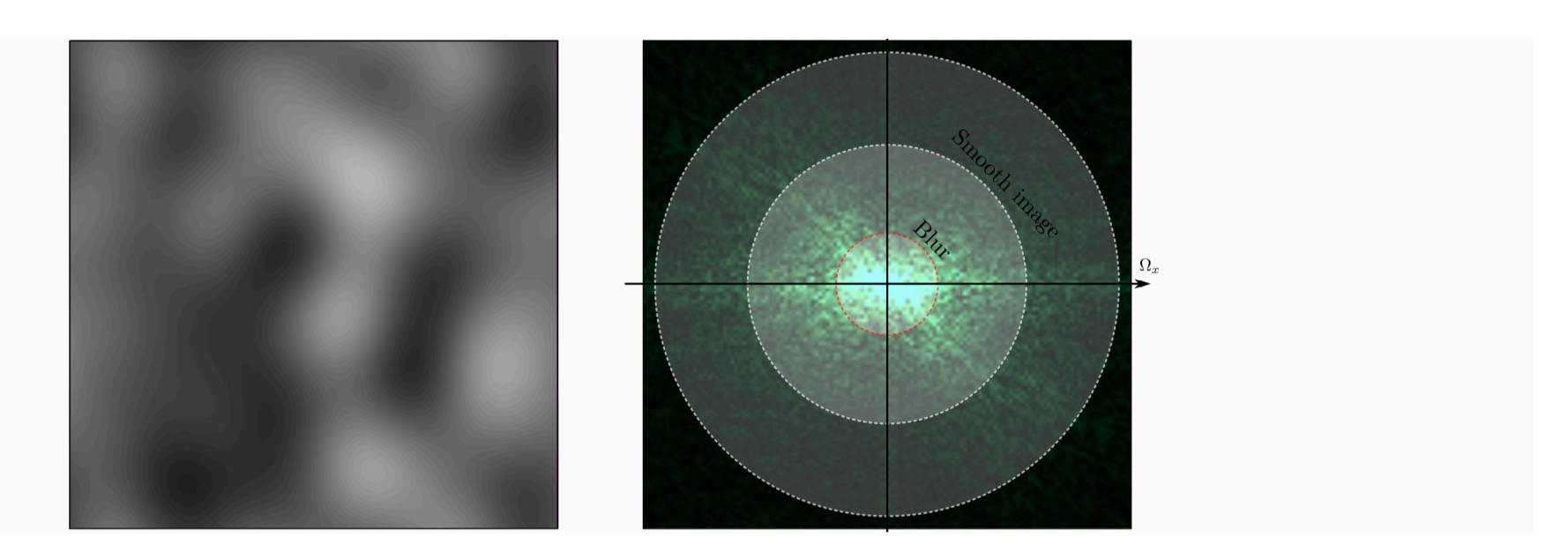


Image courtesy: Laurent Belcour

Input Image

Power Spectrum

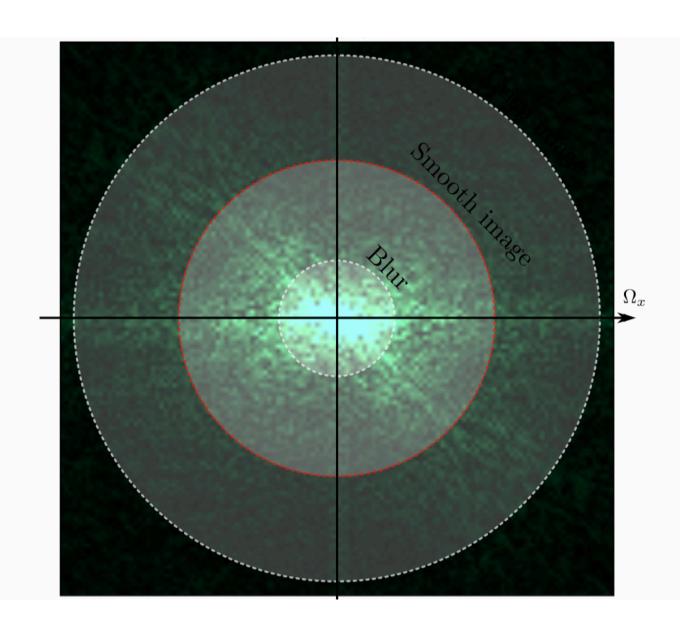


Image courtesy: Laurent Belcour

Fourier transform:
$$\hat{f}(\omega) = \int_D f(x) e^{-2\pi \imath \omega x} dx$$

Fourier transform:
$$\hat{f}(\vec{\omega}) = \int_D f(\vec{x}) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$$

Fourier transform:
$$\hat{f}(\vec{\omega}) = \int_D f(\vec{x}) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$$

Sampling function:
$$\hat{\mathbf{S}}(\vec{\omega}) = \int_{D} \mathbf{S}(\vec{x}) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$$

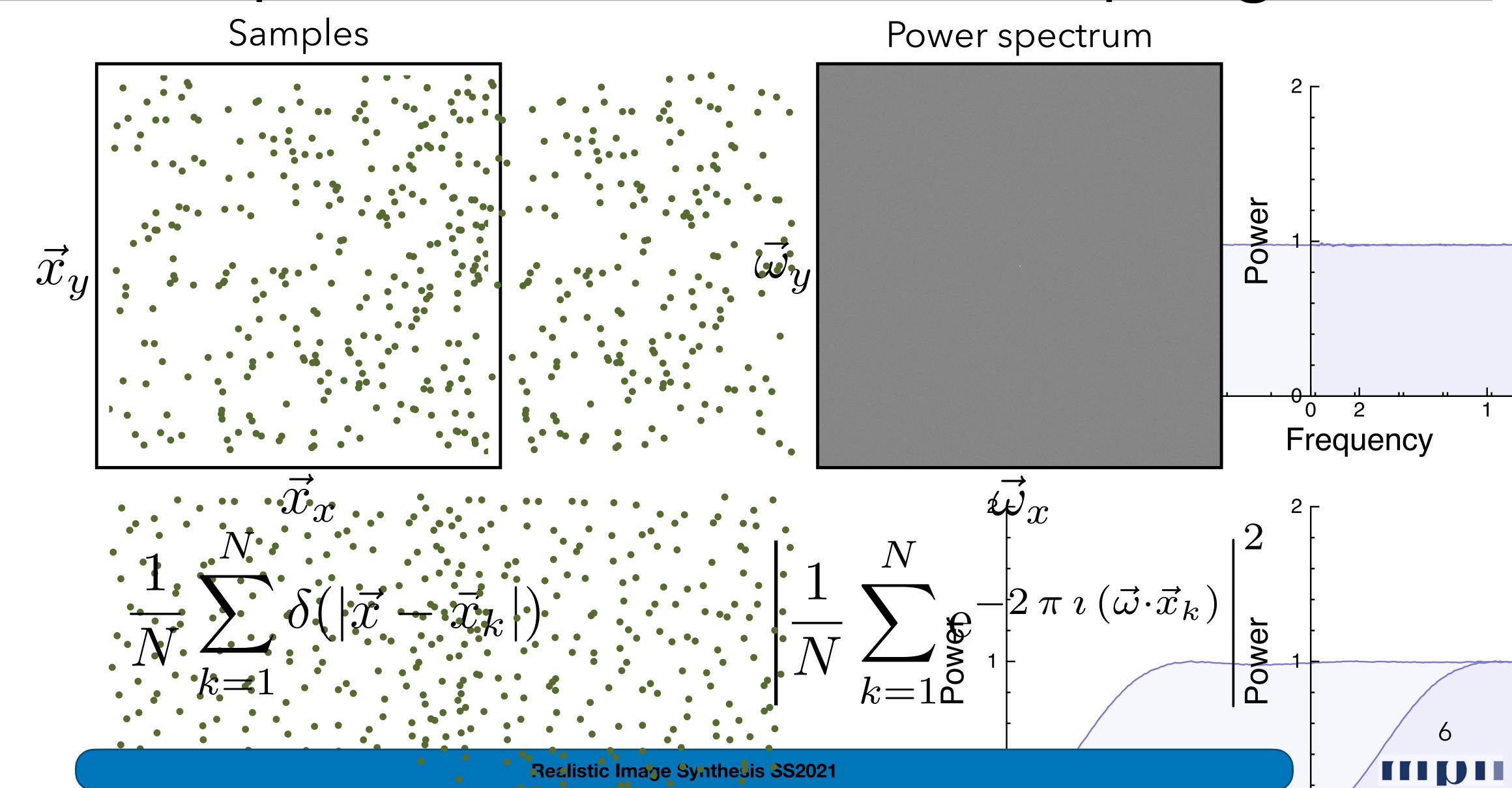
Fourier transform:
$$\hat{f}(\vec{\omega}) = \int_D f(\vec{x}) e^{-2\pi \imath (\vec{\omega} \cdot \vec{x})} d\vec{x}$$

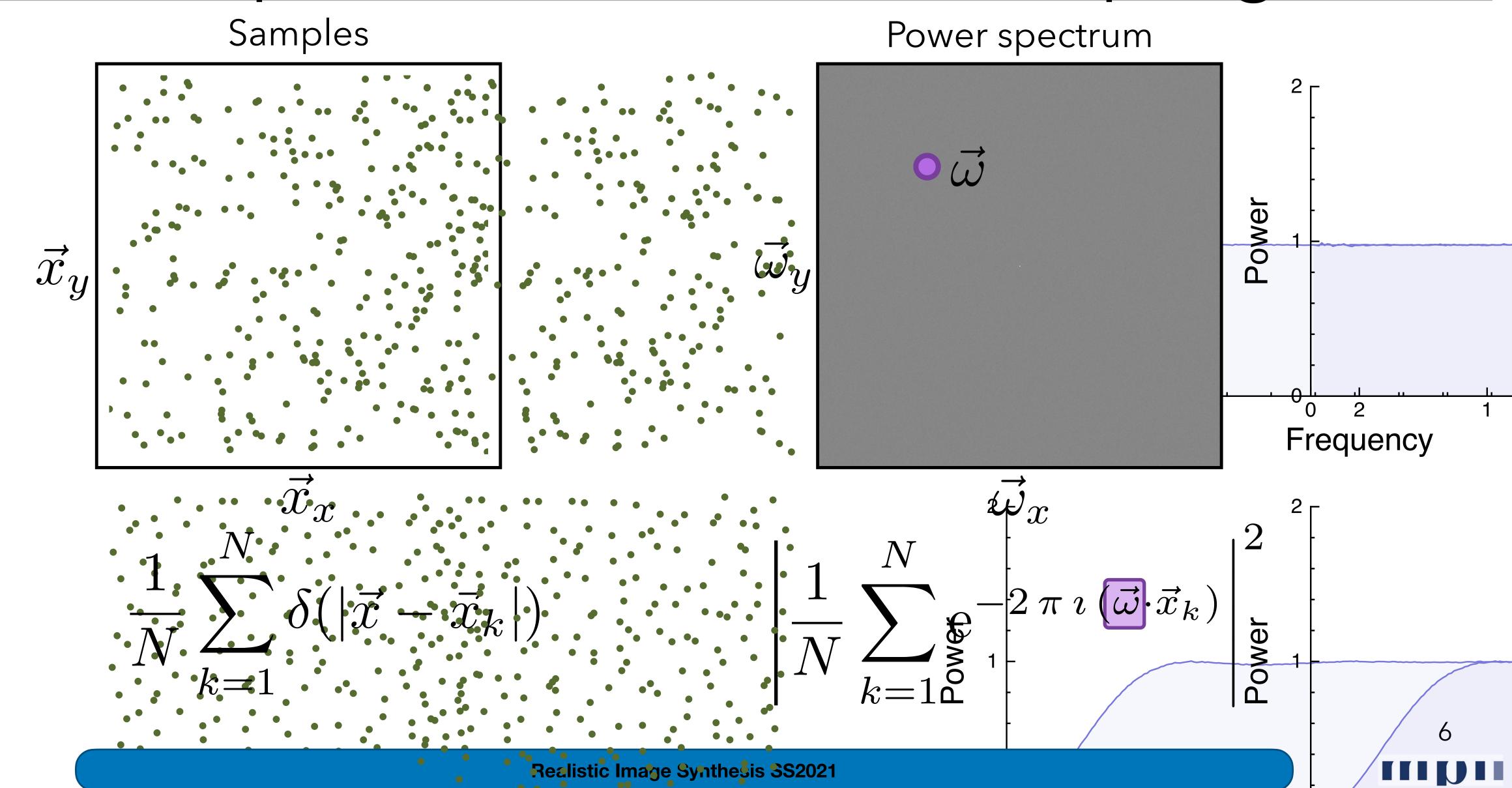
Sampling function:
$$\hat{\mathbf{S}}(\vec{\omega}) = \int_D \frac{1}{N} \sum_{k=1}^N \delta(|\vec{x} - \vec{x}_k|) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$$

Fourier transform:
$$\hat{f}(\vec{\omega}) = \int_D f(\vec{x}) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$$

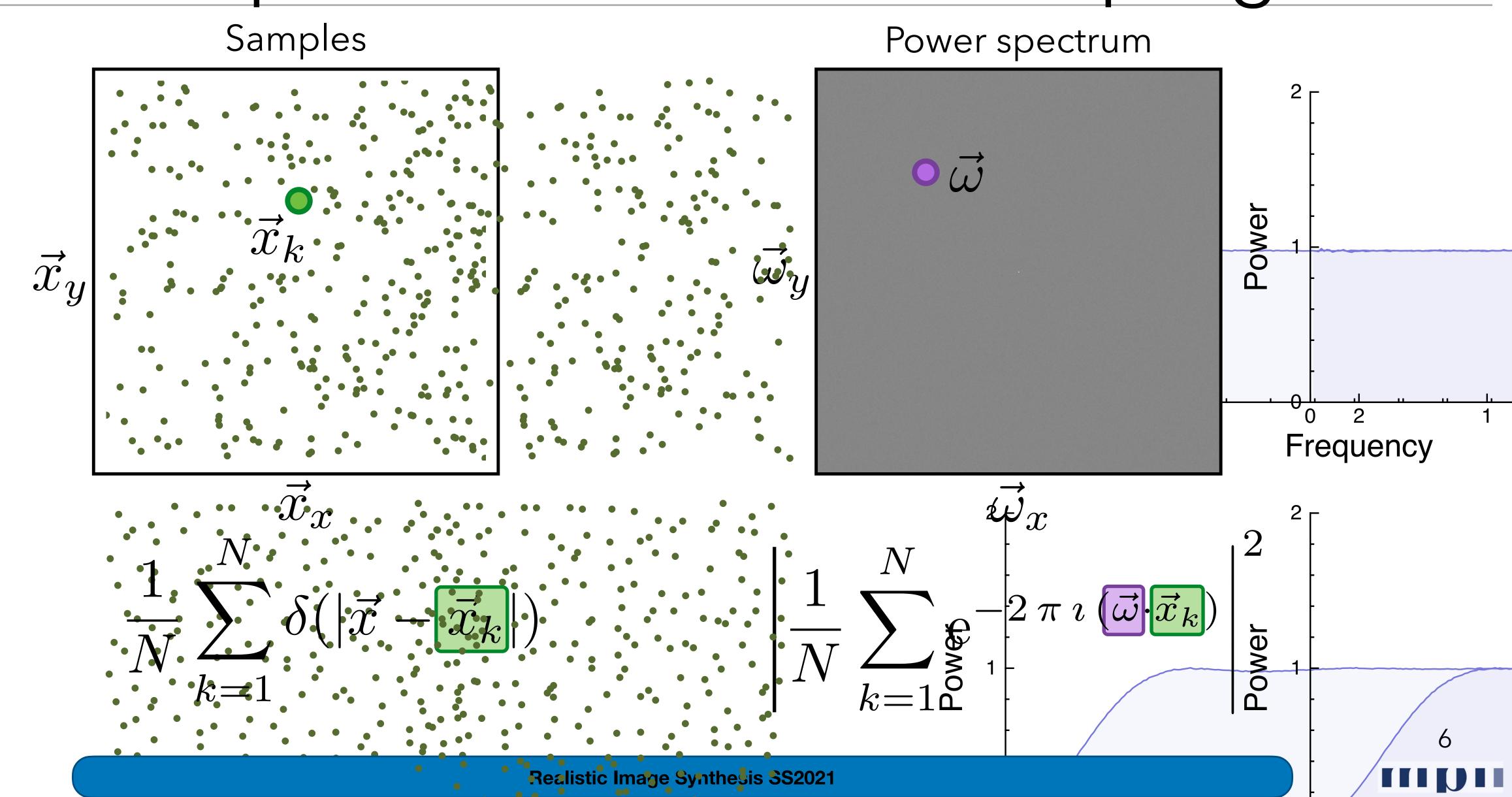
Sampling function:
$$\hat{\mathbf{S}}(\vec{\omega}) = \int_D \frac{1}{N} \sum_{k=1}^N \delta(|\vec{x} - \vec{x}_k|) e^{-2\pi \imath (\vec{\omega} \cdot \vec{x})} d\vec{x}$$

$$= \frac{1}{N} \sum_{k=1}^{N} e^{-2\pi i (\vec{\omega} \cdot \vec{x}_k)}$$

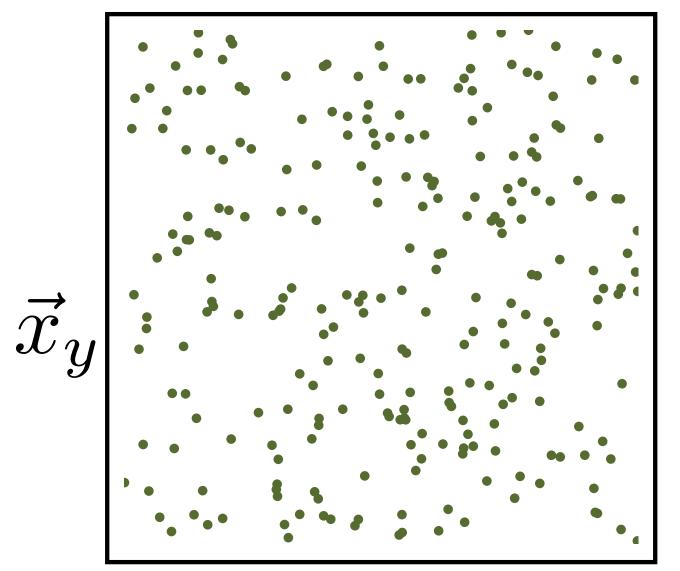


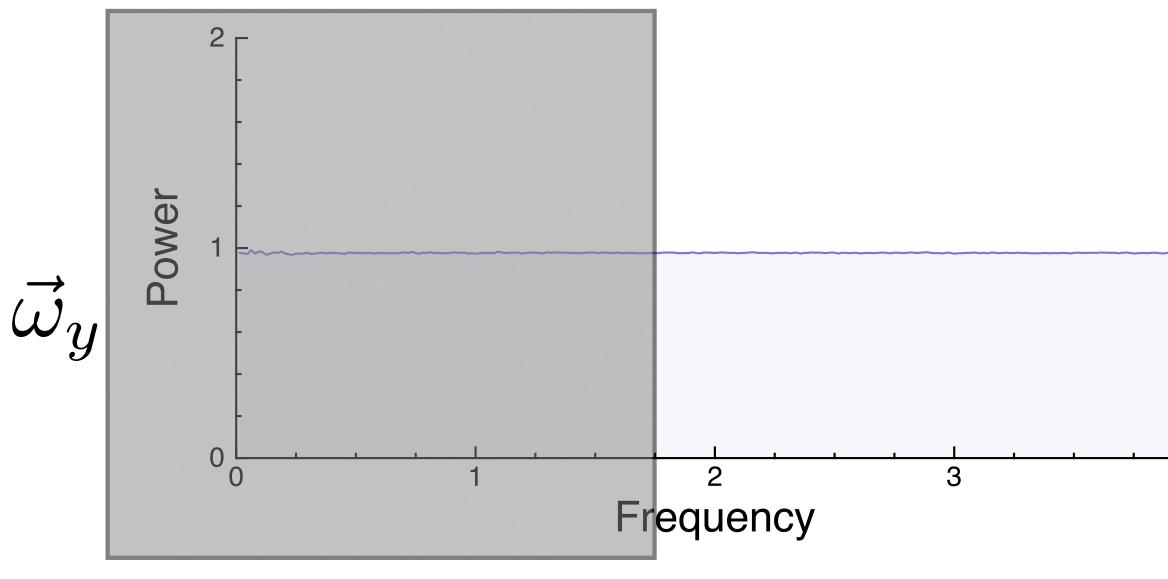


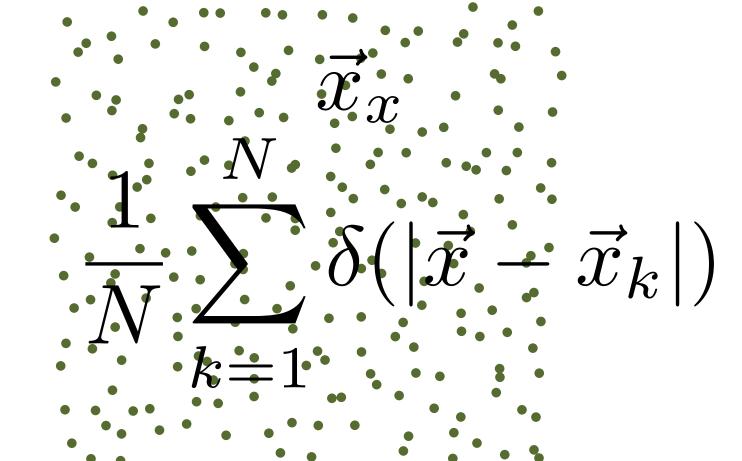
UNIVERSITÄT DES SAARLANDES

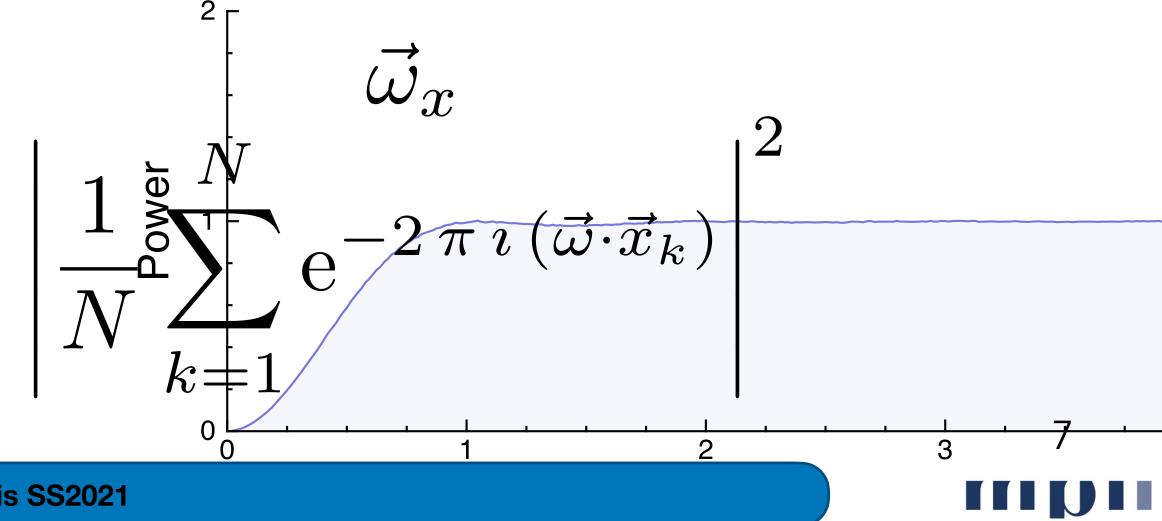


Many sample set realizations

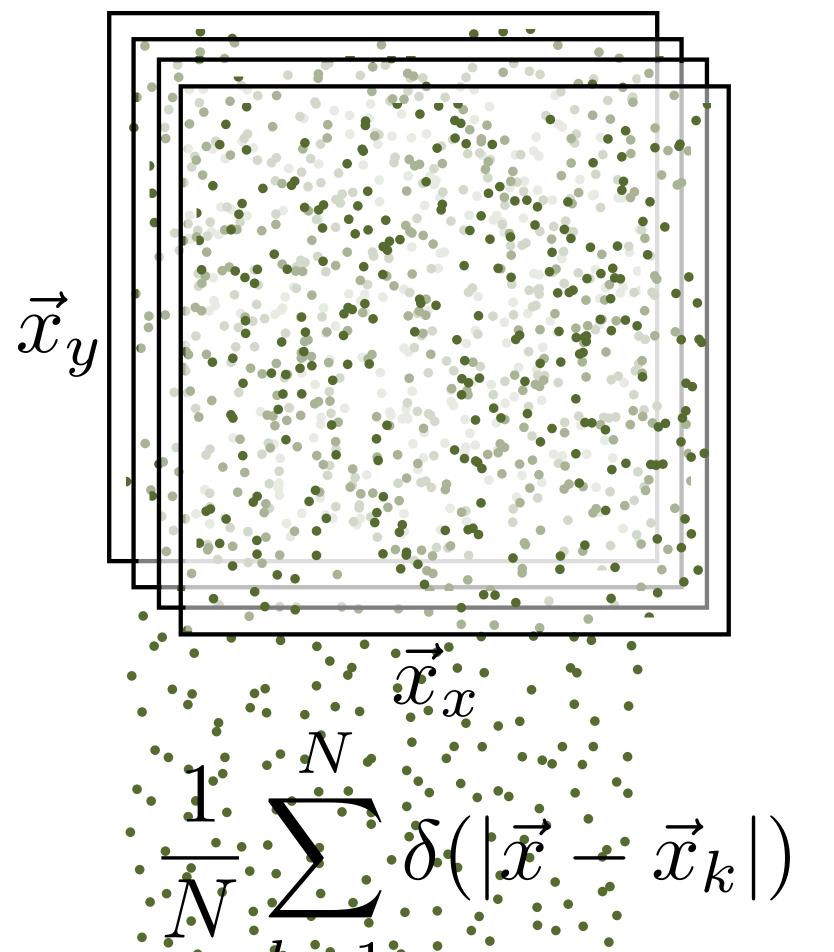




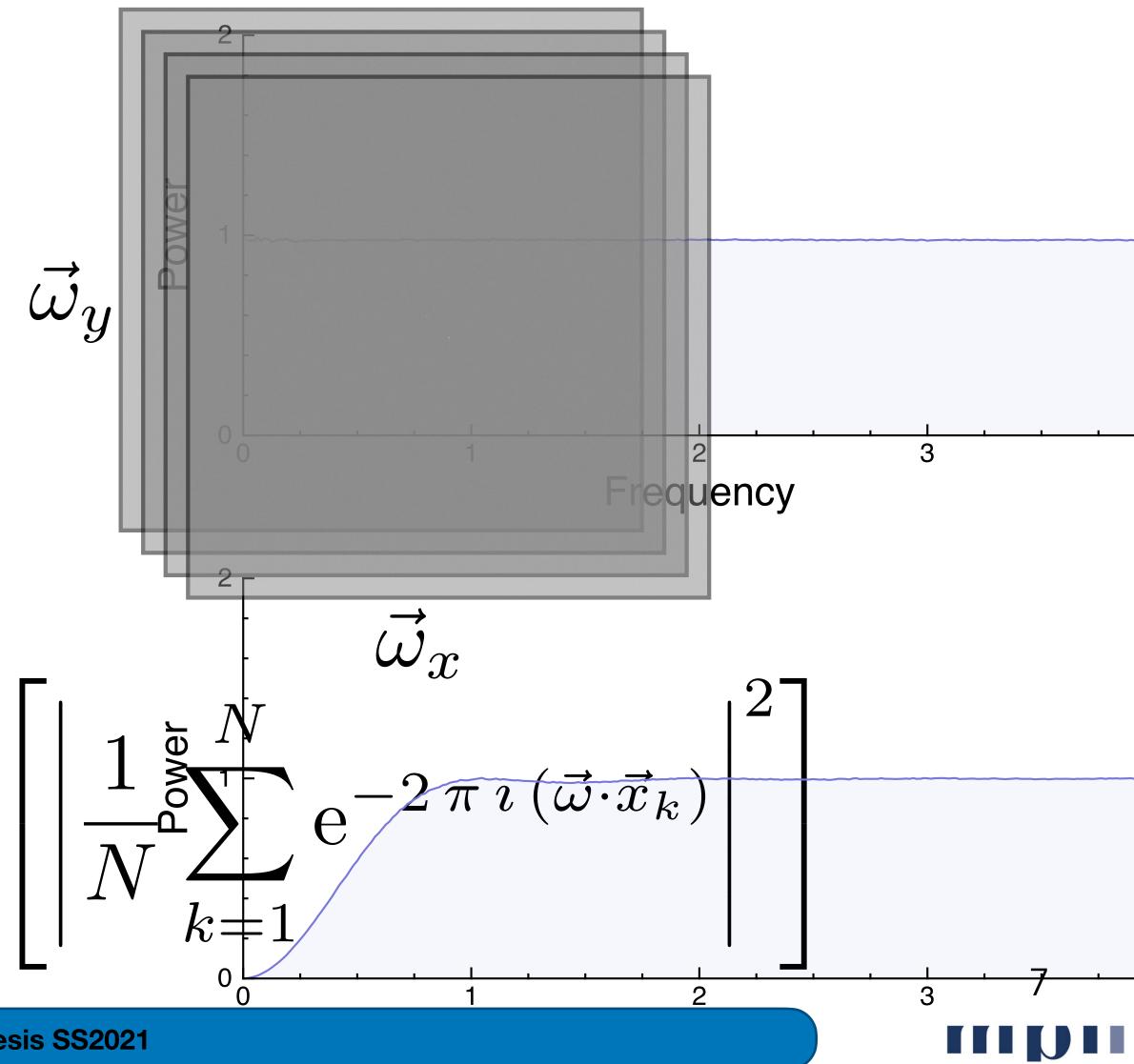


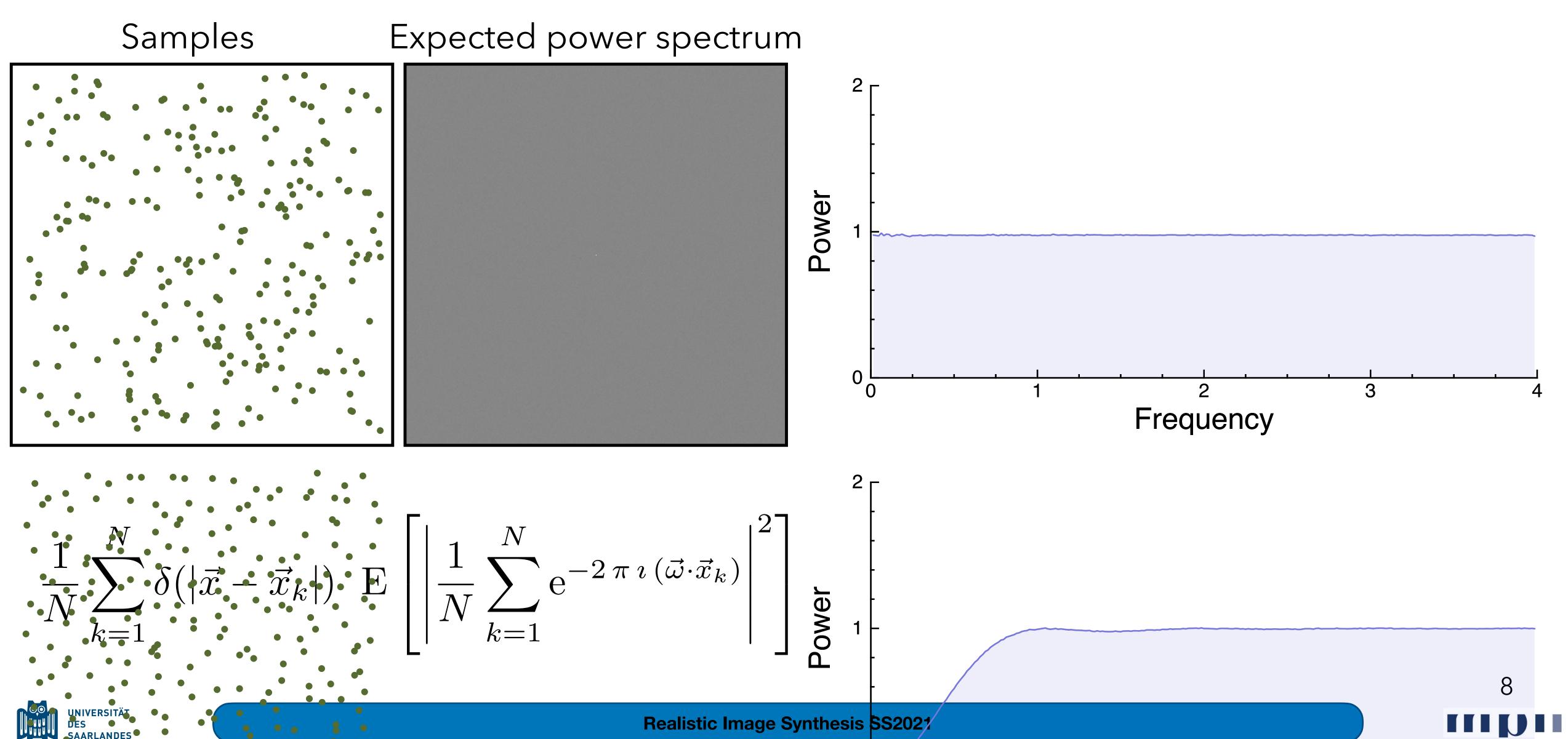


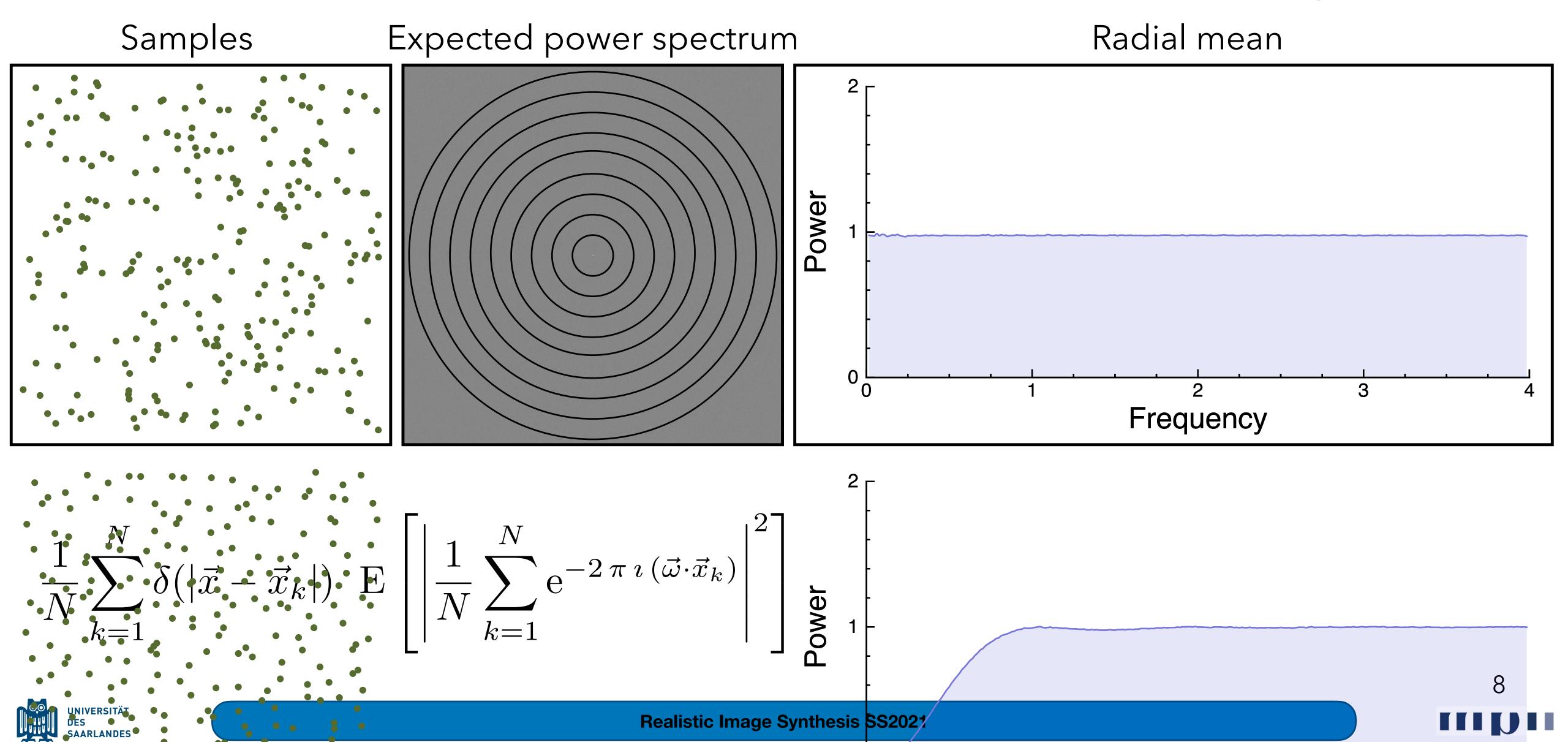
Many sample set realizations

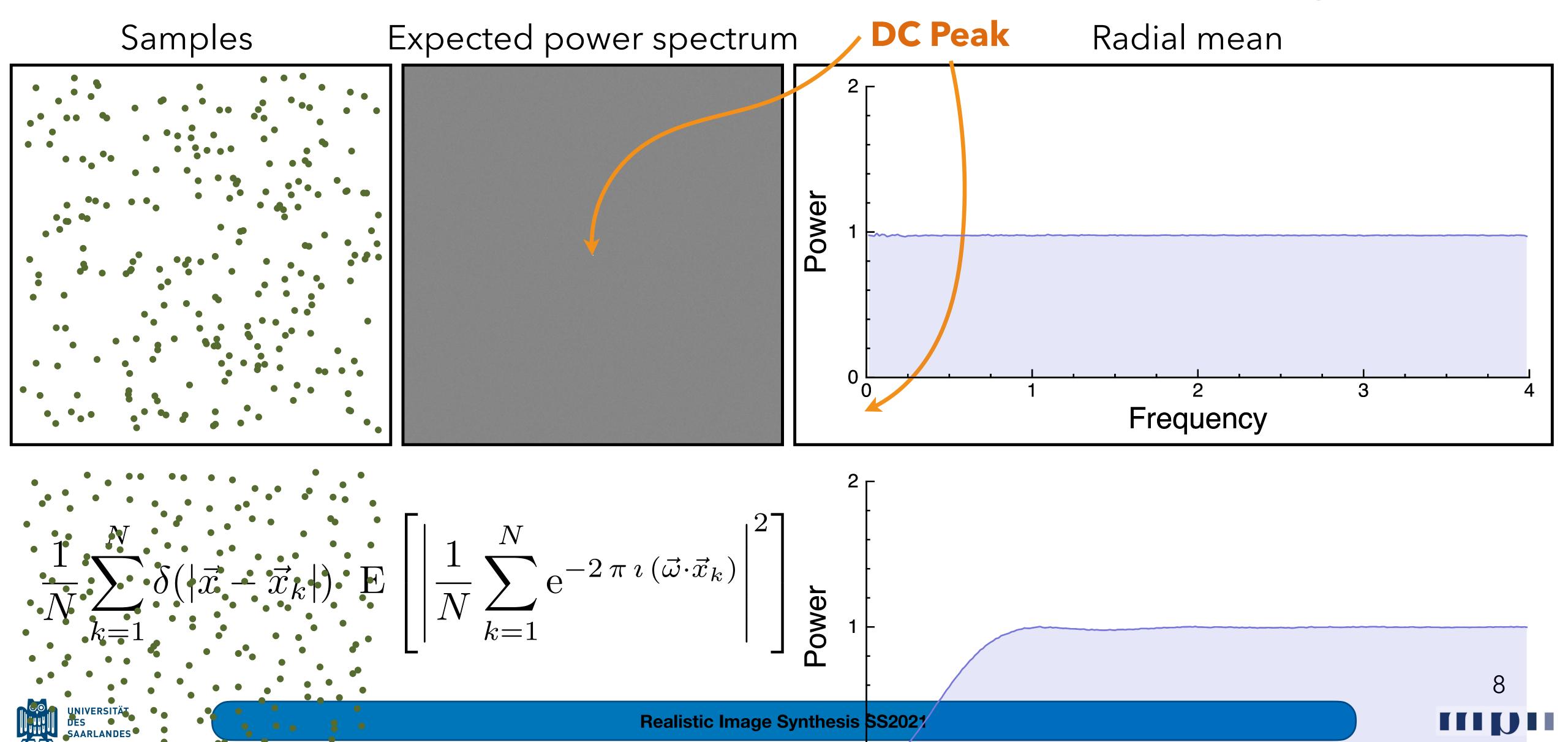


Expected power spectrum









```
procedure powerSpectrum(samples, spectrumWidth, spectrumHeight)
  int N = samples.size()
  for u: 0 \rightarrow spectrumWidth{\{}
    for v: 0 → spectrumHeight{
    double real = 0, imag = 0;
  return power;
```



```
procedure powerSpectrum(samples, spectrumWidth, spectrumHeight)
  int N = samples.size()
  for u: 0 → spectrumWidth{
    for v: 0 \rightarrow spectrumHeight{}
    double real = 0, imag = 0;
    //compute the real and imaginary fourier coefficients
    for(int k=0; k<N; k++) {</pre>
  return power;
```



```
procedure powerSpectrum(samples, spectrumWidth, spectrumHeight)
  int N = samples.size()
  for u: 0 \rightarrow spectrumWidth{\{}
    for v: 0 \rightarrow spectrumHeight{}
    double real = 0, imag = 0;
    //compute the real and imaginary fourier coefficients
    for(int k=0;k<N;k++){</pre>
      real += cos(2 * \pi * (u * samples[k].x + v * samples[k].y));
      imag += sin(2 * \pi * (u * samples[k].x + v * samples[k].y));
  return power;
```



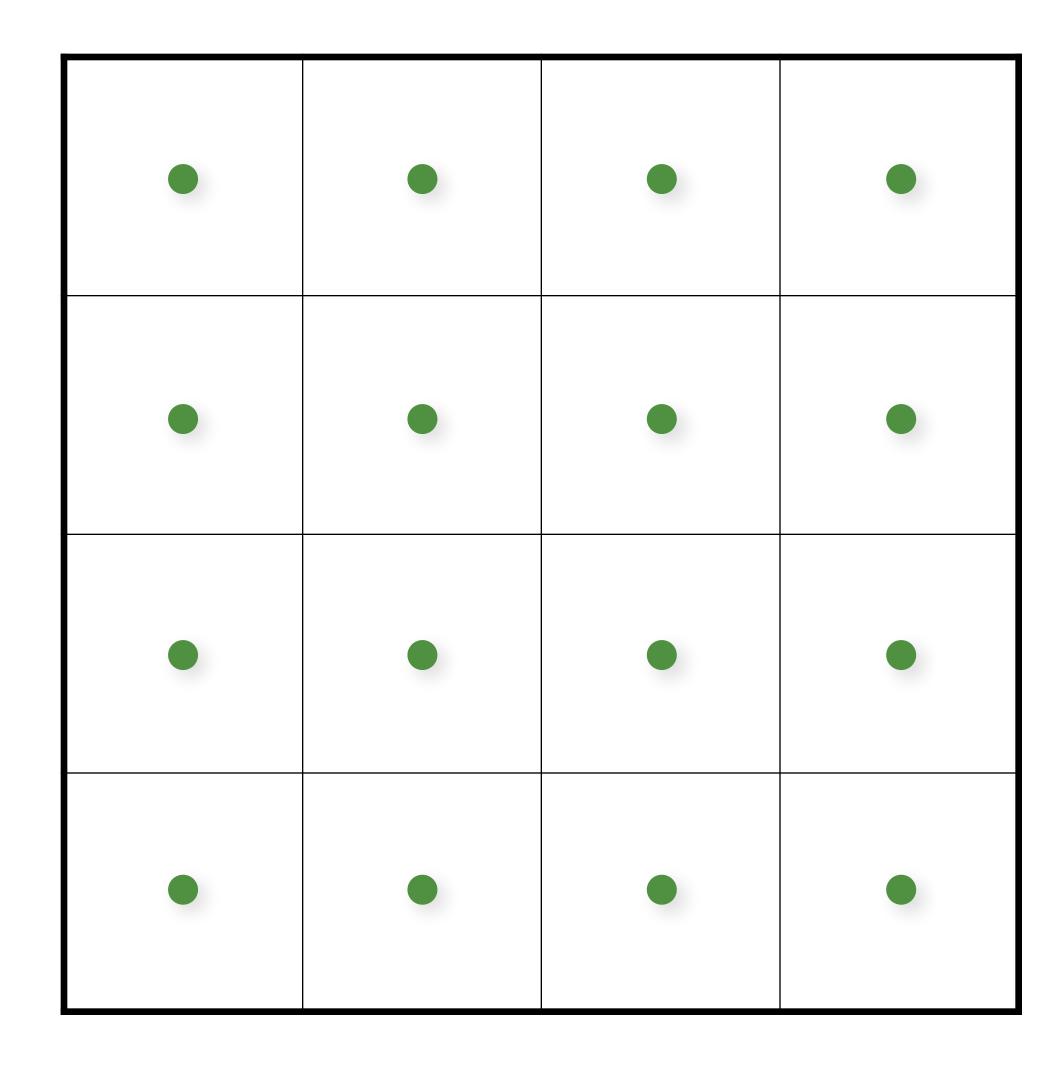
```
procedure powerSpectrum(samples, spectrumWidth, spectrumHeight)
  int N = samples.size()
  for u: 0 \rightarrow spectrumWidth{\{}
    for v: 0 \rightarrow spectrumHeight{}
    double real = 0, imag = 0;
    //compute the real and imaginary fourier coefficients
    for(int k=0;k<N;k++){</pre>
      real += cos(2 * \pi * (u * samples[k].x + v * samples[k].y));
      imag += sin(2 * \pi * (u * samples[k].x + v * samples[k].y));
    //power spectrum is the magnitude square value of the coefficients
    power[u * spectrumWidth + v] = (real*real + imag * imag) / N;
  return power;
```


Regular Sampling

```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + 0.5)/numX;
        samples(i,j).y = (j + 0.5)/numY;
    }</pre>
```


Regular Sampling

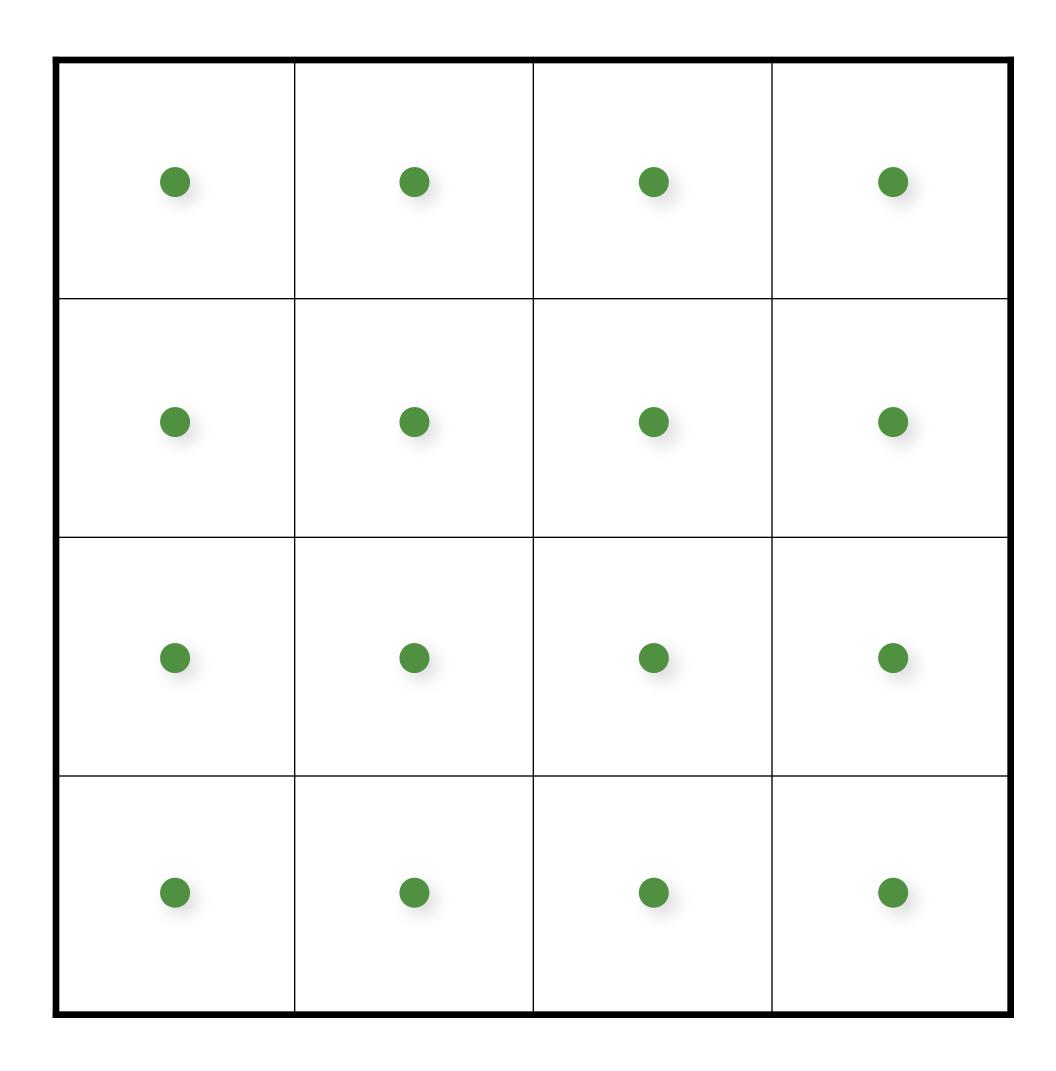
```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + 0.5)/numX;
        samples(i,j).y = (j + 0.5)/numY;
    }</pre>
```



Regular Sampling

```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + 0.5)/numX;
        samples(i,j).y = (j + 0.5)/numY;
    }</pre>
```

Extends to higher dimensions, but...



Regular Sampling

```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + 0.5)/numX;
        samples(i,j).y = (j + 0.5)/numY;
    }</pre>
```

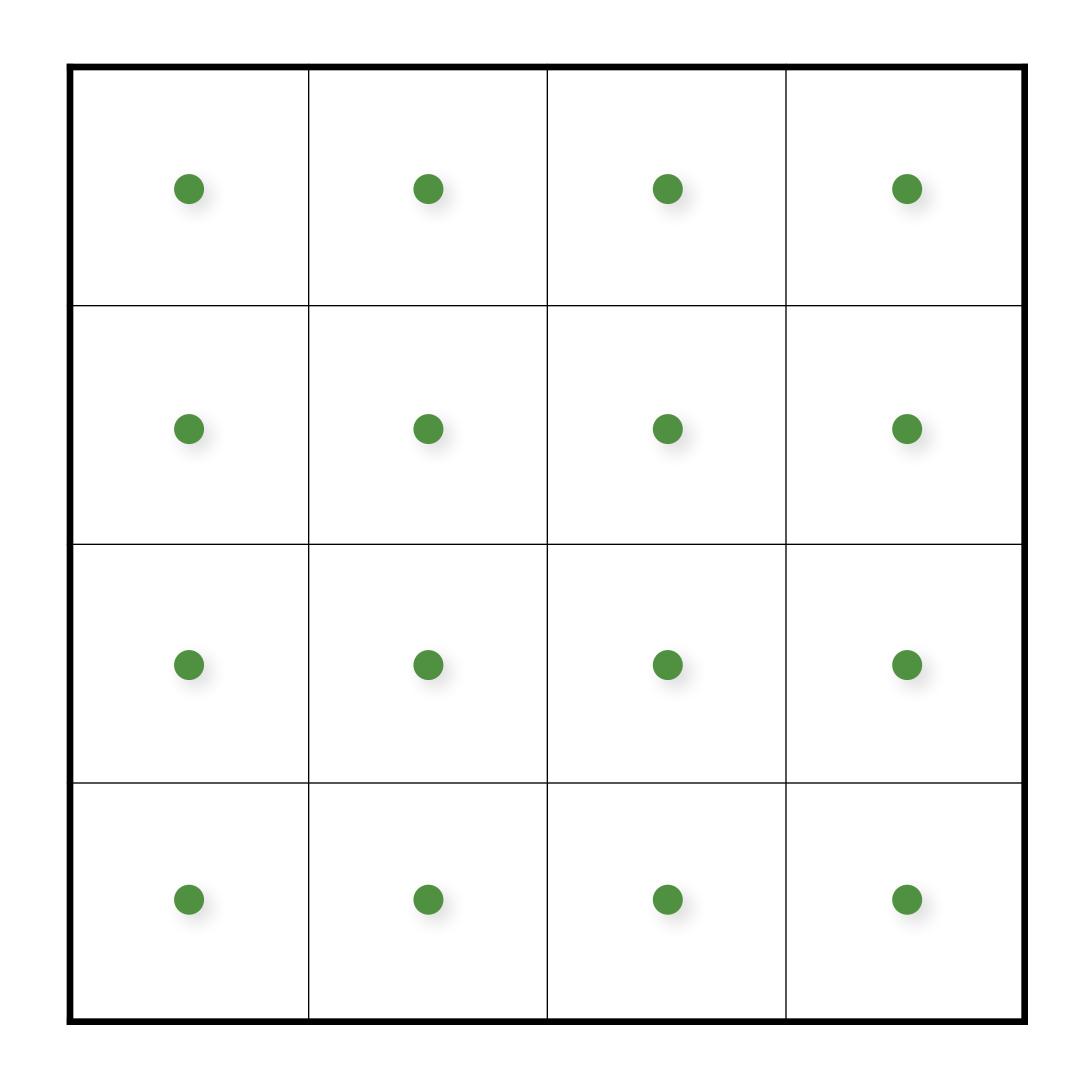
- Extends to higher dimensions, but...
- X Curse of dimensionality



Regular Sampling

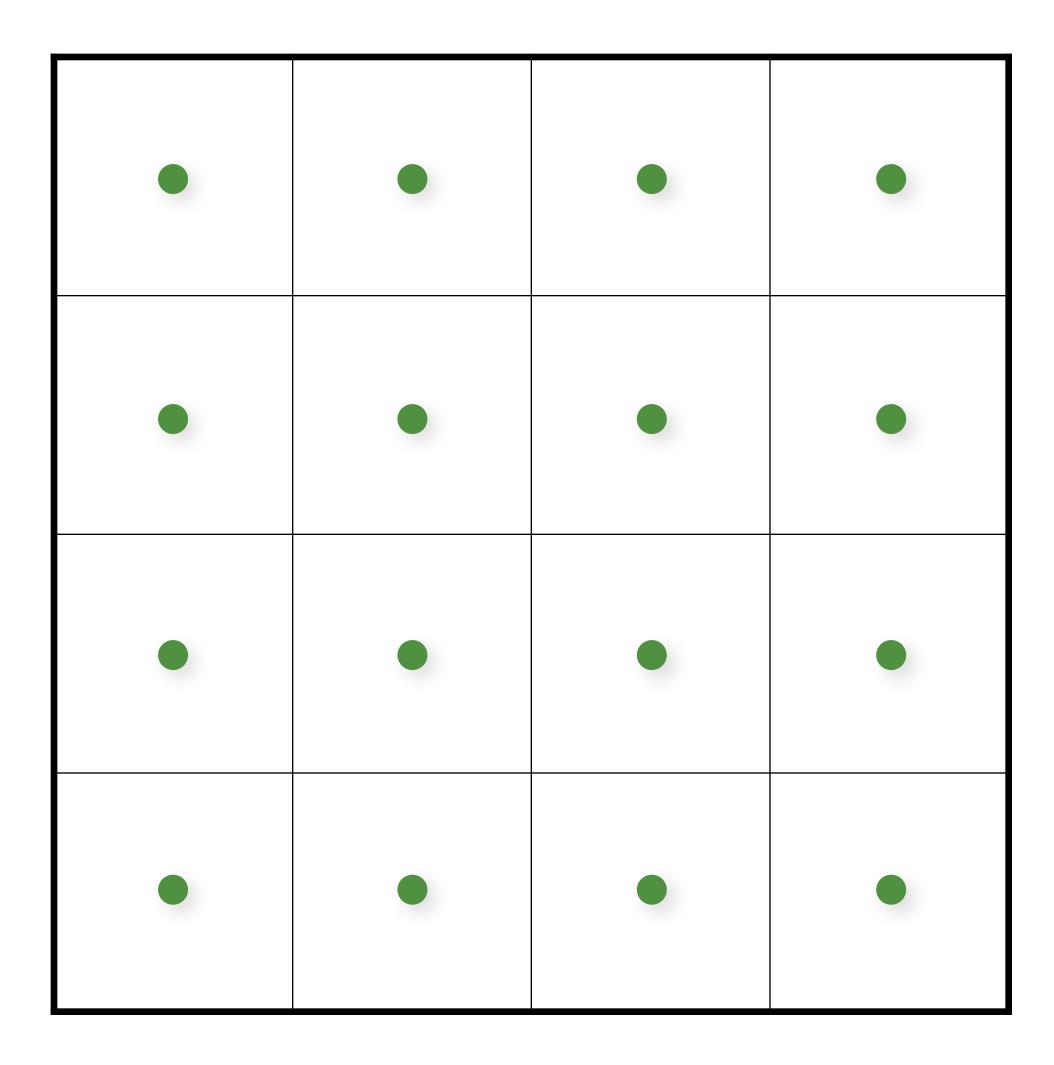
```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + 0.5)/numX;
        samples(i,j).y = (j + 0.5)/numY;
    }</pre>
```

- Extends to higher dimensions, but...
- X Curse of dimensionality
- X Aliasing

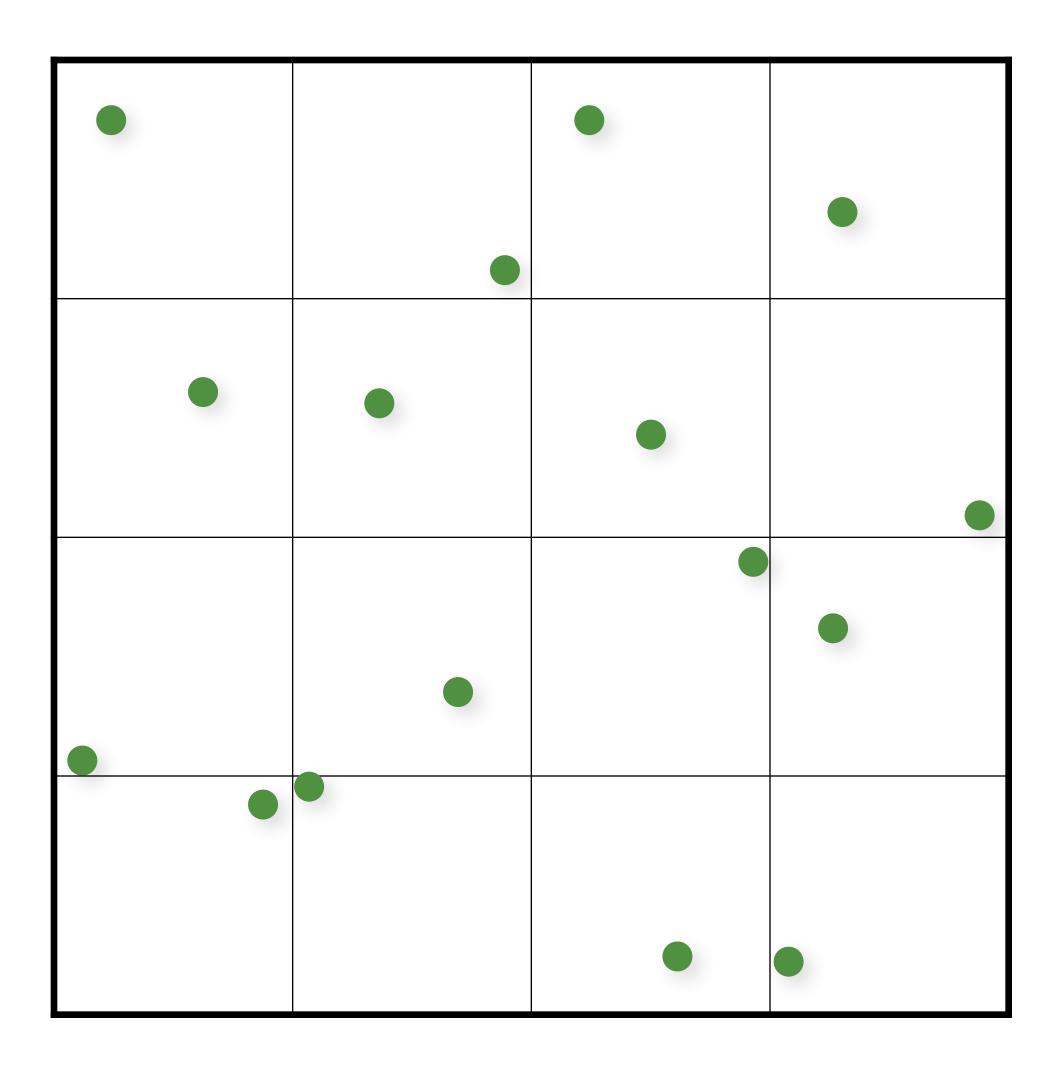


Regular Sampling

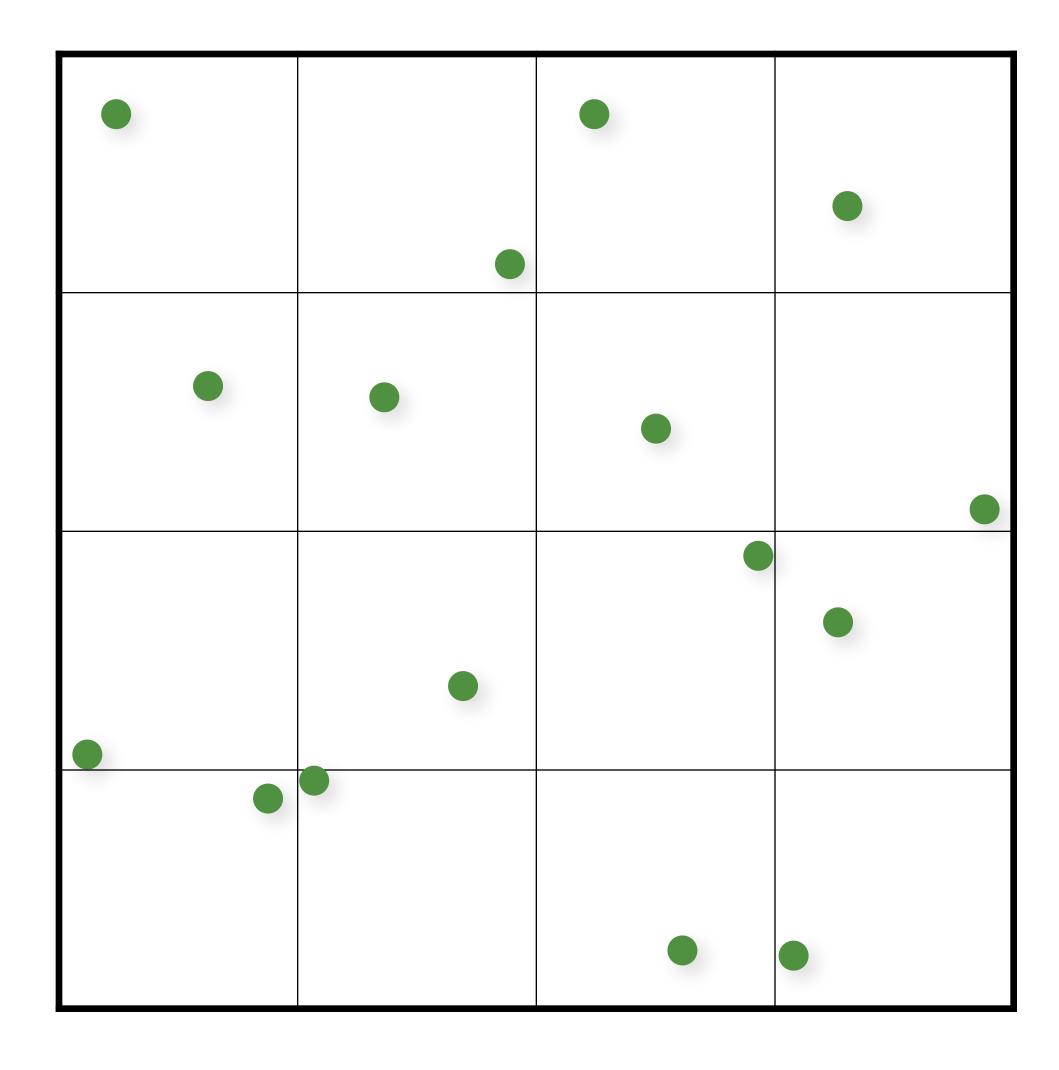
```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + 0.5)/numX;
        samples(i,j).y = (j + 0.5)/numY;
    }</pre>
```




```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + randf())/numX;
        samples(i,j).y = (j + randf())/numY;
    }</pre>
```

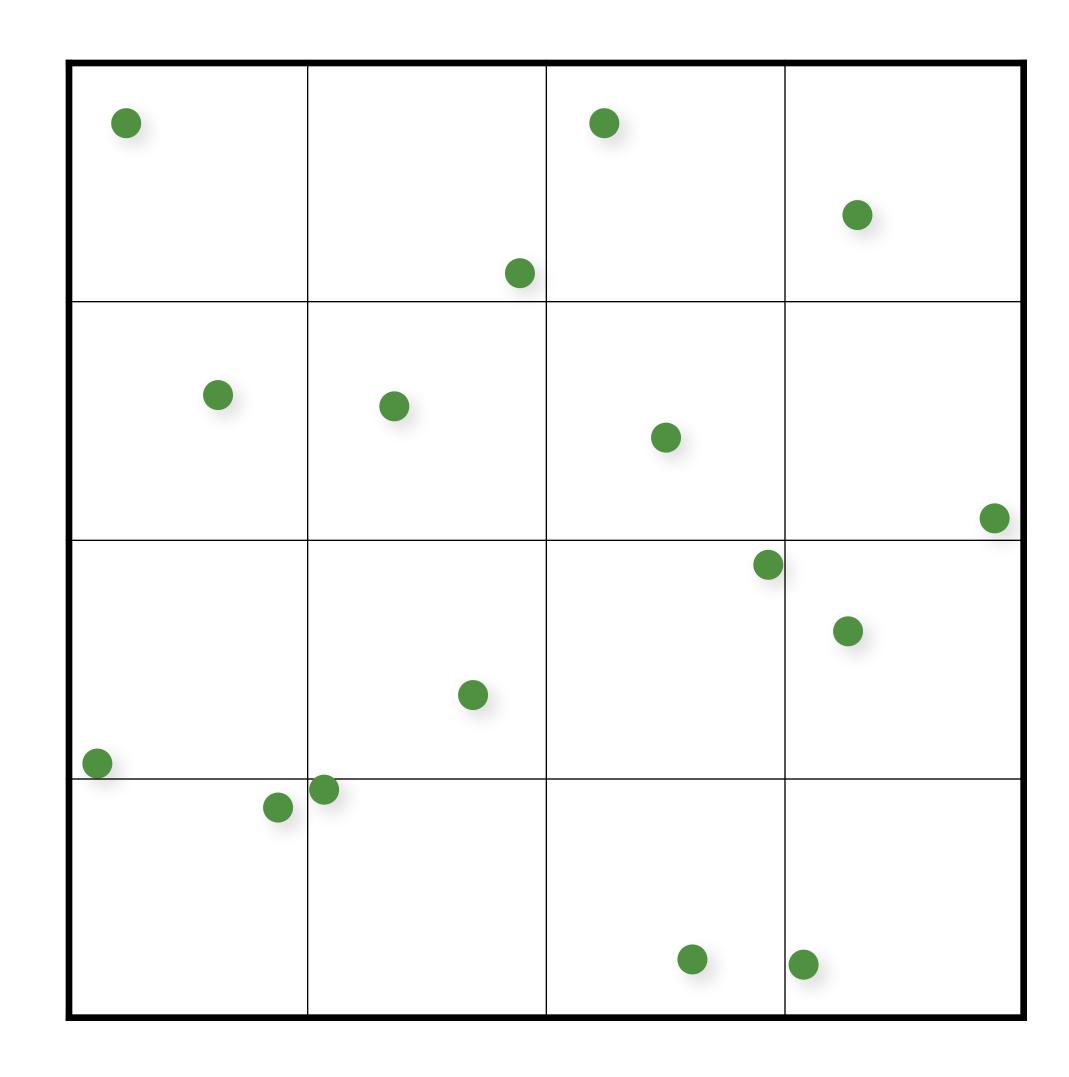


Provably cannot increase variance



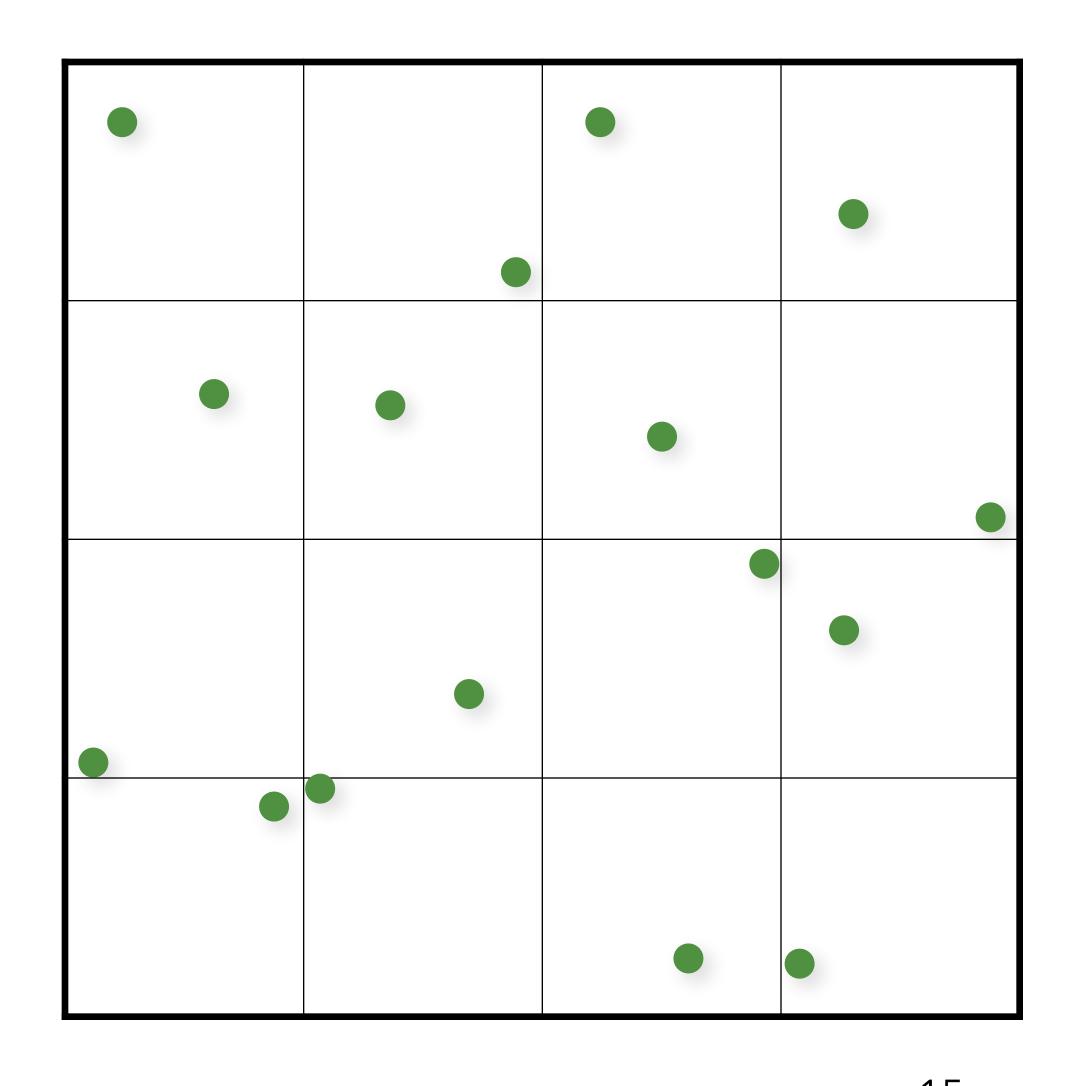

```
for (uint i = 0; i < numX; i++)
     for (uint j = 0; j < numY; j++)
     {
         samples(i,j).x = (i + randf())/numX;
         samples(i,j).y = (j + randf())/numY;
     }</pre>
```

- Provably cannot increase variance
- Extends to higher dimensions, but...



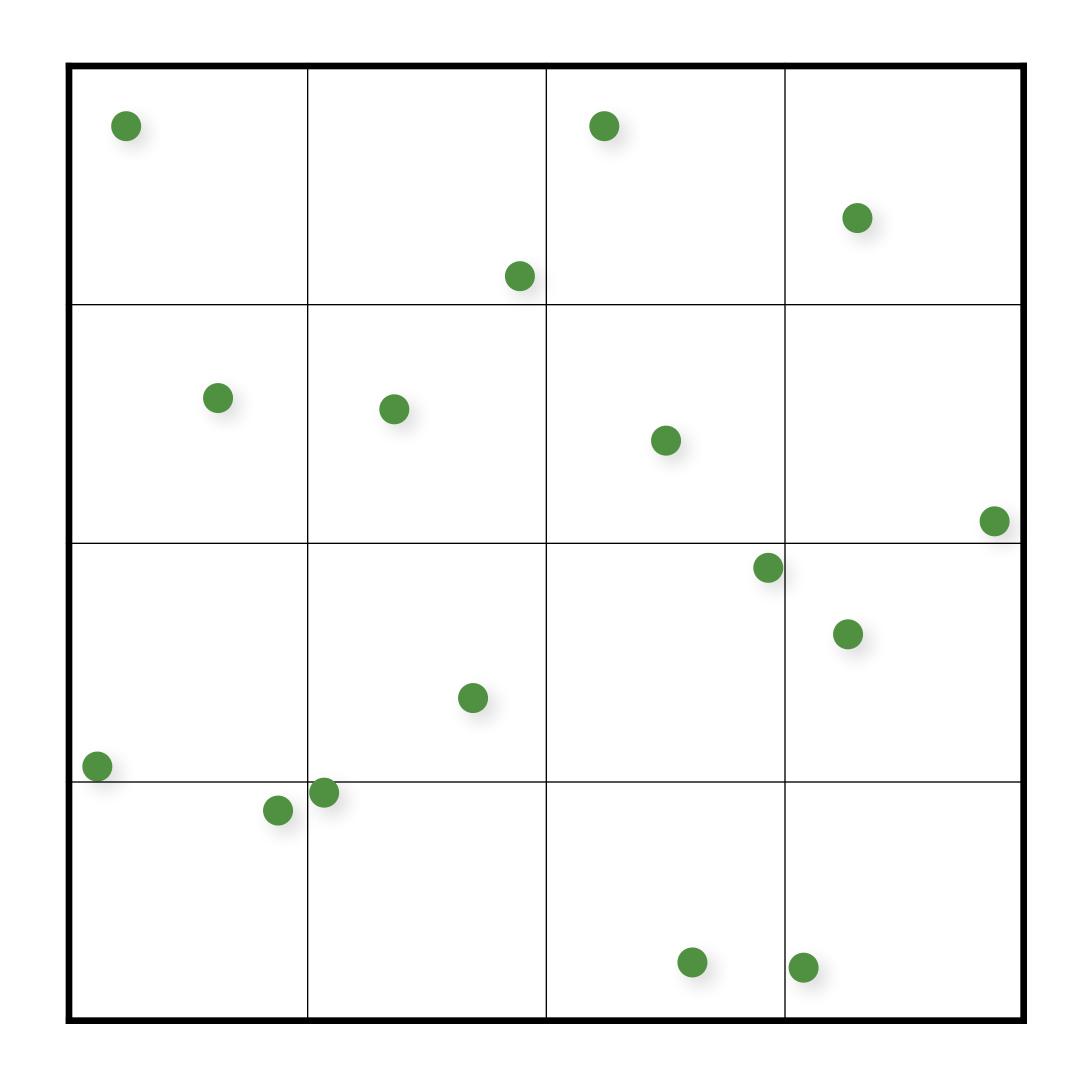

```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + randf())/numX;
        samples(i,j).y = (j + randf())/numY;
    }</pre>
```

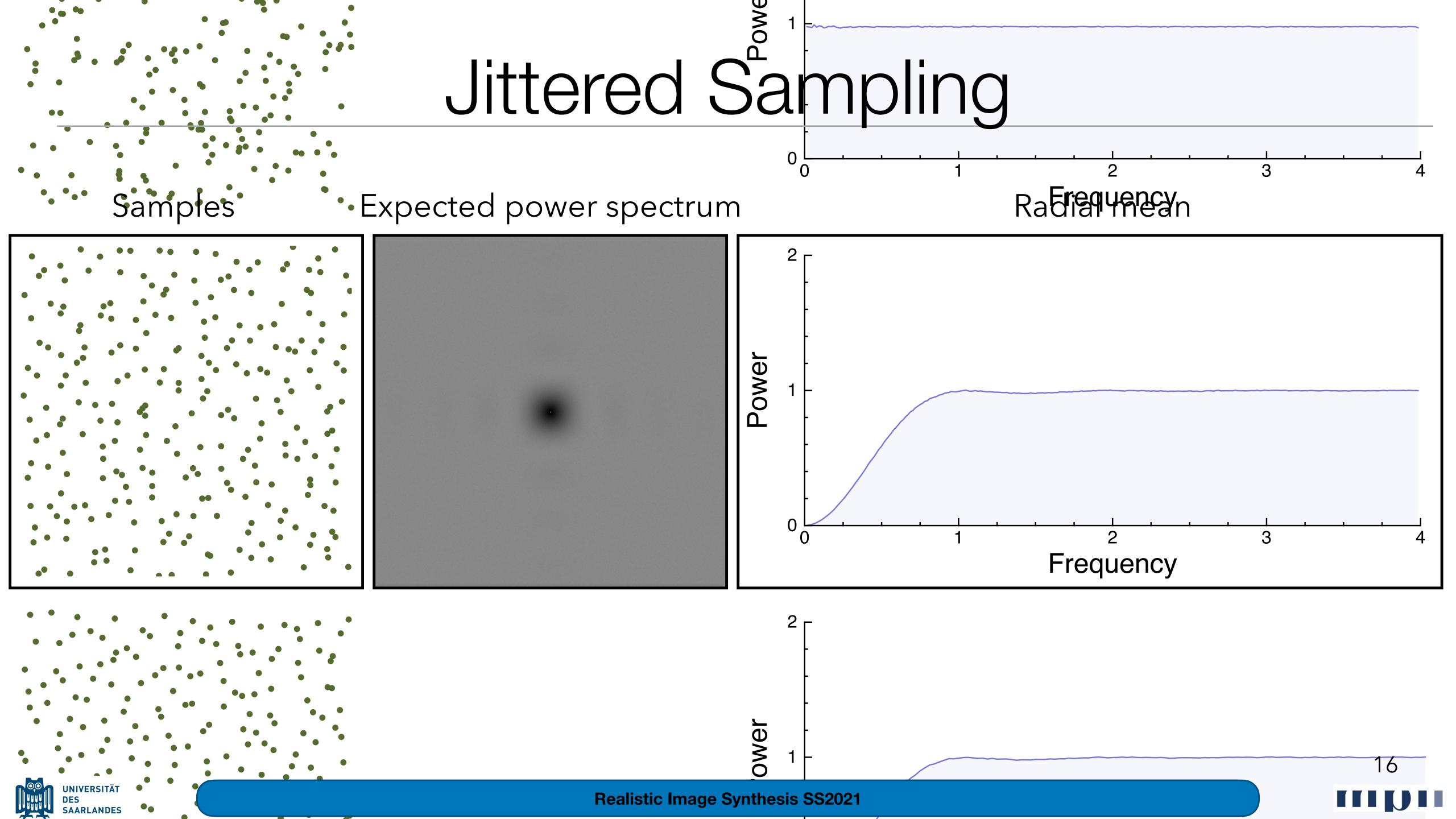
- Provably cannot increase variance
- Extends to higher dimensions, but...
- X Curse of dimensionality



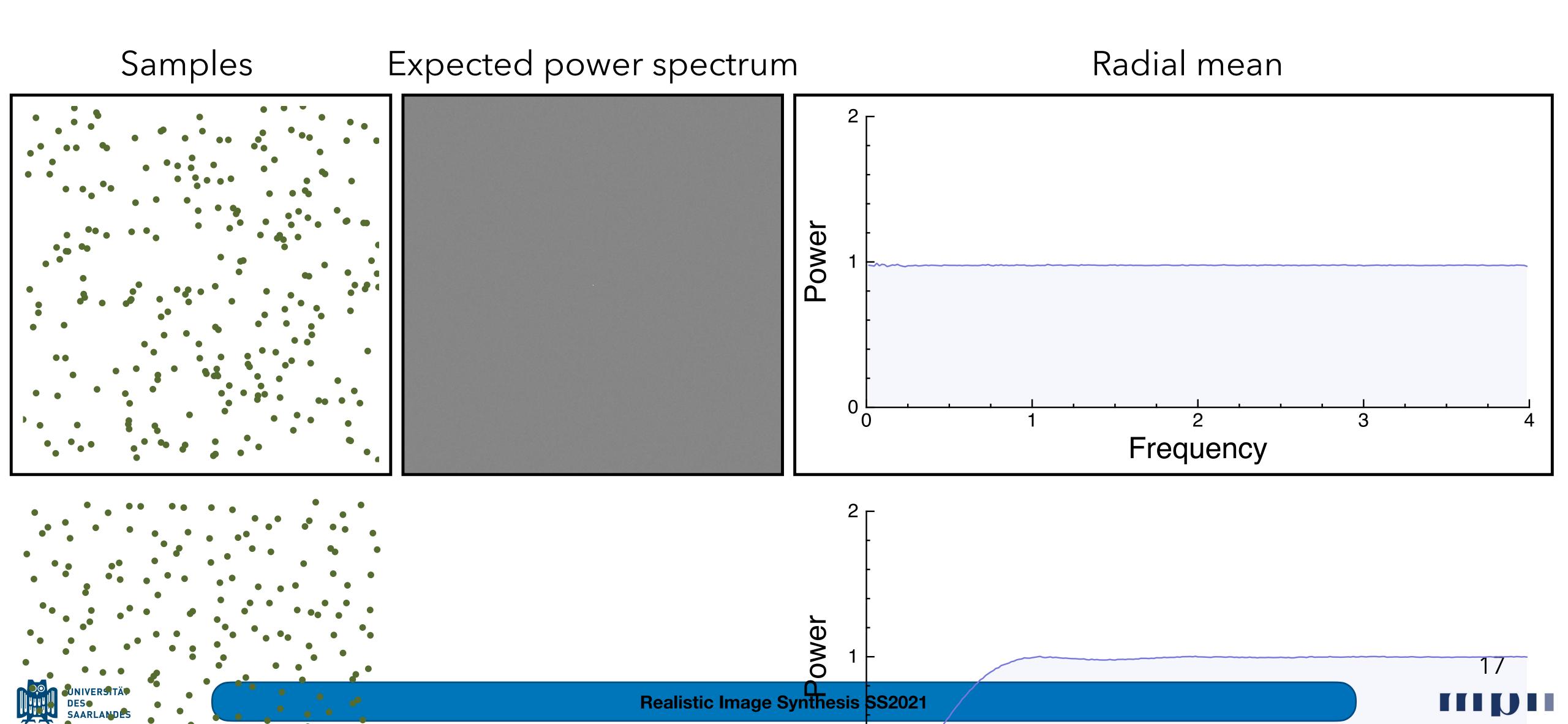

```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + randf())/numX;
        samples(i,j).y = (j + randf())/numY;
    }</pre>
```

- Provably cannot increase variance
- Extends to higher dimensions, but...
- X Curse of dimensionality
- X Not progressive

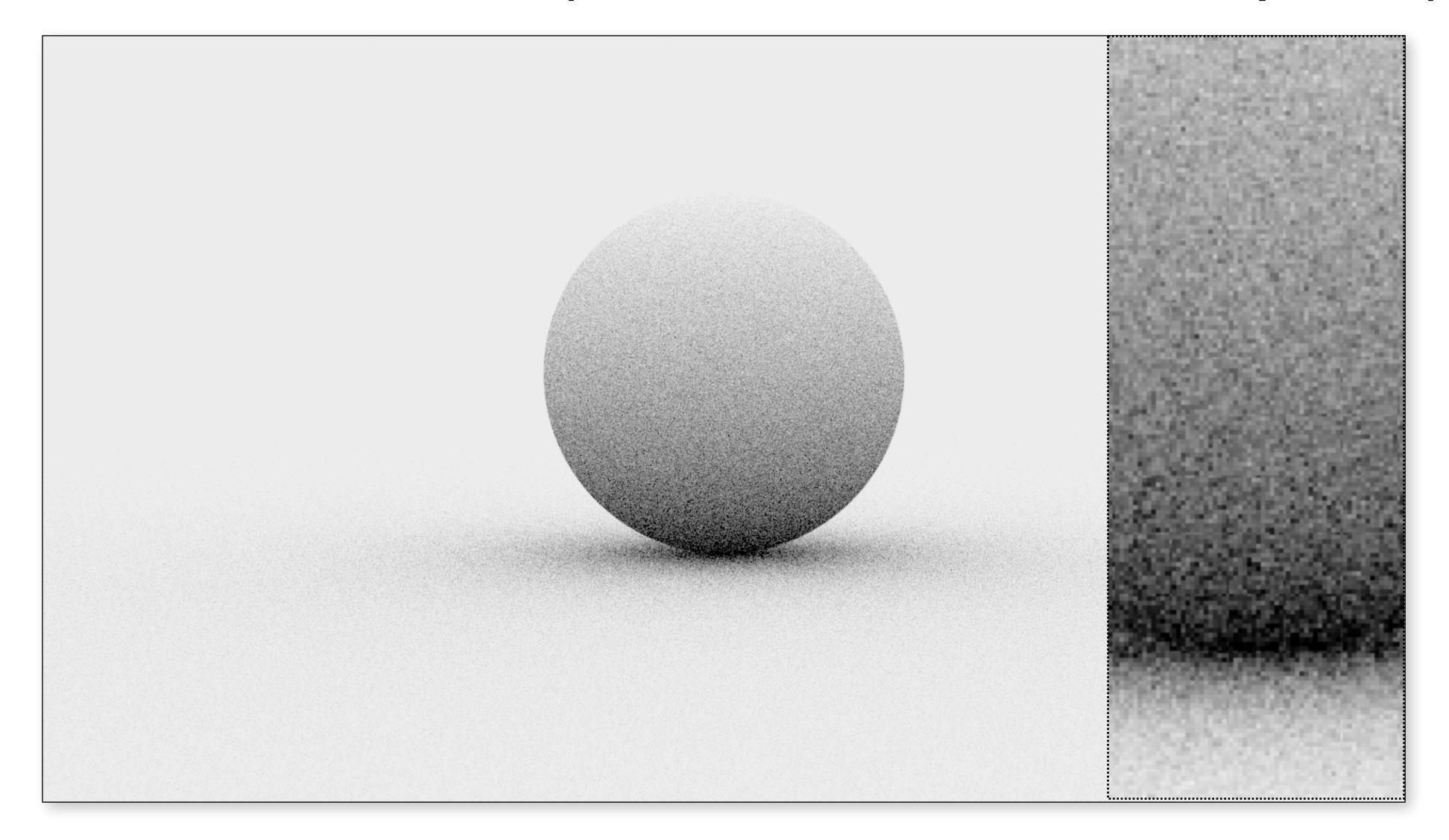




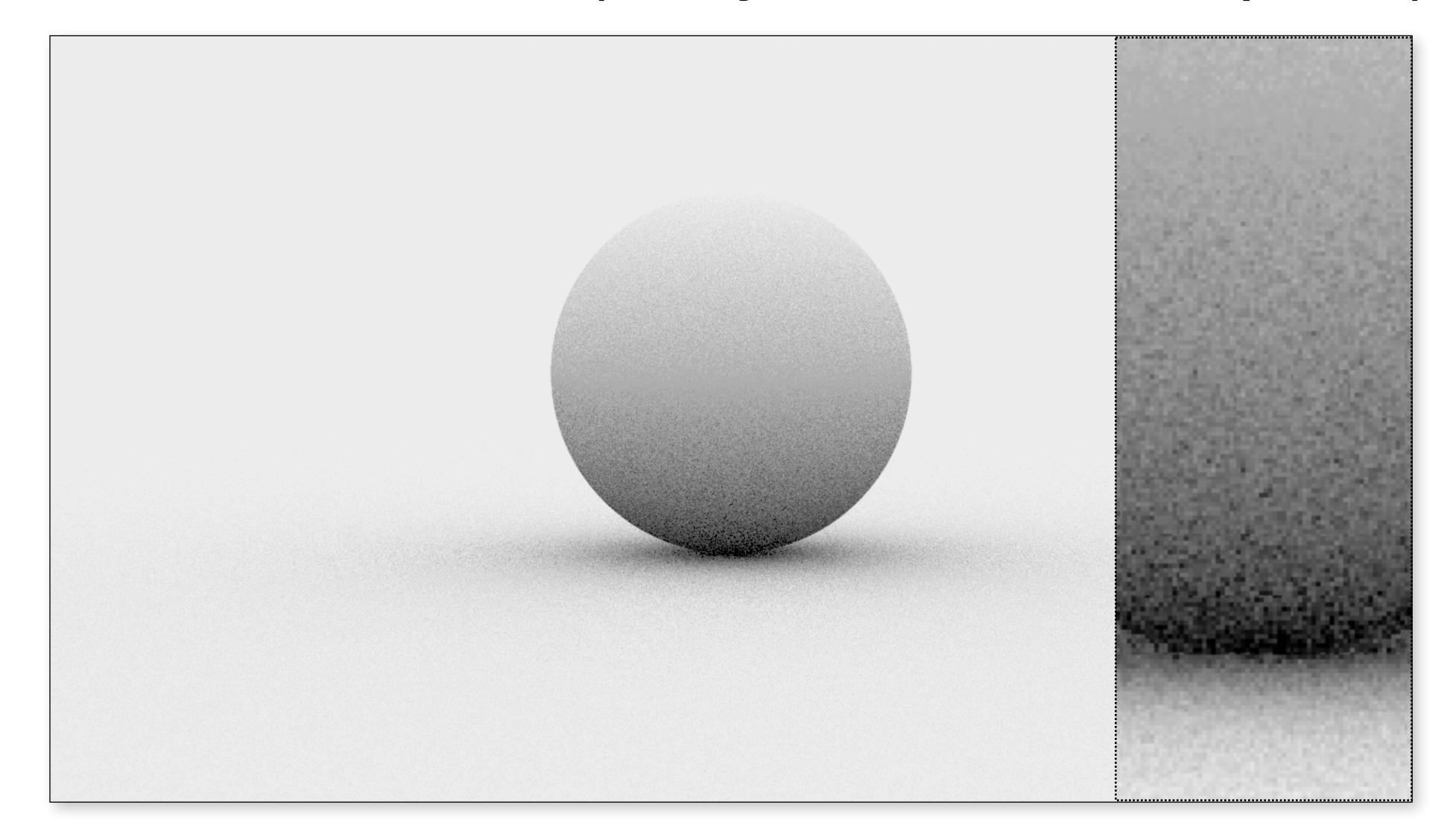
Independent Random Sampling



Monte Carlo (16 random samples)



Monte Carlo (16 jittered samples)



Stratifying in Higher Dimensions

Stratification requires $O(N^d)$ samples

- e.g. pixel (2D) + lens (2D) + time (1D) = 5D

Stratifying in Higher Dimensions

Stratification requires $O(N^d)$ samples

- e.g. pixel (2D) + lens (2D) + time (1D) = 5D
 - splitting 2 times in $5D = 2^5 = 32$ samples
 - splitting 3 times in $5D = 3^5 = 243$ samples!

Stratifying in Higher Dimensions

Stratification requires $O(N^d)$ samples

- e.g. pixel (2D) + lens (2D) + time (1D) = 5D
 - splitting 2 times in $5D = 2^5 = 32$ samples
 - splitting 3 times in $5D = 3^5 = 243$ samples!

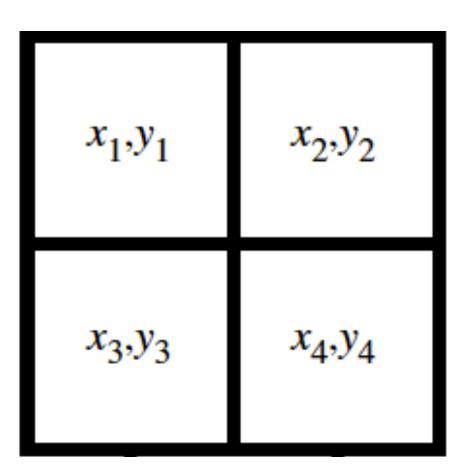
Inconvenient for large d

- cannot select sample count with fine granularity

Compute stratified samples in sub-dimensions

Compute stratified samples in sub-dimensions

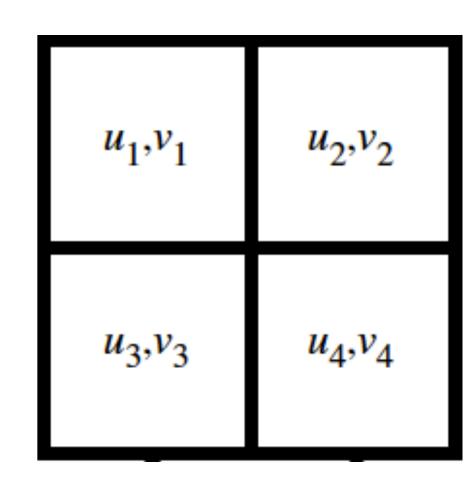
- 2D jittered (x,y) for pixel



Compute stratified samples in sub-dimensions

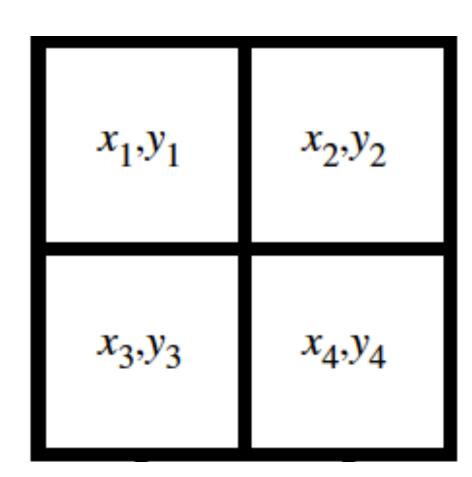
- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens

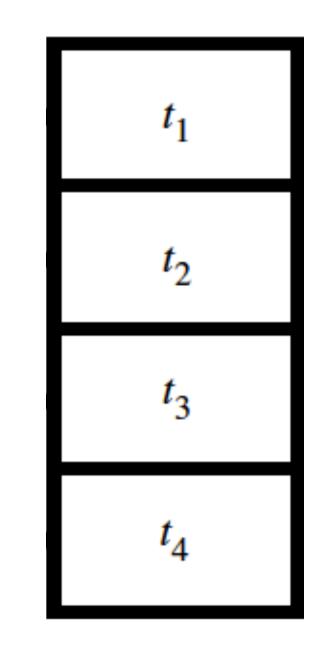
x_1,y_1	<i>x</i> ₂ , <i>y</i> ₂
x_3, y_3	<i>x</i> ₄ , <i>y</i> ₄

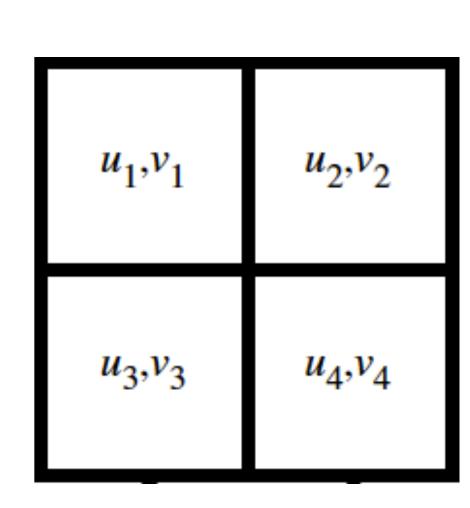


Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens
- 1D jittered (t) for time







hreys 2 TTT 1

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens
- 1D jittered (t) for time
- combine dimensions in random order



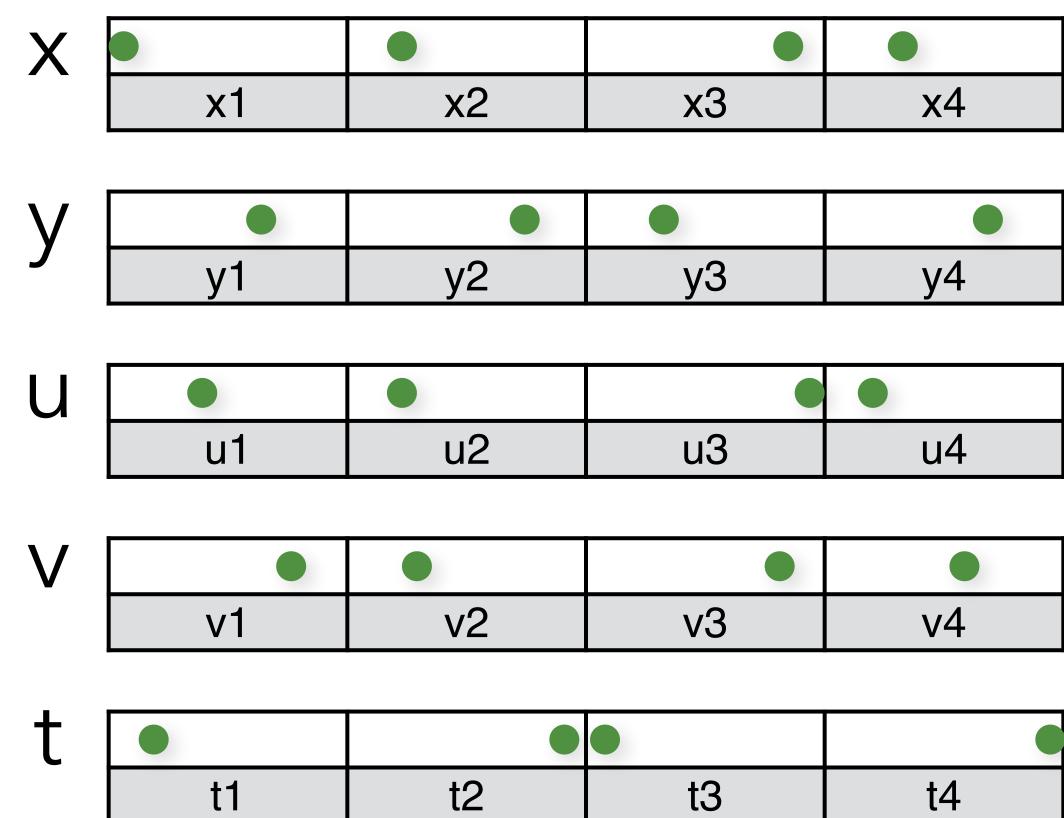
Depth of Field (4D)

Reference Uncorrelated Jitter Random Sampling

Stratify samples in each dimension separately

Stratify samples in each dimension separately

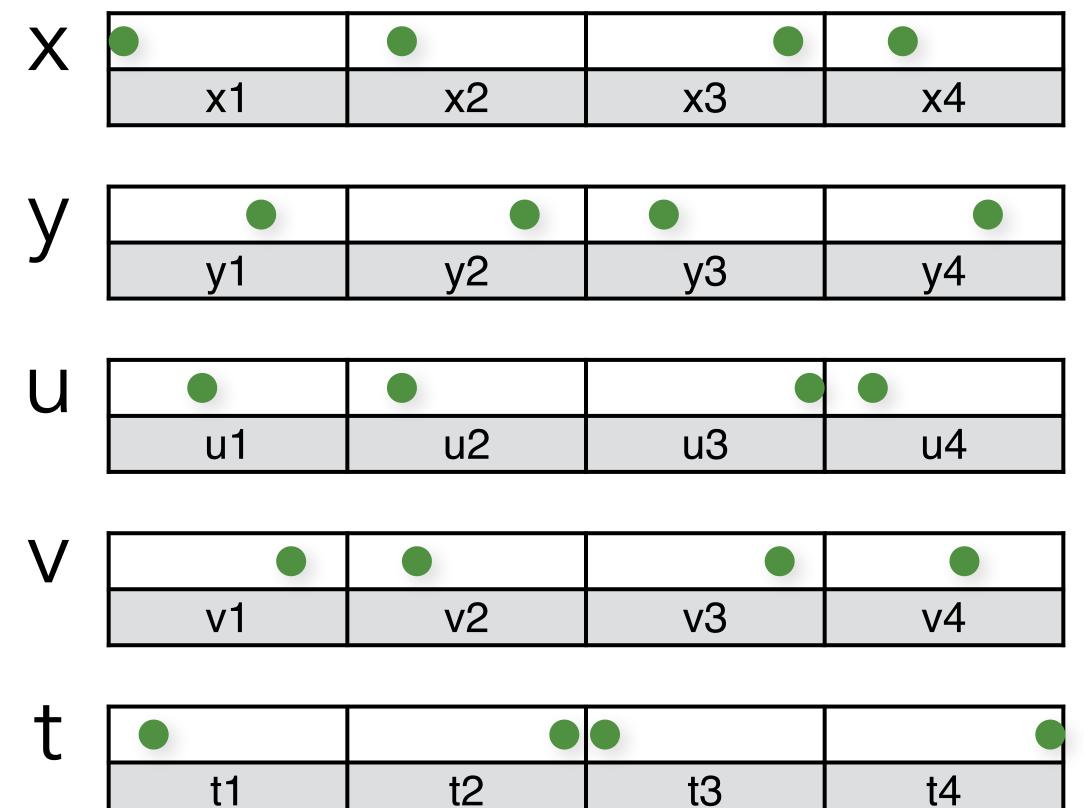
- for 5D: 5 separate 1D jittered point sets



23

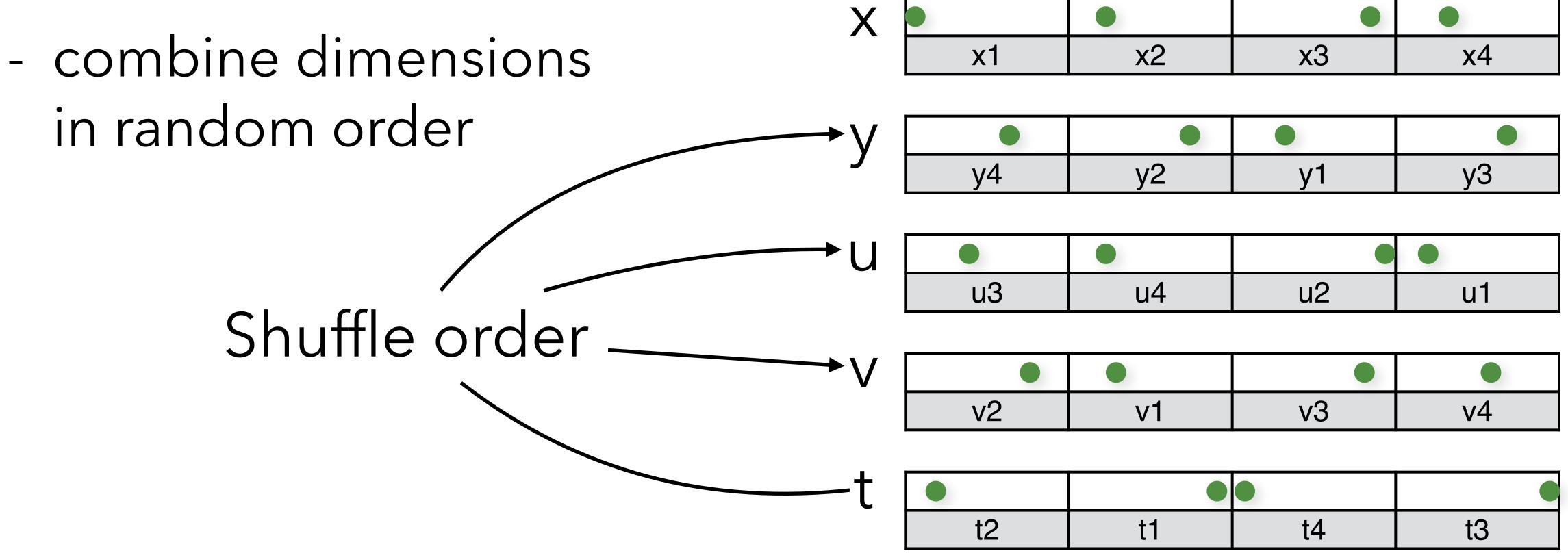
Stratify samples in each dimension separately

- for 5D: 5 separate 1D jittered point sets
- combine dimensions in random order



Stratify samples in each dimension separately

- for 5D: 5 separate 1D jittered point sets

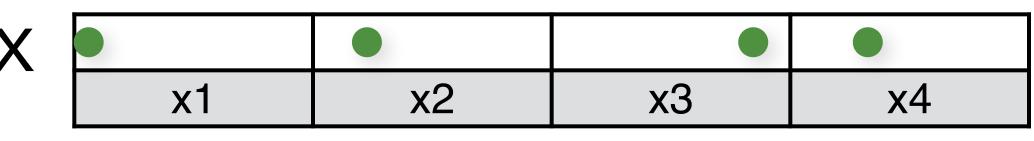


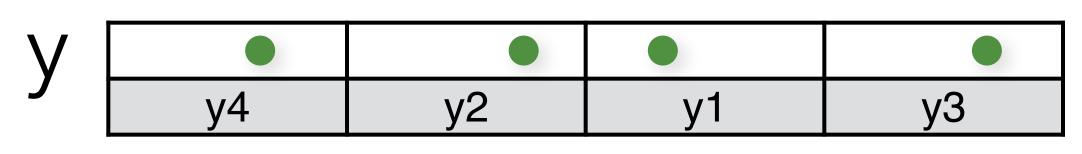
24

N-Rooks = 2D Latin Hypercube [Shirley 91]

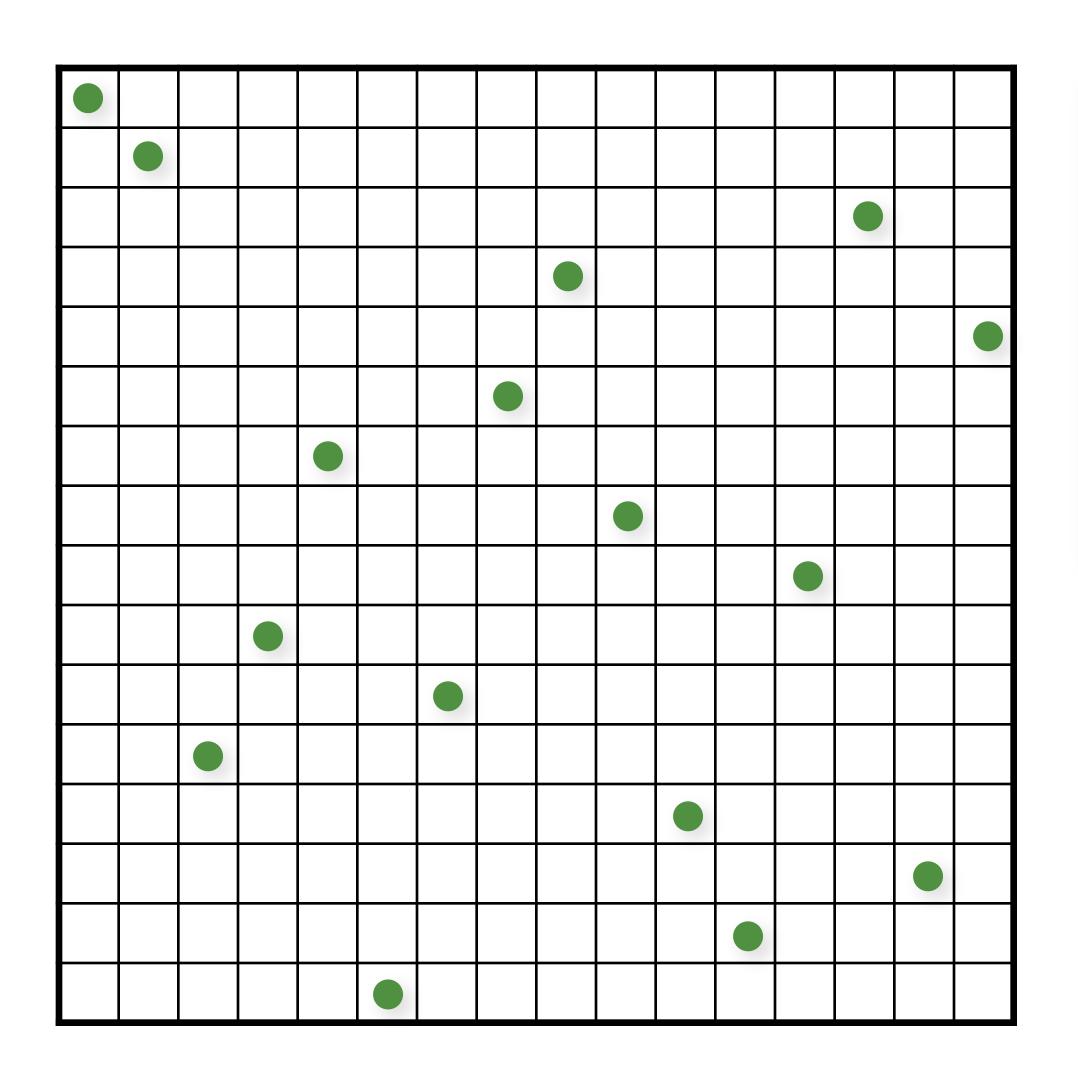
Stratify samples in each dimension separately

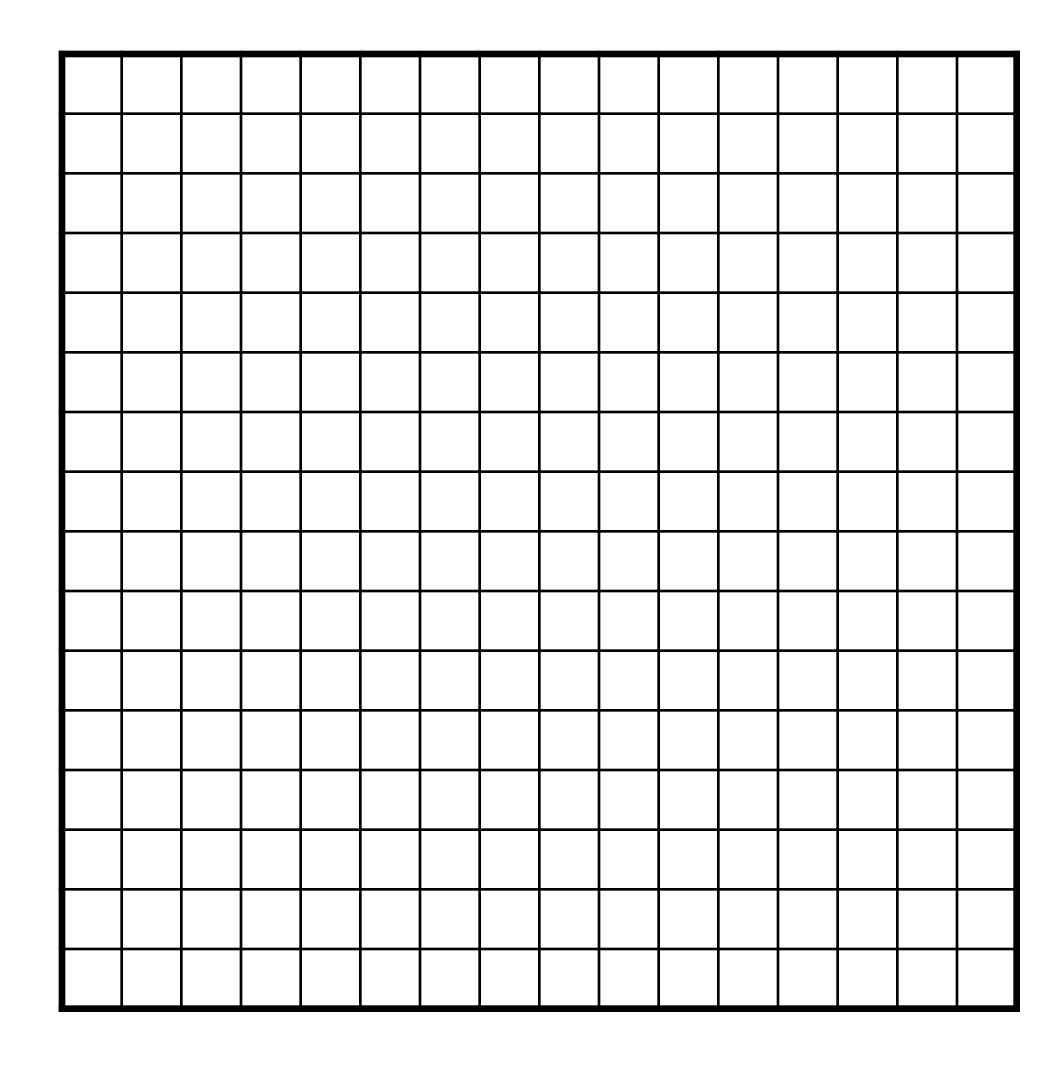
- for 2D: 2 separate 1D jittered point sets
- combine dimensions in random order





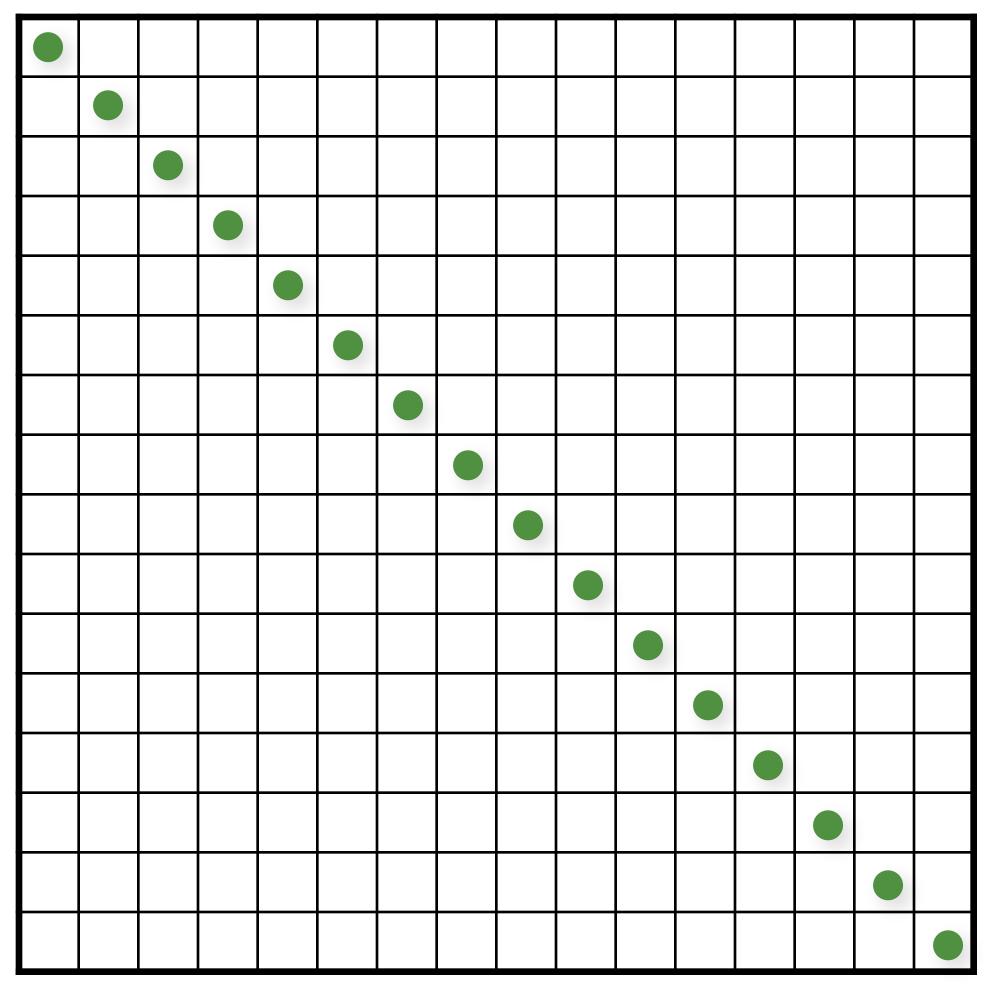
[Shirley 91]






```
// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
  for (uint i = 0; i < numS; i++)
    samples(d,i) = (i + randf())/numS;
```

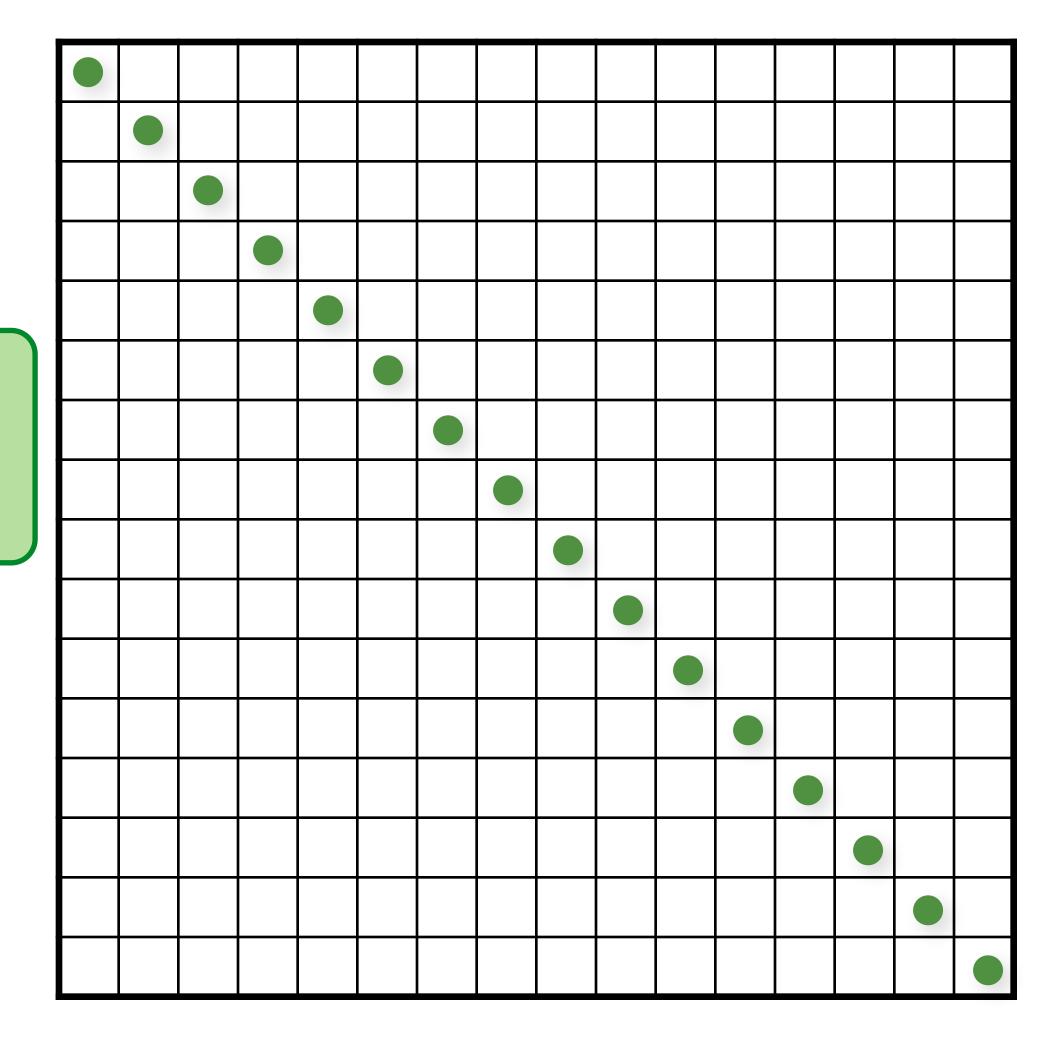
```
// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)
    shuffle(samples(d,:));</pre>
```

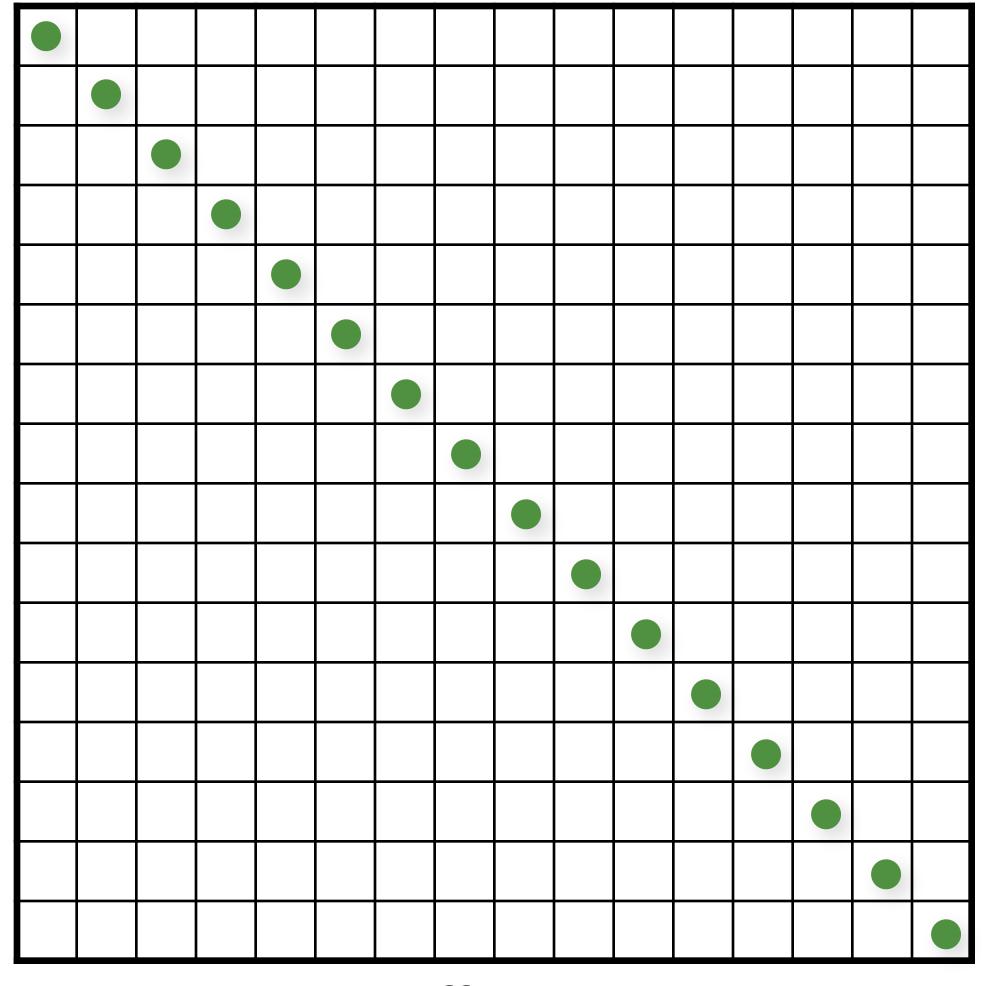


Initialize

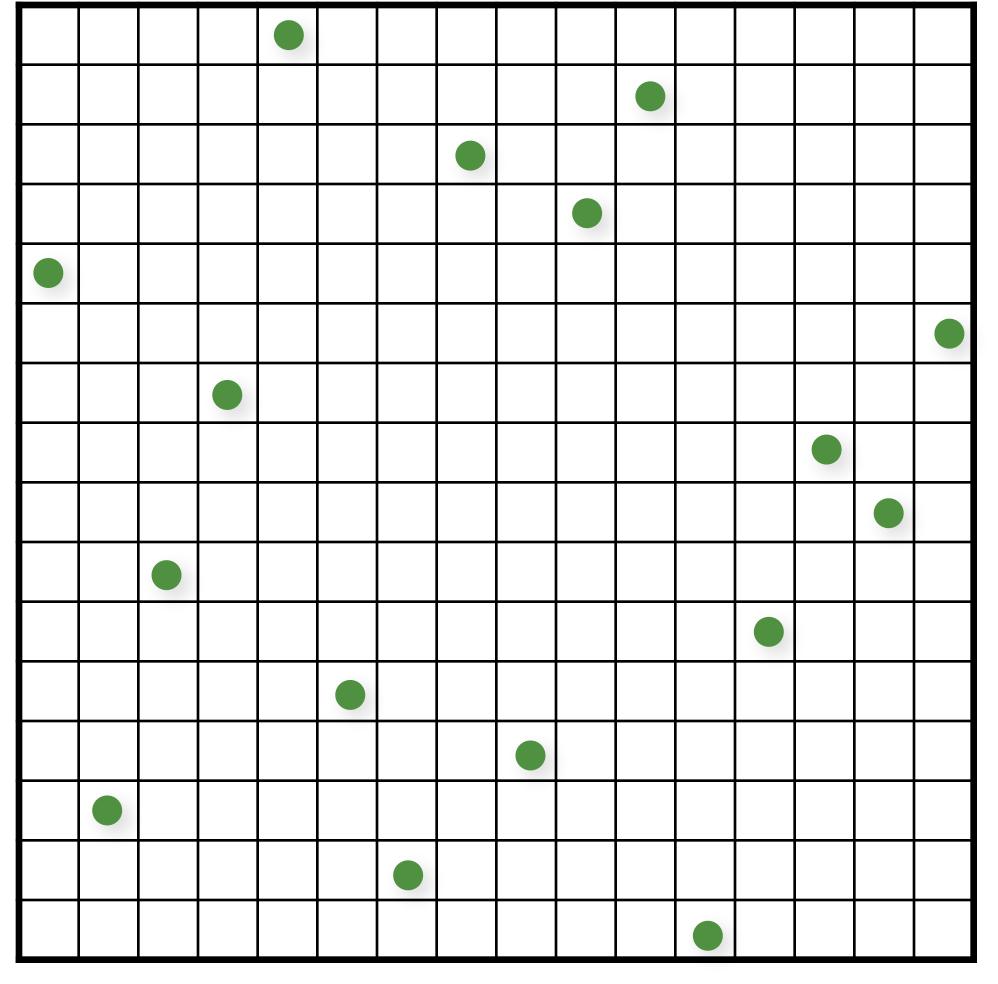

```
// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
    for (uint i = 0; i < numS; i++)
        samples(d,i) = (i + randf())/numS;
```

```
// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)
    shuffle(samples(d,:));</pre>
```

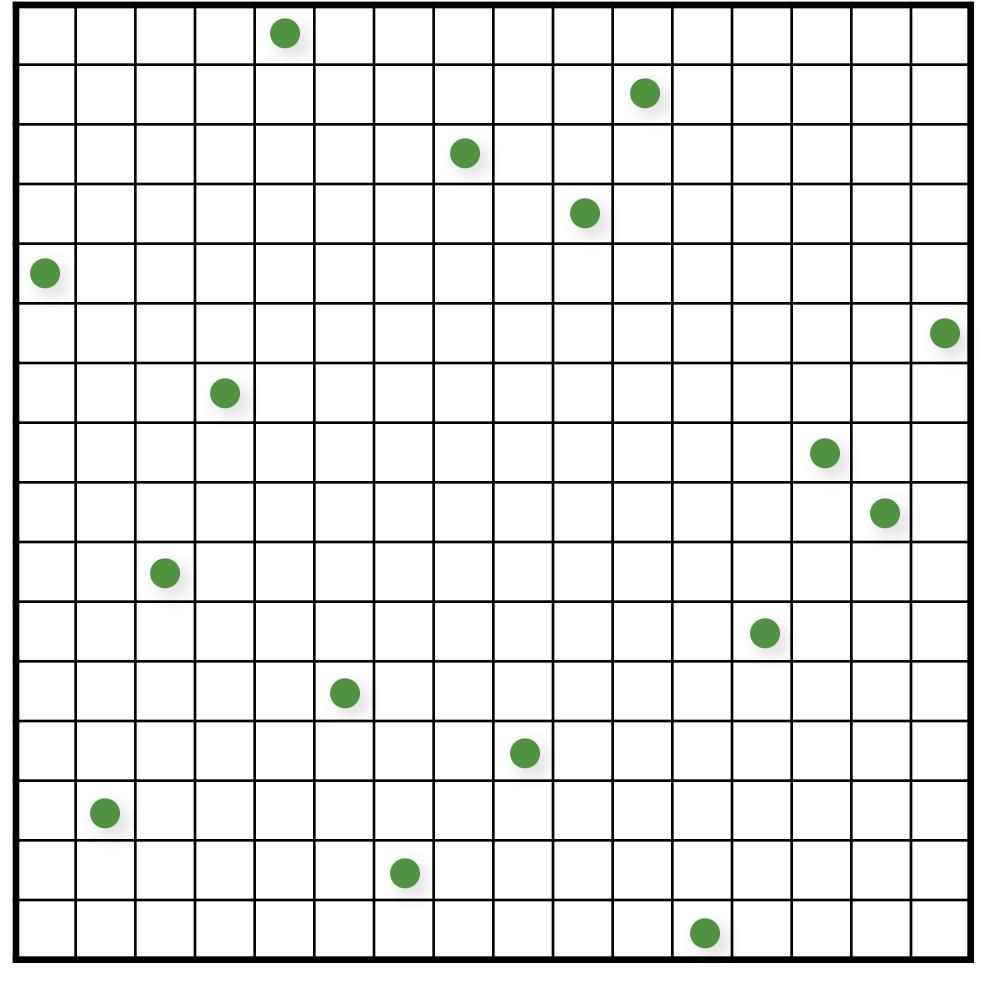




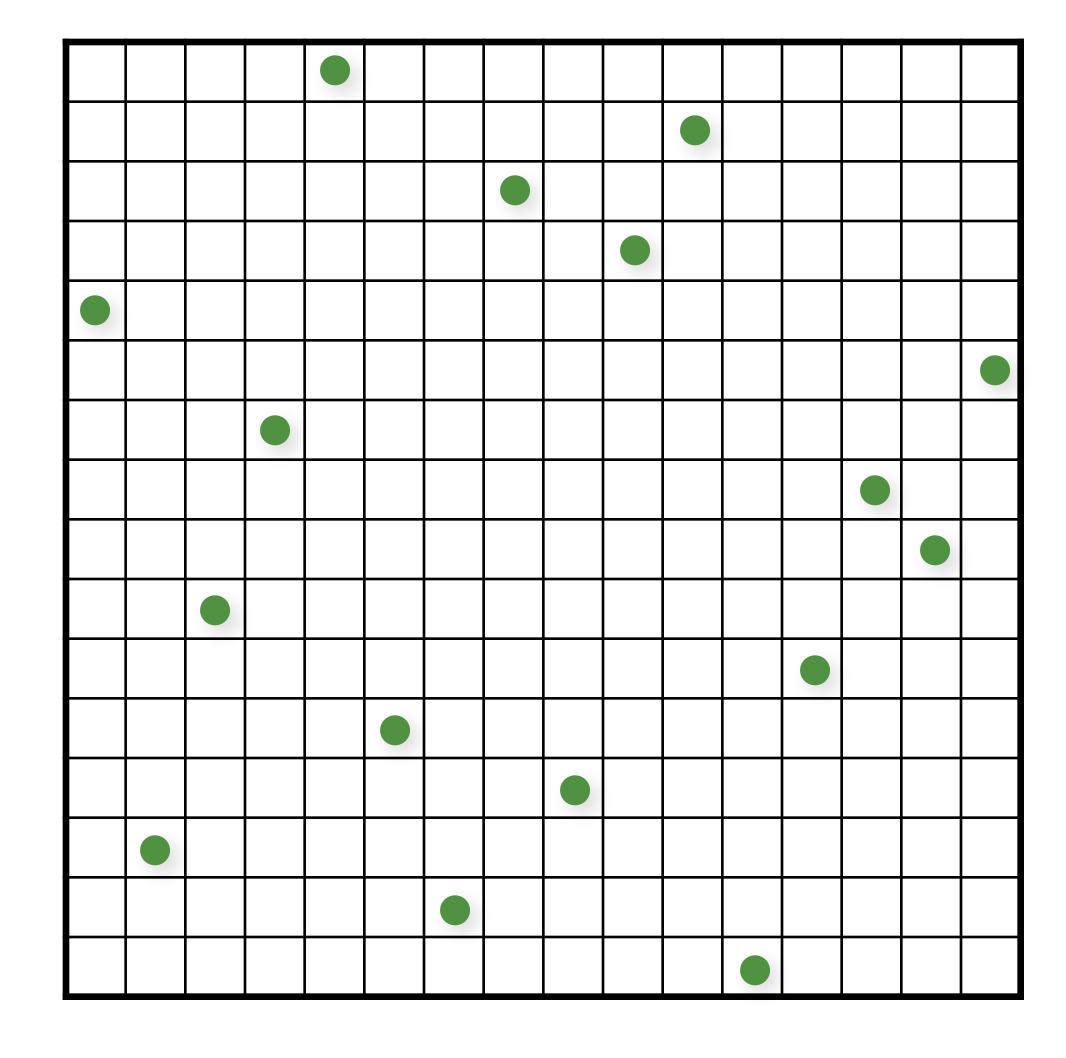
Shuffle rows

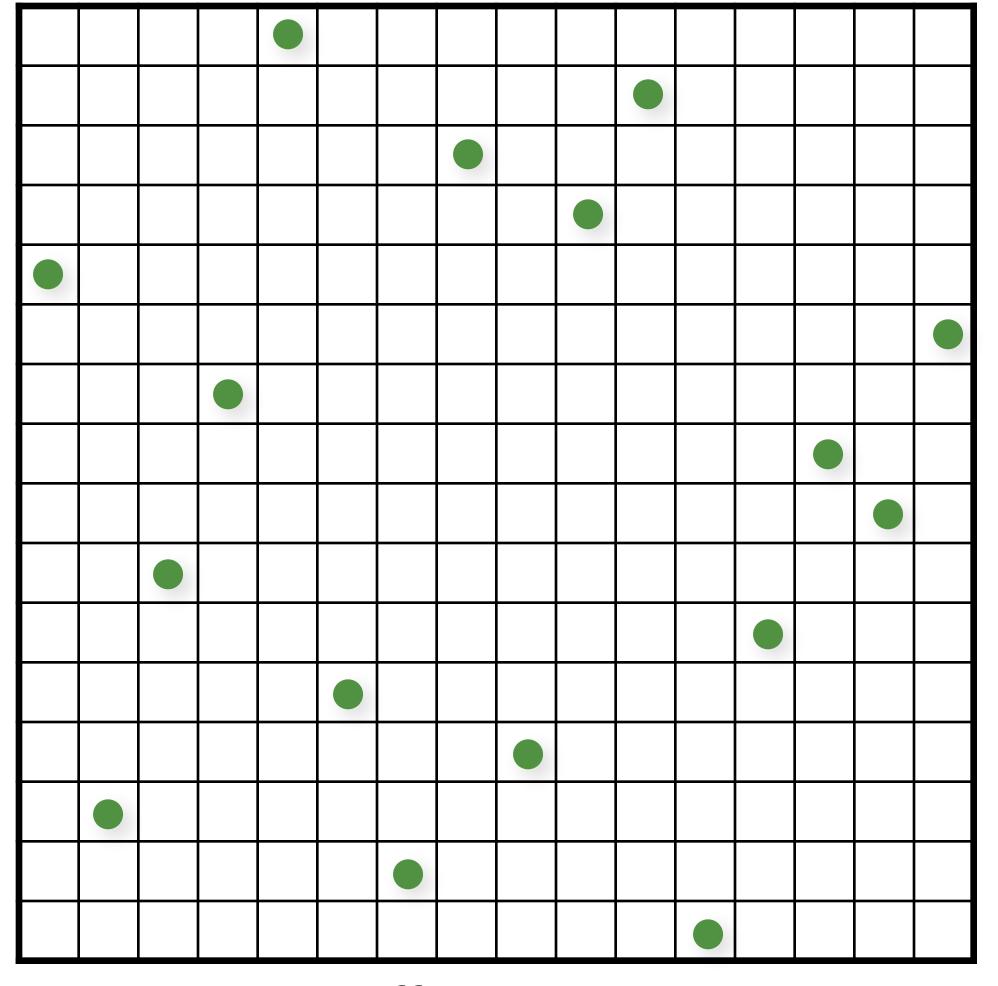


Shuffle rows

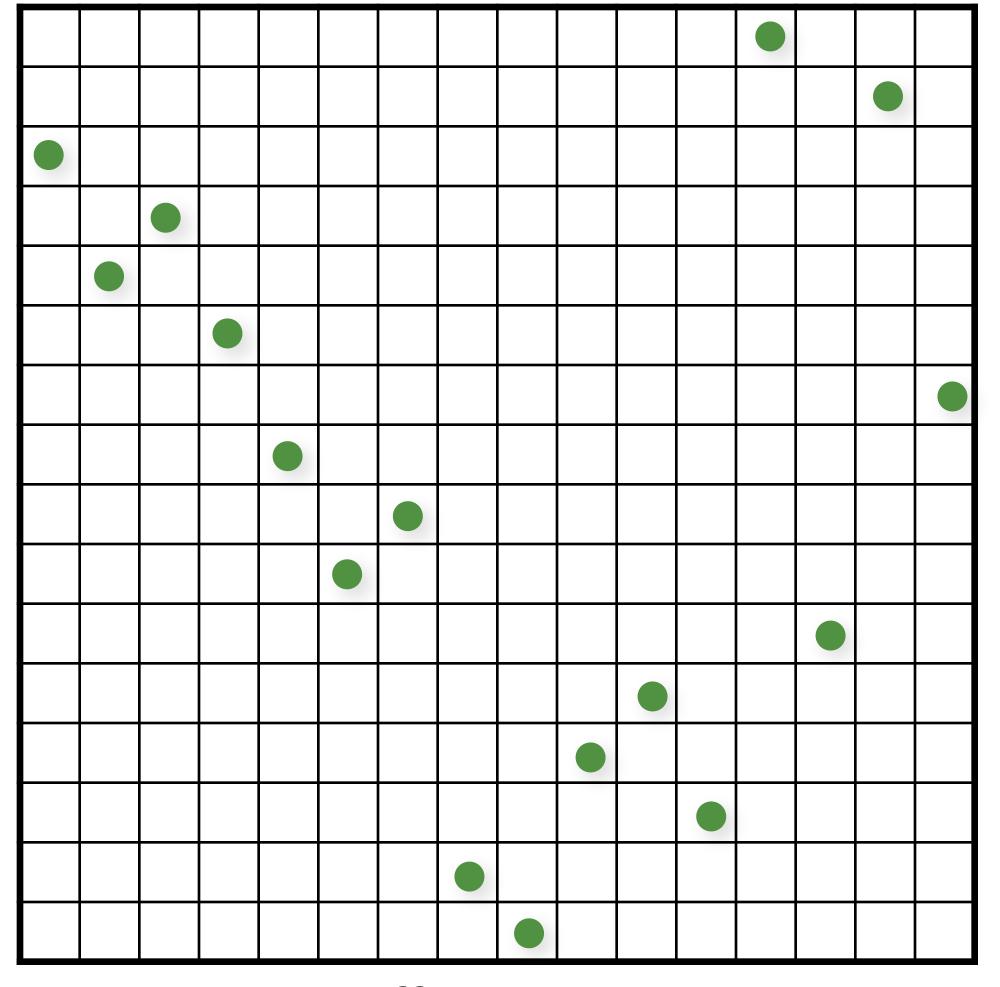


Shuffle rows

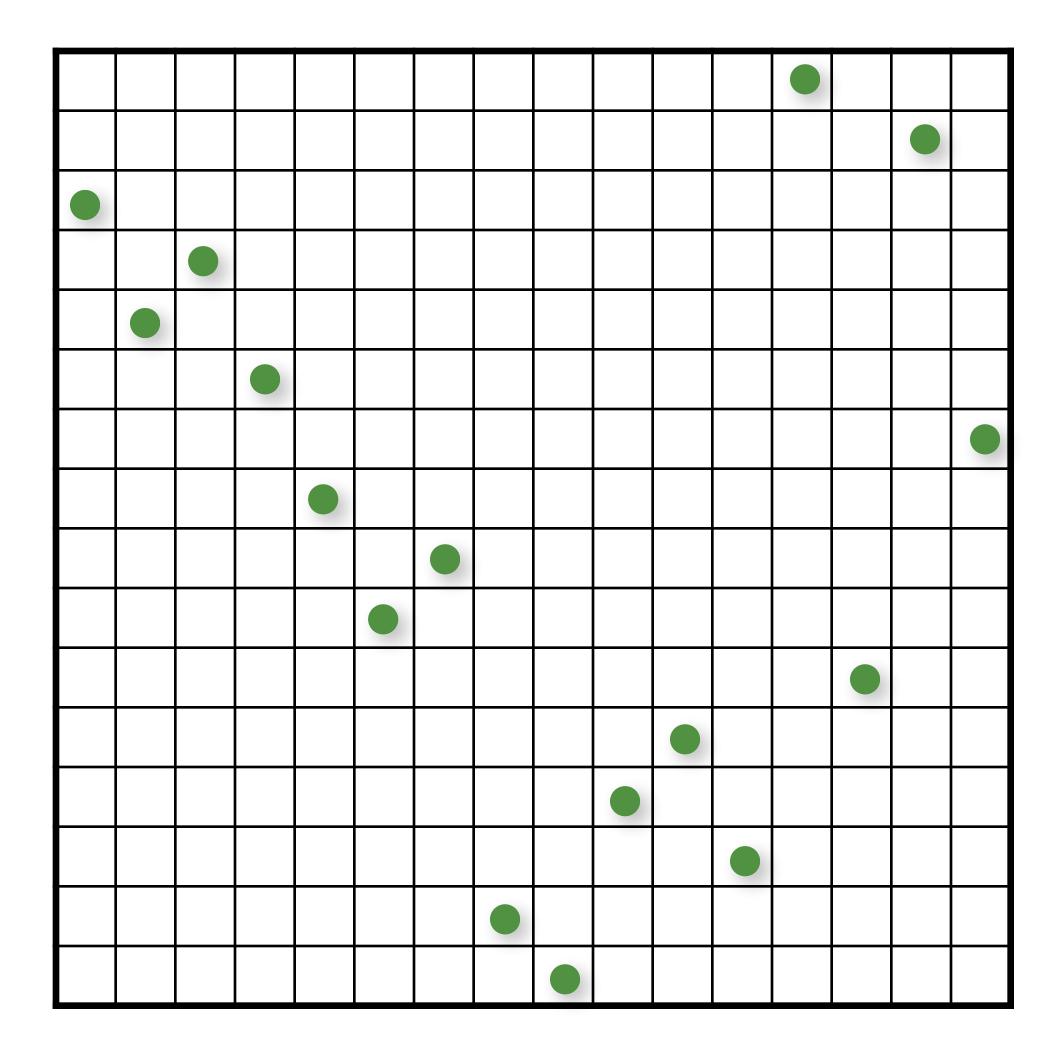


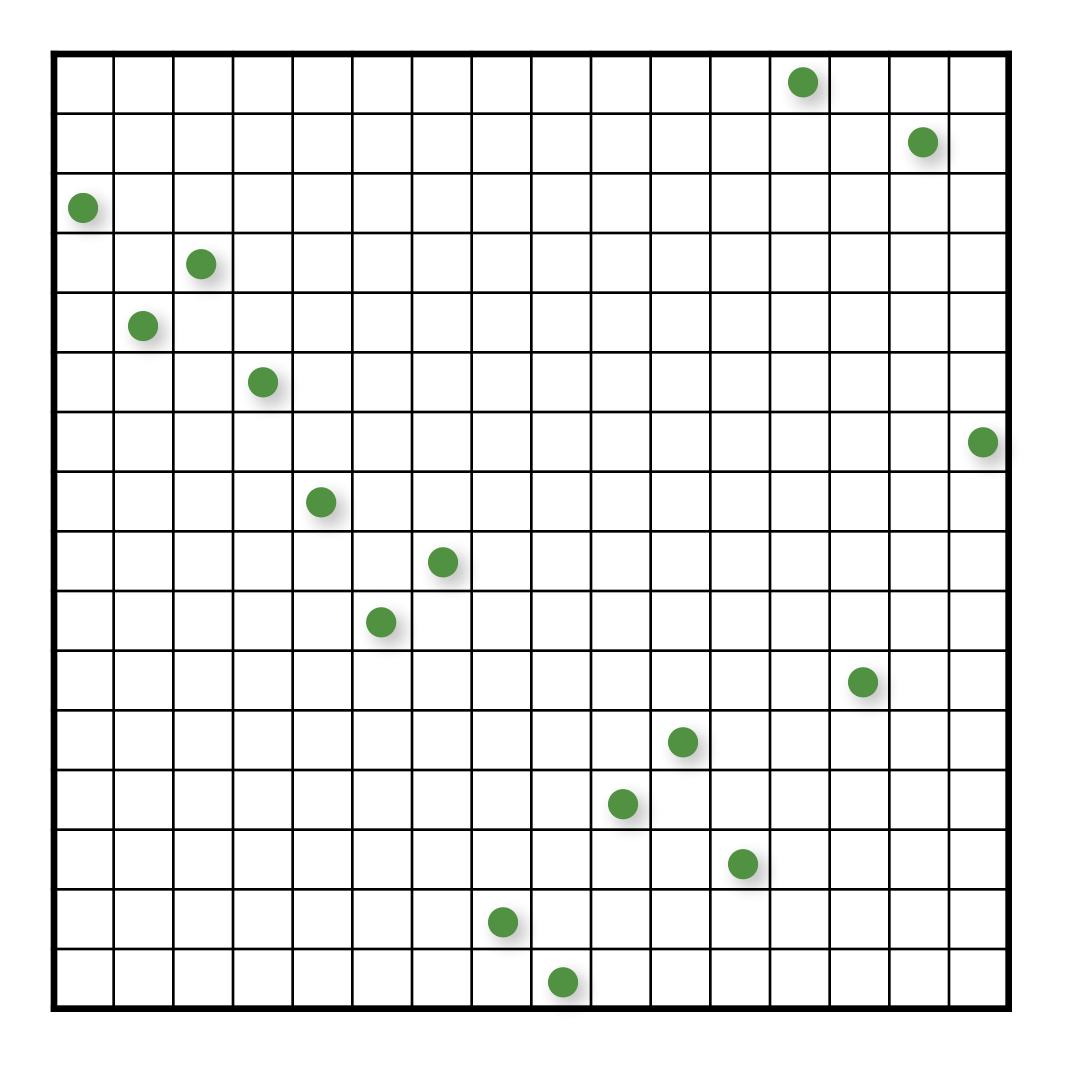


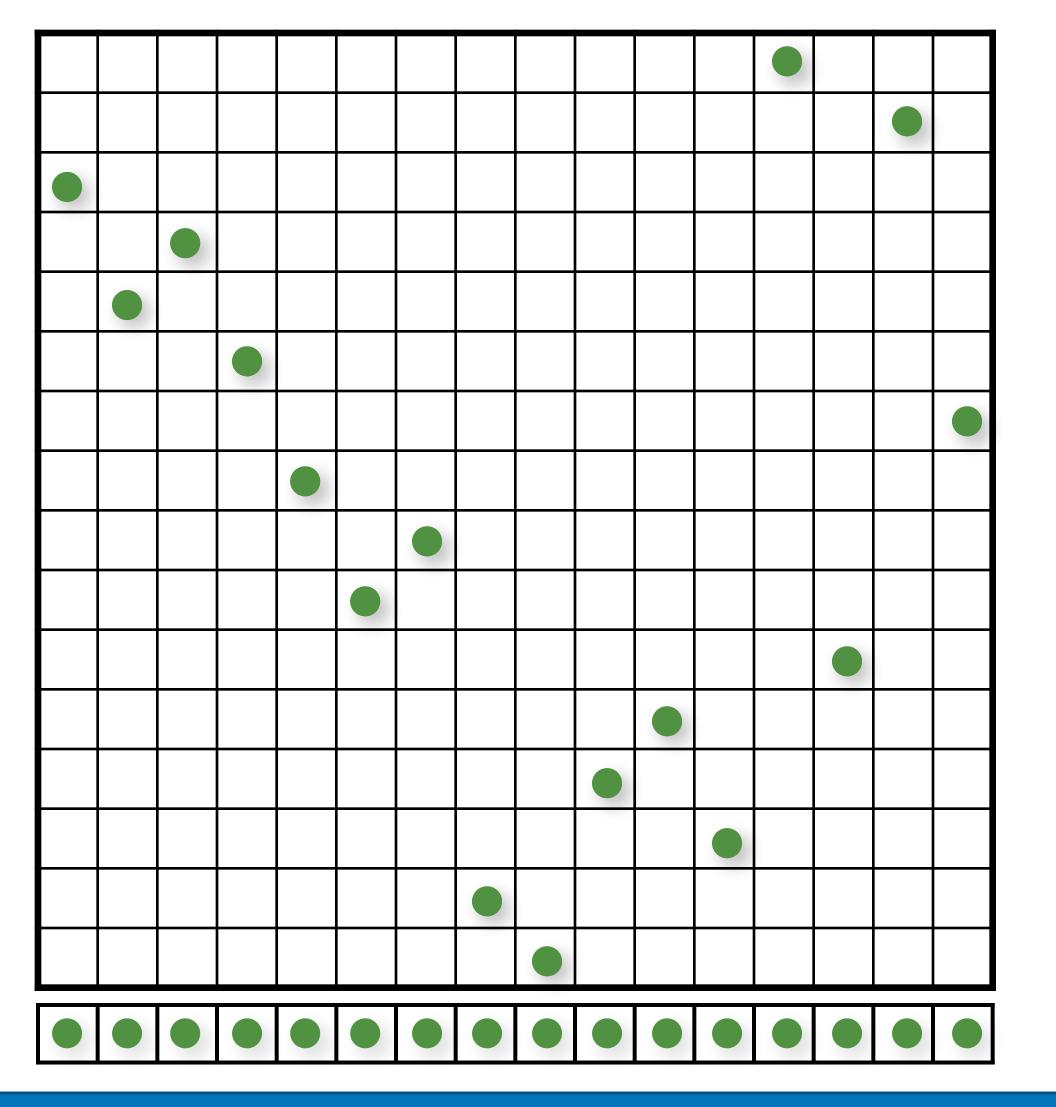
Shuffle columns

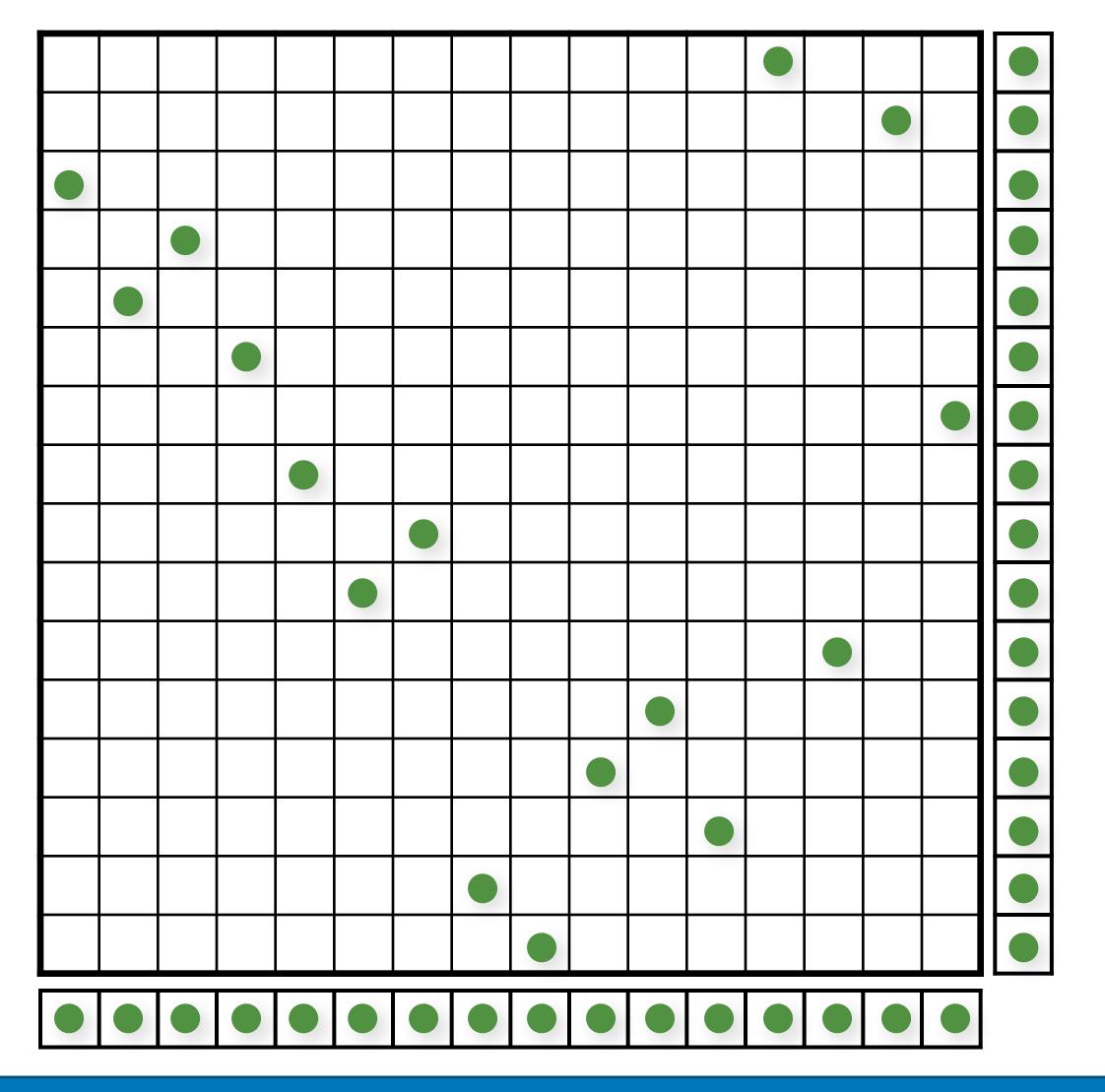


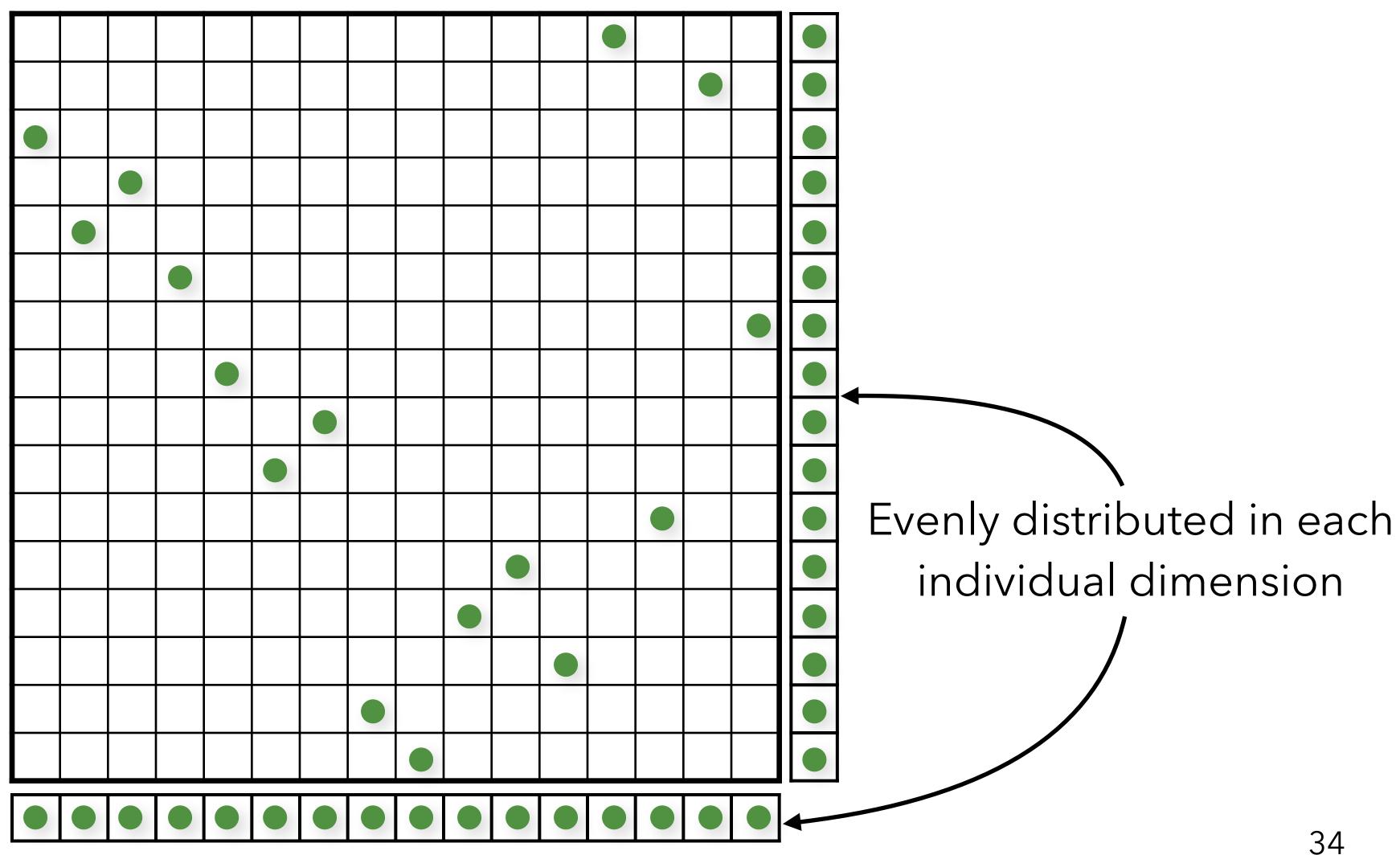
Shuffle columns

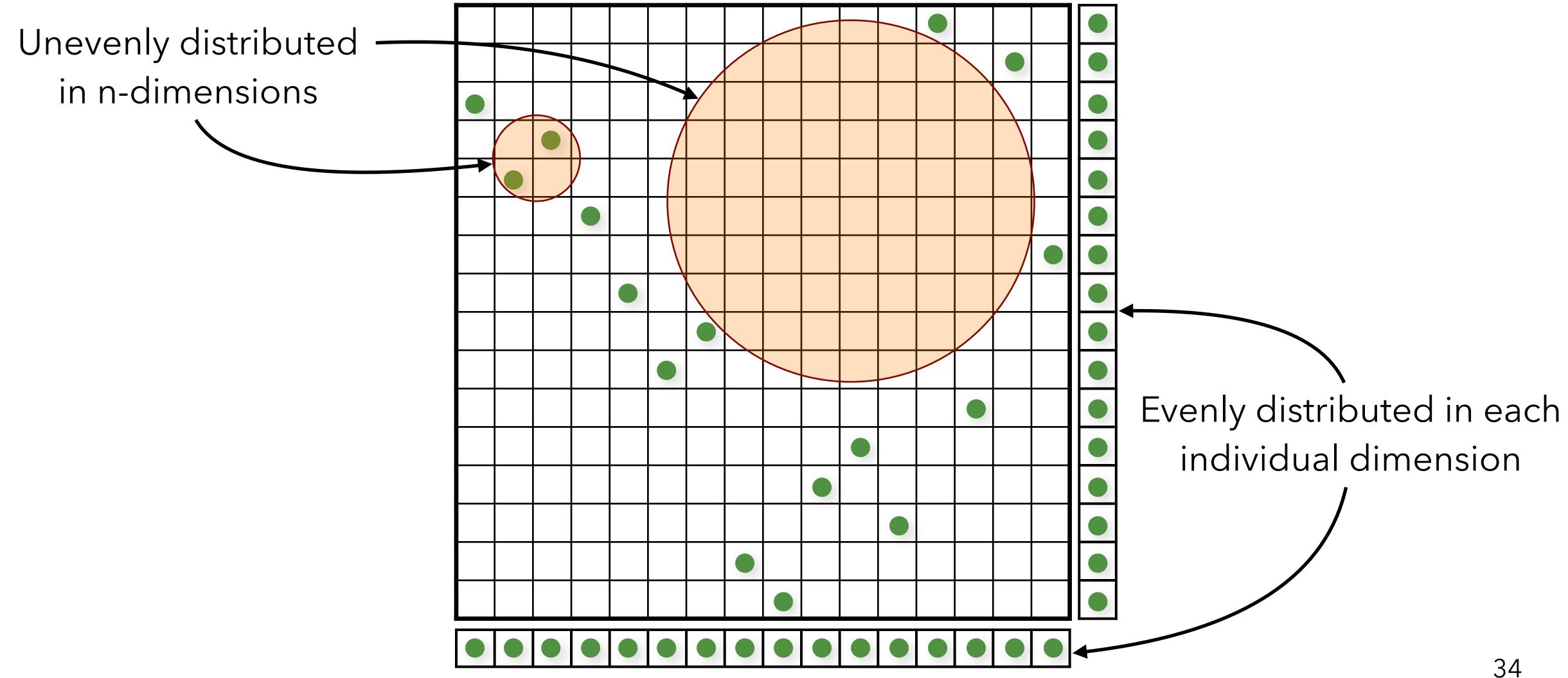


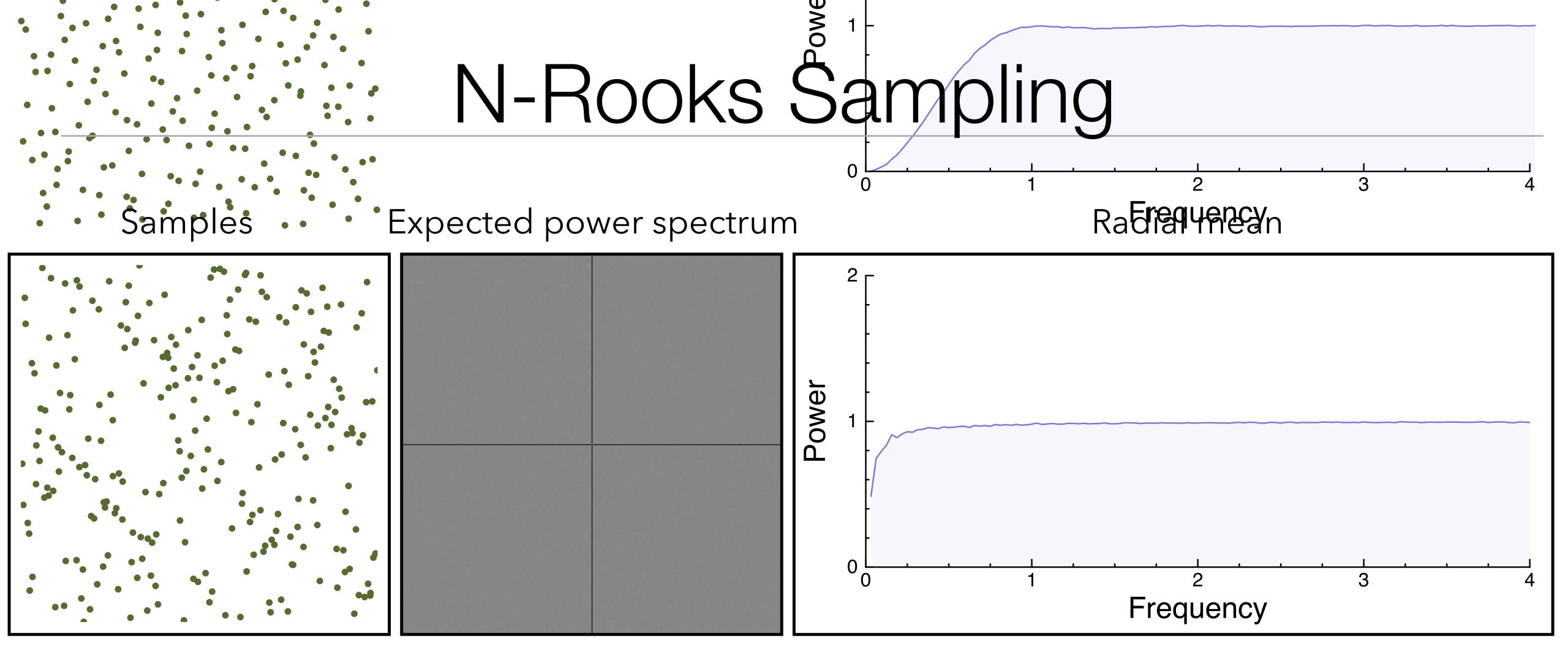






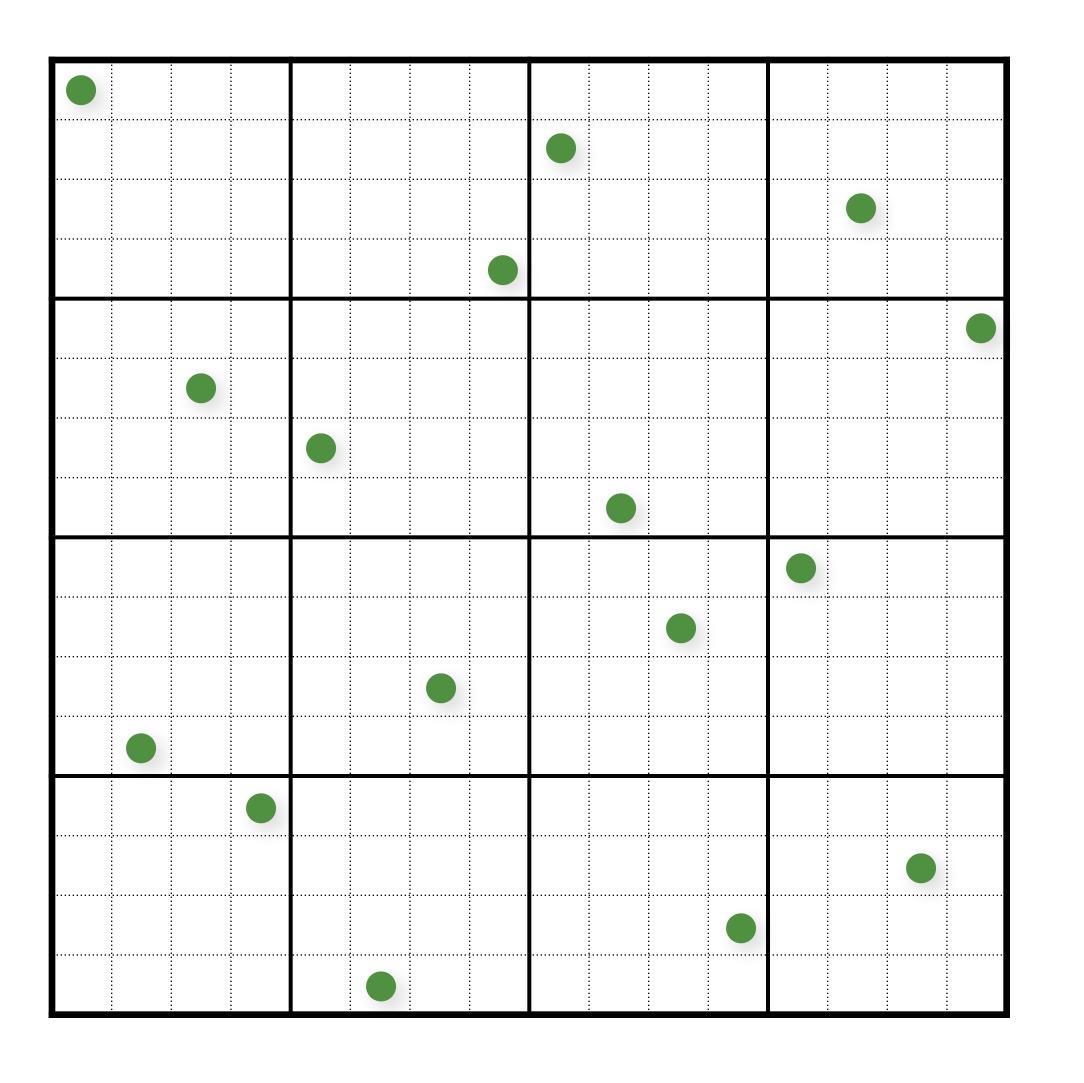




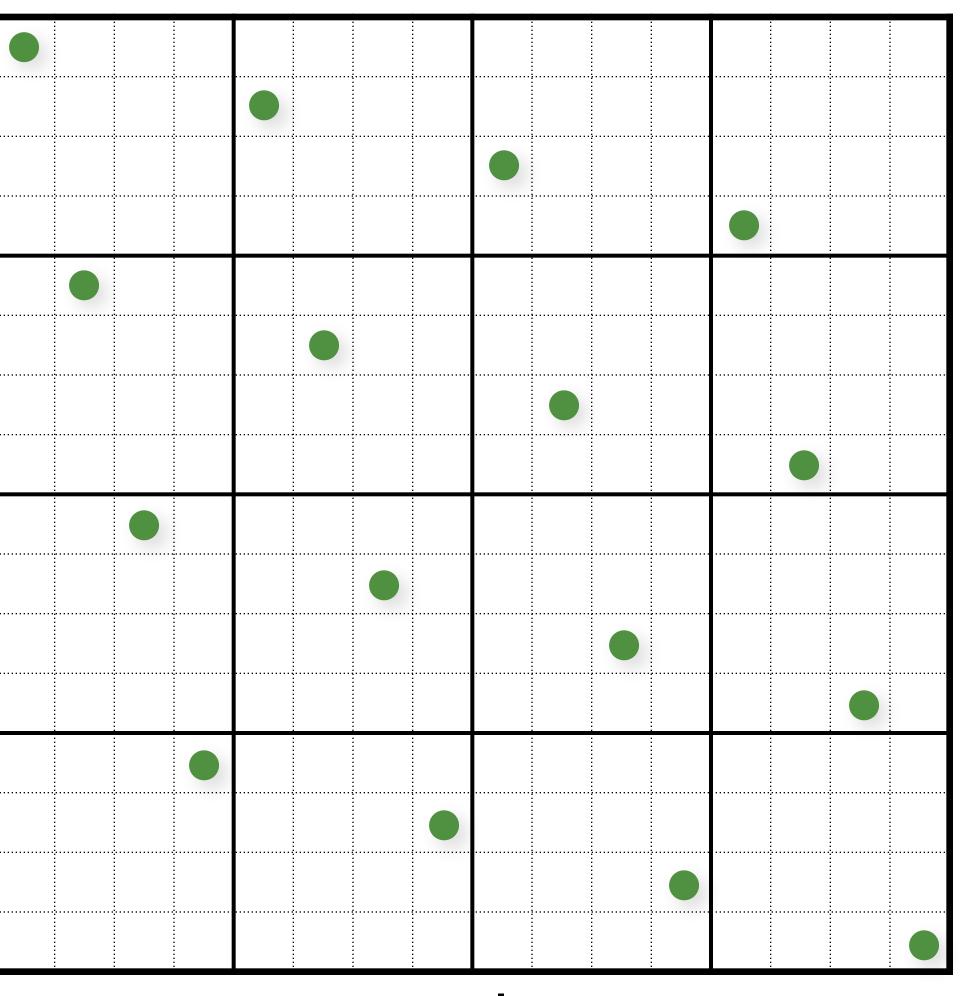


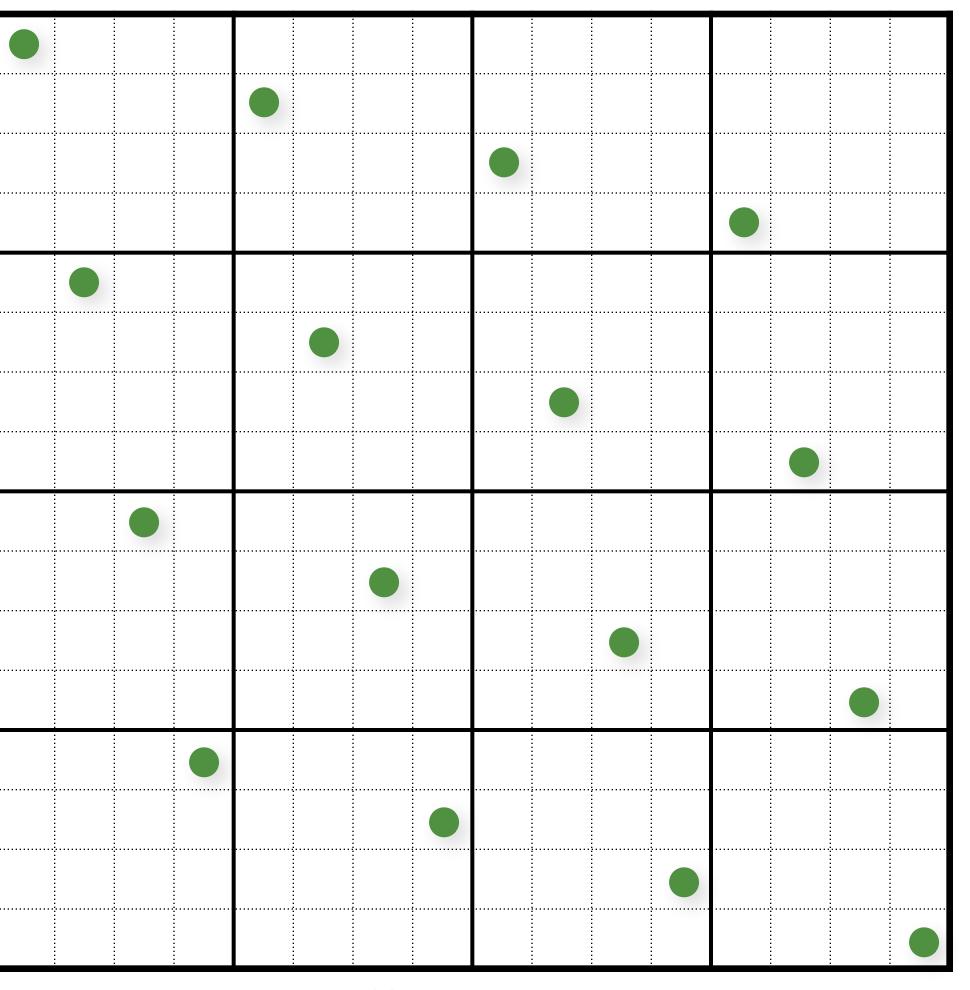
Kenneth Chiu, Peter Shirley, and Changyaw Wang. "Multi-jittered sampling." In *Graphics Gems IV*, pp. 370-374. Academic Press, May 1994.

- combine N-Rooks and Jittered stratification constraints

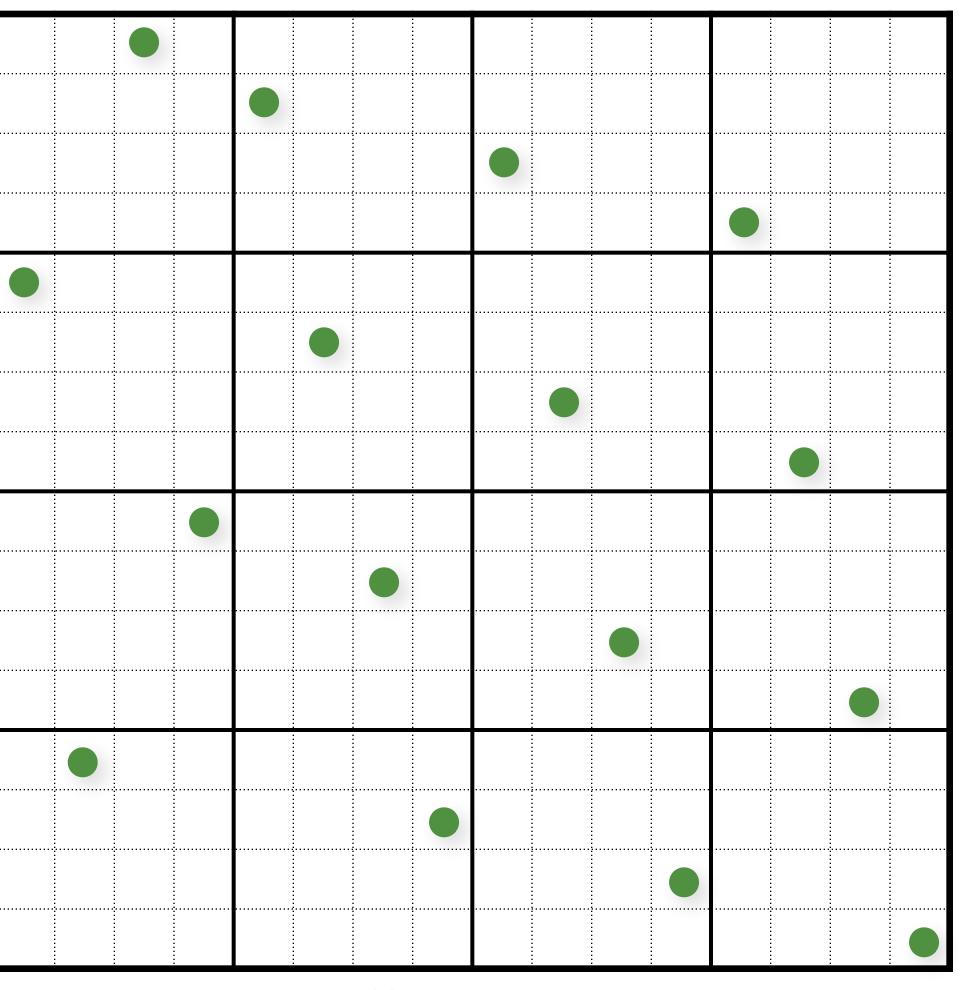



```
// initialize
float cellSize = 1.0 / (resX*resY);
for (uint i = 0; i < resX; i++)
      for (uint j = 0; j < resY; j++)
             samples(i,j).x = i/resX + (j+randf()) / (resX*resY);
             samples(i,j).y = j/resY + (i+randf()) / (resX*resY);
// shuffle x coordinates within each column of cells
for (uint i = 0; i < resX; i++)
      for (uint j = resY-1; j >= 1; j--)
             swap(samples(i, j).x, samples(i, randi(0, j)).x);
// shuffle y coordinates within each row of cells
for (unsigned j = 0; j < resY; j++)
      for (unsigned i = resX-1; i >= 1; i--)
             swap(samples(i, j).y, samples(randi(0, i), j).y);
```

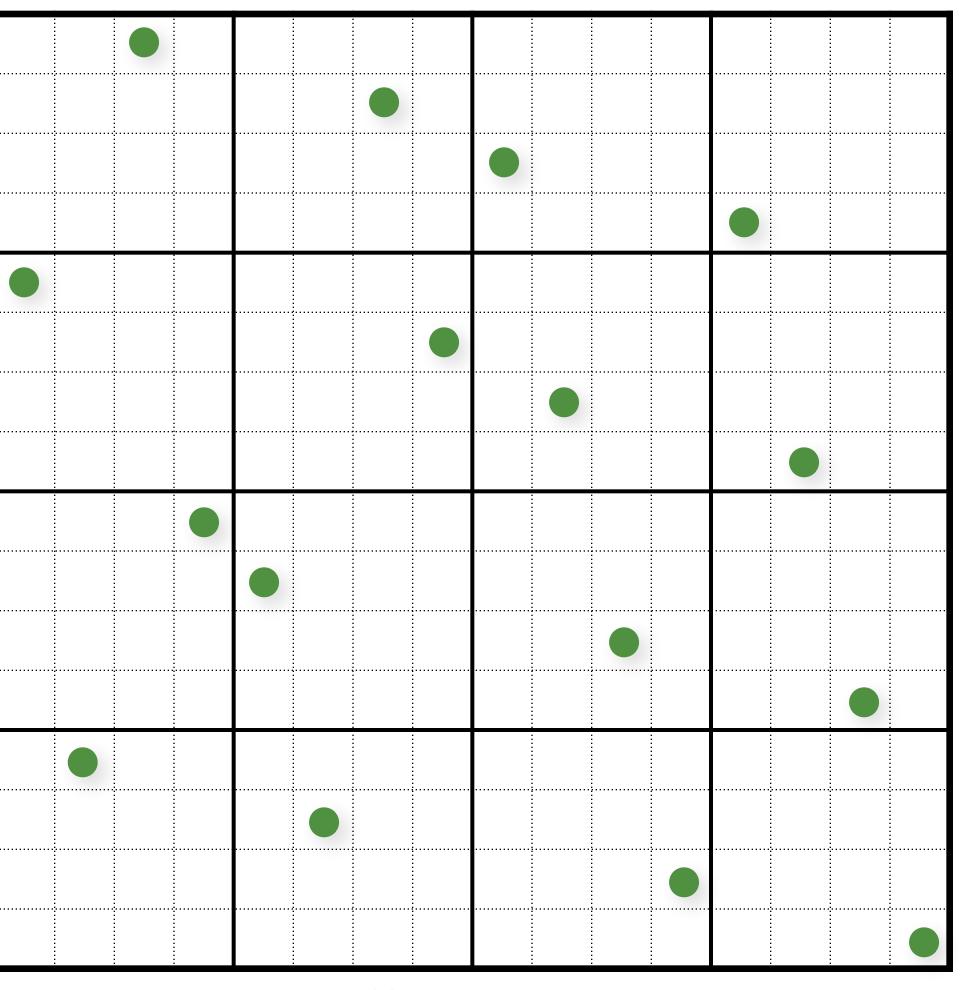





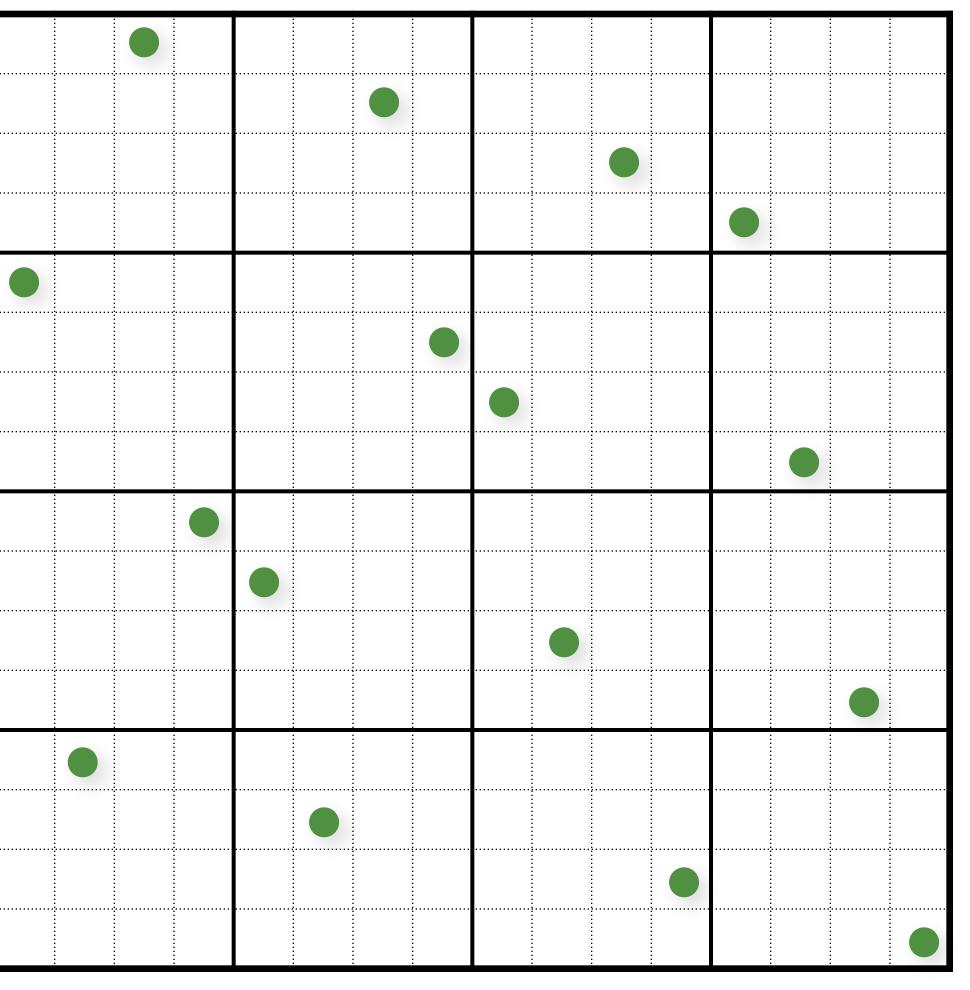
Shuffle x-coords



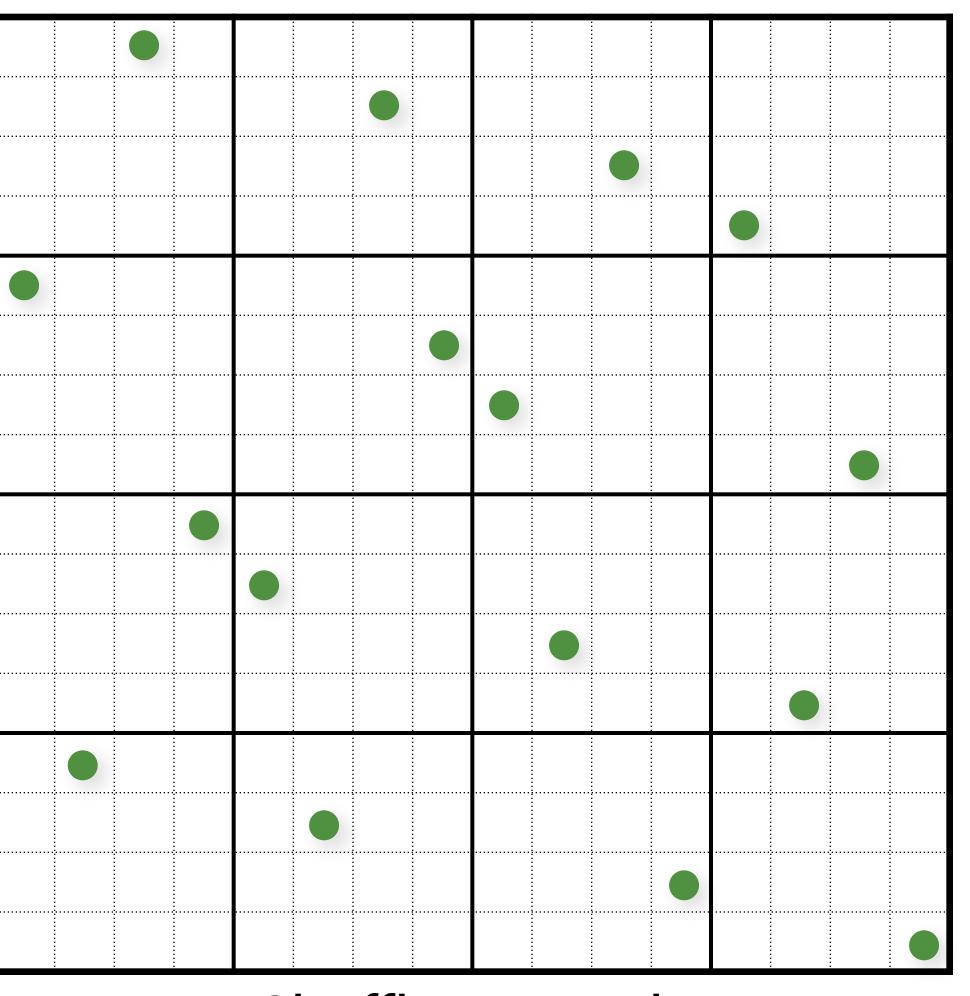
Shuffle x-coords



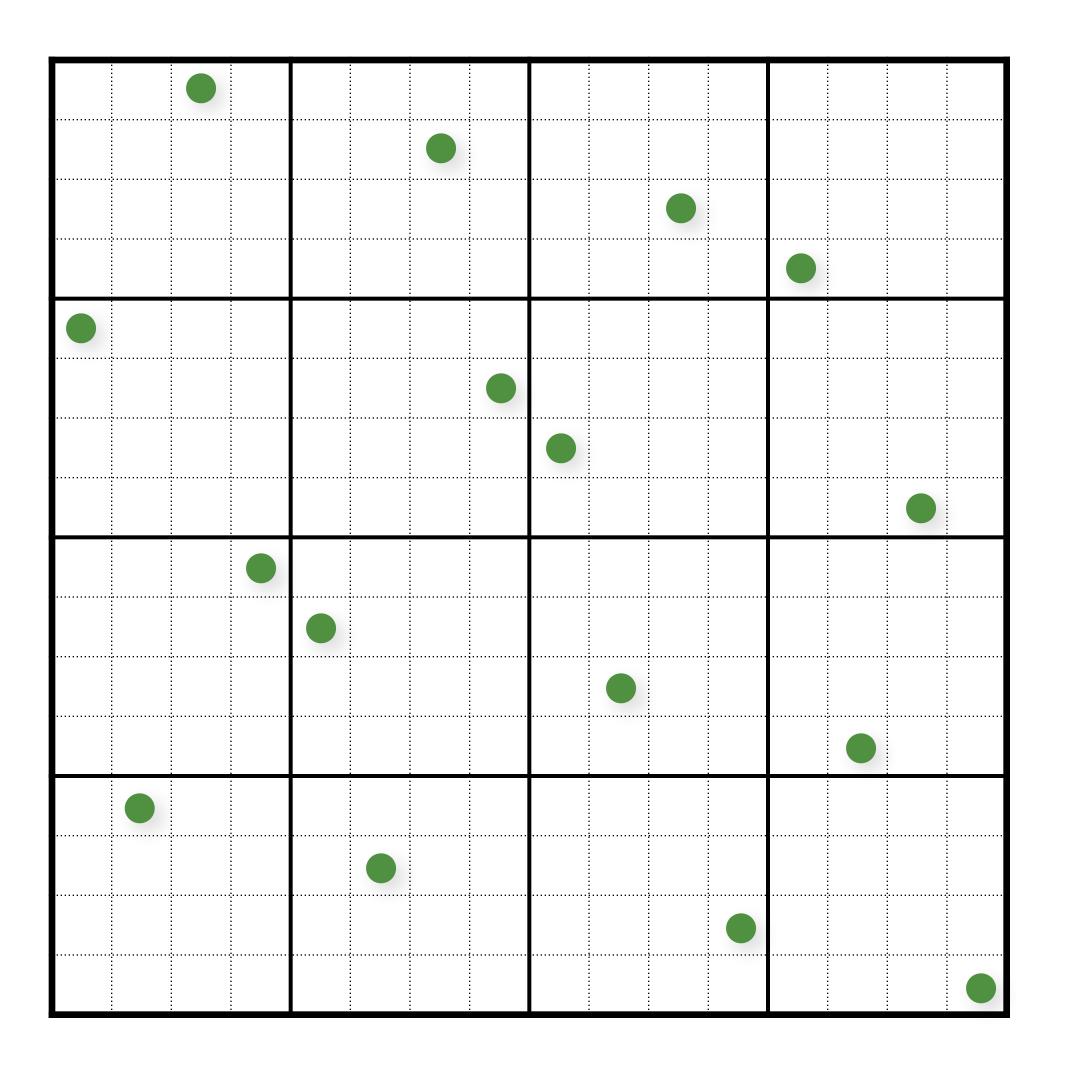
Shuffle x-coords



Shuffle x-coords

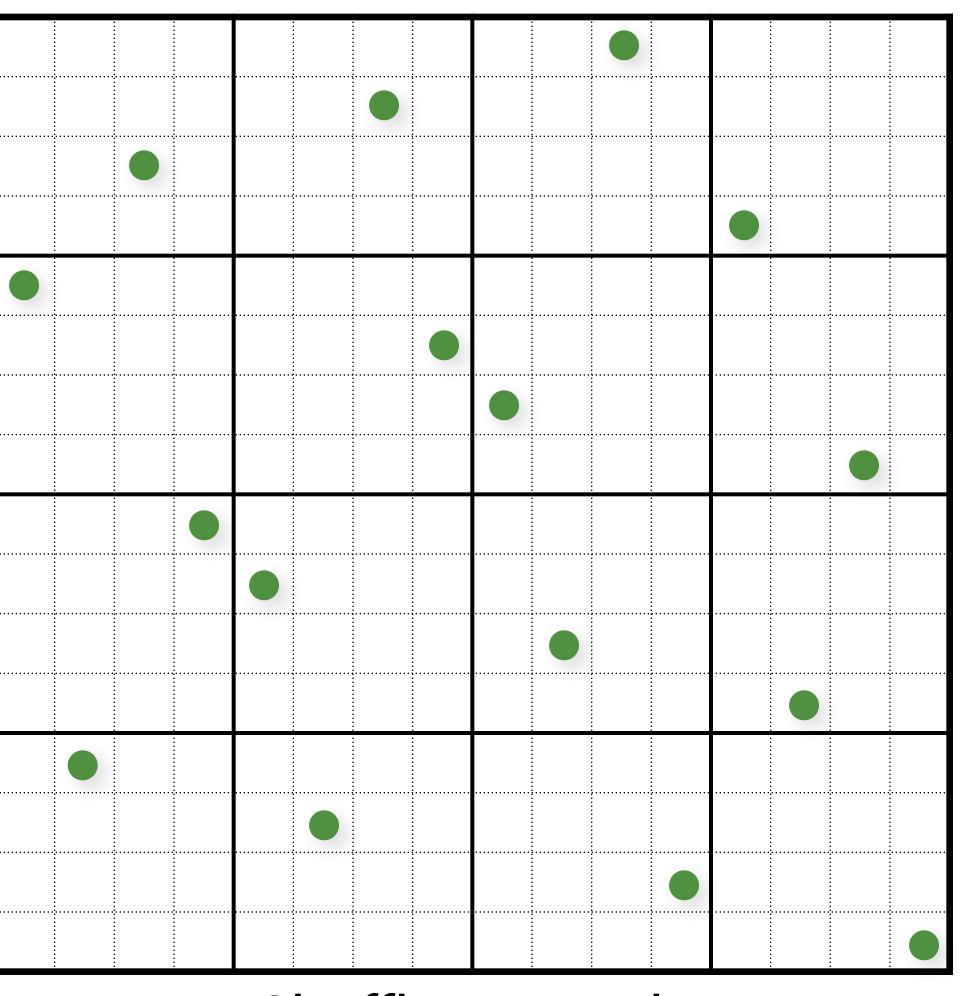


Shuffle x-coords

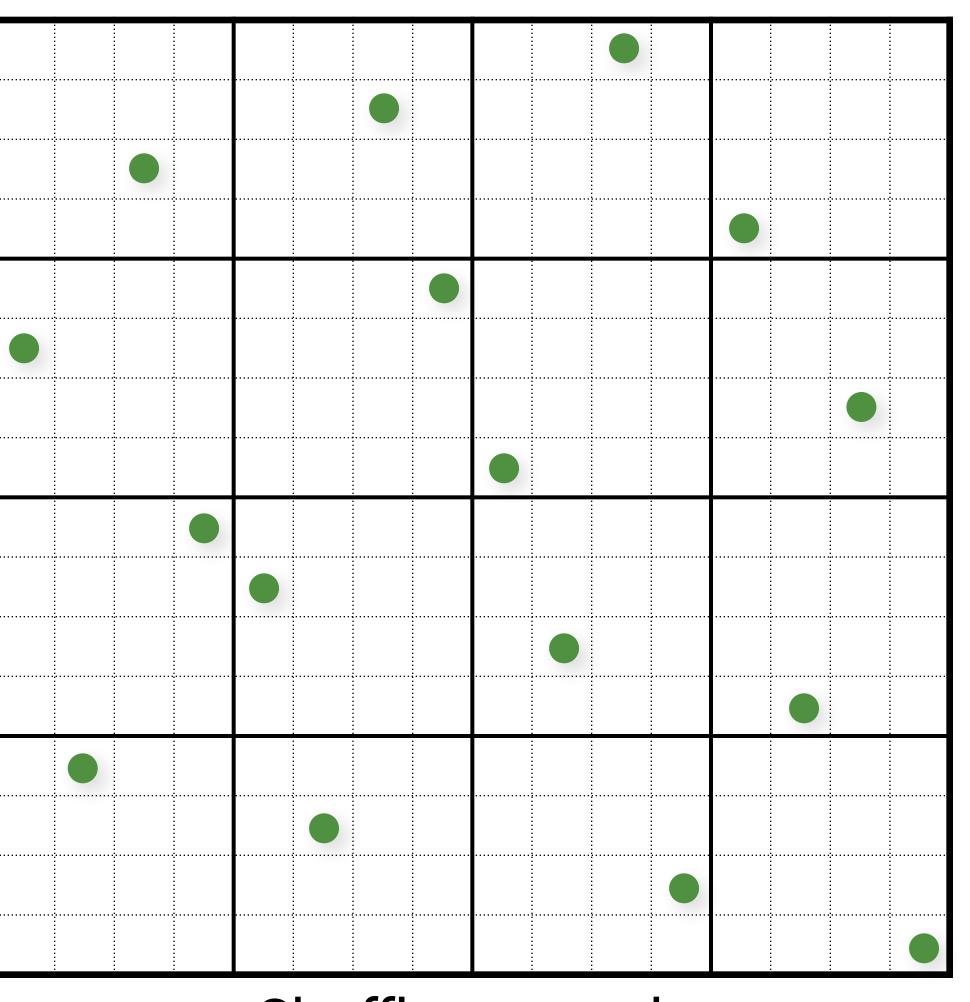




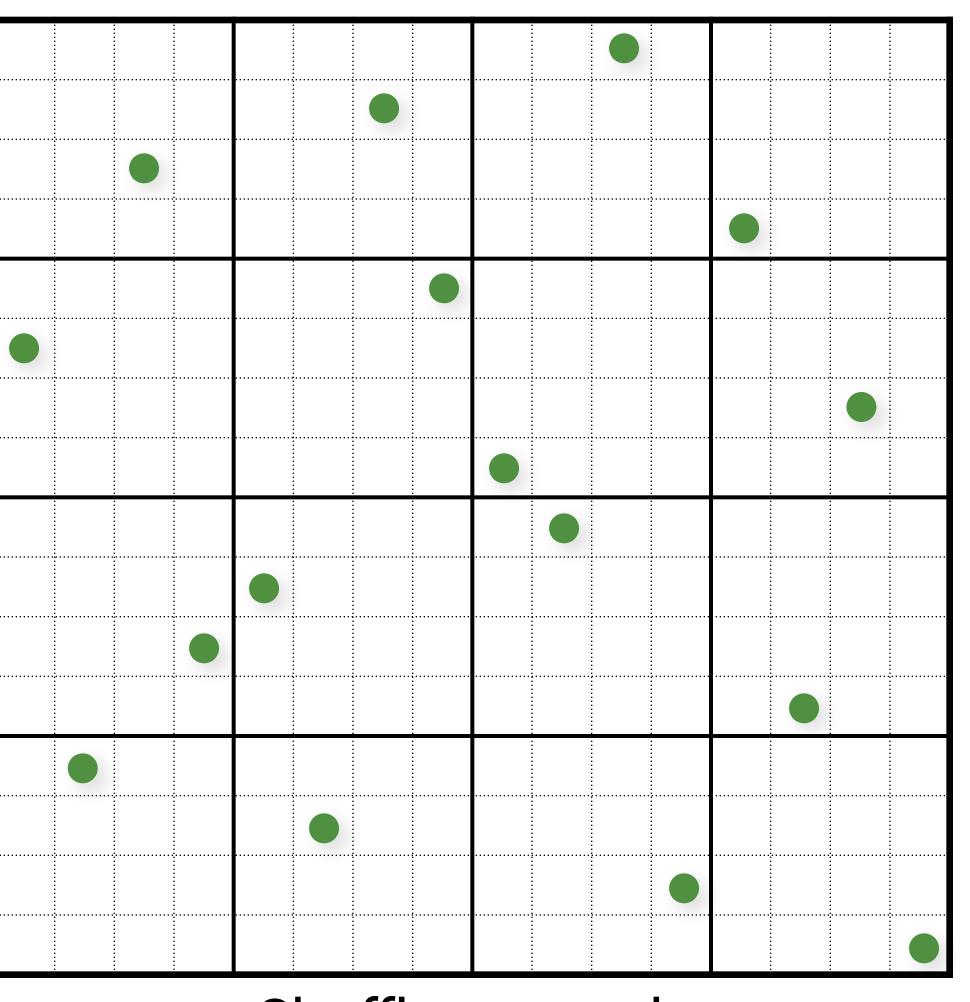
Shuffle y-coords



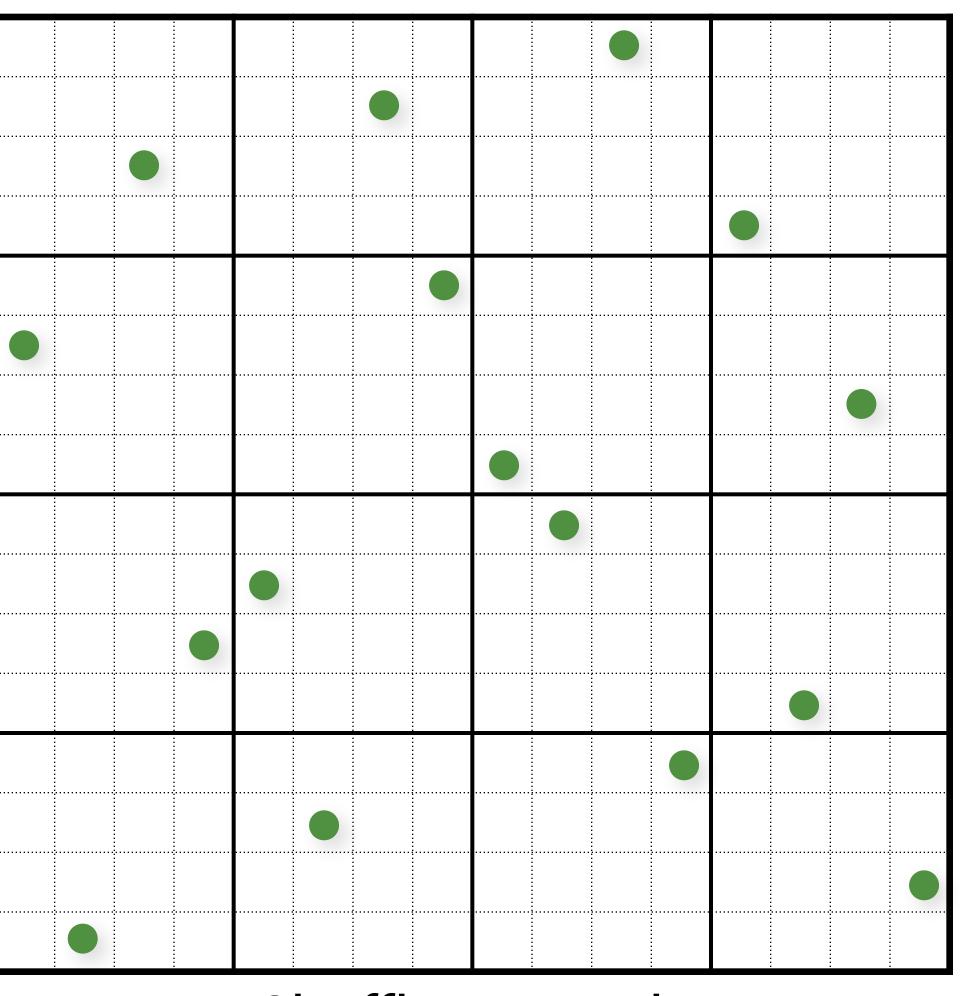
Shuffle y-coords



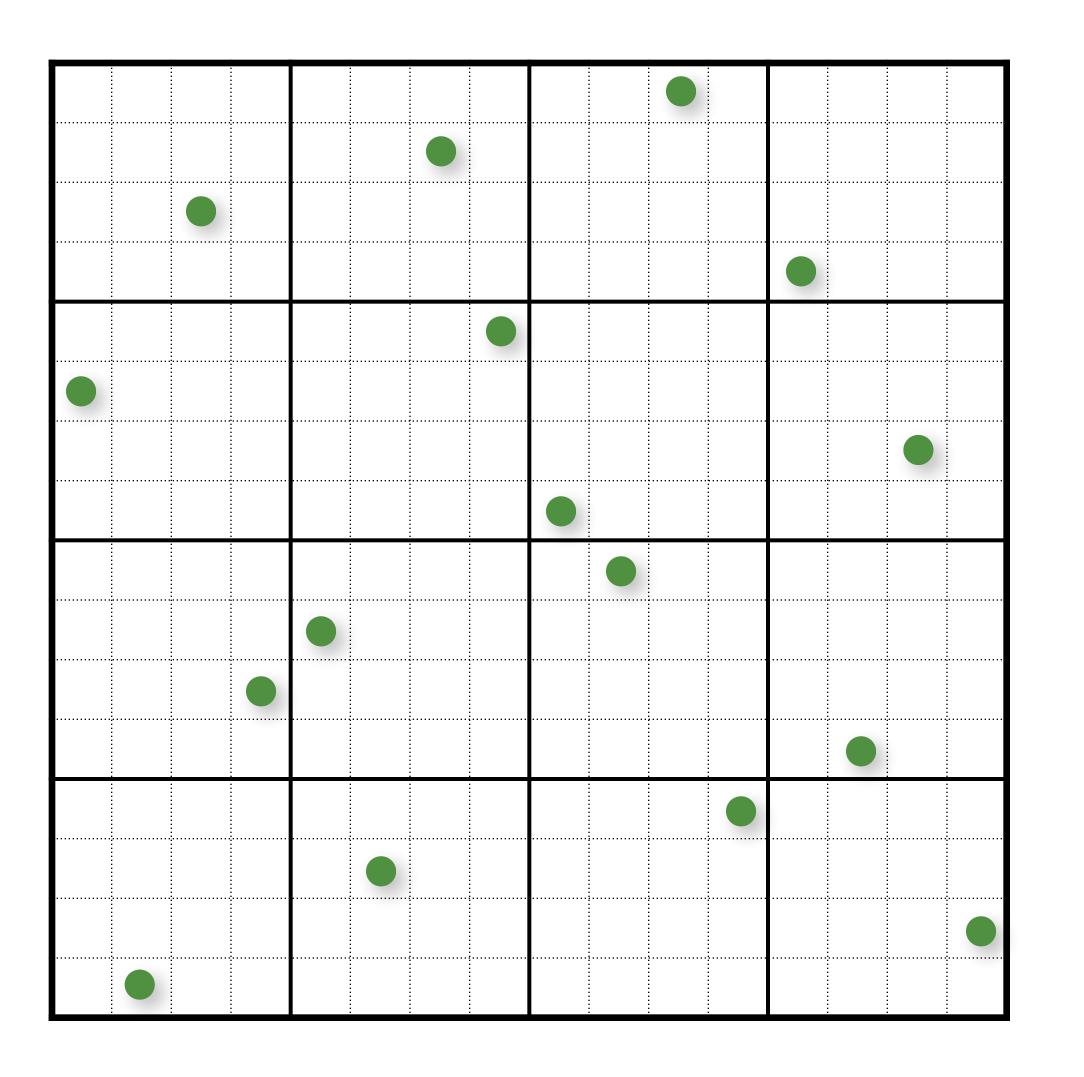
Shuffle y-coords

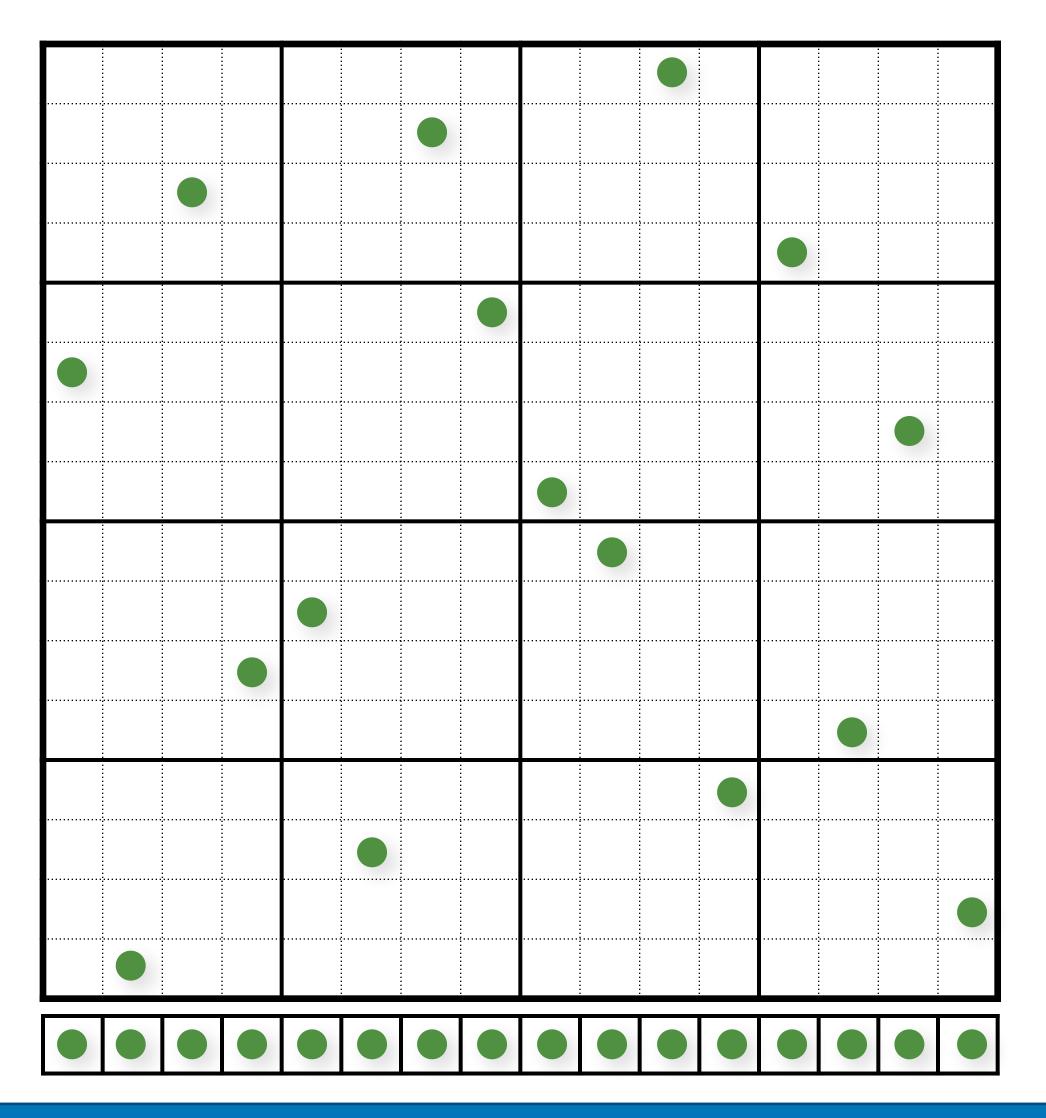


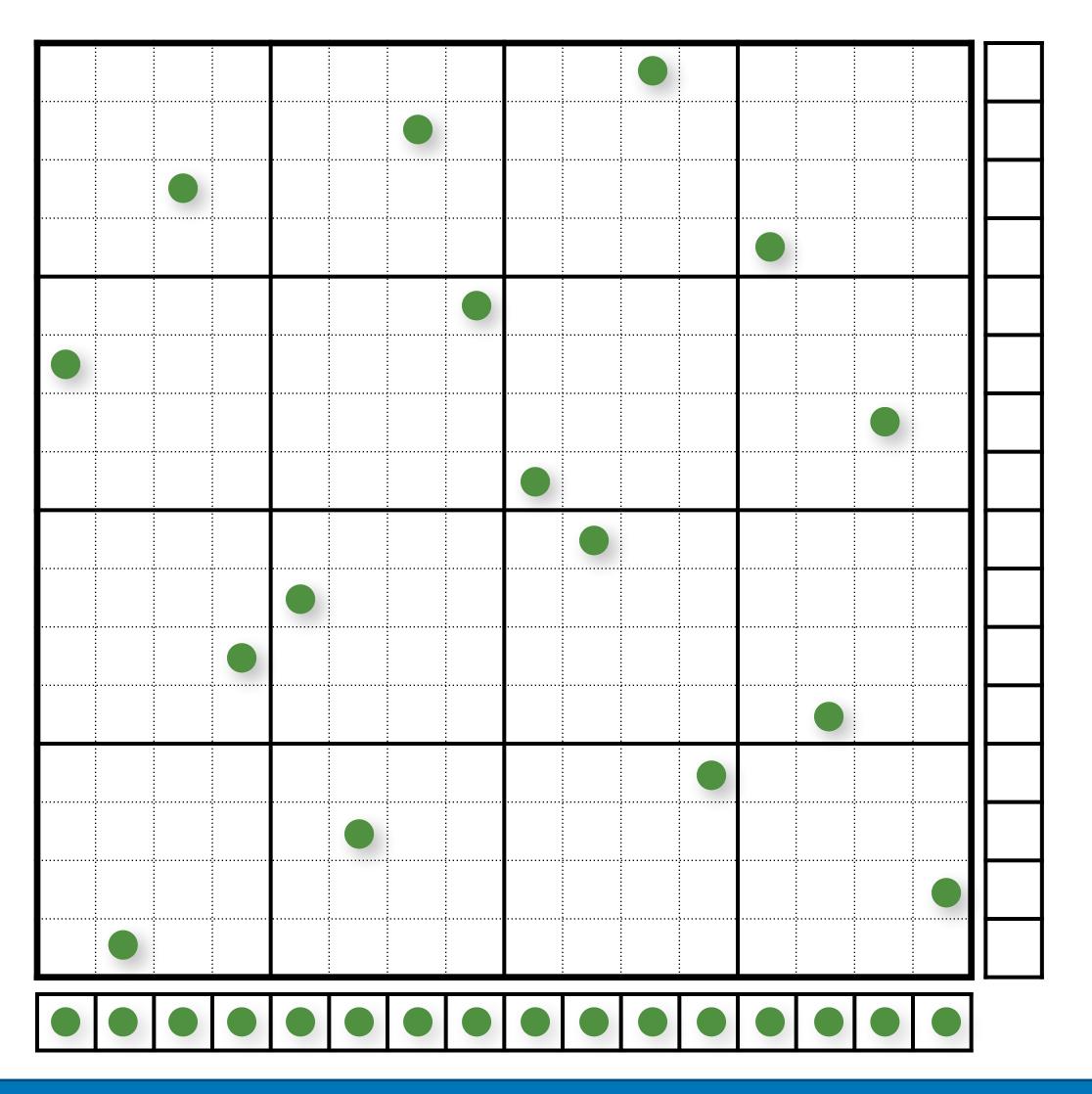
Shuffle y-coords

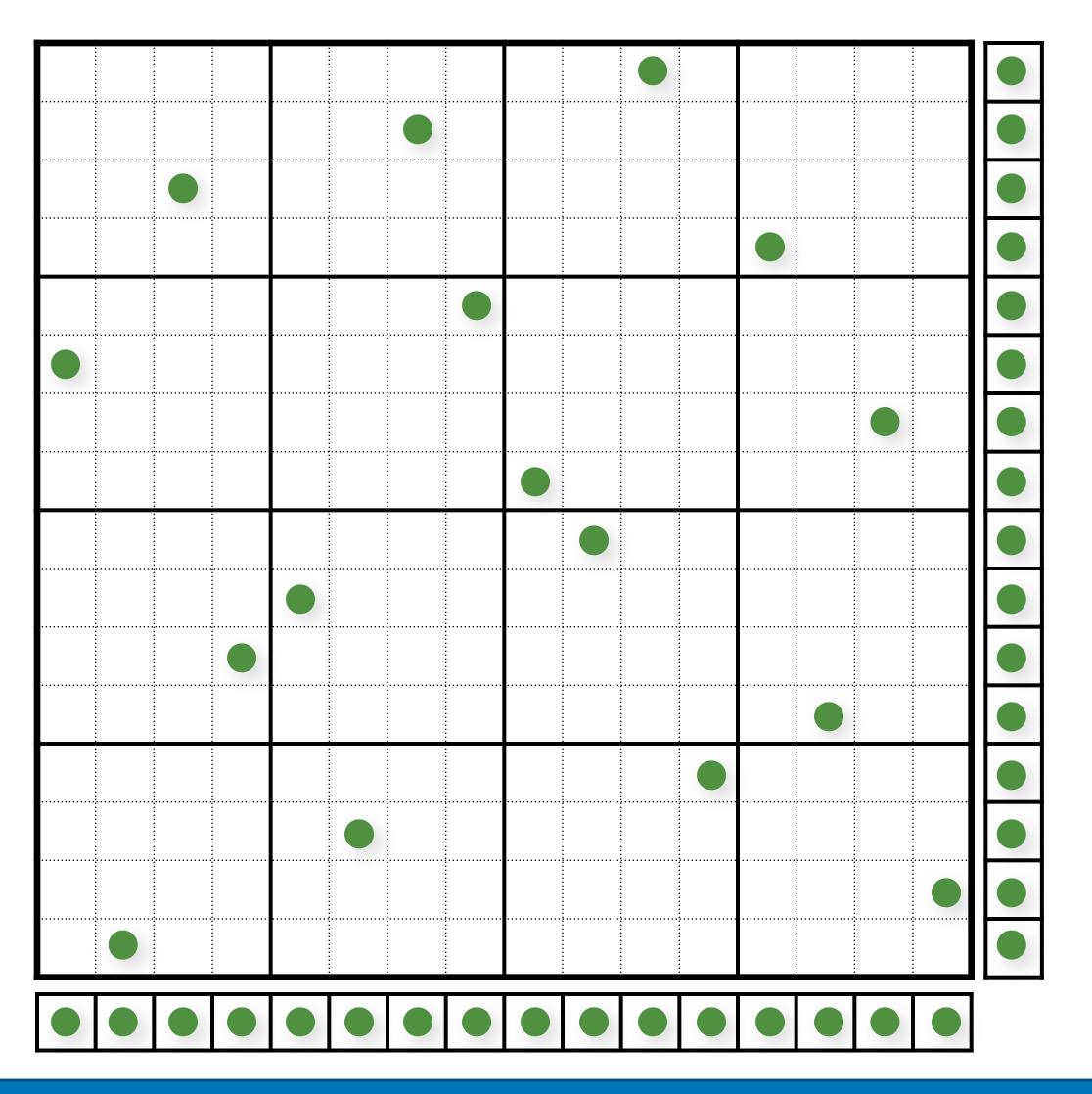


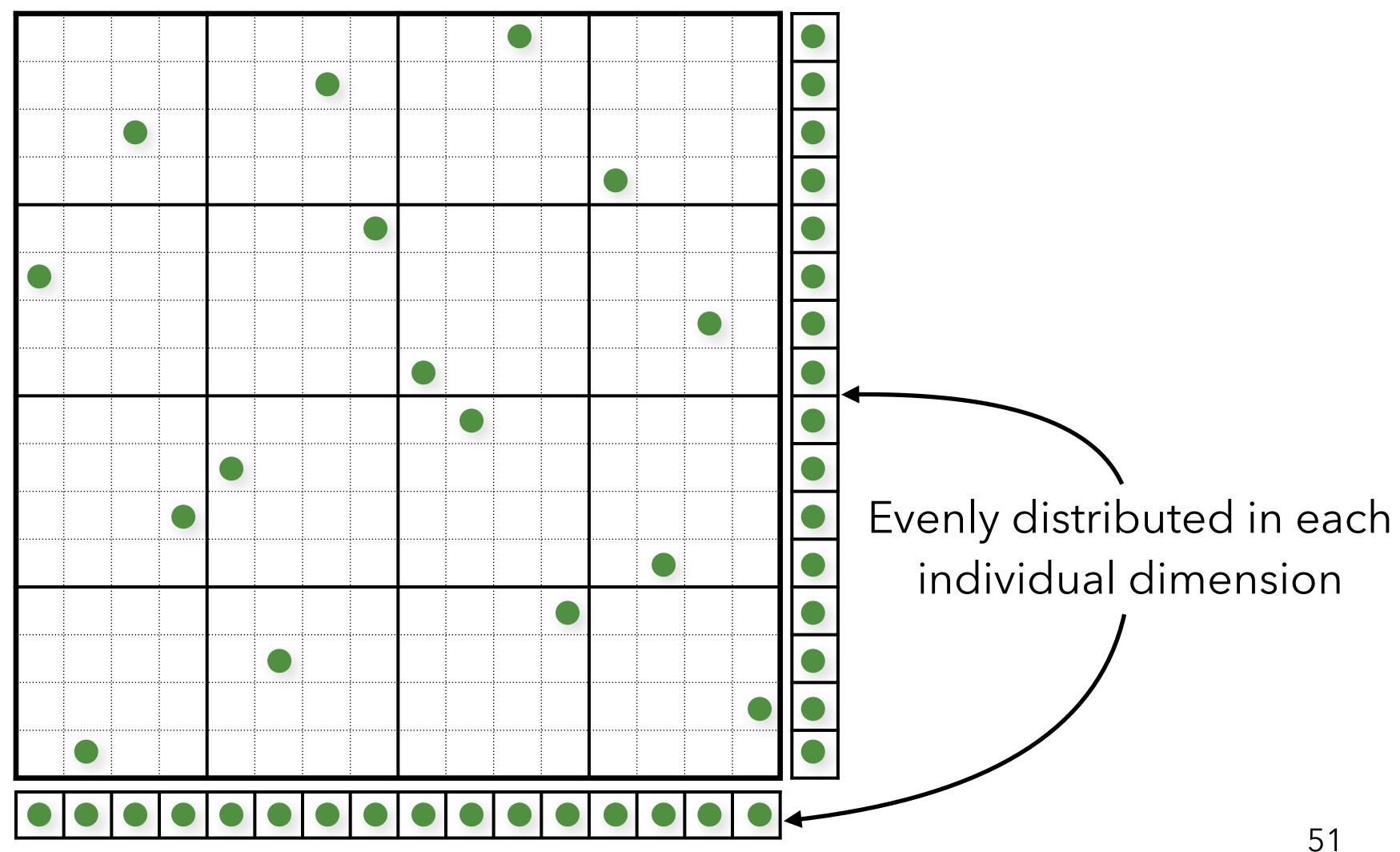
Shuffle y-coords

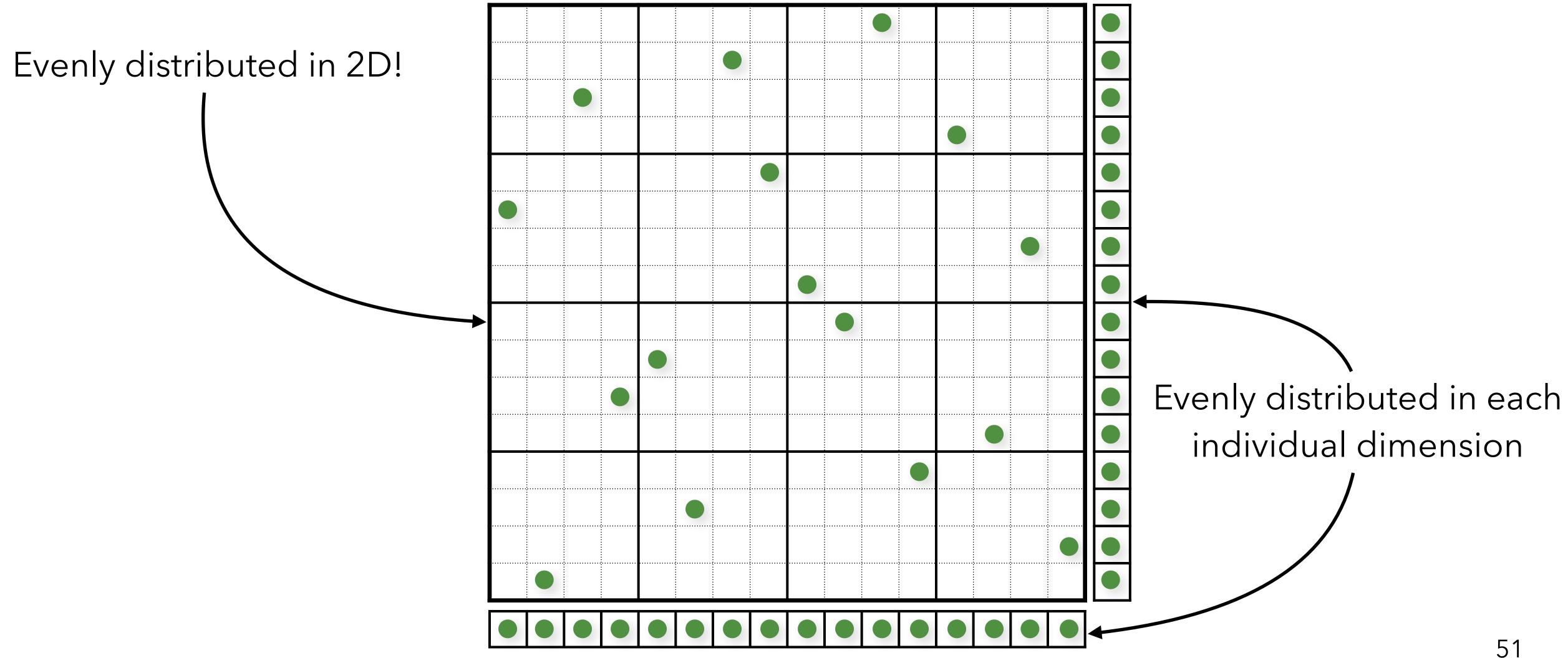


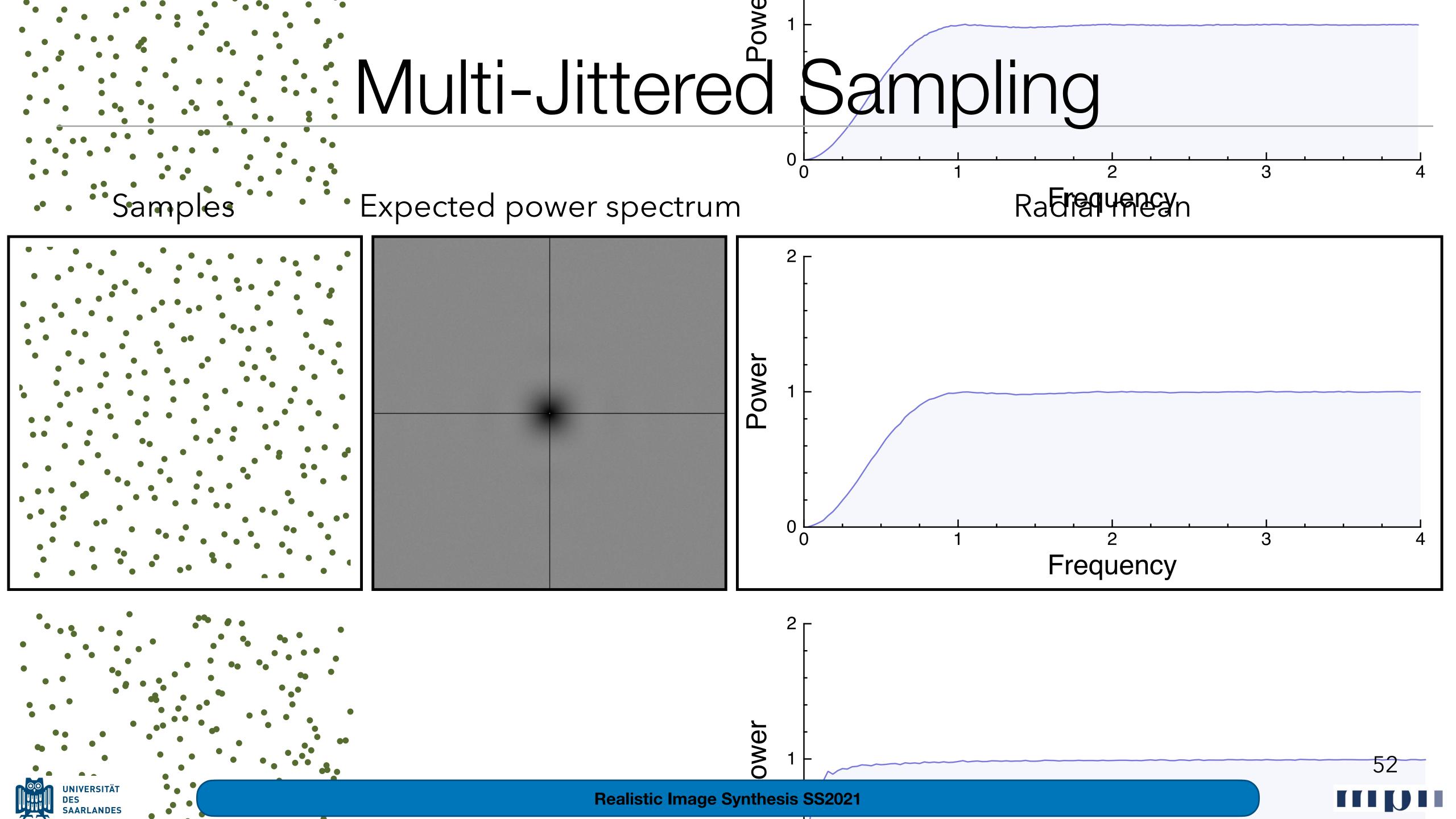


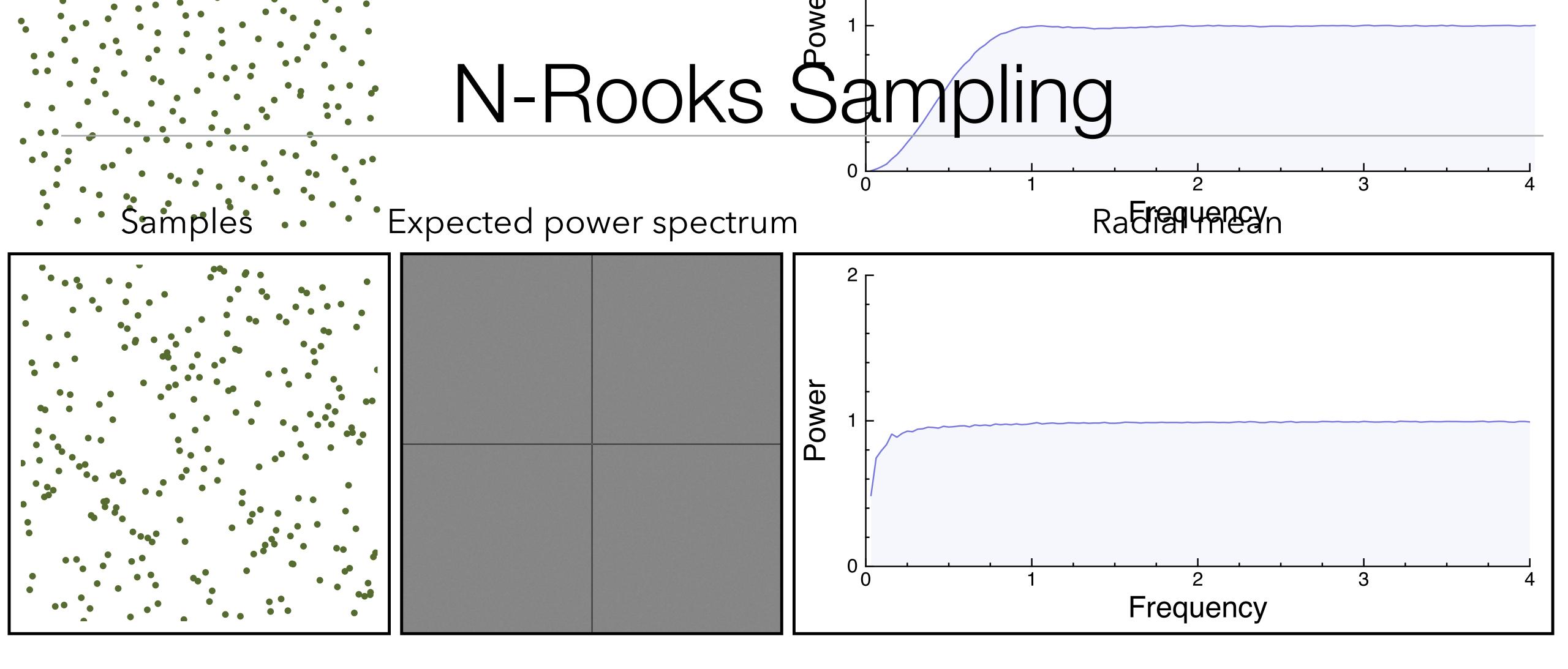


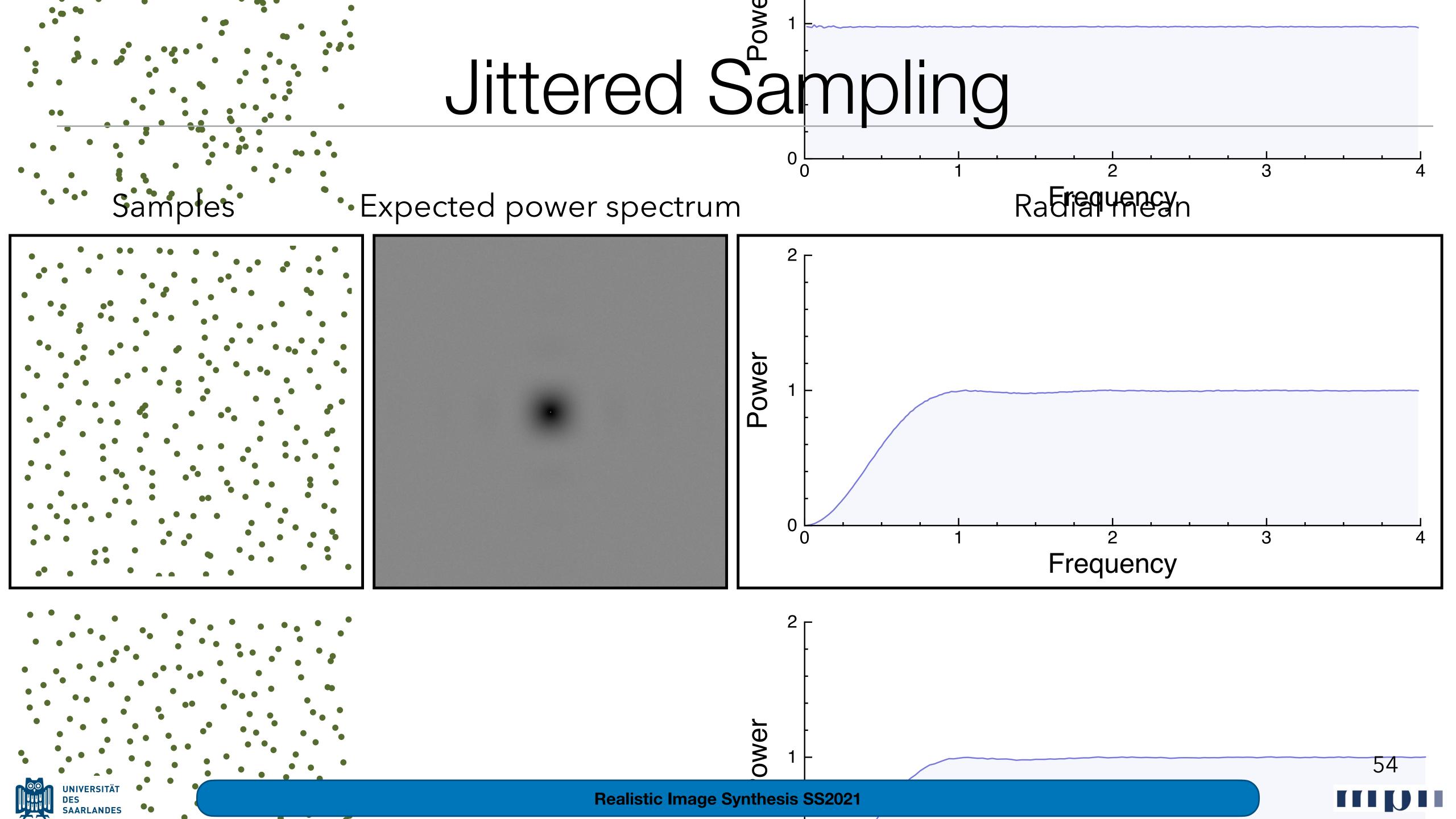












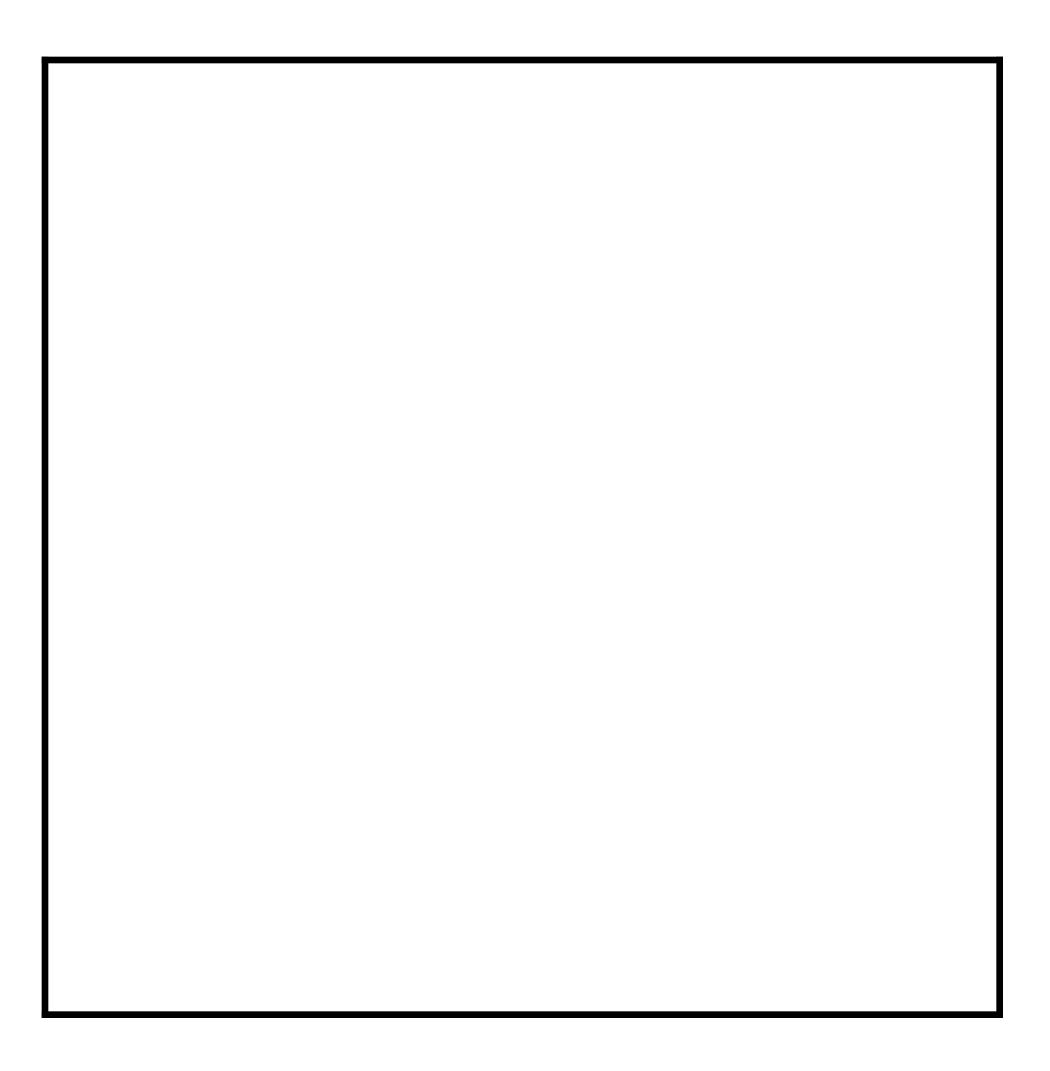
Poisson-Disk/Blue-Noise Sampling

Enforce a minimum distance between points

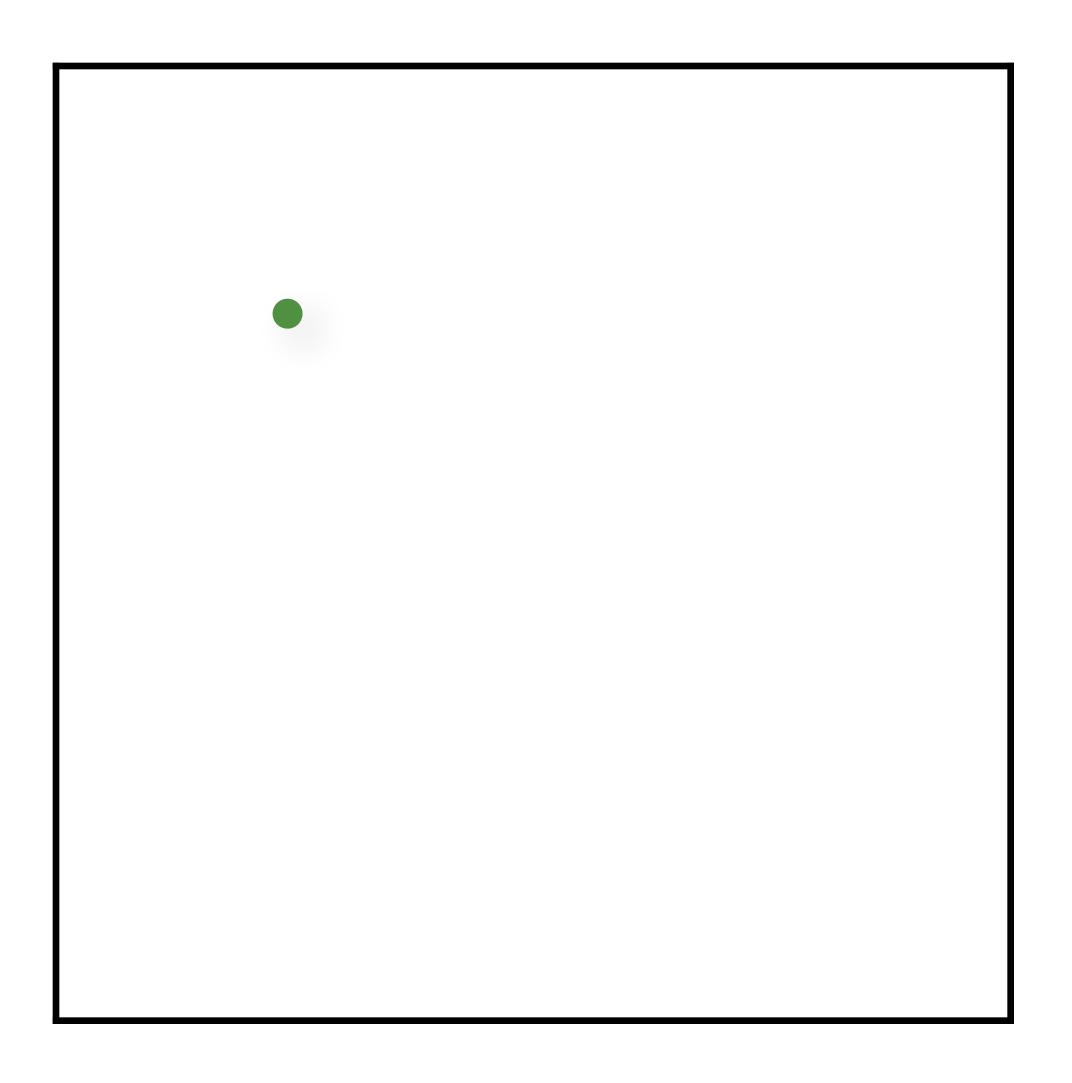
Poisson-Disk Sampling:

- Mark A. Z. Dippé and Erling Henry Wold. "Antialiasing through stochastic sampling." *ACM SIGGRAPH,* 1985.
- Robert L. Cook. "Stochastic sampling in computer graphics." *ACM Transactions on Graphics*, 1986.
- Ares Lagae and Philip Dutré. "A comparison of methods for generating Poisson disk distributions." Computer Graphics Forum, 2008.

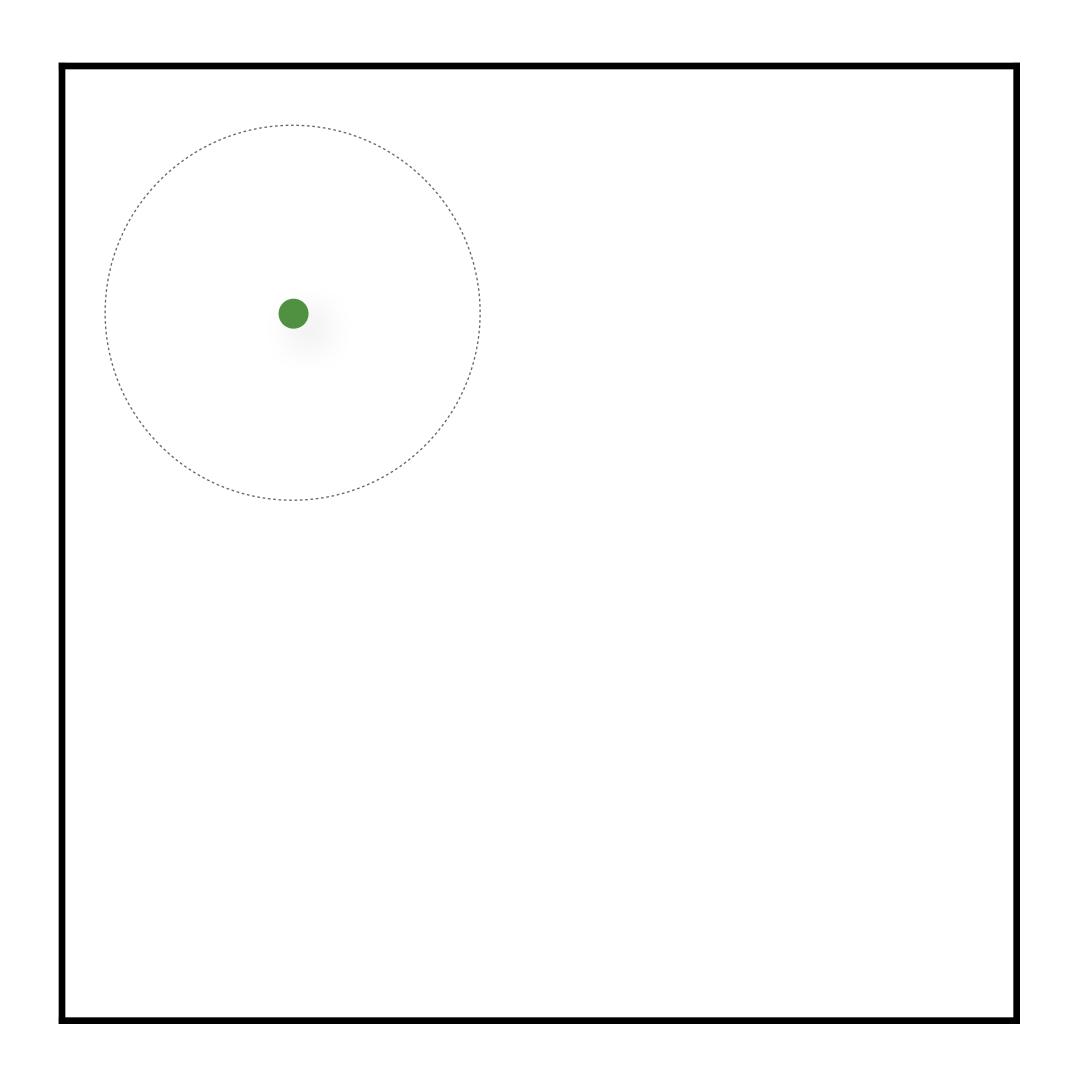
Random Dart Throwing

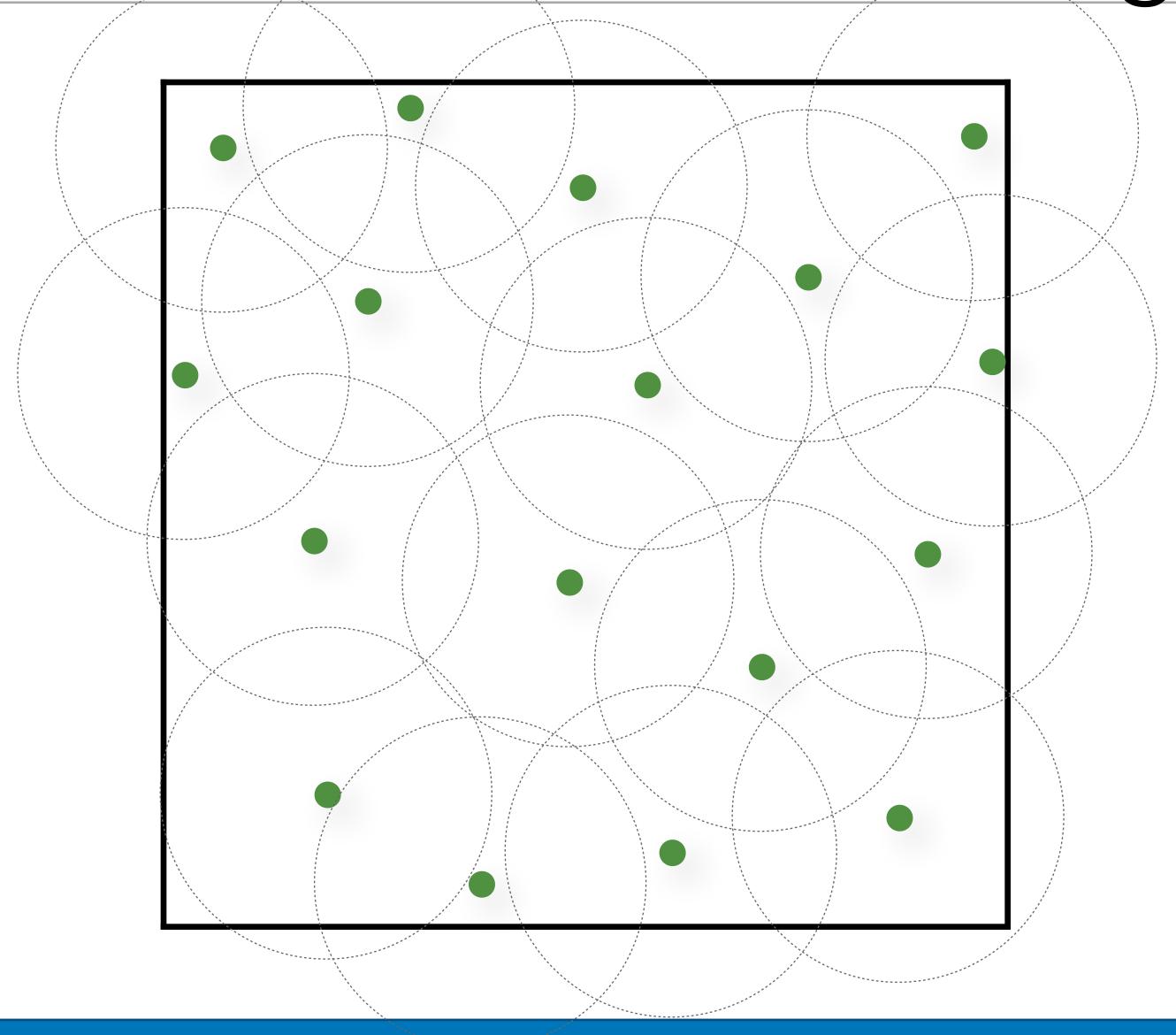


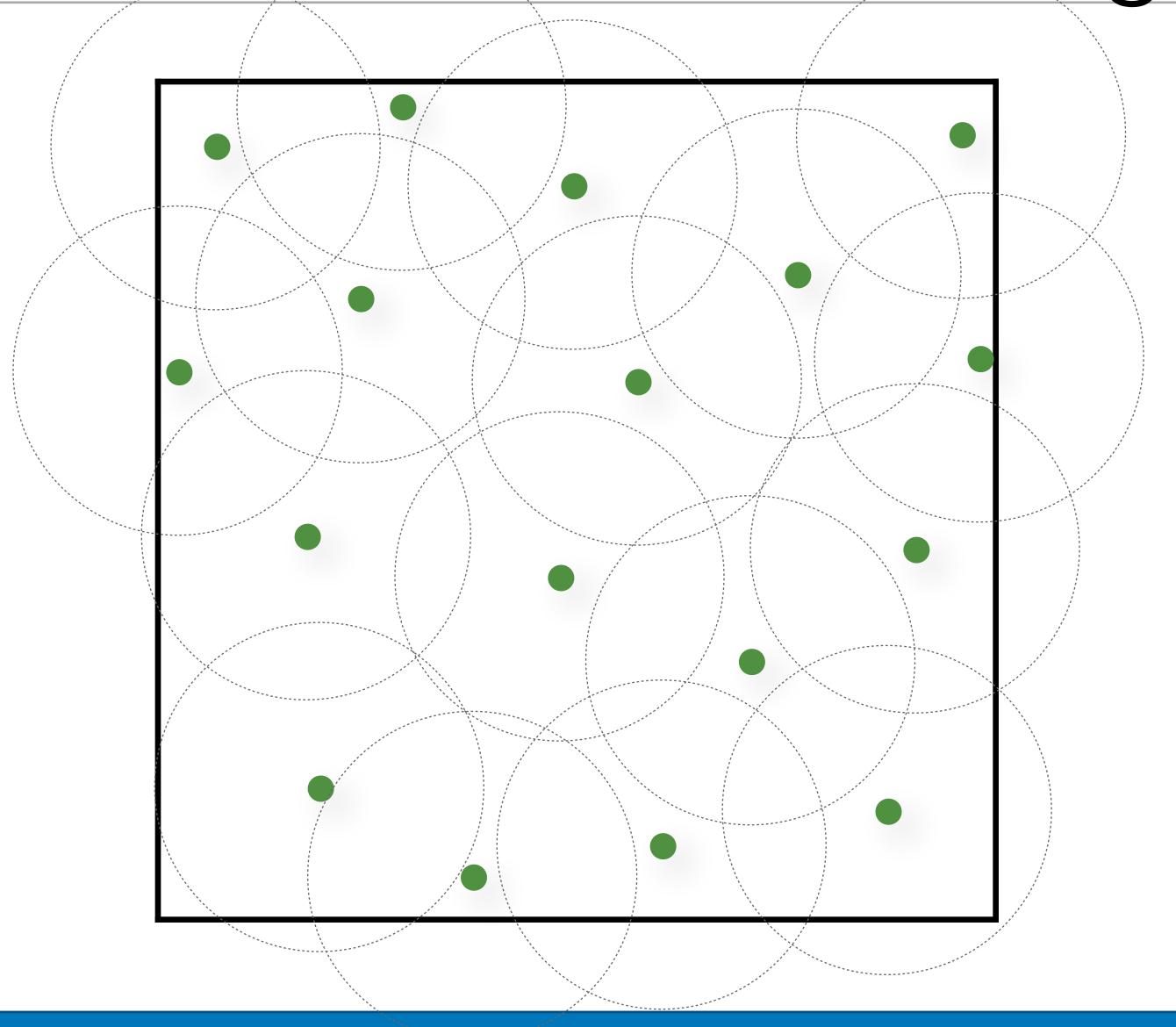
Random Dart Throwing

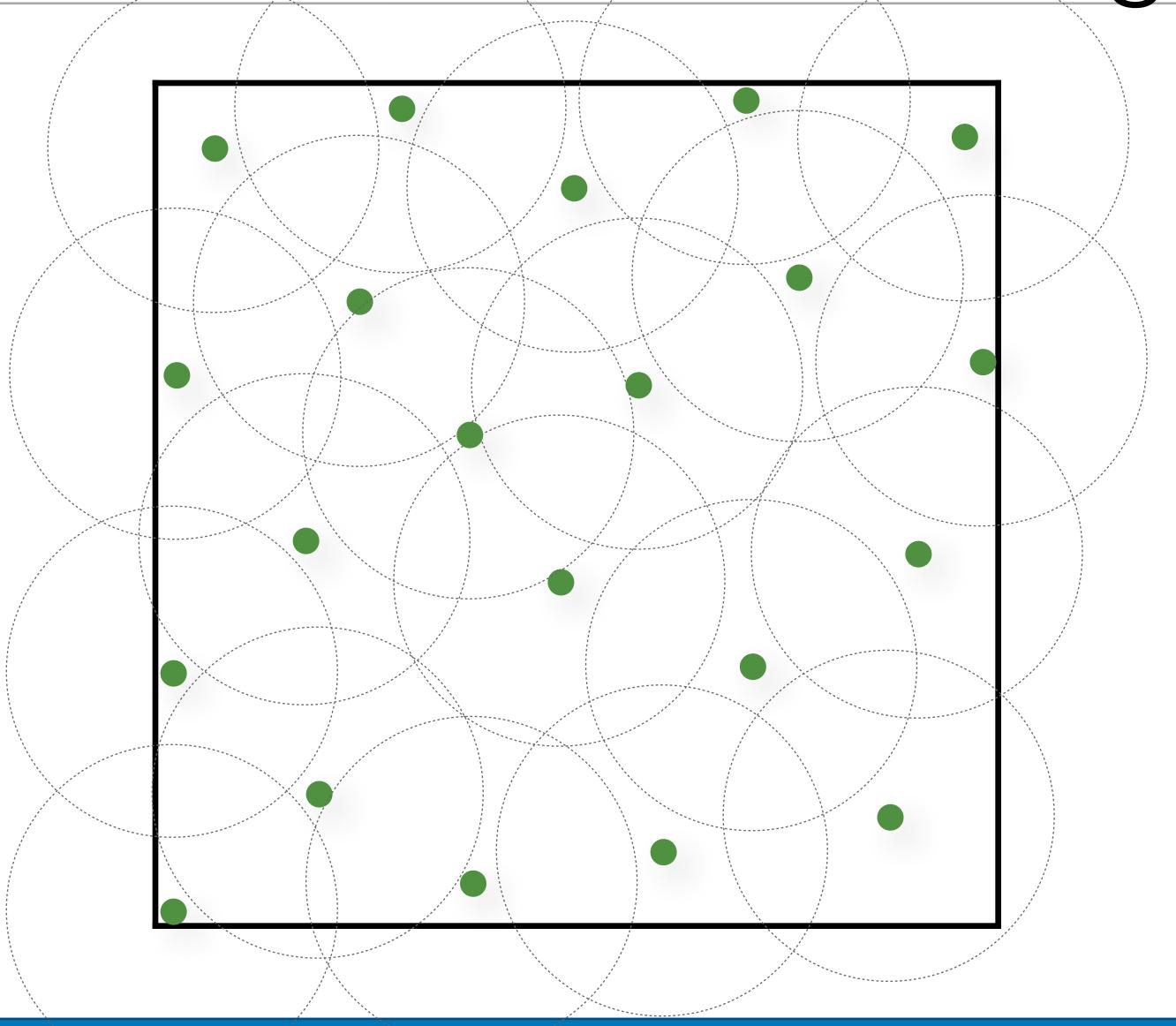


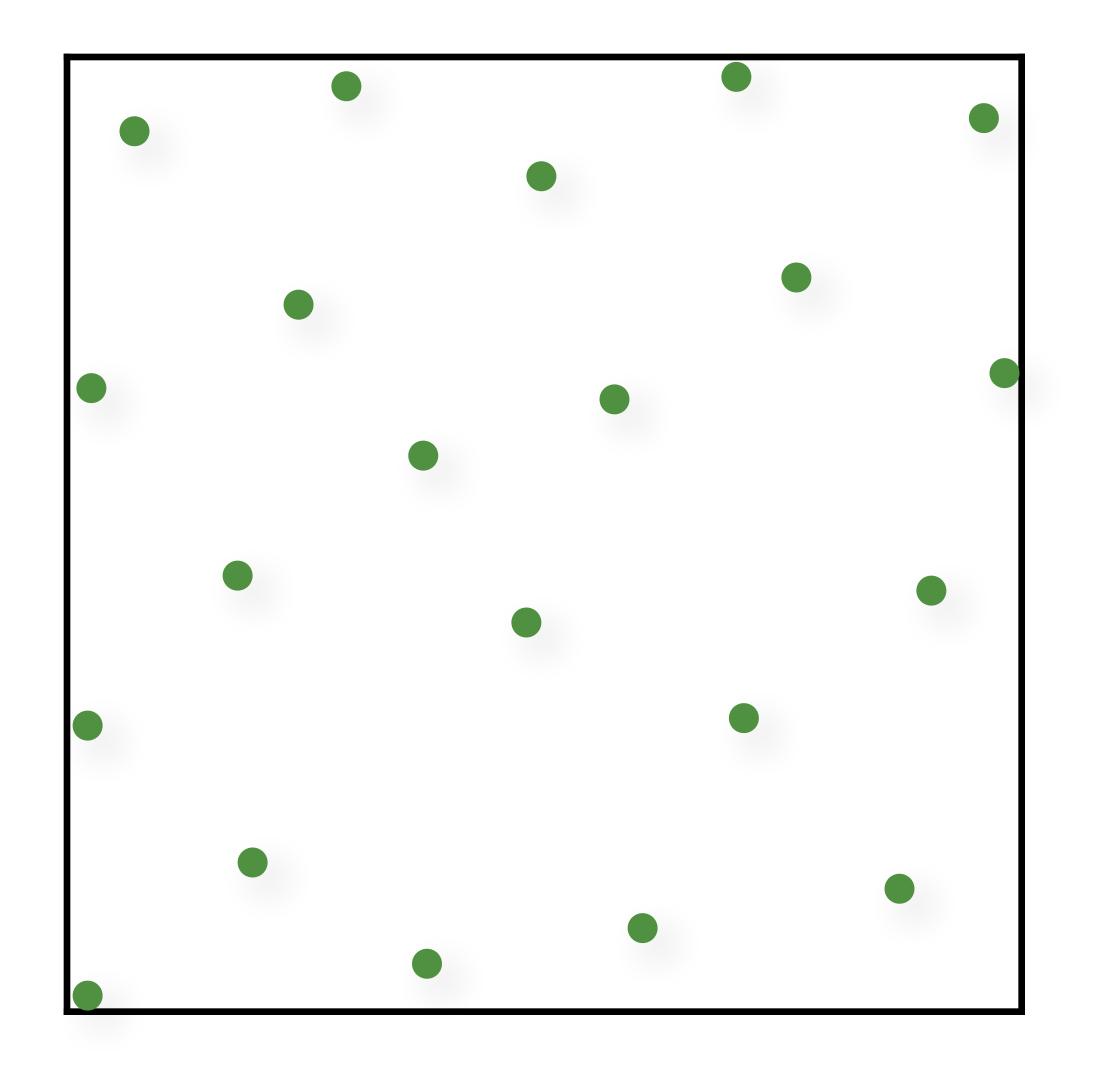
Random Dart Throwing



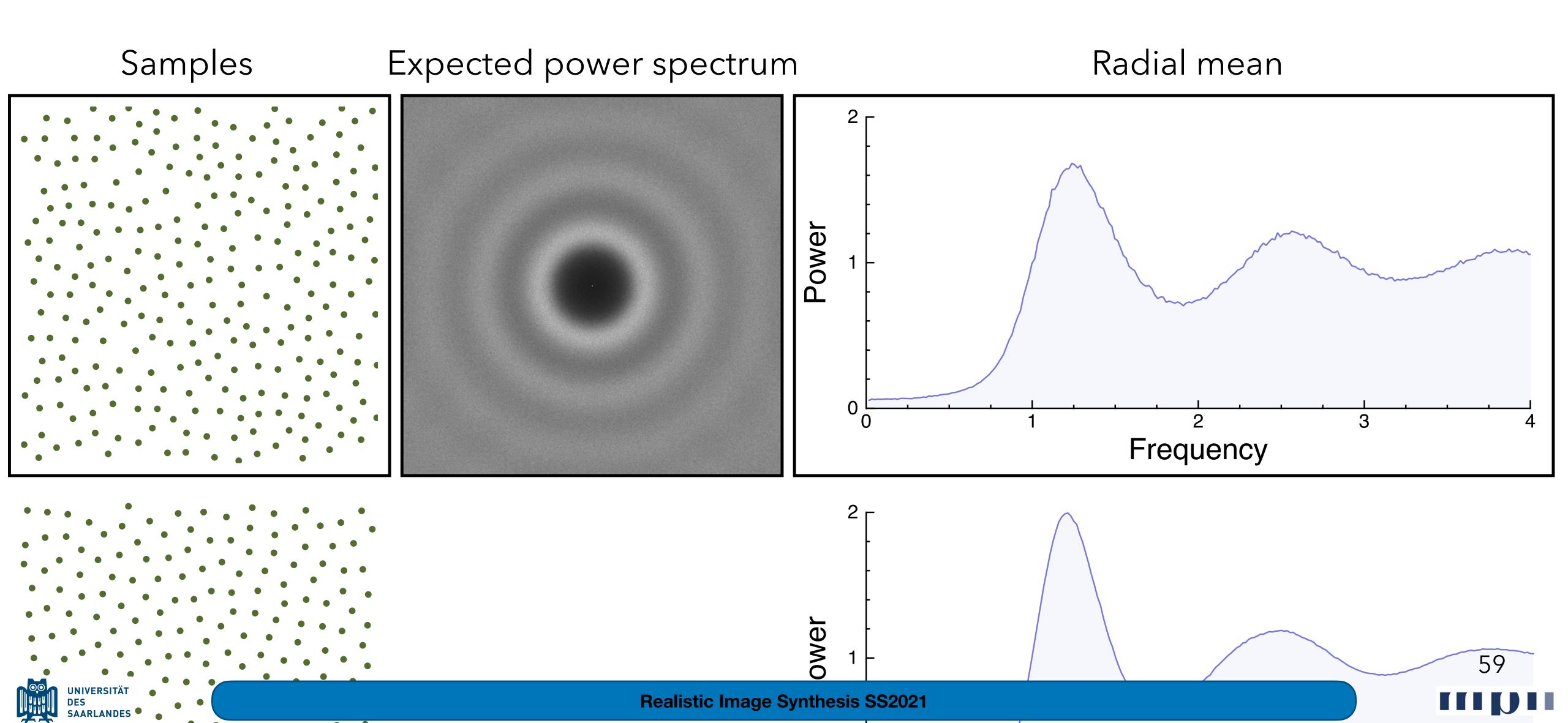








Poisson Disk Sampling



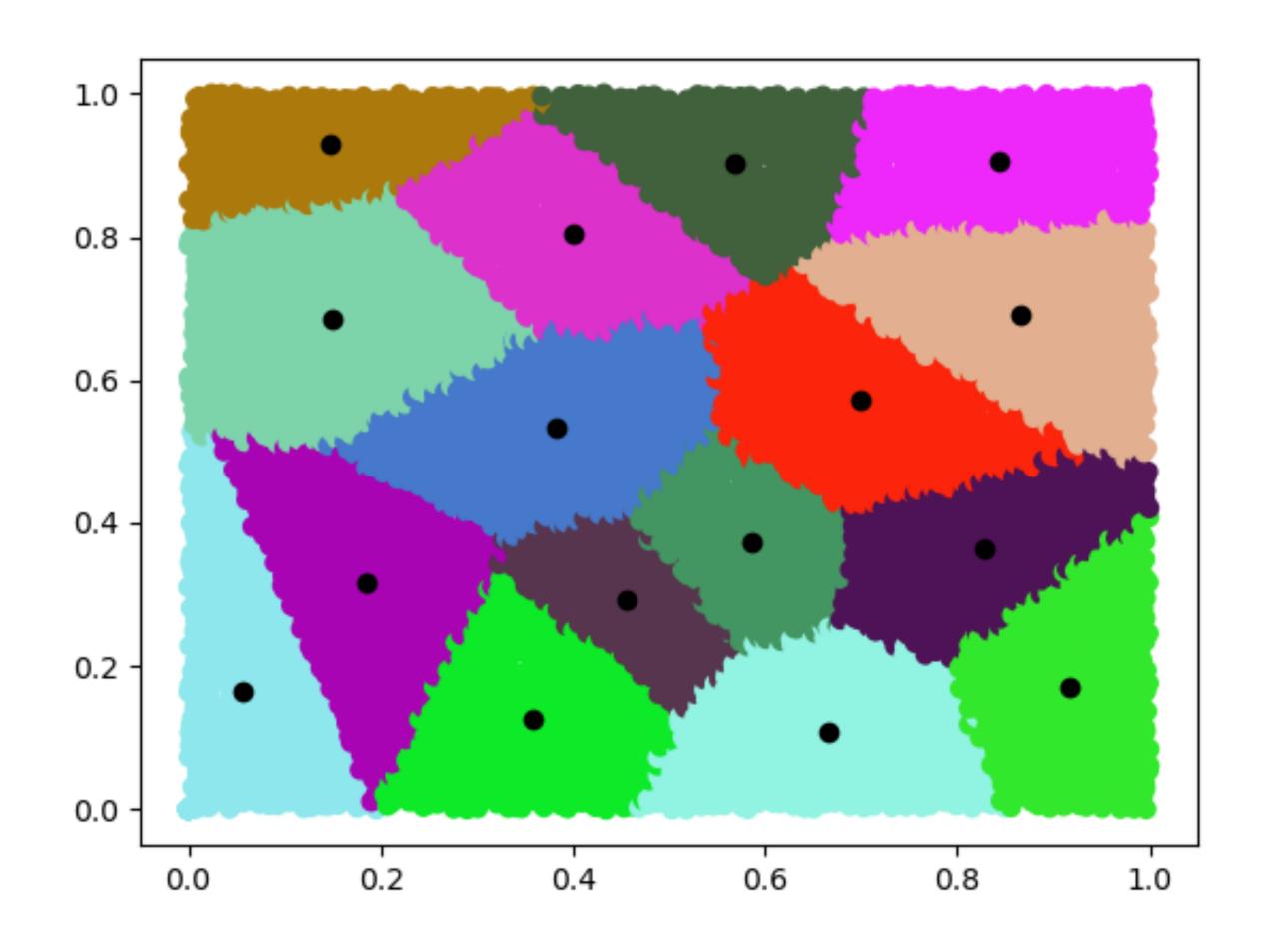
Blue-Noise Sampling (Relaxation-based)

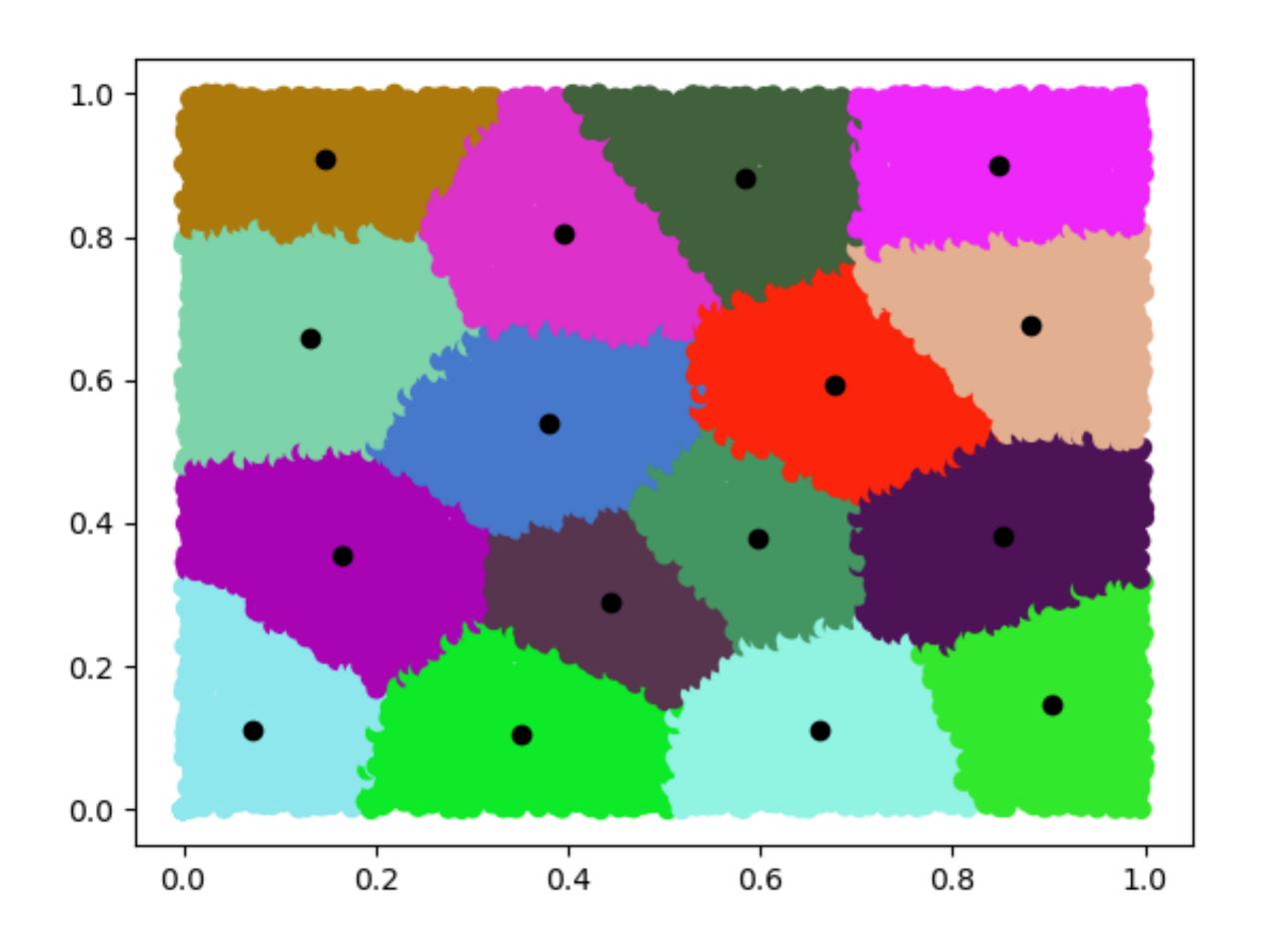
Blue-Noise Sampling (Relaxation-based)

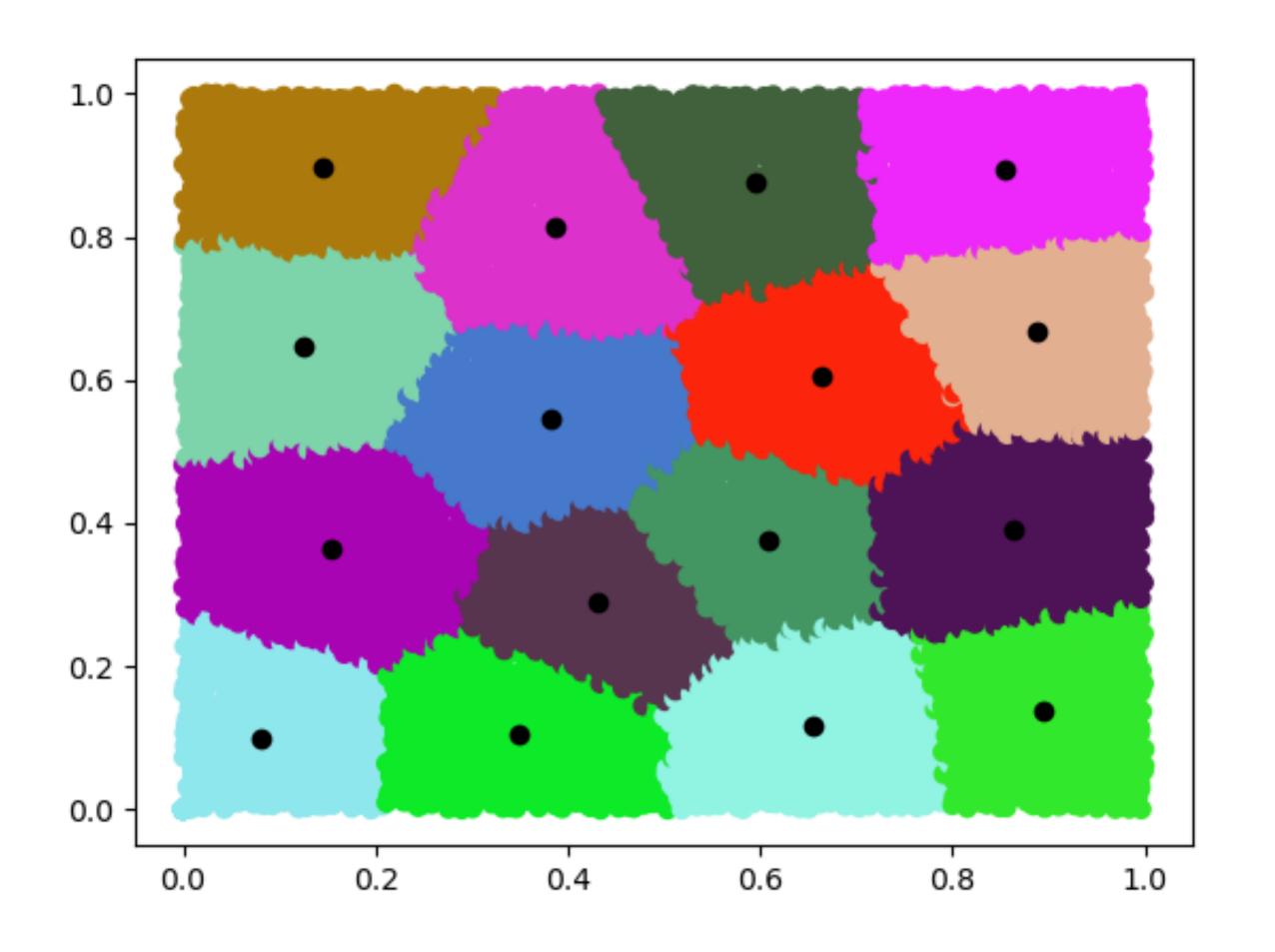
1. Initialize sample positions (e.g. random)

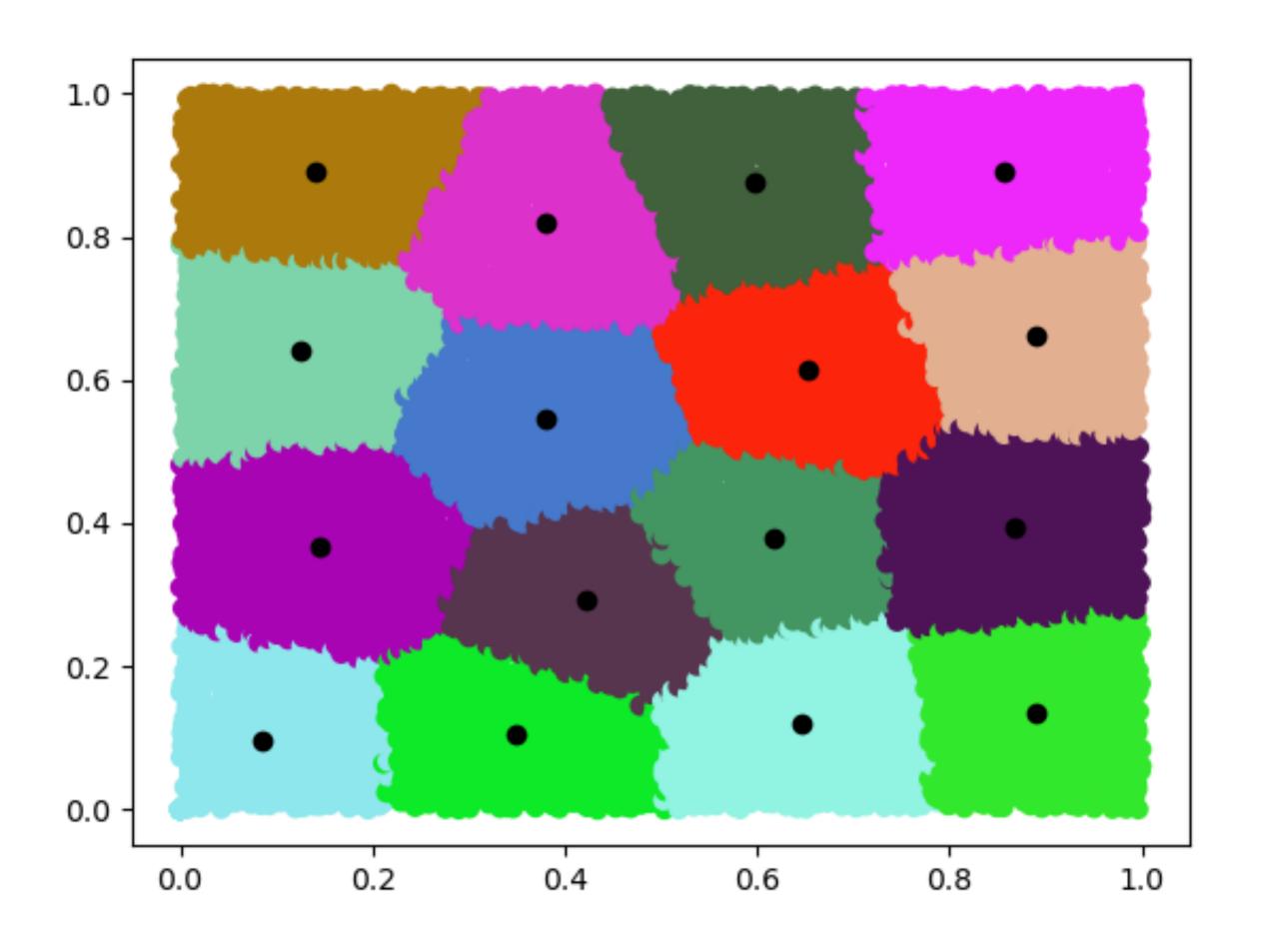
Blue-Noise Sampling (Relaxation-based)

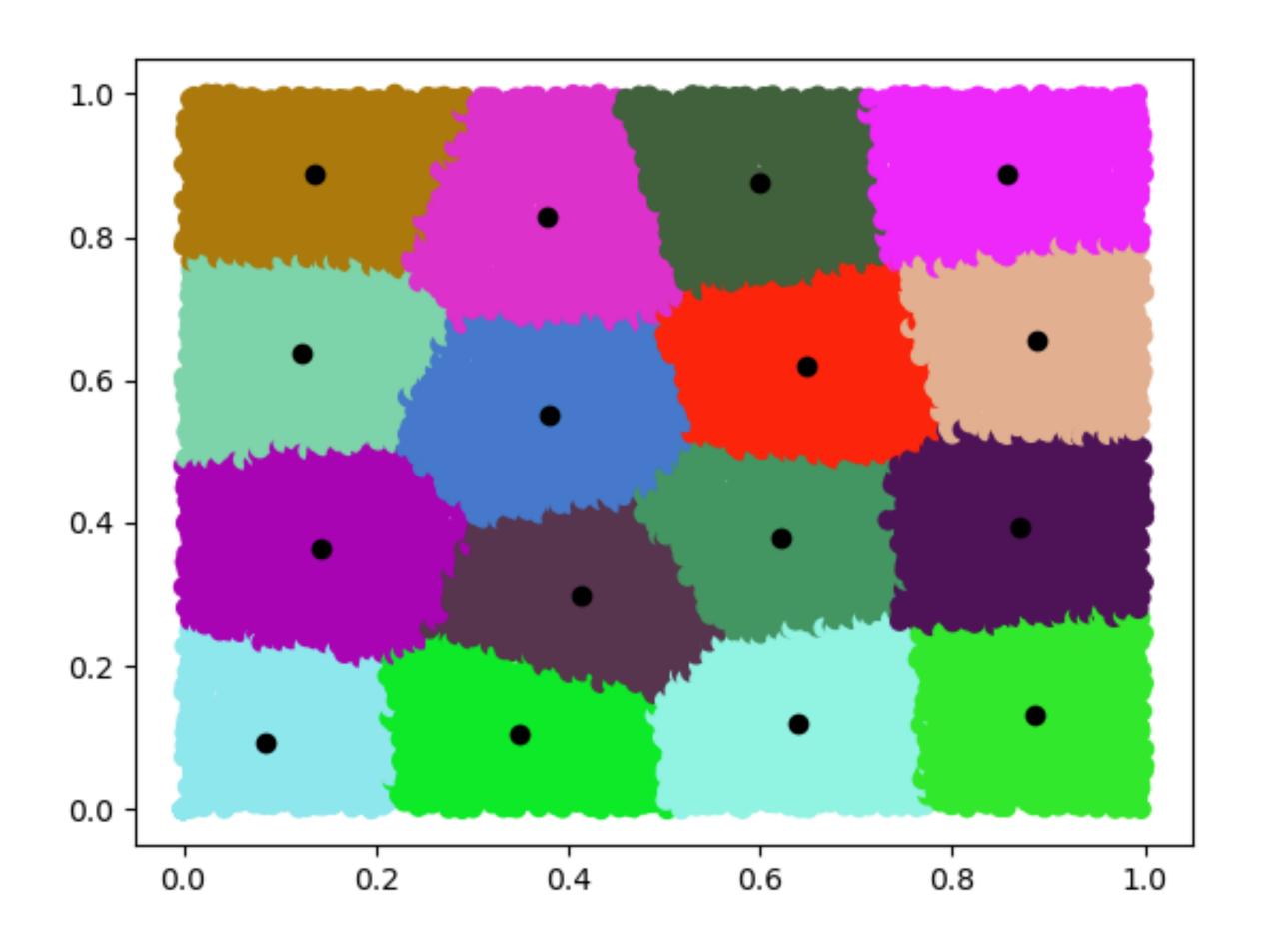
- 1. Initialize sample positions (e.g. random)
- 2. Use an iterative relaxation to move samples away from each other.

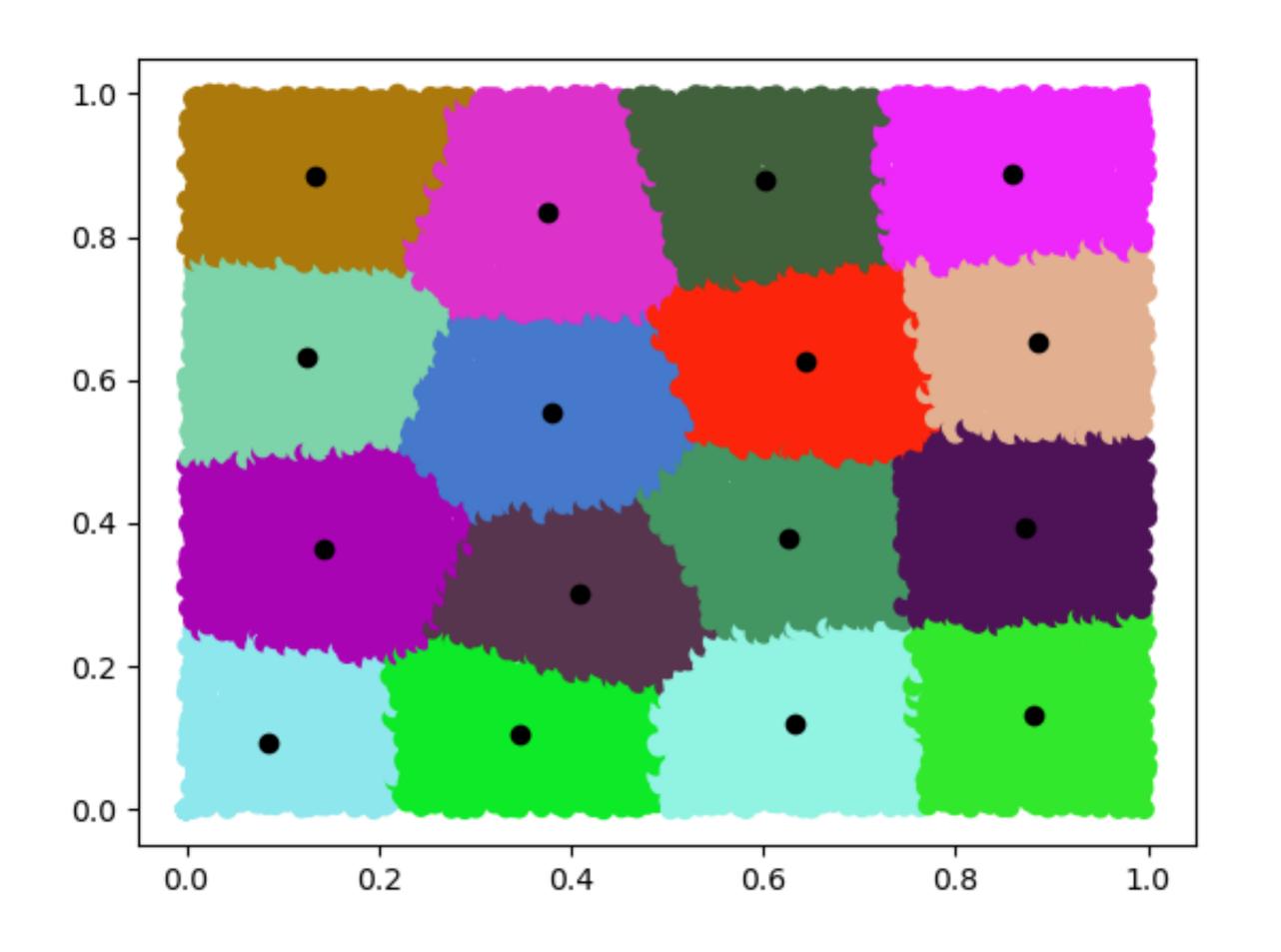


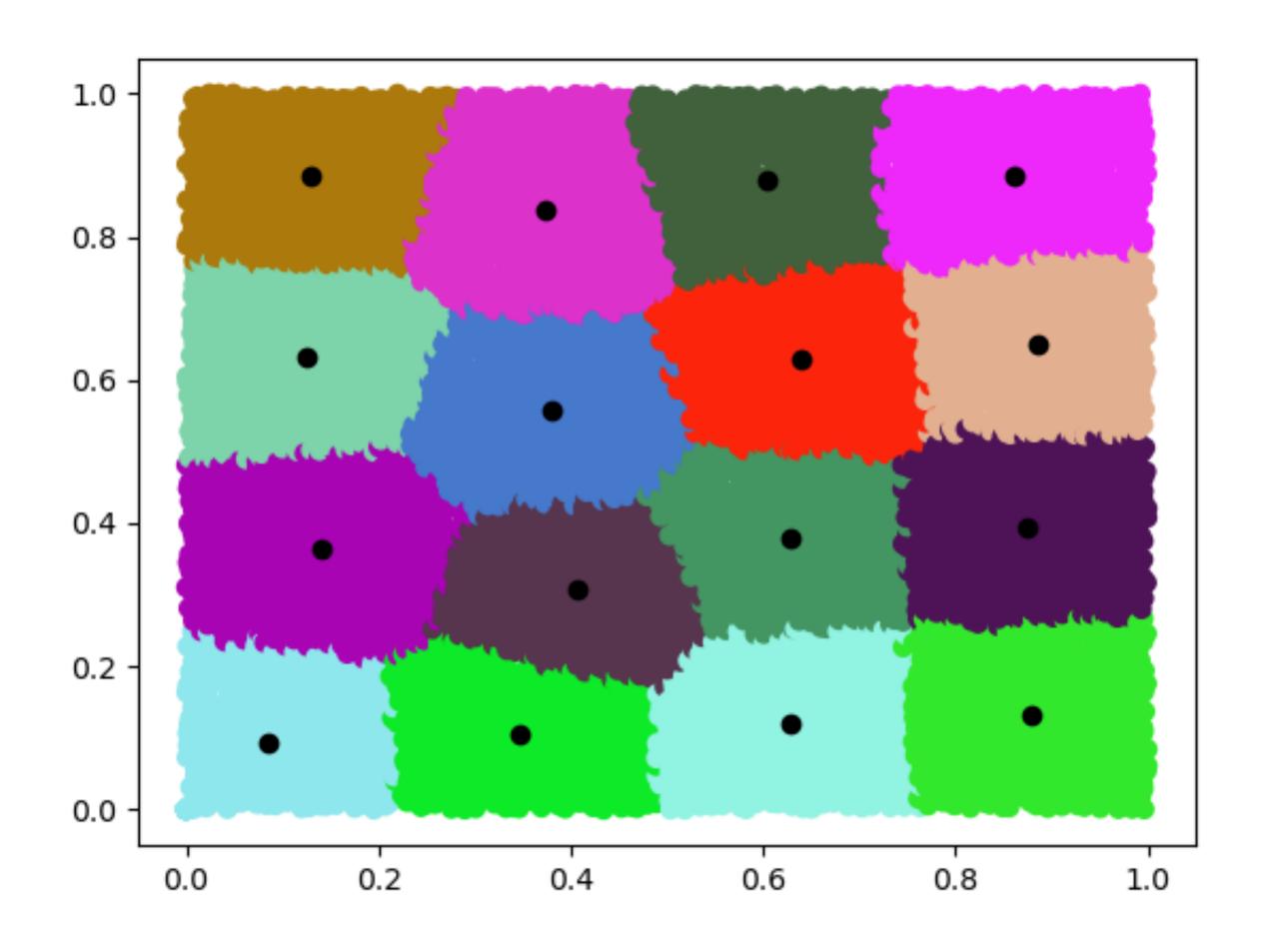


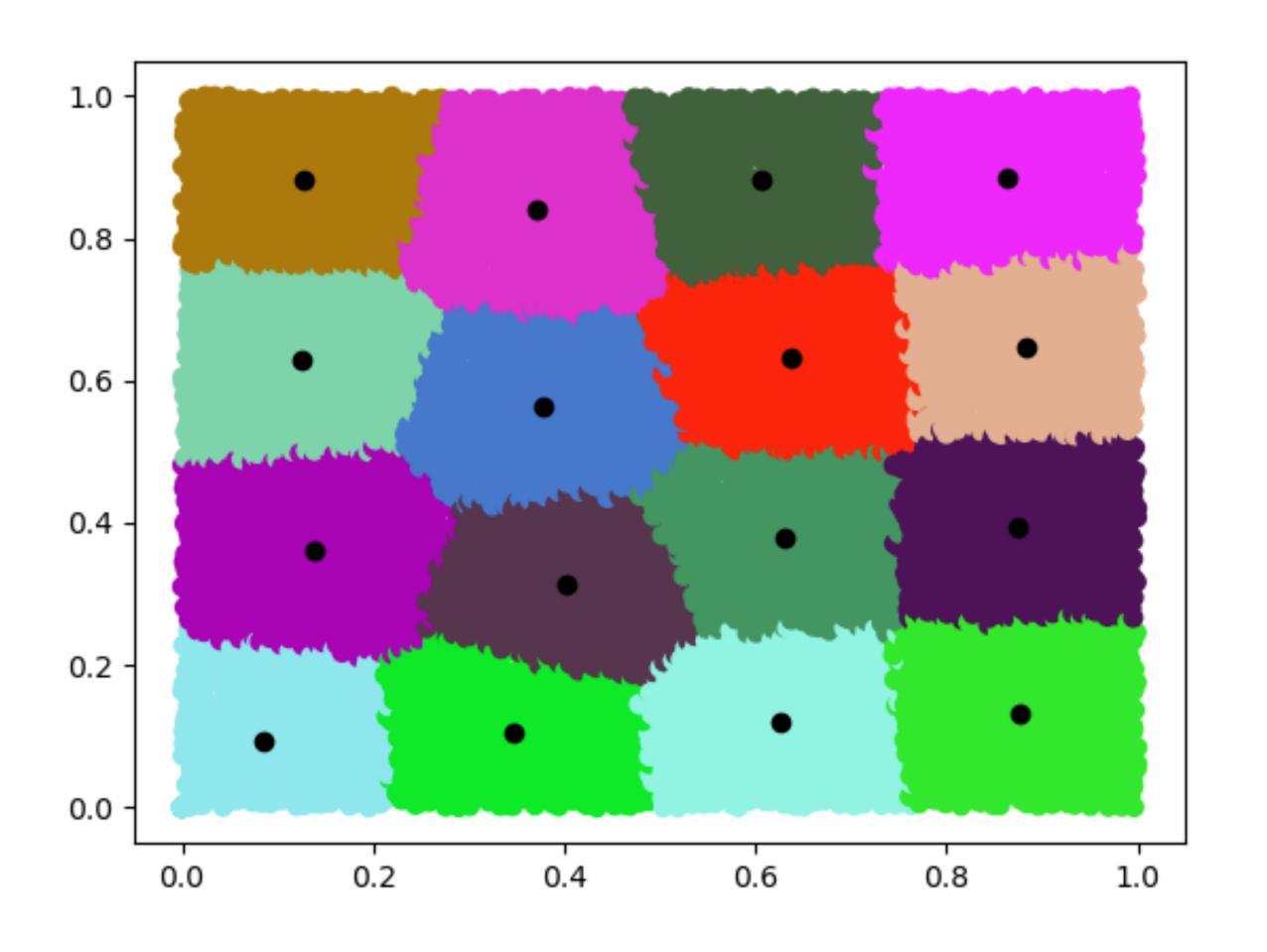


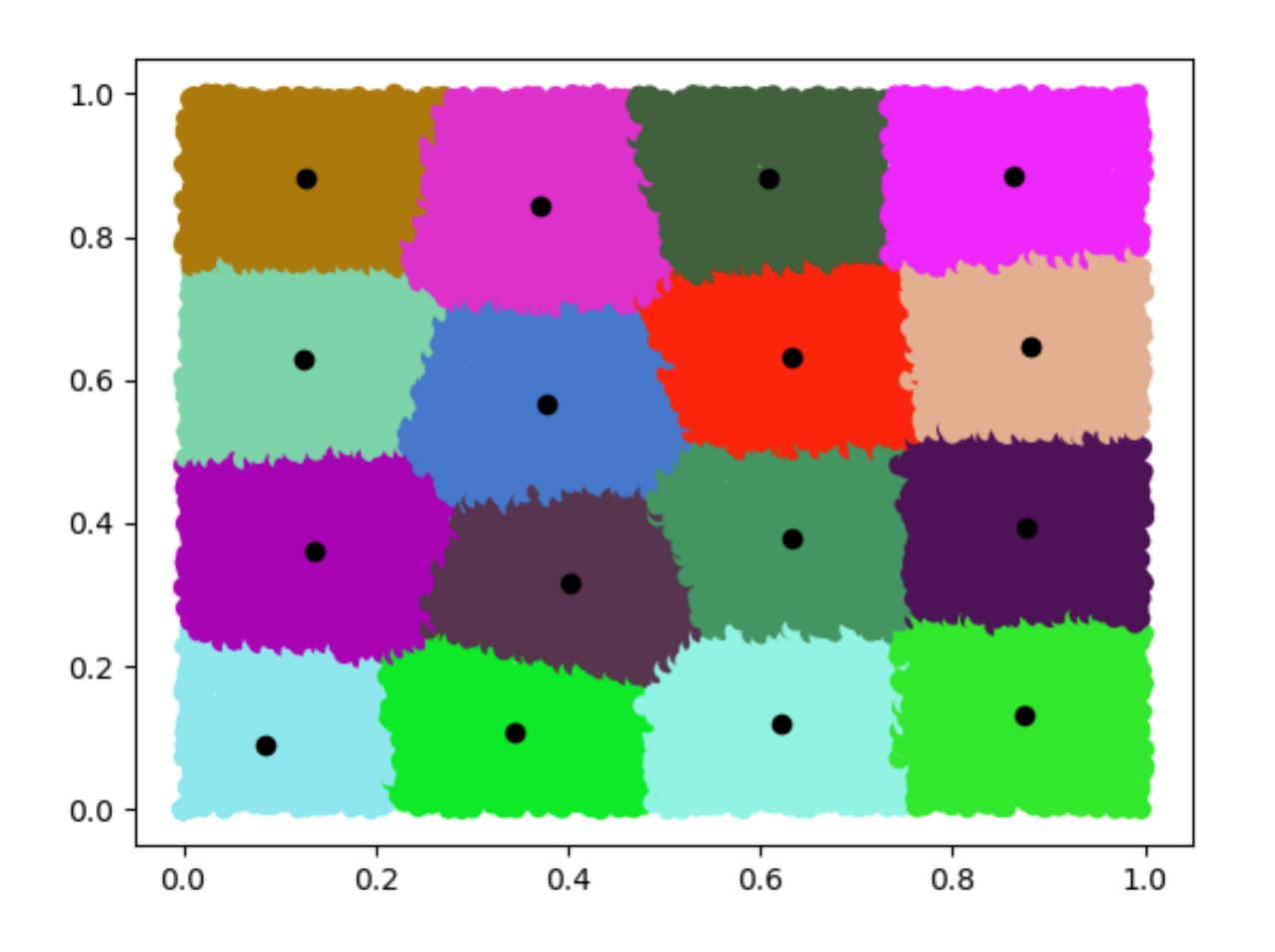


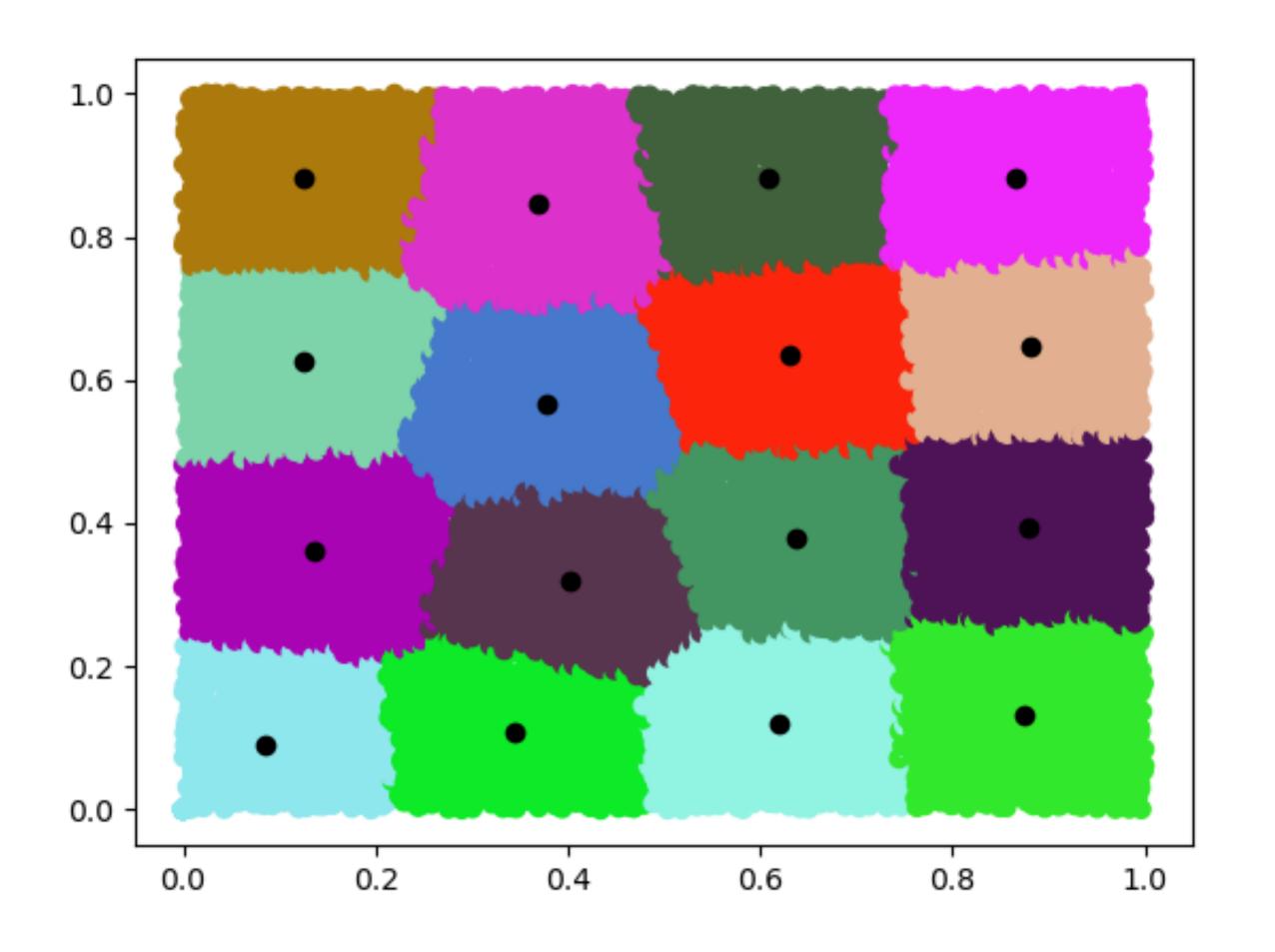


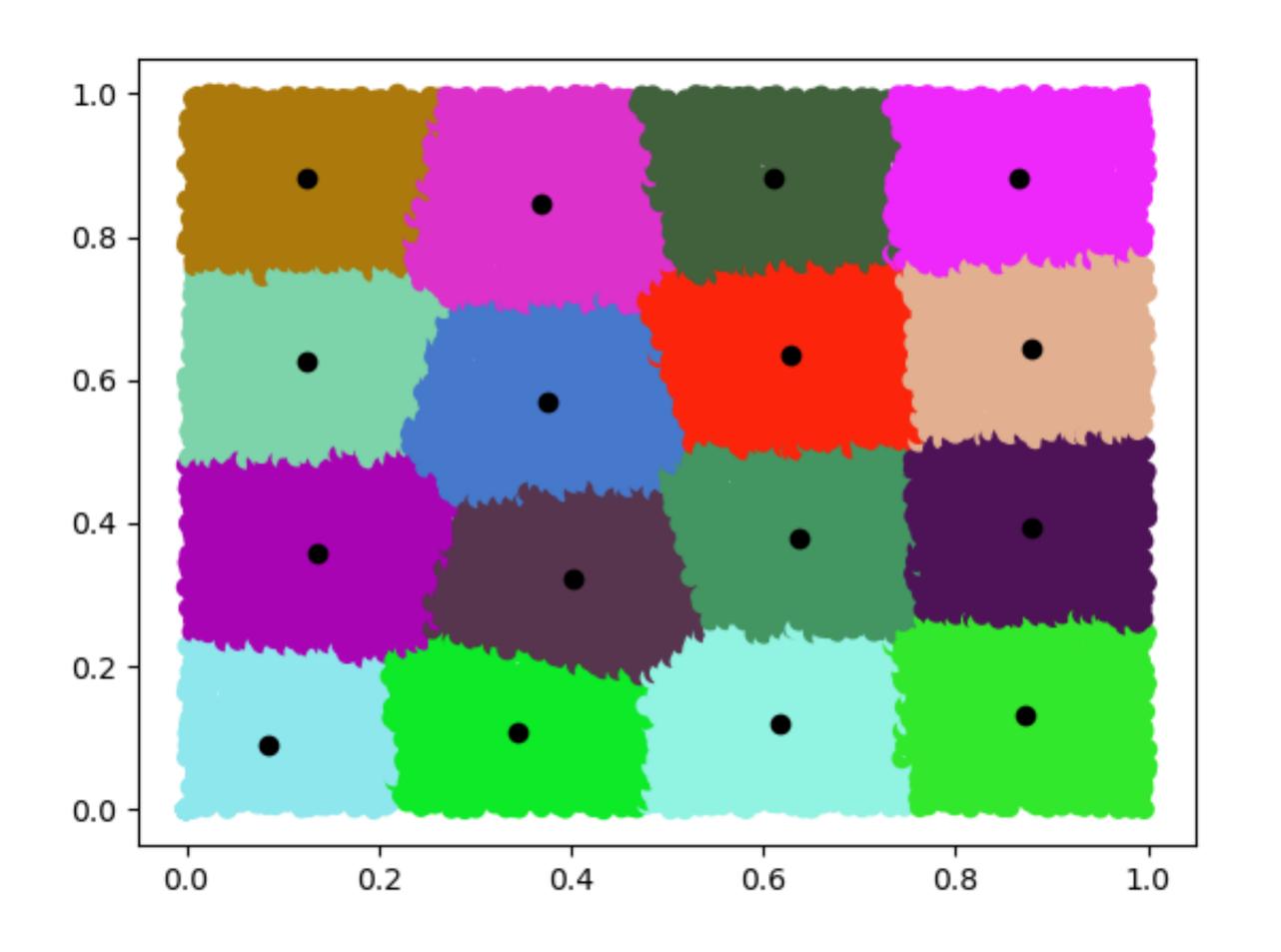




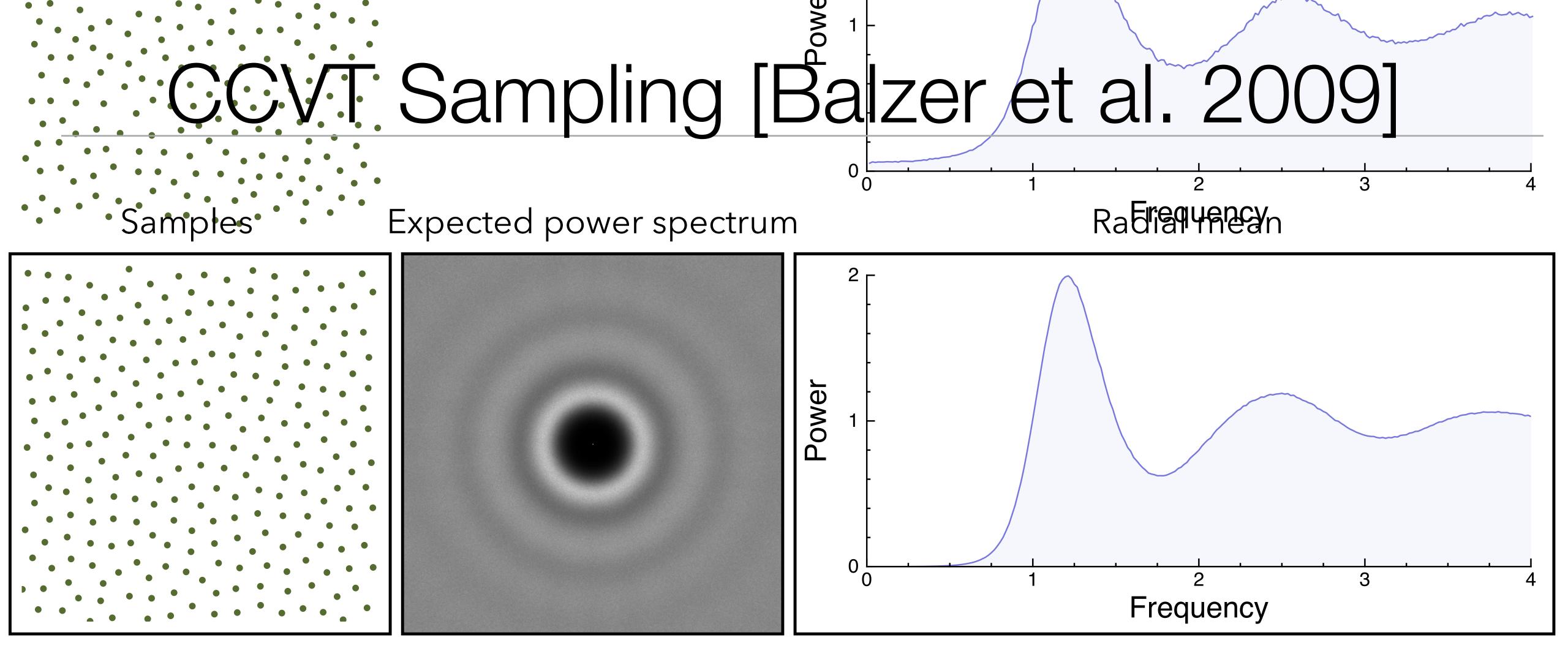




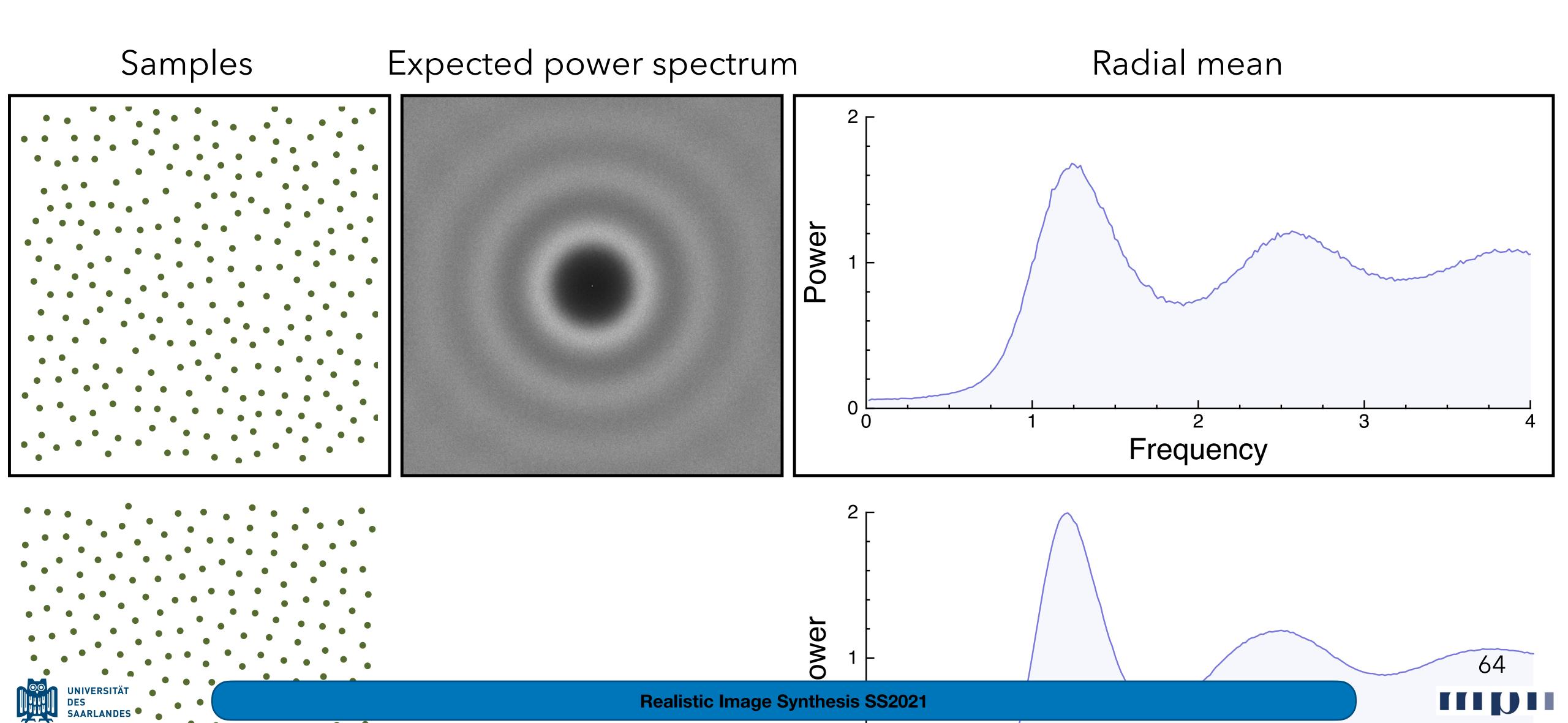




CCVT Sampling [Balzer et al. 2009]



Poisson Disk Sampling



Low-Discrepancy Sampling

Deterministic sets of points specially crafted to be evenly distributed (have low discrepancy).

Entire field of study called Quasi-Monte Carlo (QMC)

Radical Inverse Φ_b in base 2

k Base 2	Φ_b
----------	----------

Radical Inverse Φ_b in base 2

k	Base 2	Φ_b
1	1	.1 = 1/2

Radical Inverse Φ_b in base 2

K	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4

Radical Inverse Φ_b in base 2

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4

Radical Inverse Φ_b in base 2

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8

Radical Inverse Φ_b in base 2

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8

Radical Inverse Φ_b in base 2

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
6	110	.011 = 3/8

Radical Inverse Φ_b in base 2

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
6	110	.011 = 3/8
7	111	.111 = 7/8

Radical Inverse Φ_b in base 2

K	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
6	110	.011 = 3/8
7	111	.111 = 7/8

Halton and Hammersley Points

Halton: Radical inverse with different base for each dimension:

$$\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$$

Halton and Hammersley Points

Halton: Radical inverse with different base for each dimension:

$$\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$$

- The bases should all be relatively prime.

Halton and Hammersley Points

Halton: Radical inverse with different base for each dimension:

$$\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$$

- The bases should all be relatively prime.
- Incremental/progressive generation of samples

Halton and Hammersley Points

Halton: Radical inverse with different base for each dimension:

$$\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$$

- The bases should all be relatively prime.
- Incremental/progressive generation of samples

Hammersley: Same as Halton, but first dimension is k/N:

$$\vec{x}_k = (k/N, \Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$$

Halton and Hammersley Points

Halton: Radical inverse with different base for each dimension:

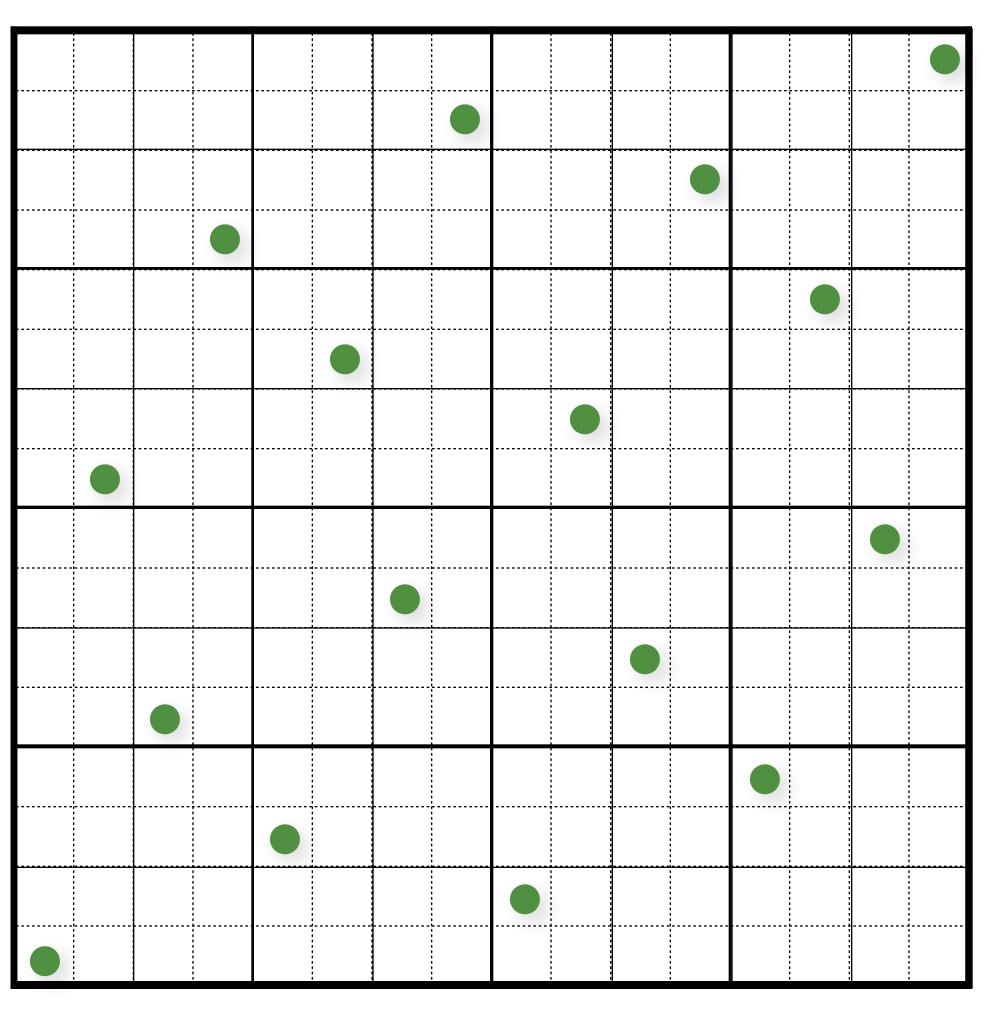
$$\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$$

- The bases should all be relatively prime.
- Incremental/progressive generation of samples

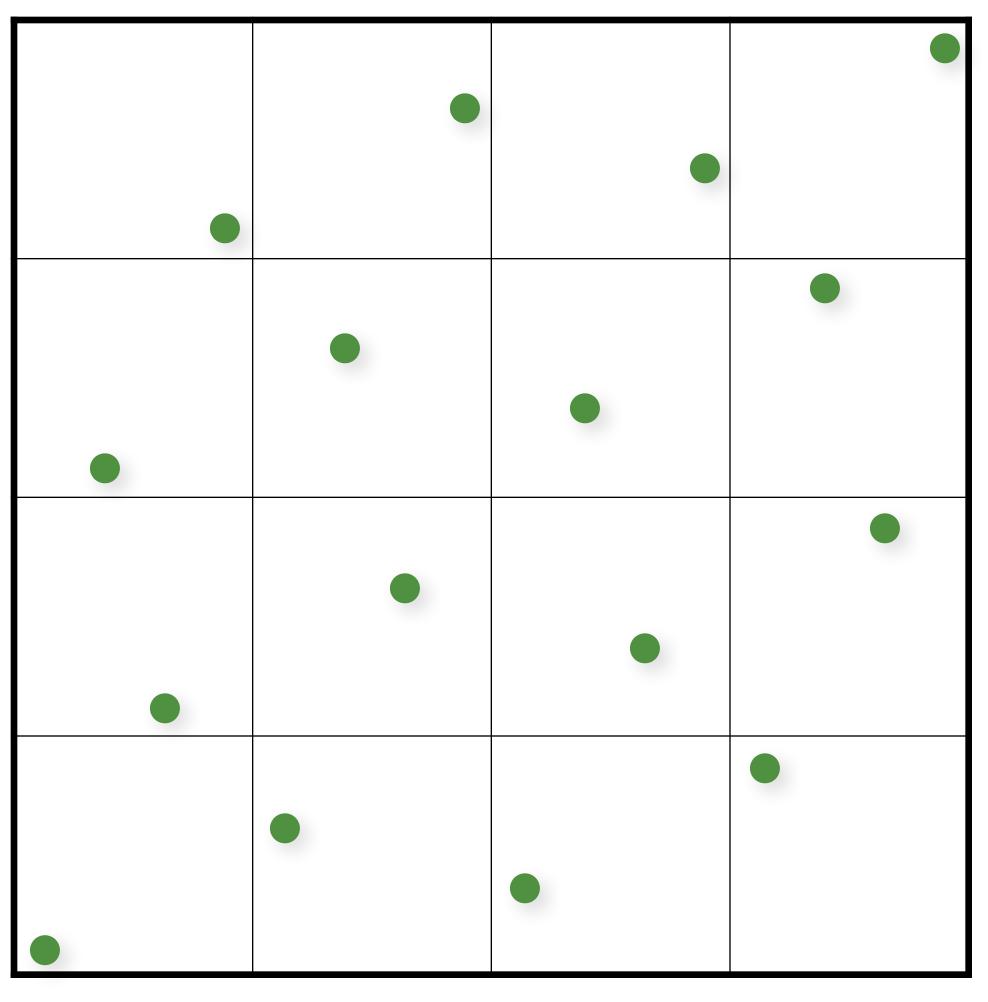
Hammersley: Same as Halton, but first dimension is k/N:

$$\vec{x}_k = (k/N, \Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$$

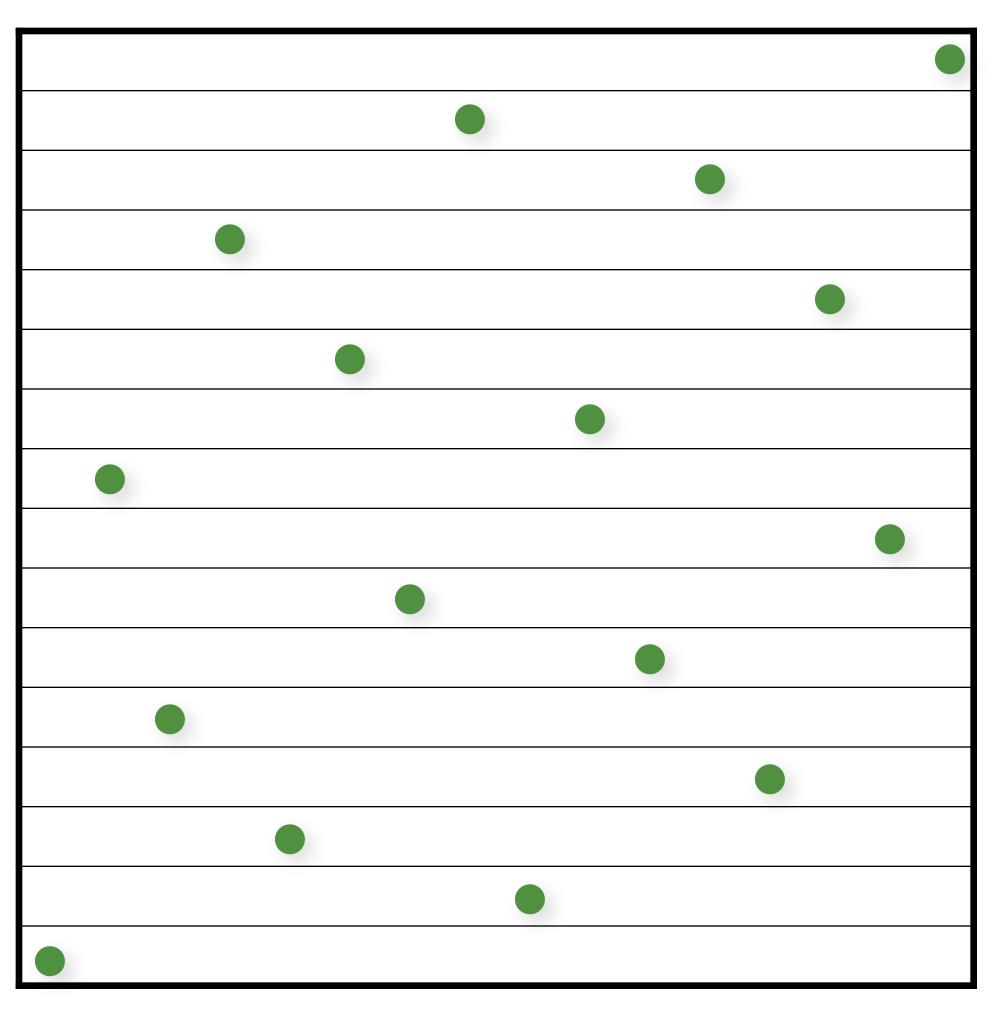
- Not incremental, need to know sample count, N, in advance



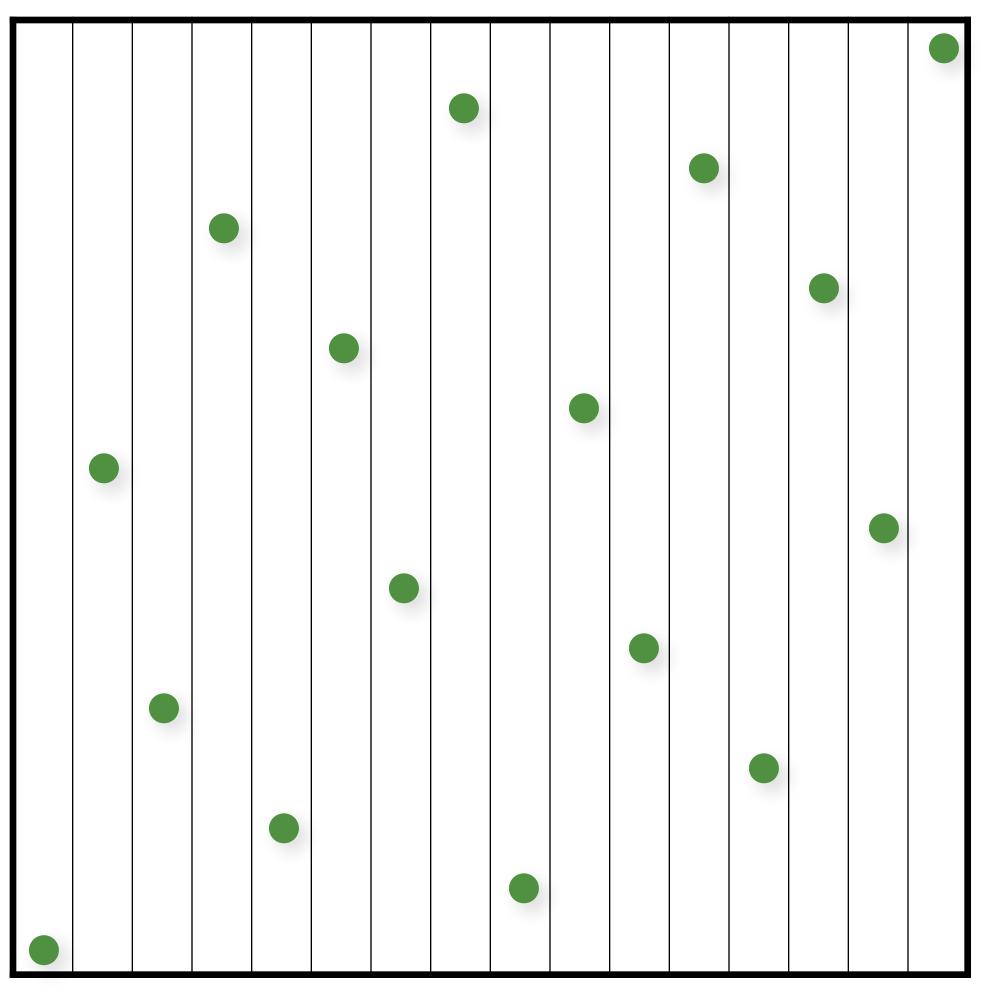
1 sample in each "elementary interval"



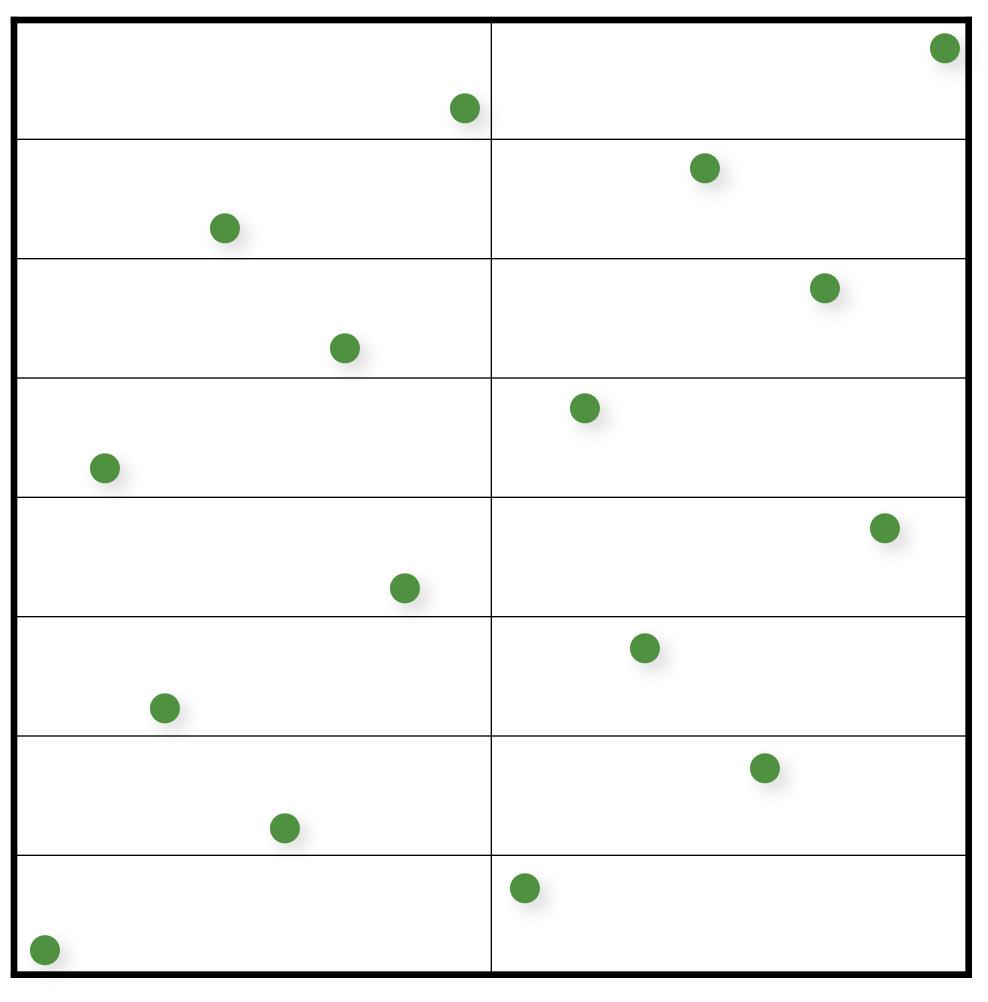
1 sample in each "elementary interval"



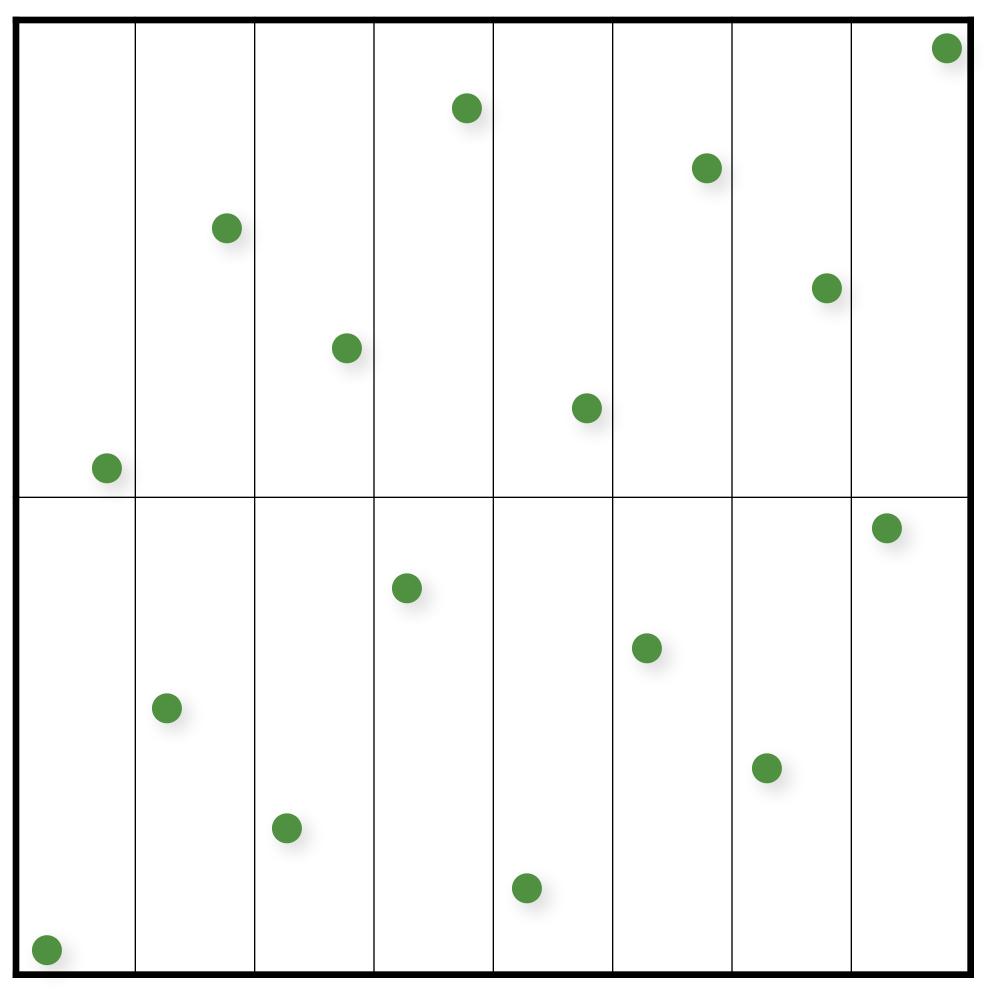
1 sample in each "elementary interval"



1 sample in each "elementary interval"

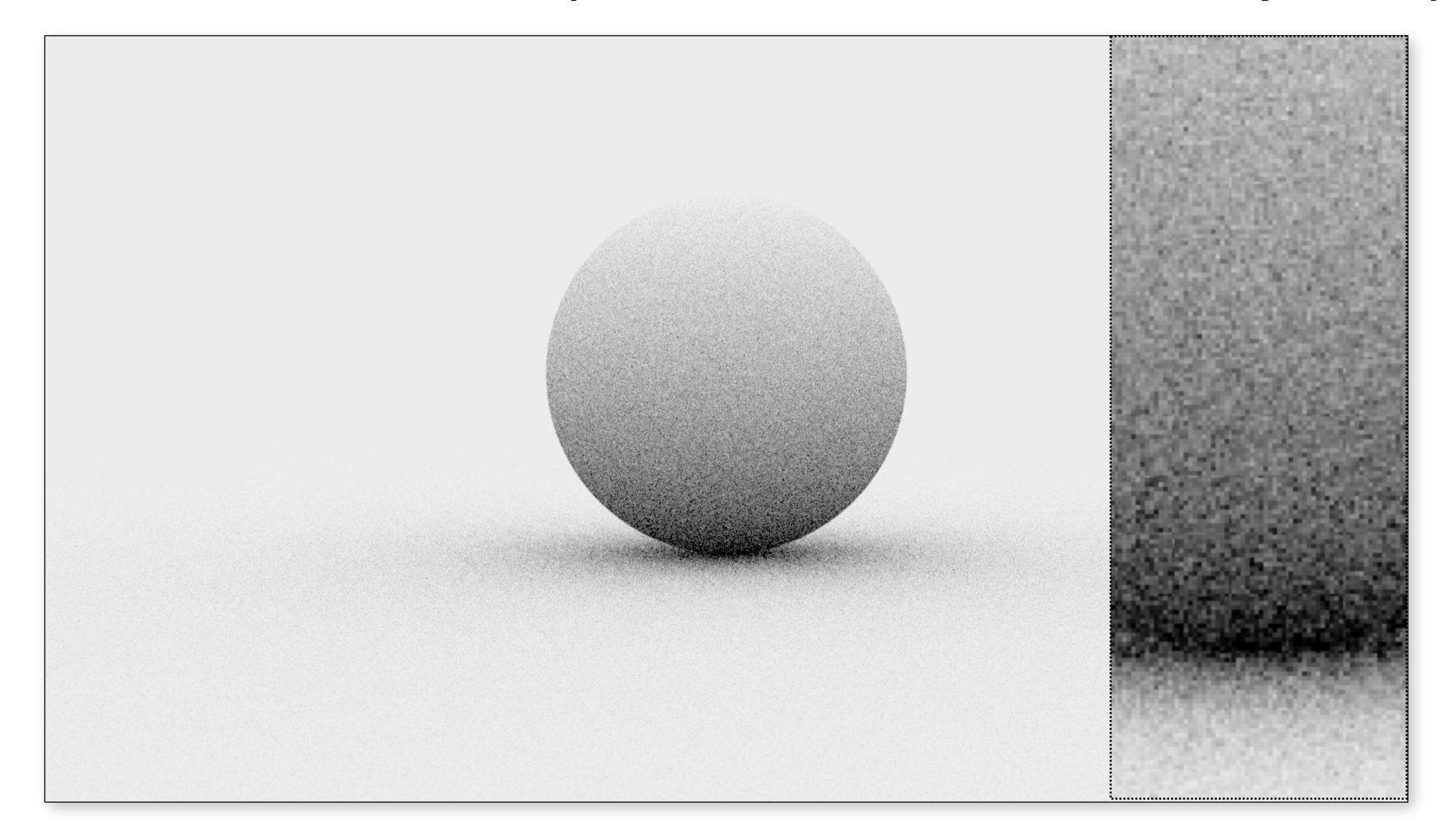


1 sample in each "elementary interval"

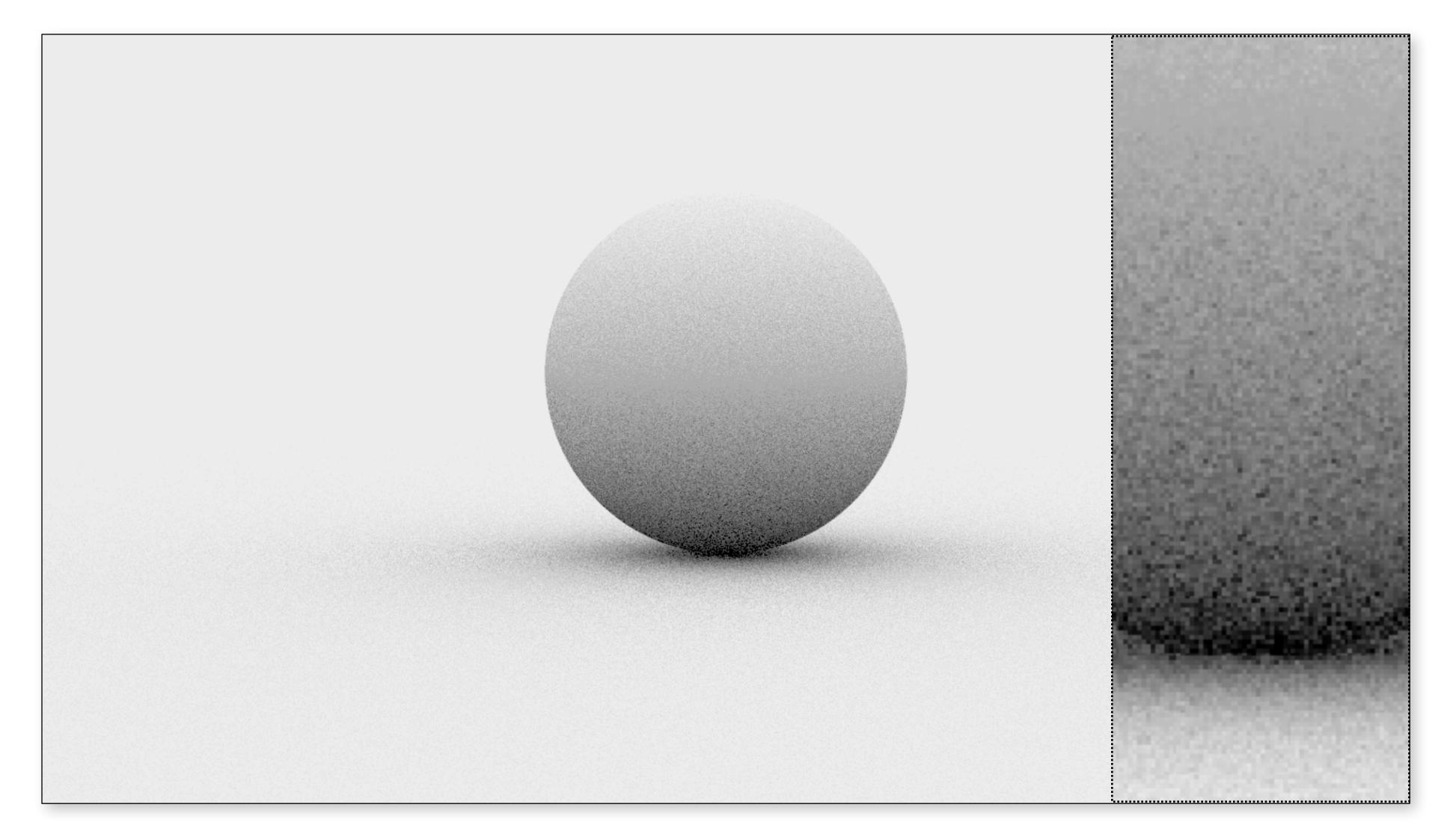


1 sample in each "elementary interval"

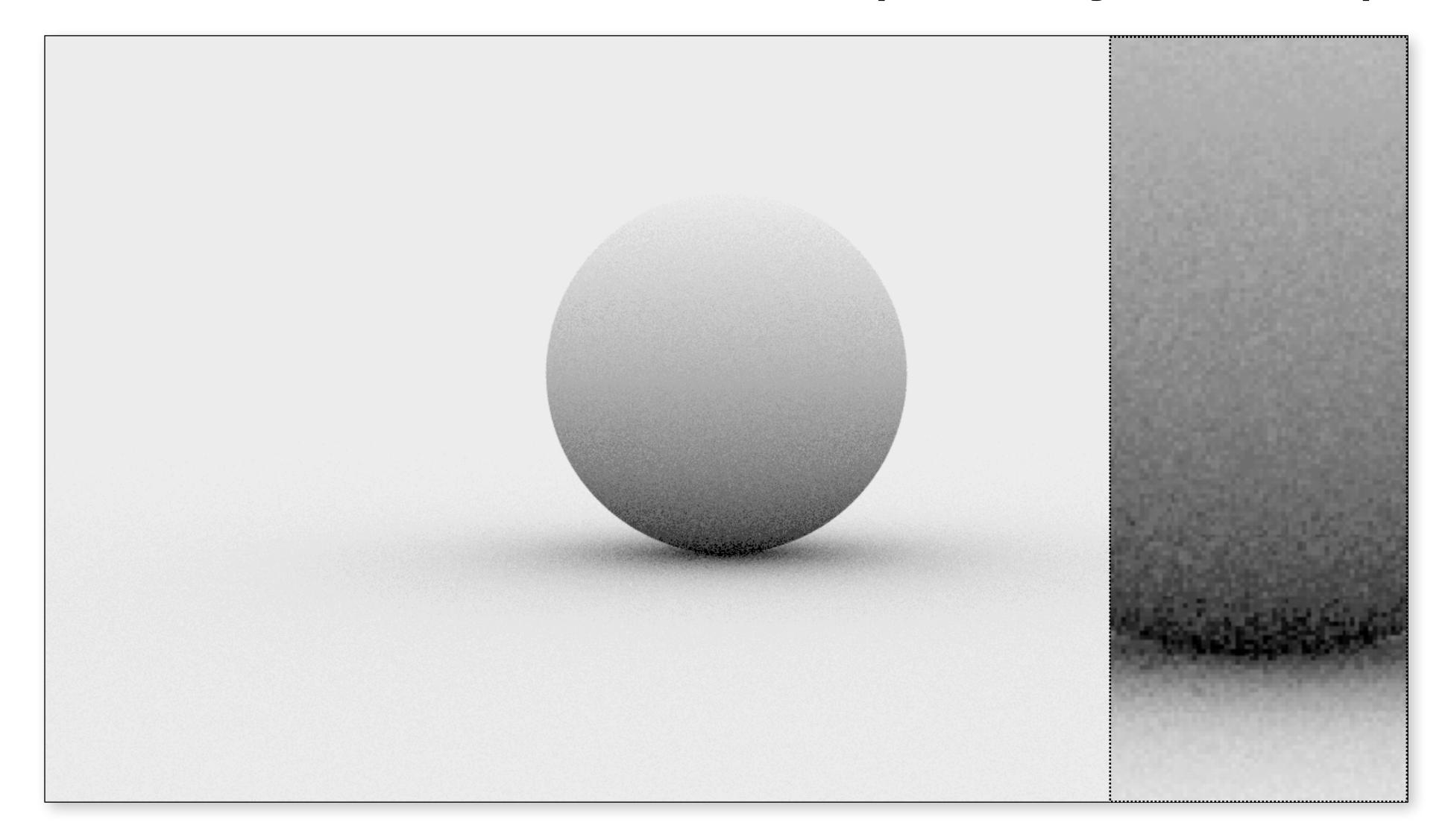
Monte Carlo (16 random samples)



Monte Carlo (16 jittered samples)



Scrambled Low-Discrepancy Sampling

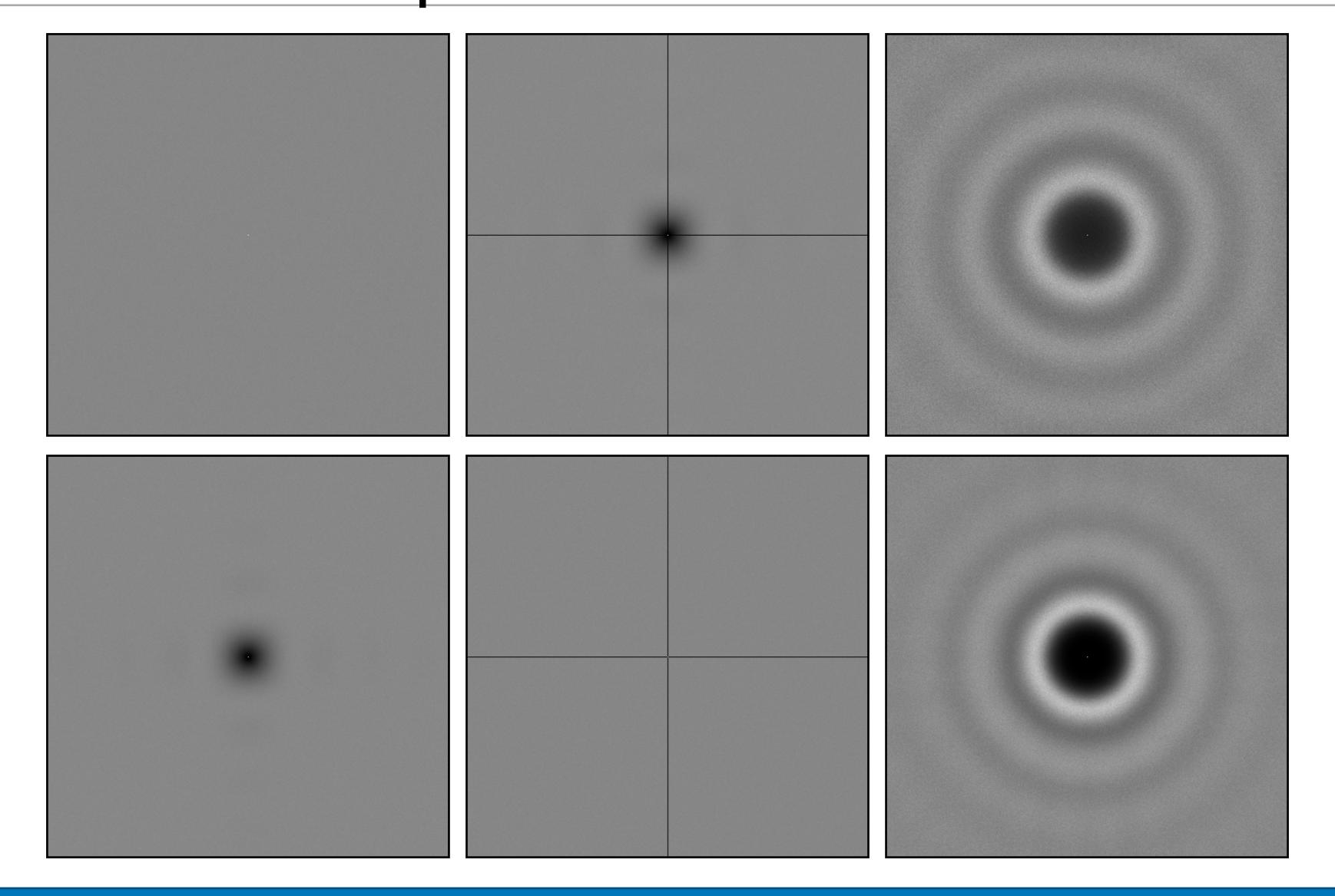


More info on QMC in Rendering

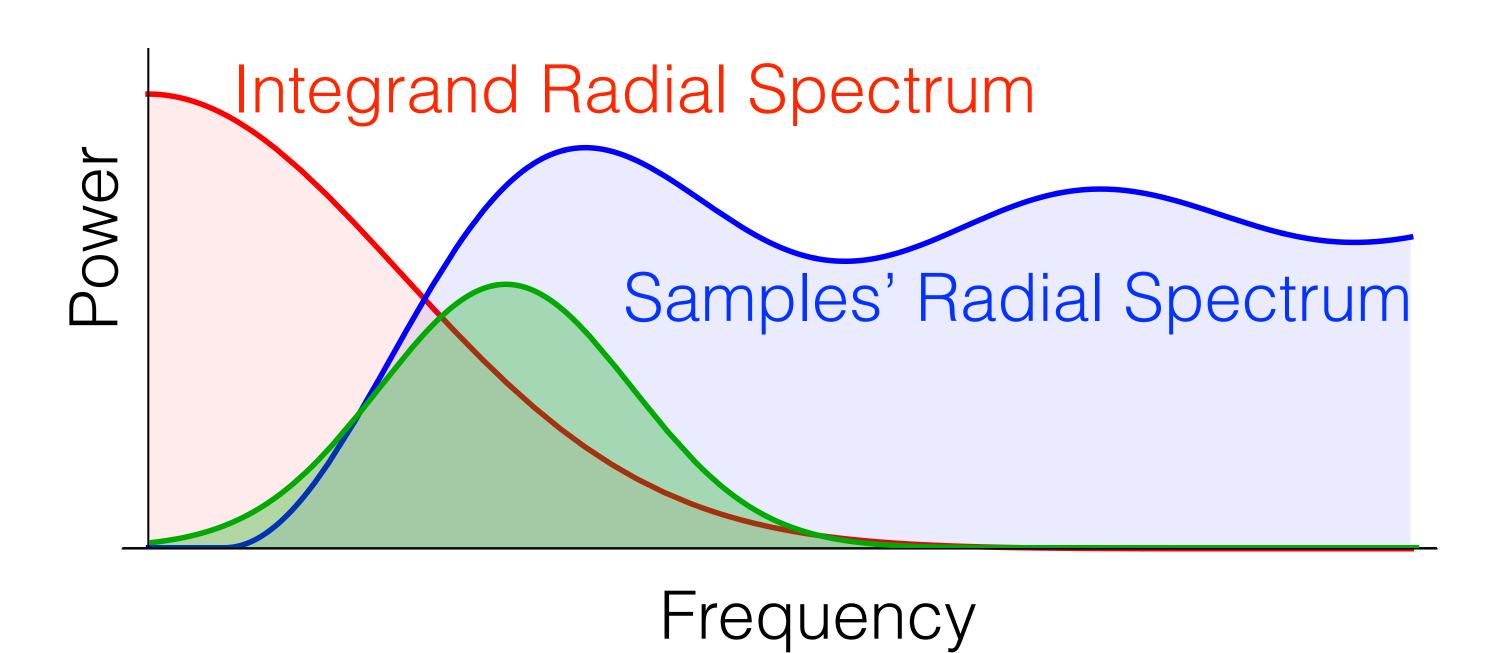
S. Premoze, A. Keller, and M. Raab.

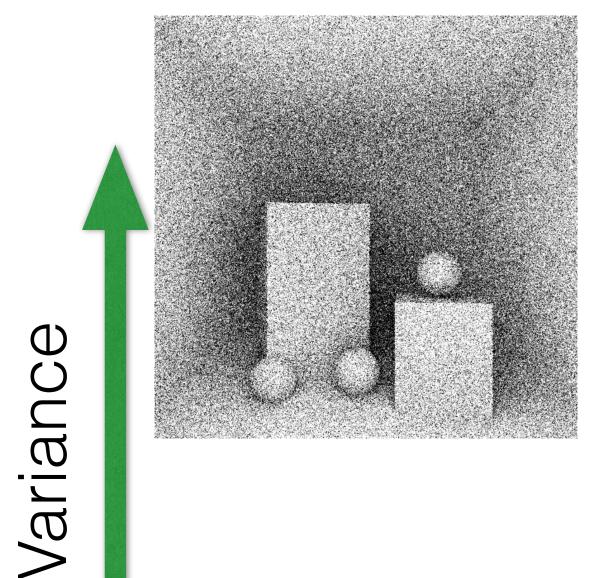
Advanced (Quasi-) Monte Carlo Methods for Image Synthesis. In SIGGRAPH 2012 courses.

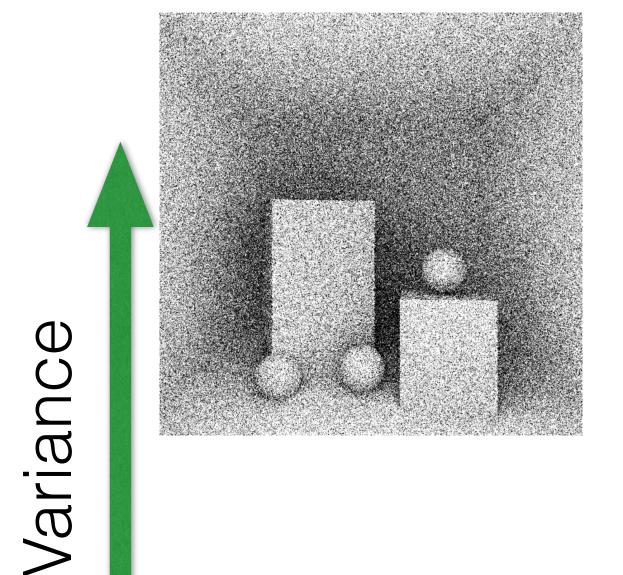
How can we predict error from these?

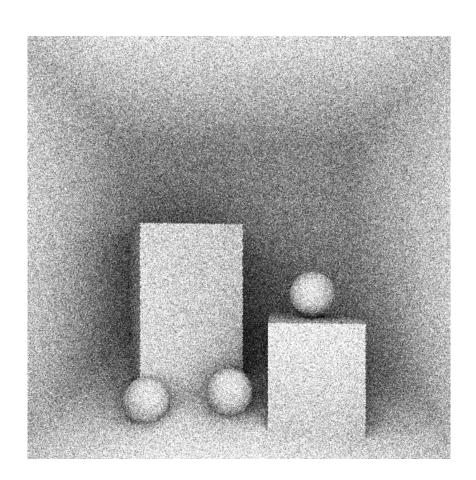


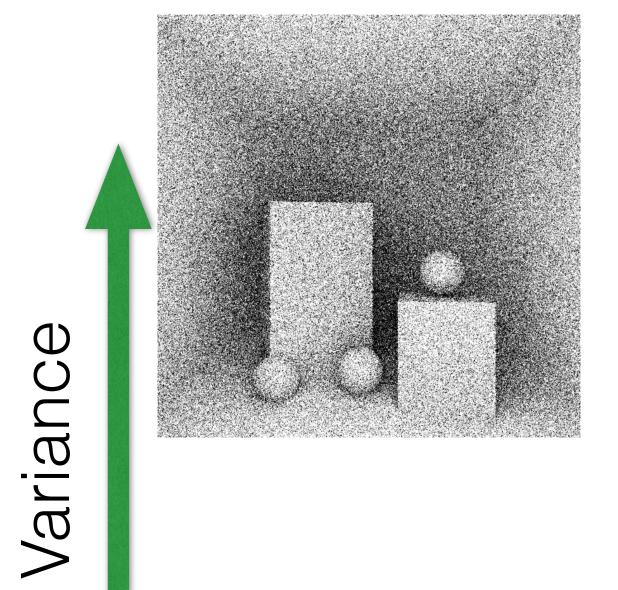
Part 2: Formal Treatment of MSE, Bias and Variance

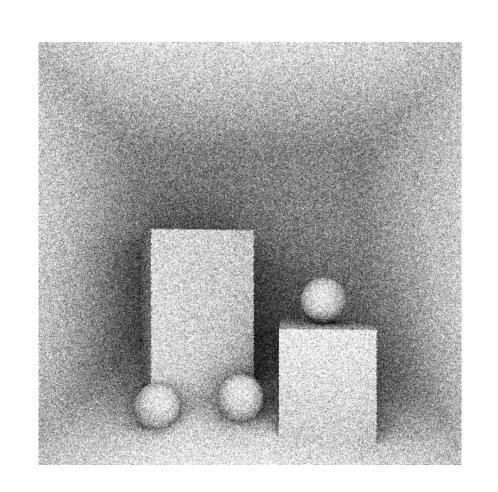




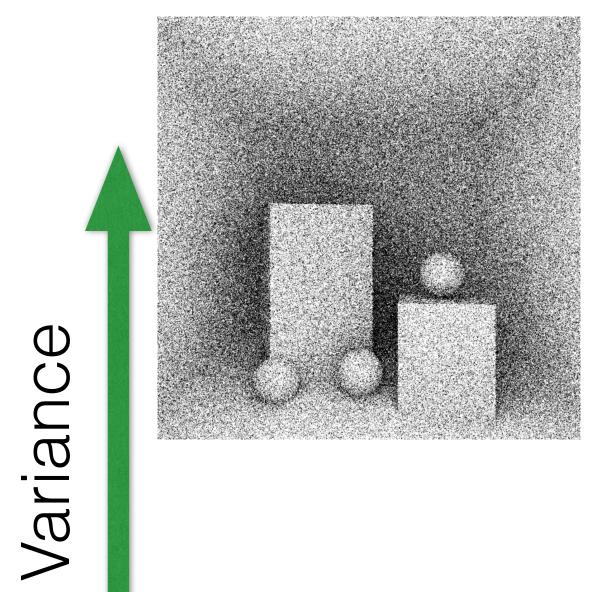


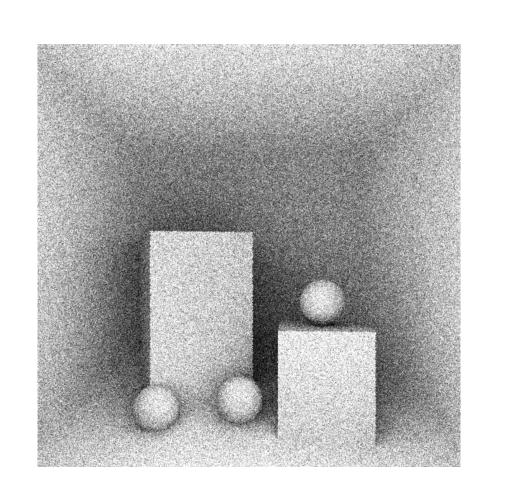


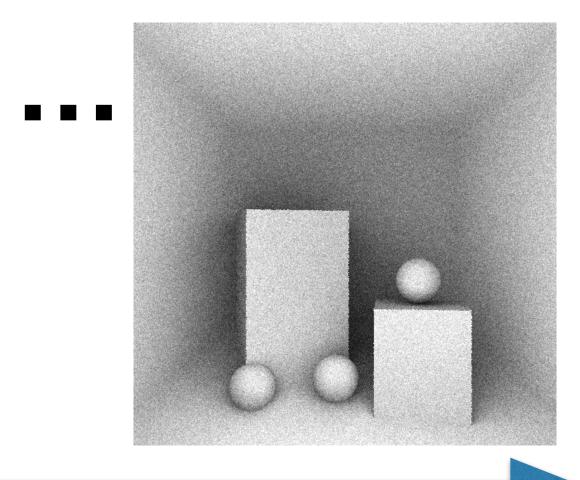




Increasing Samples

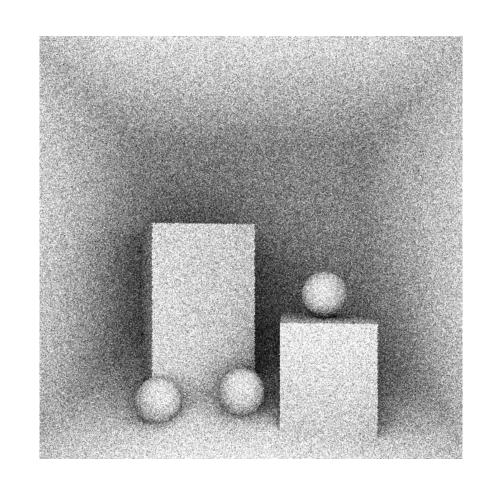


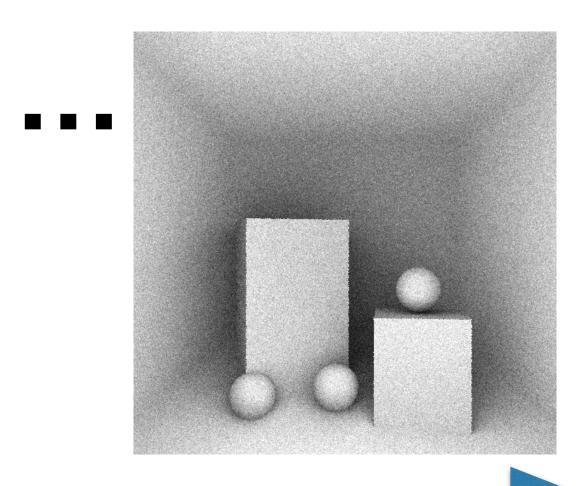


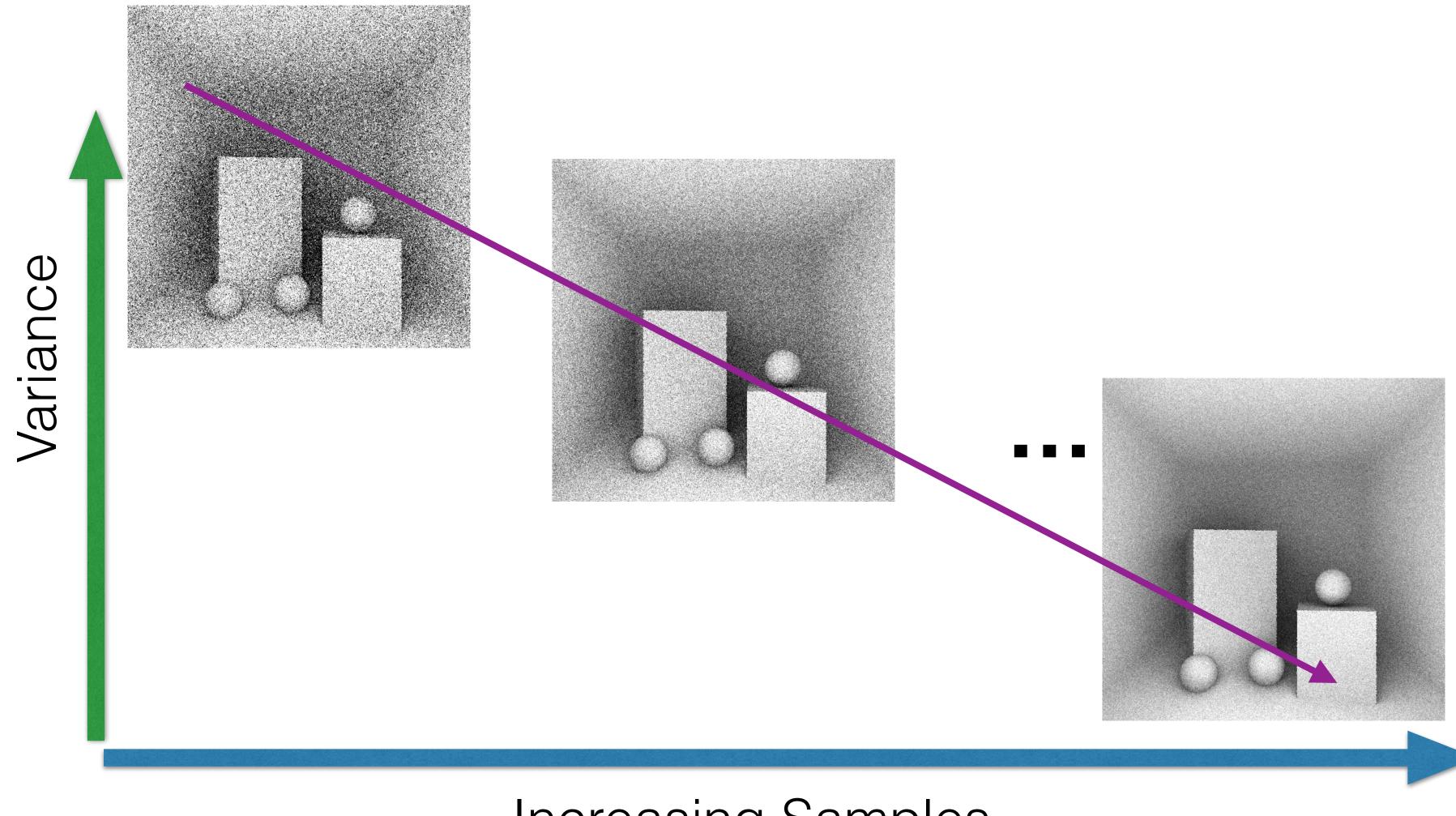


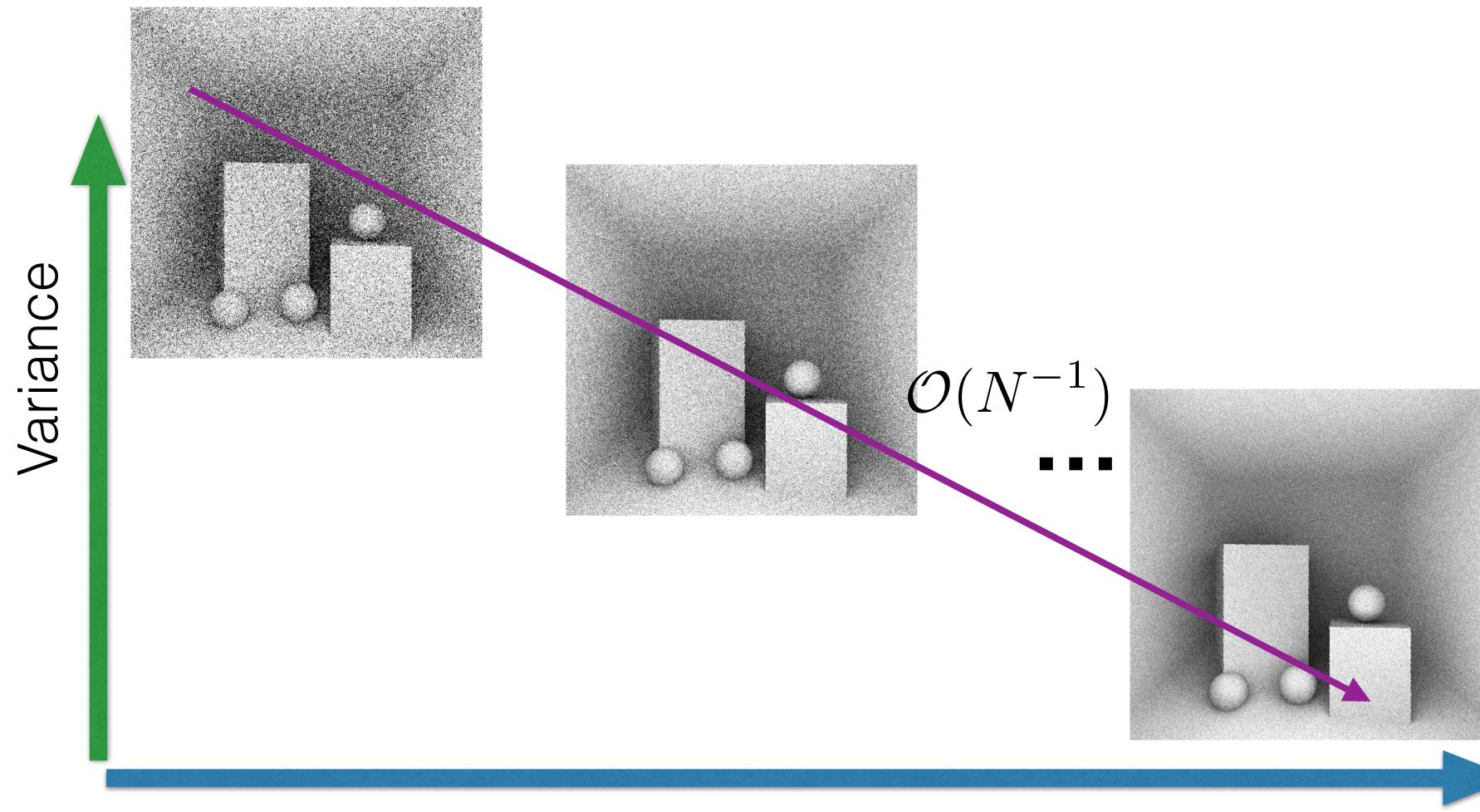
Increasing Samples



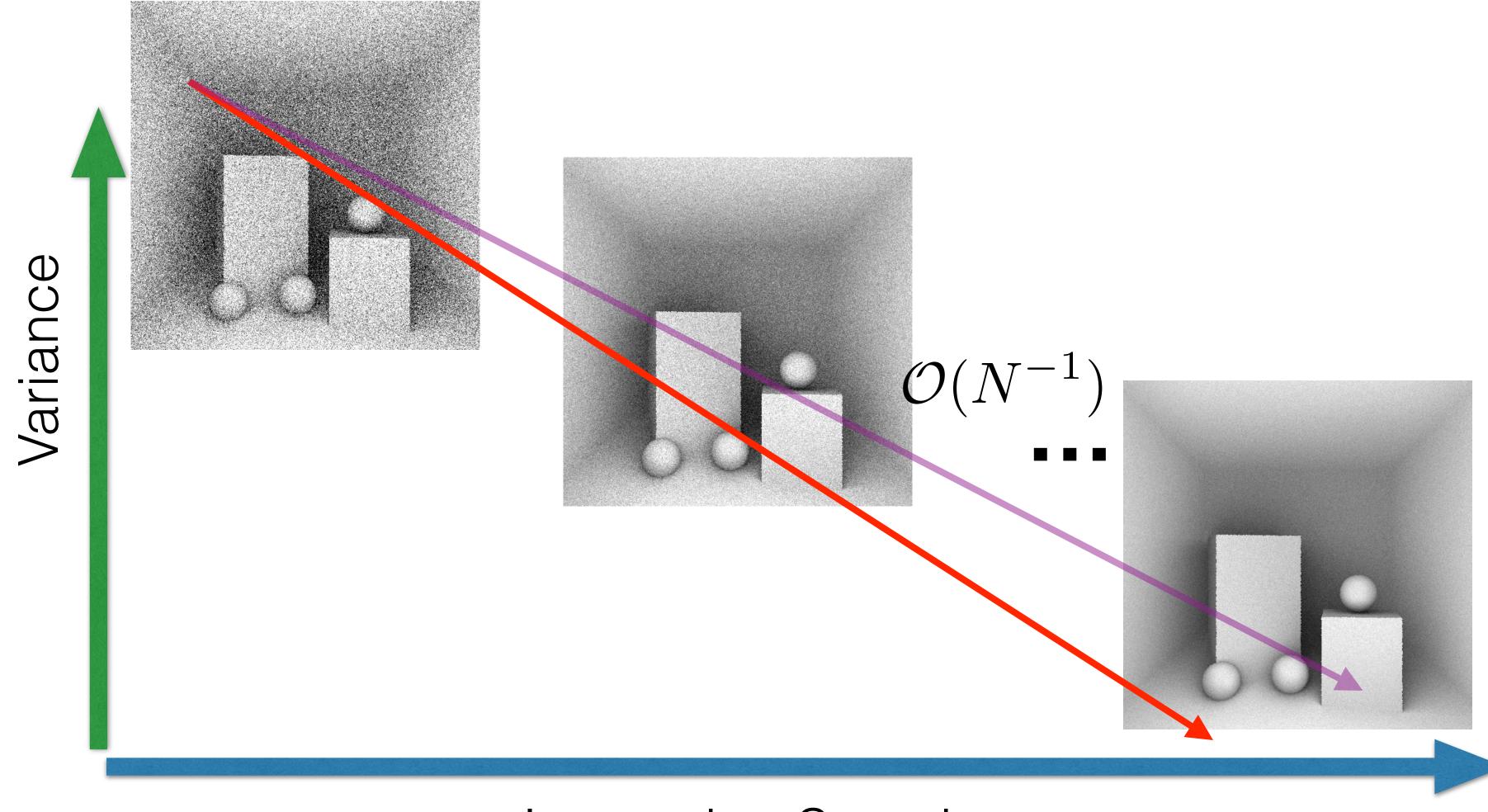




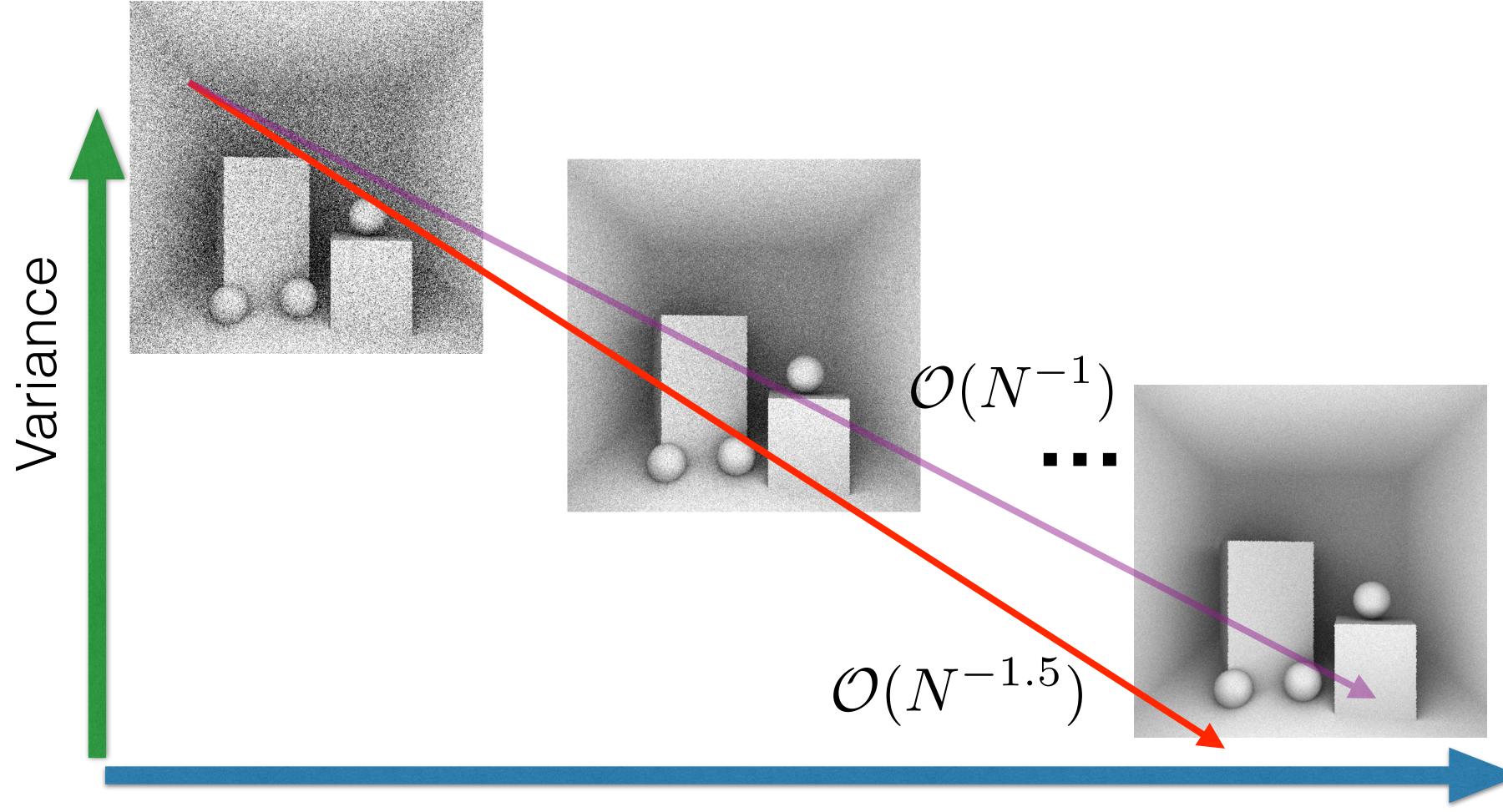


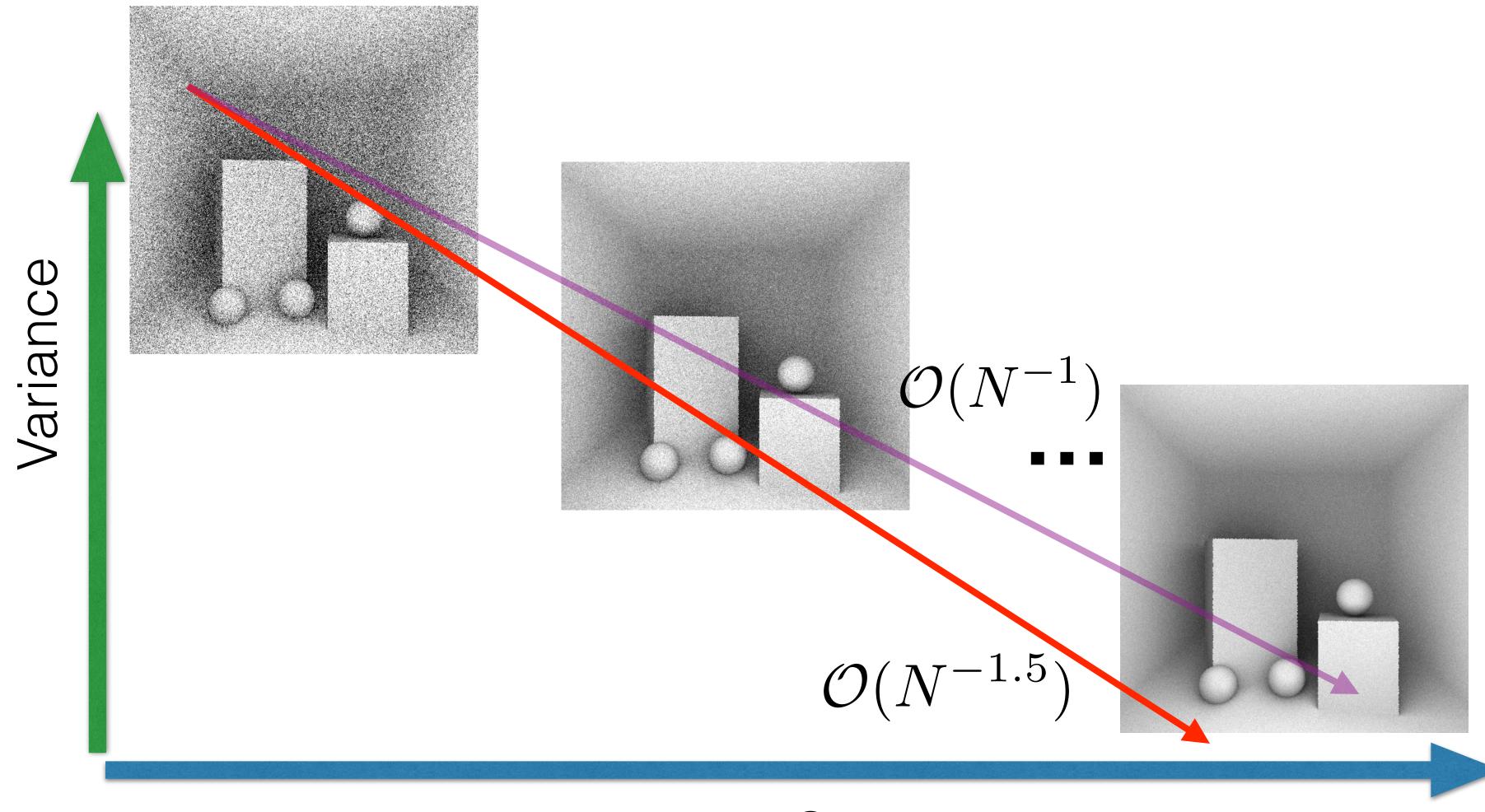


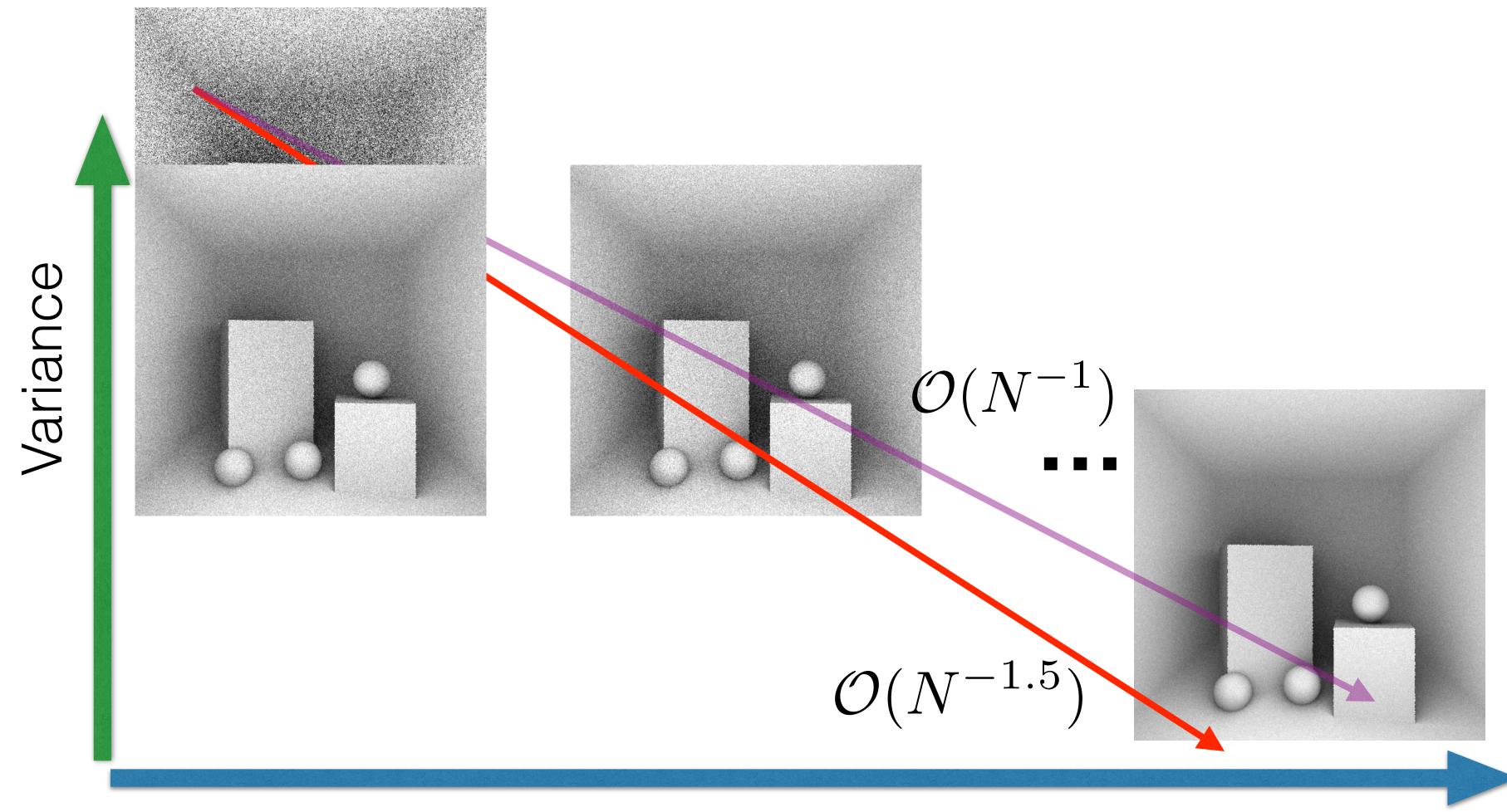
Convergence rate for Jittered Samples

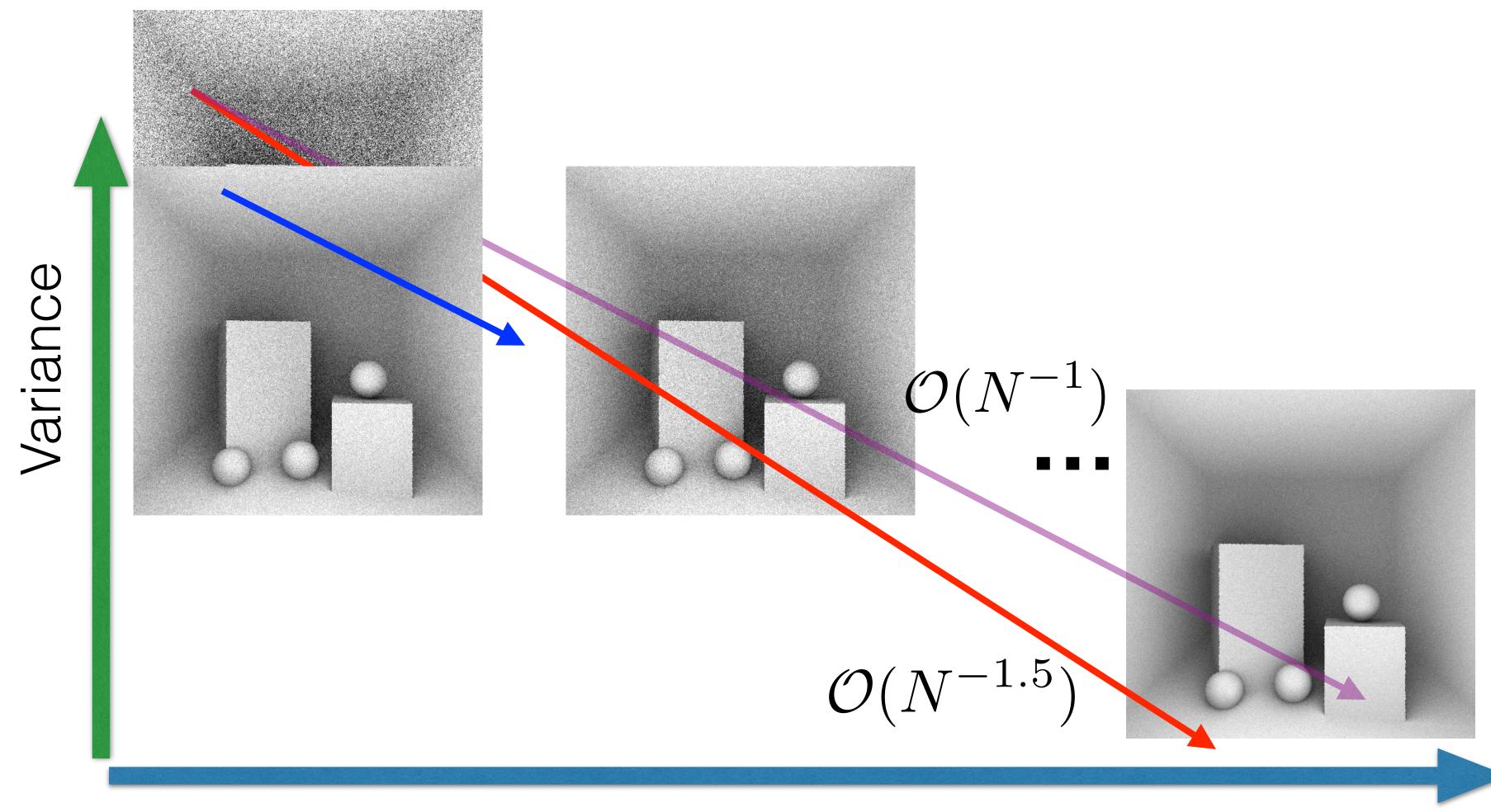


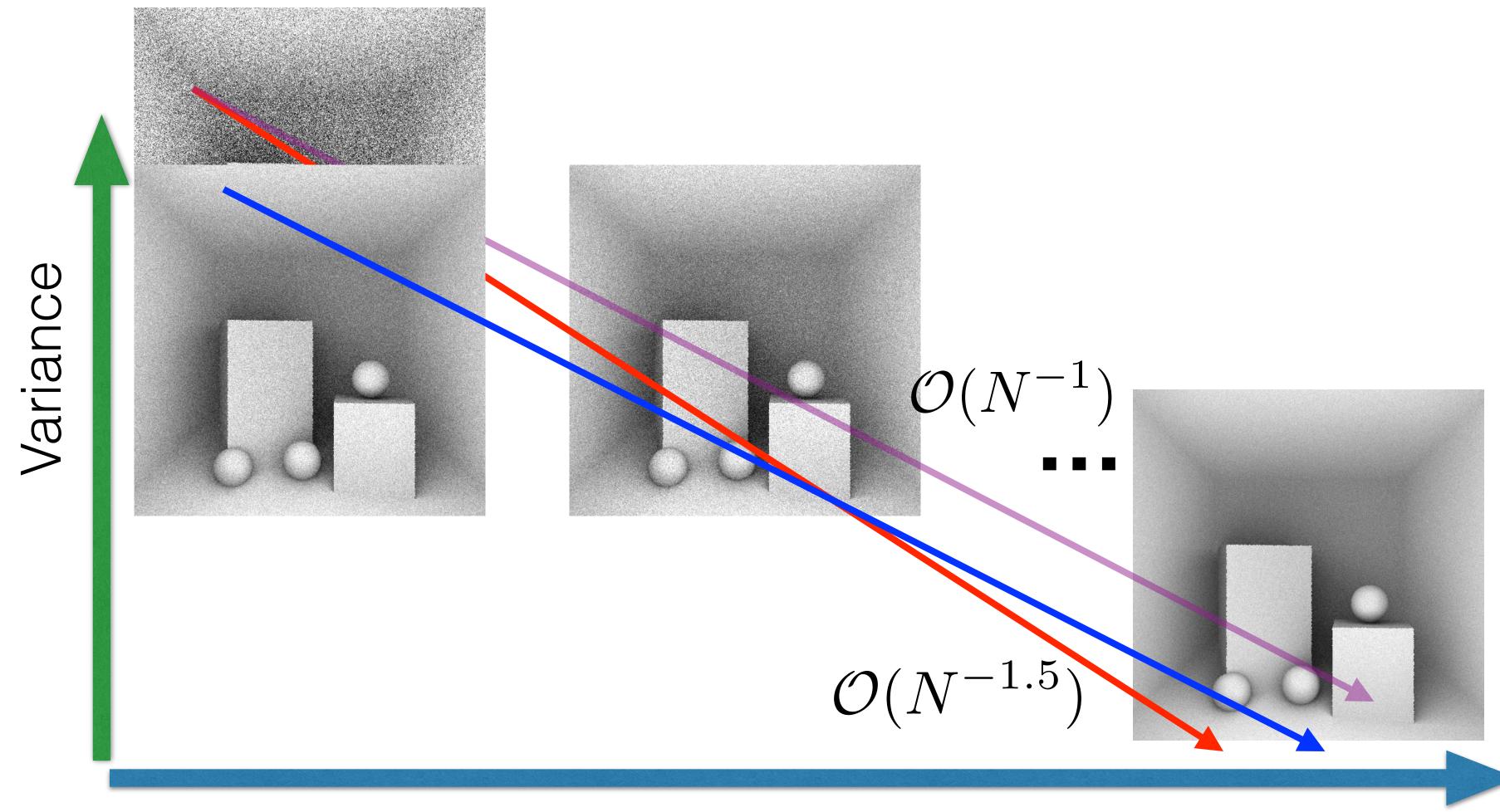
Convergence rate for Jittered Samples



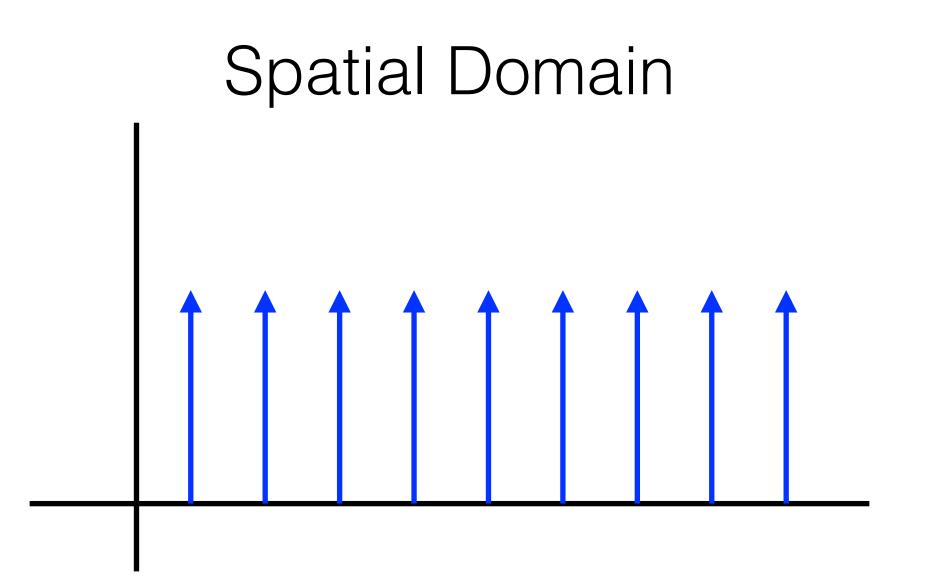




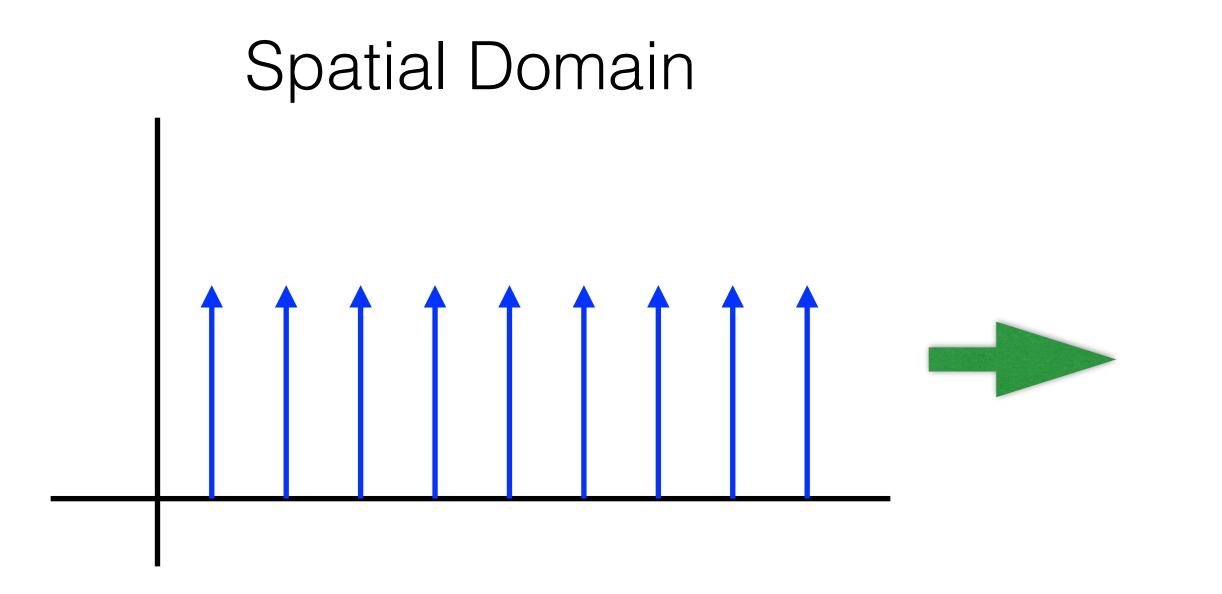




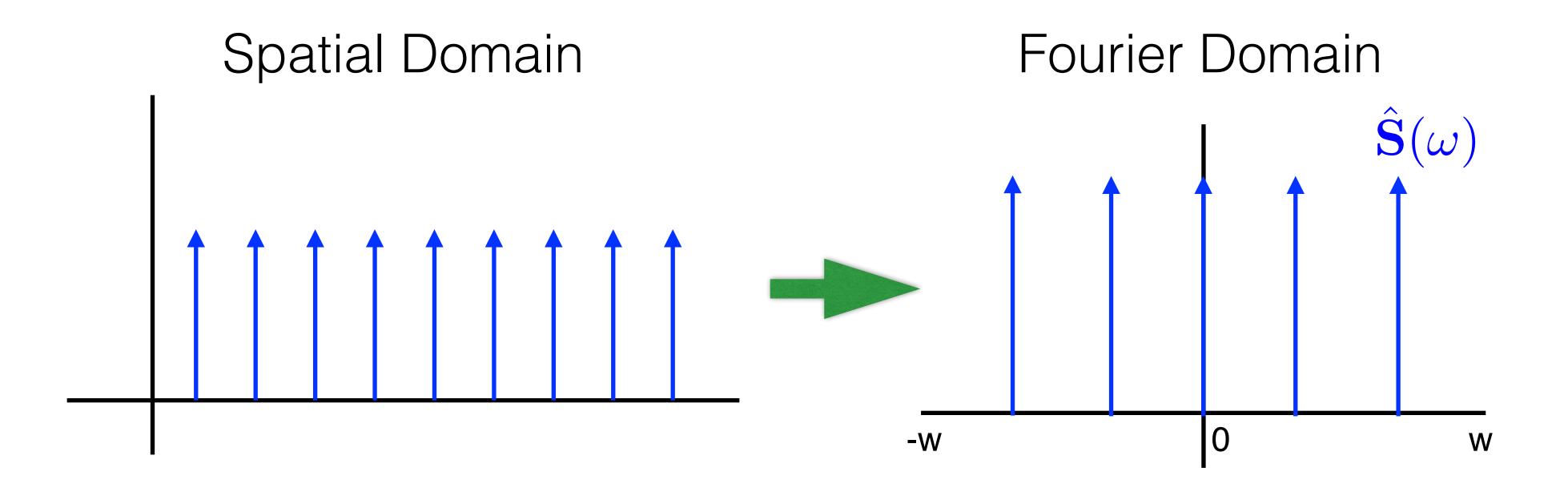
Increasing Samples



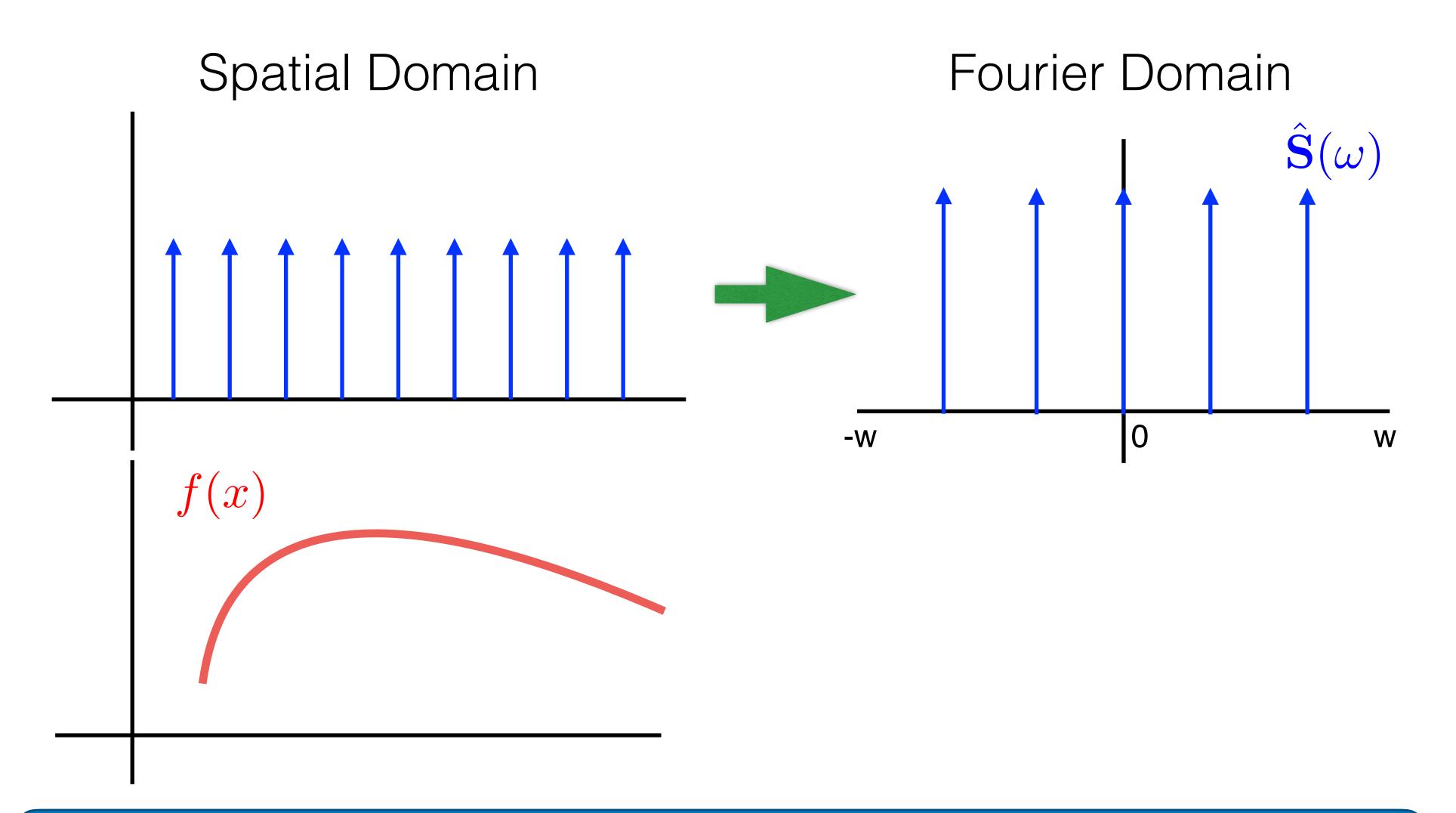
Fourier Domain

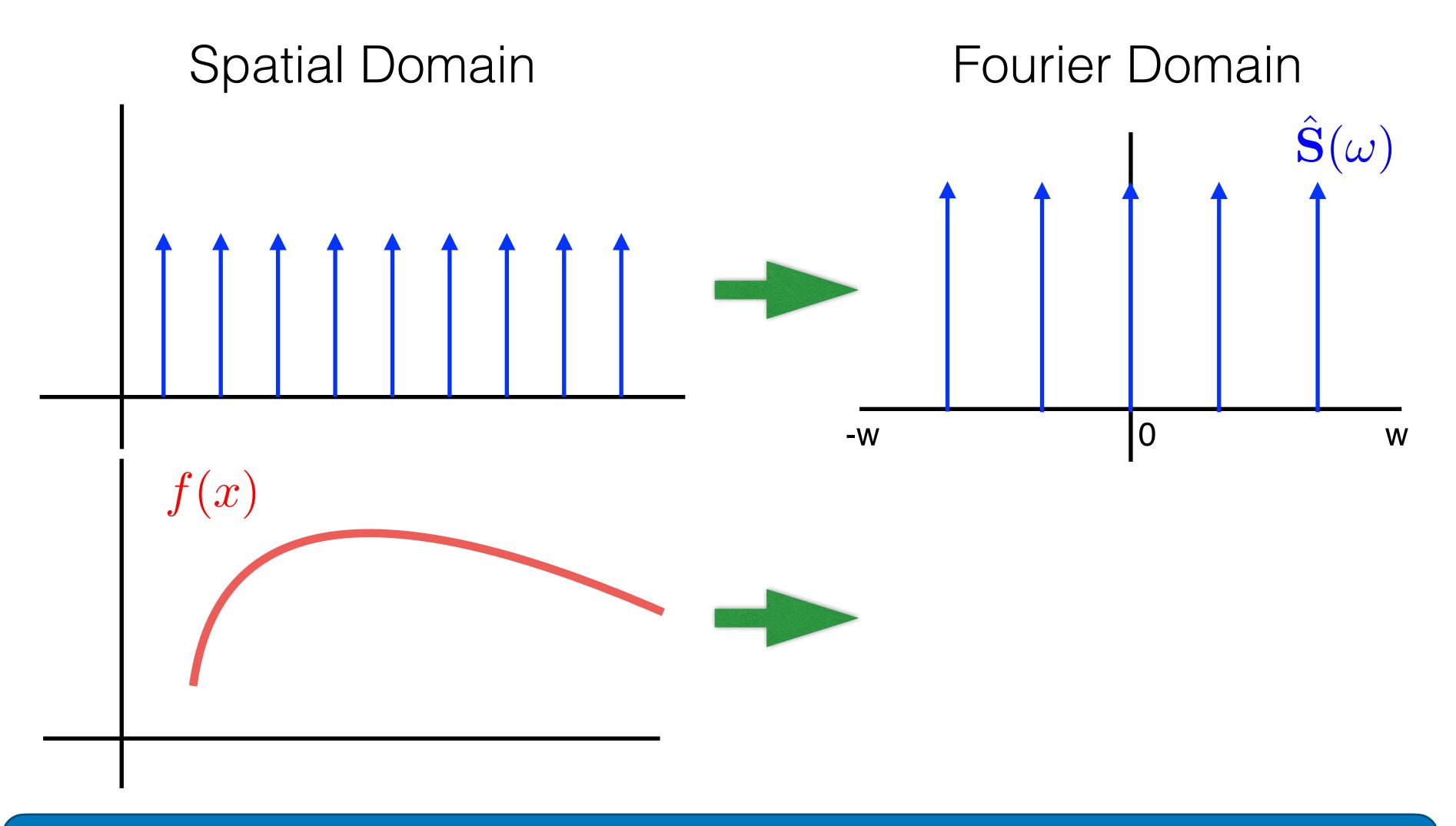


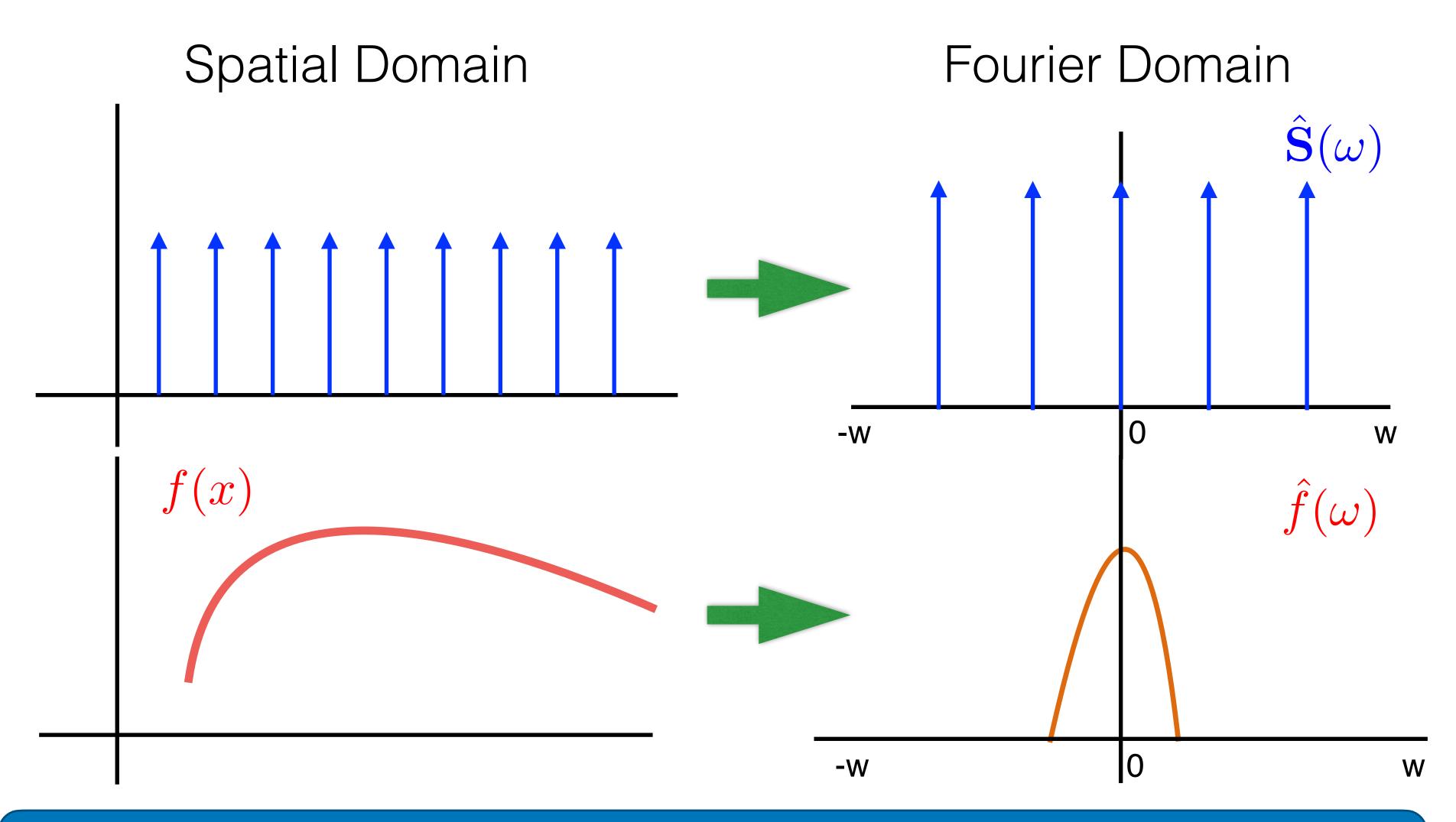
Fourier Domain



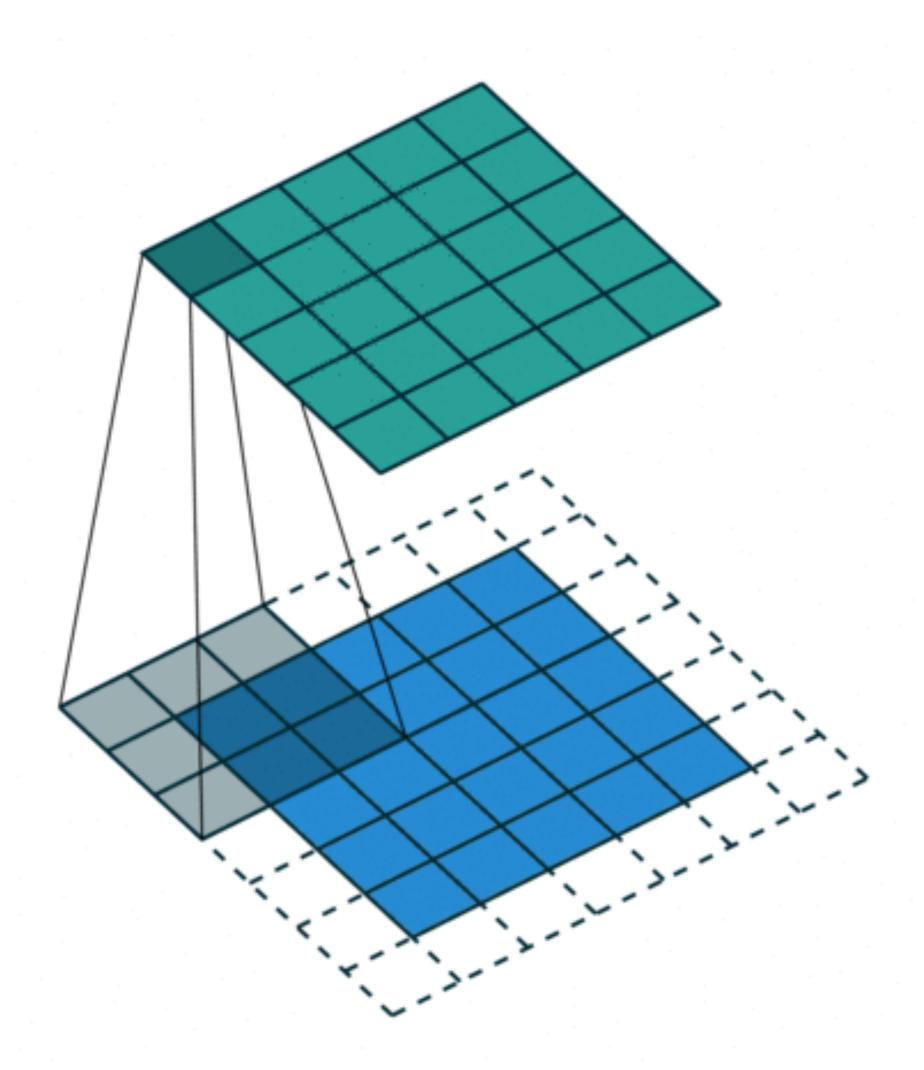
ШДШ







Convolution



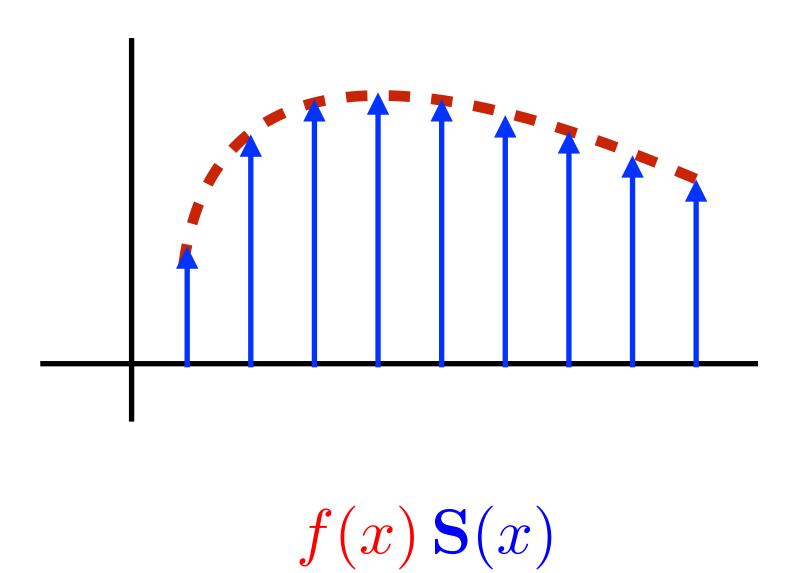
Source: vdumoulin-github

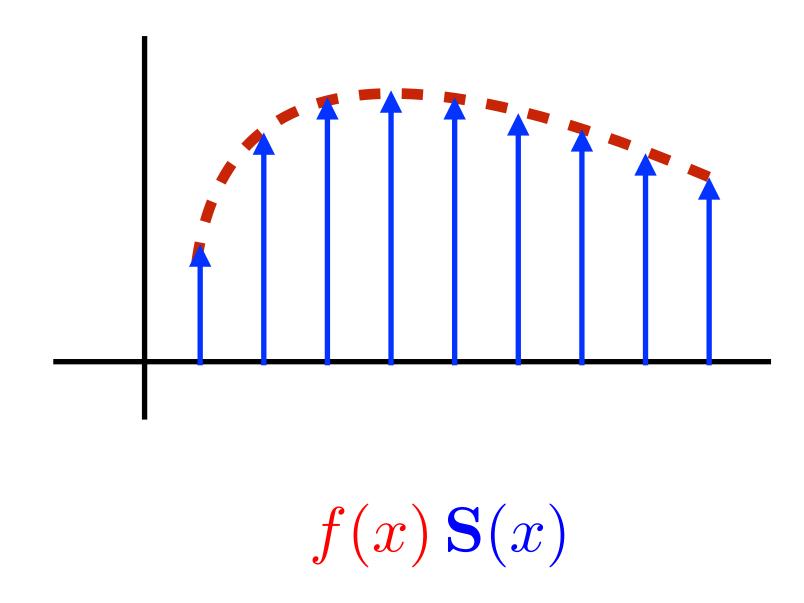
Convolution



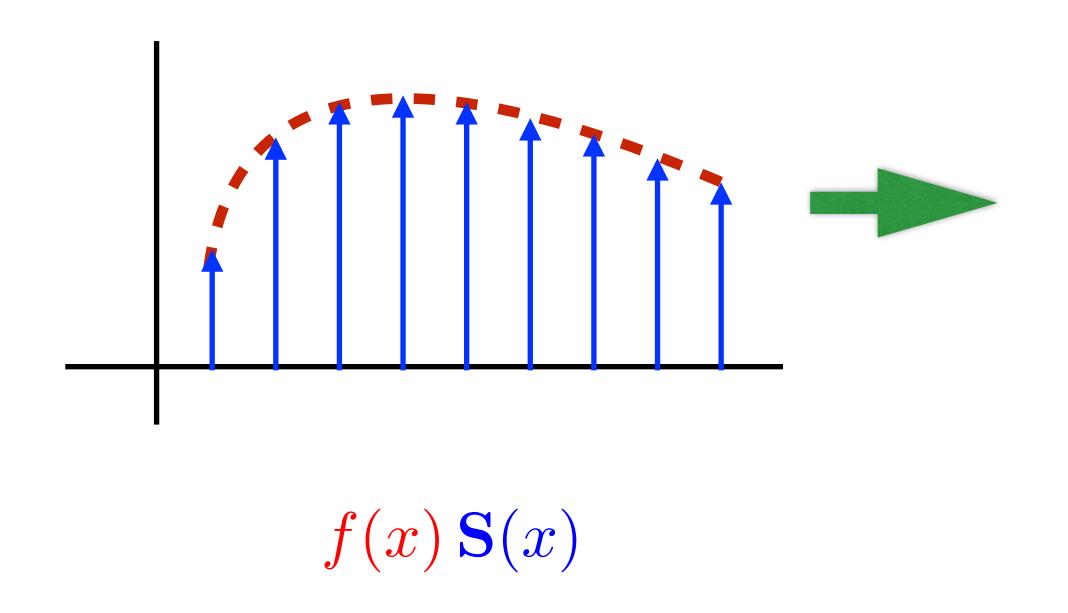
Source: vdumoulin-github

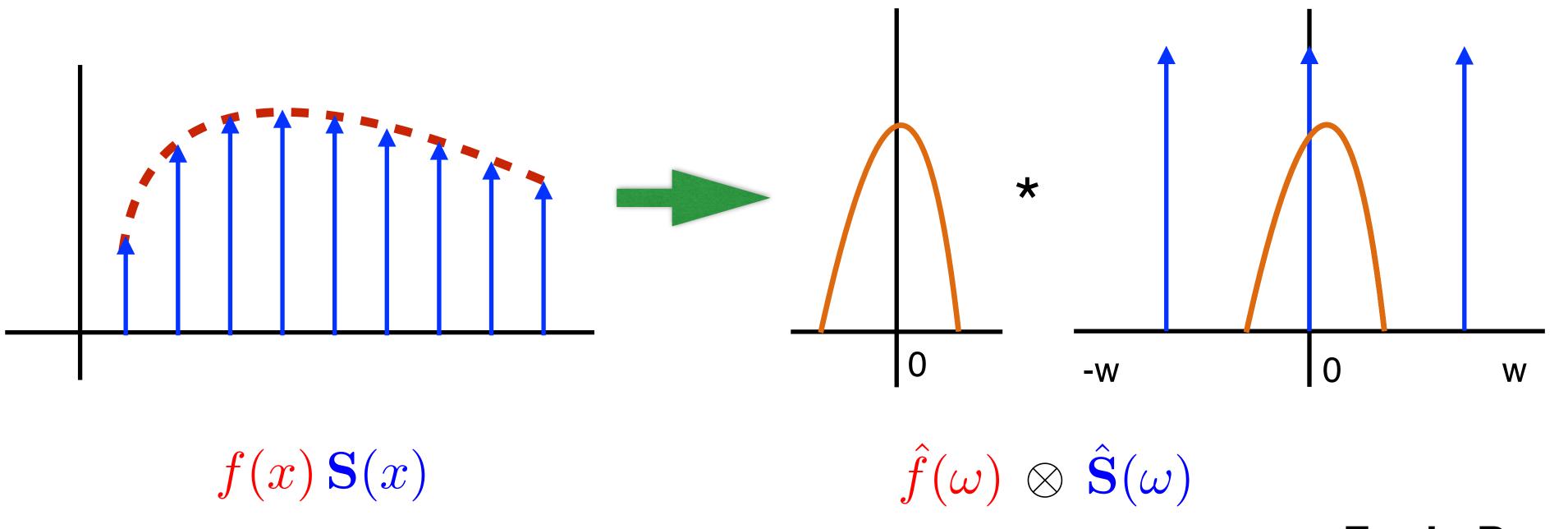
Sampling in Primal Domain is Convolution in Fourier Domain

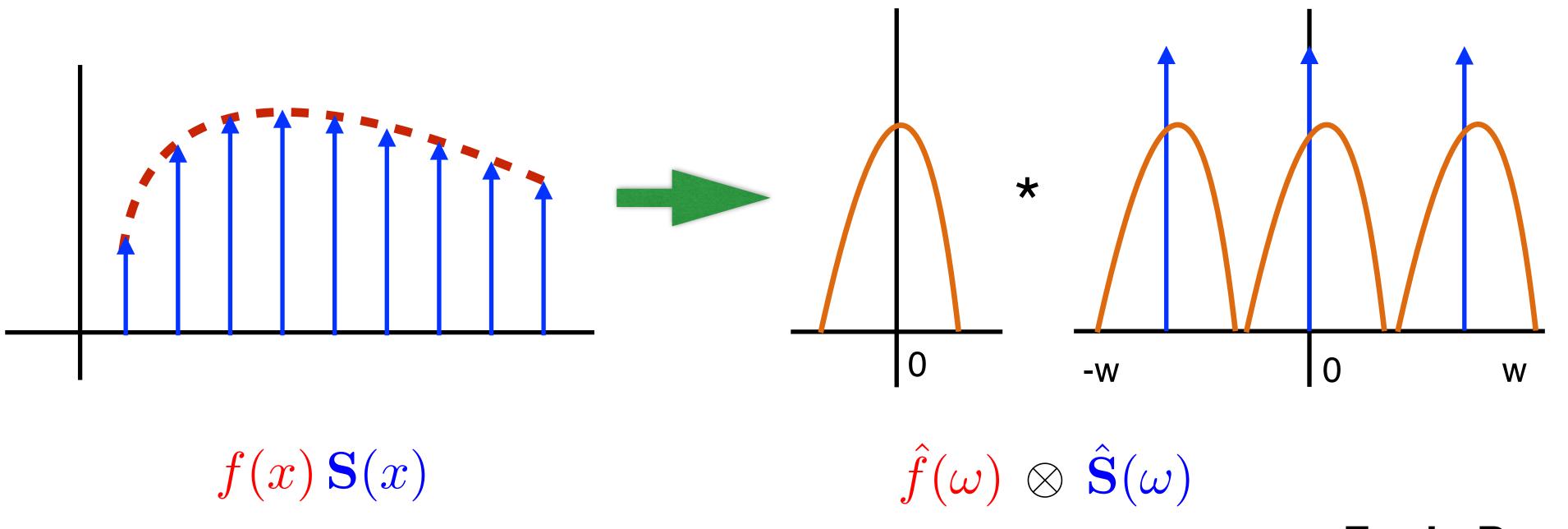


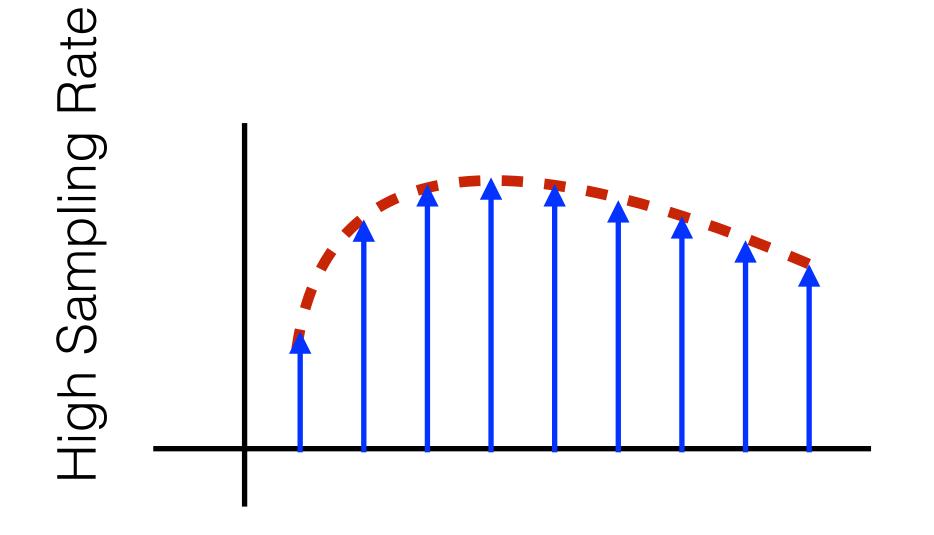


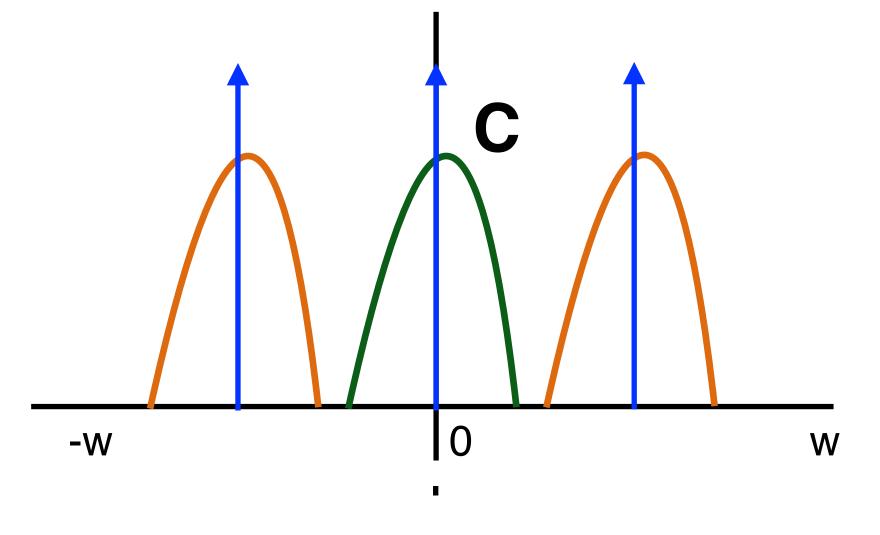
Fredo Durand [2011]

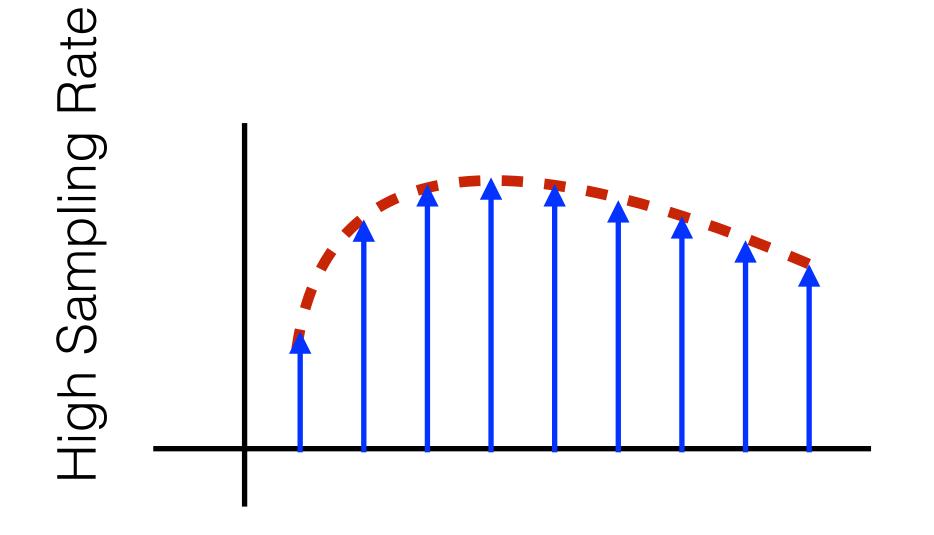


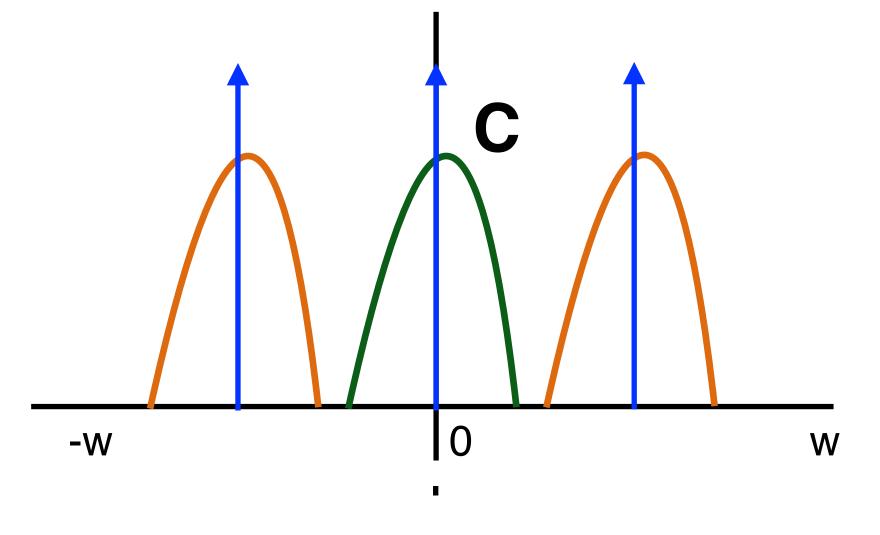


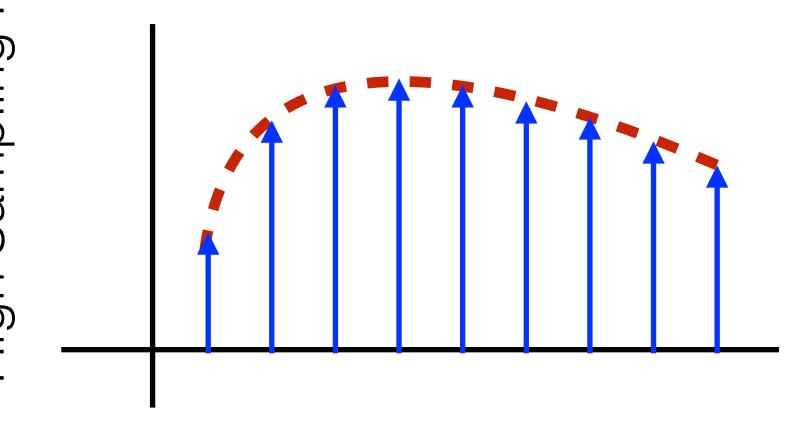


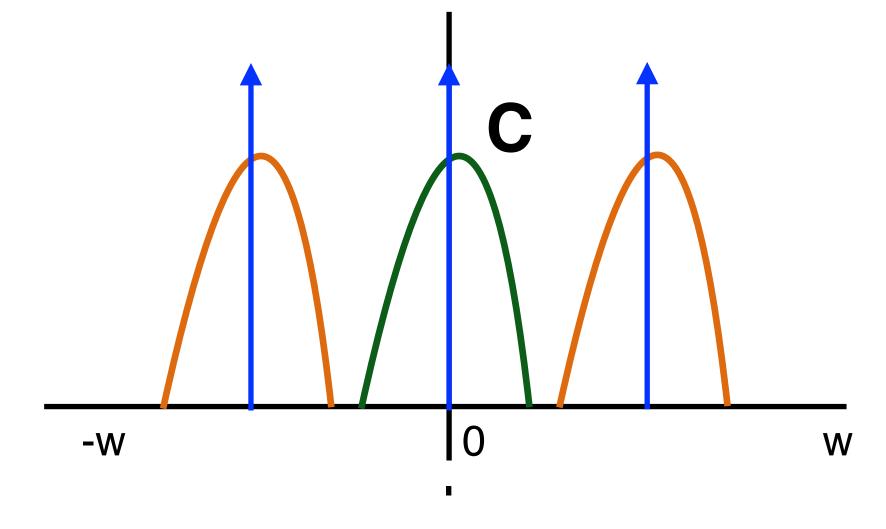


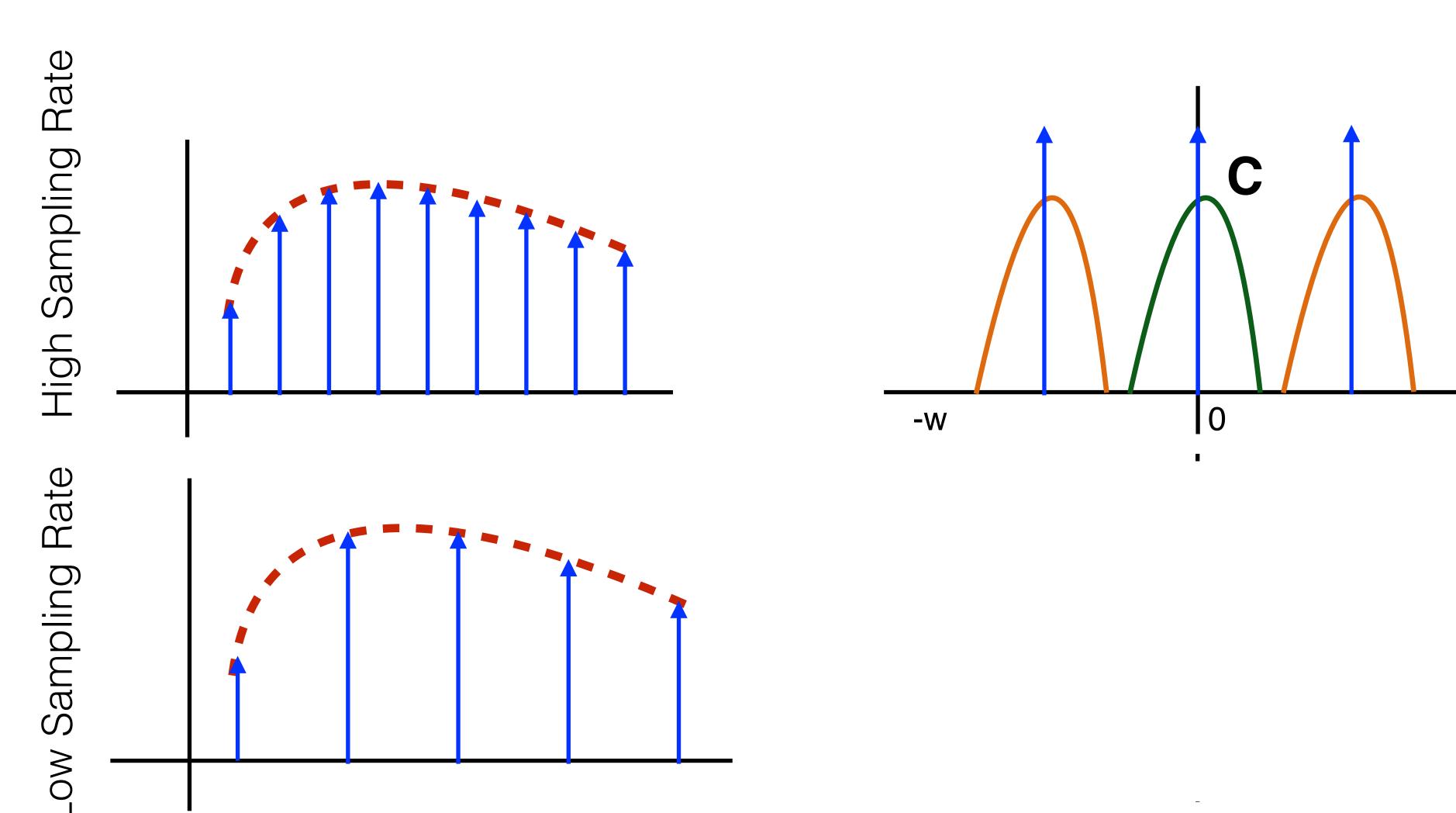




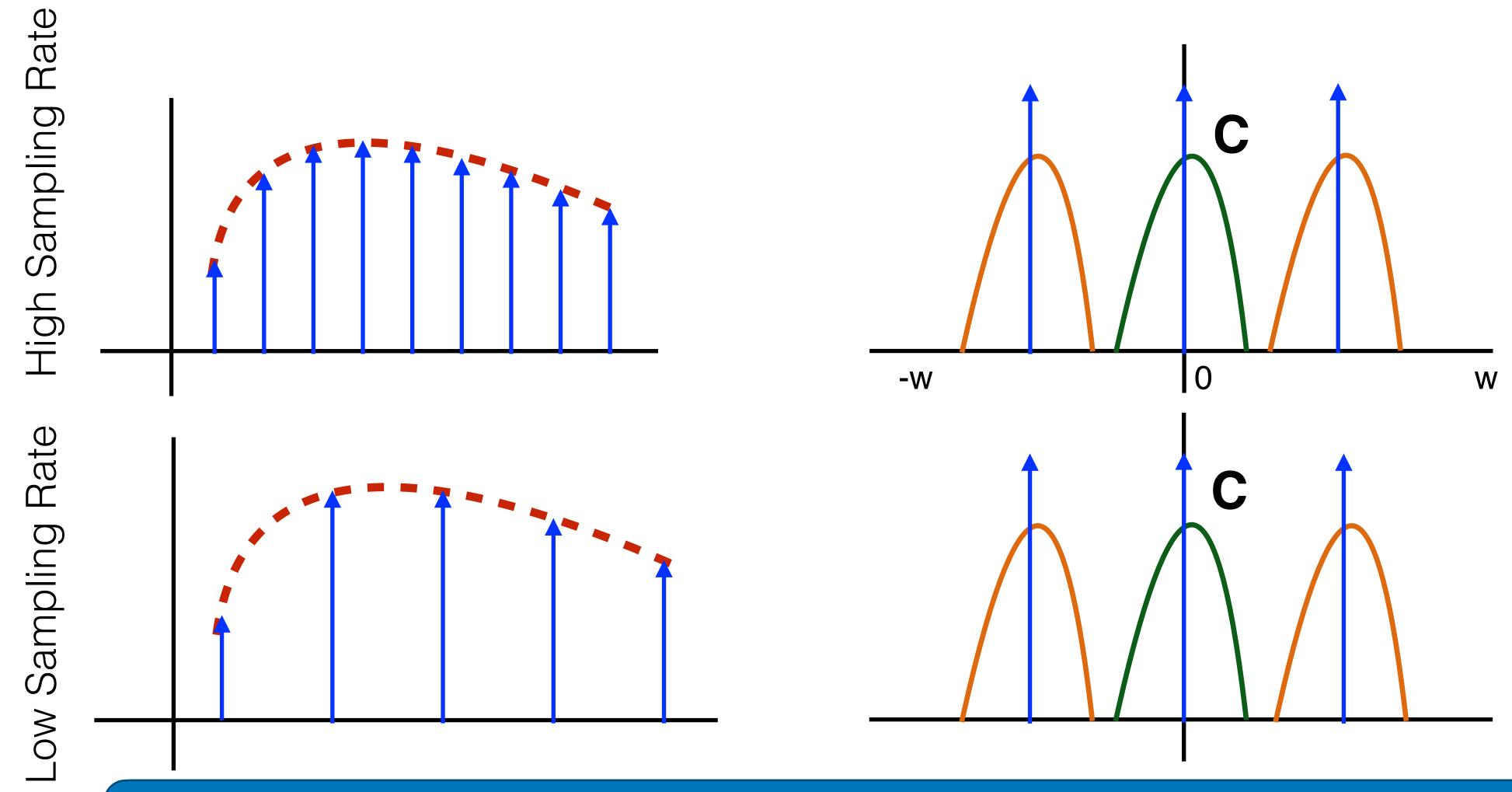


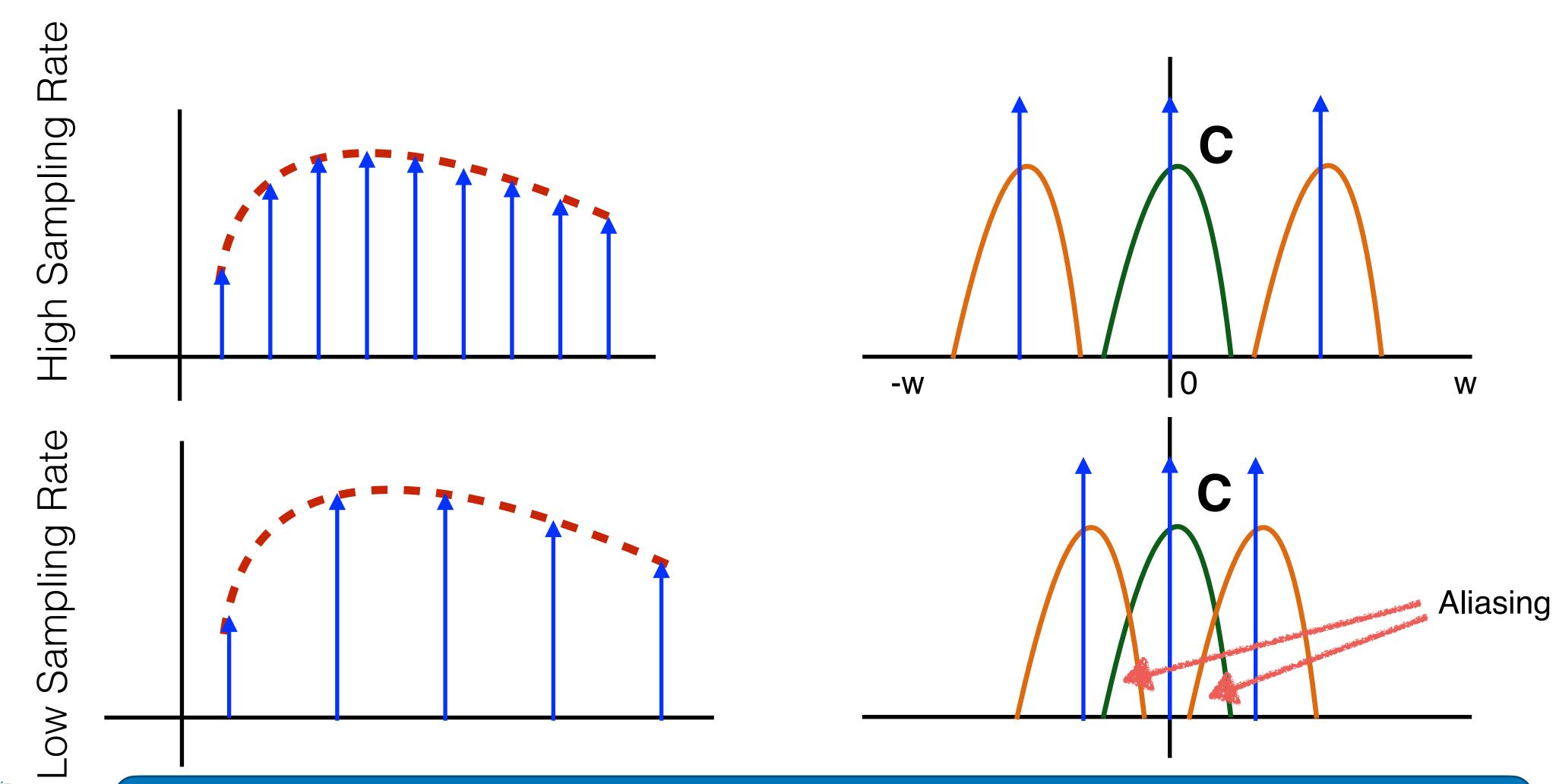


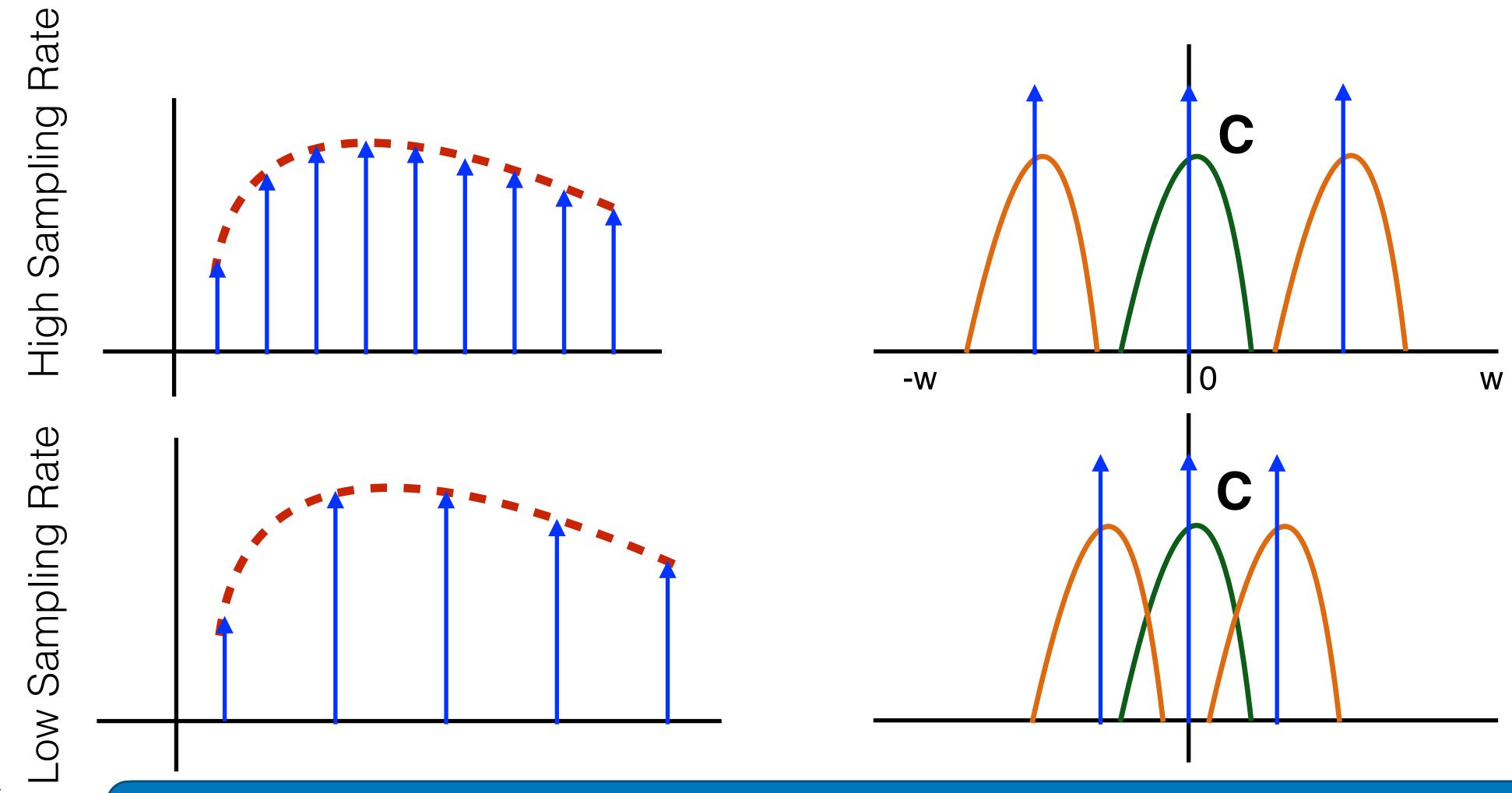


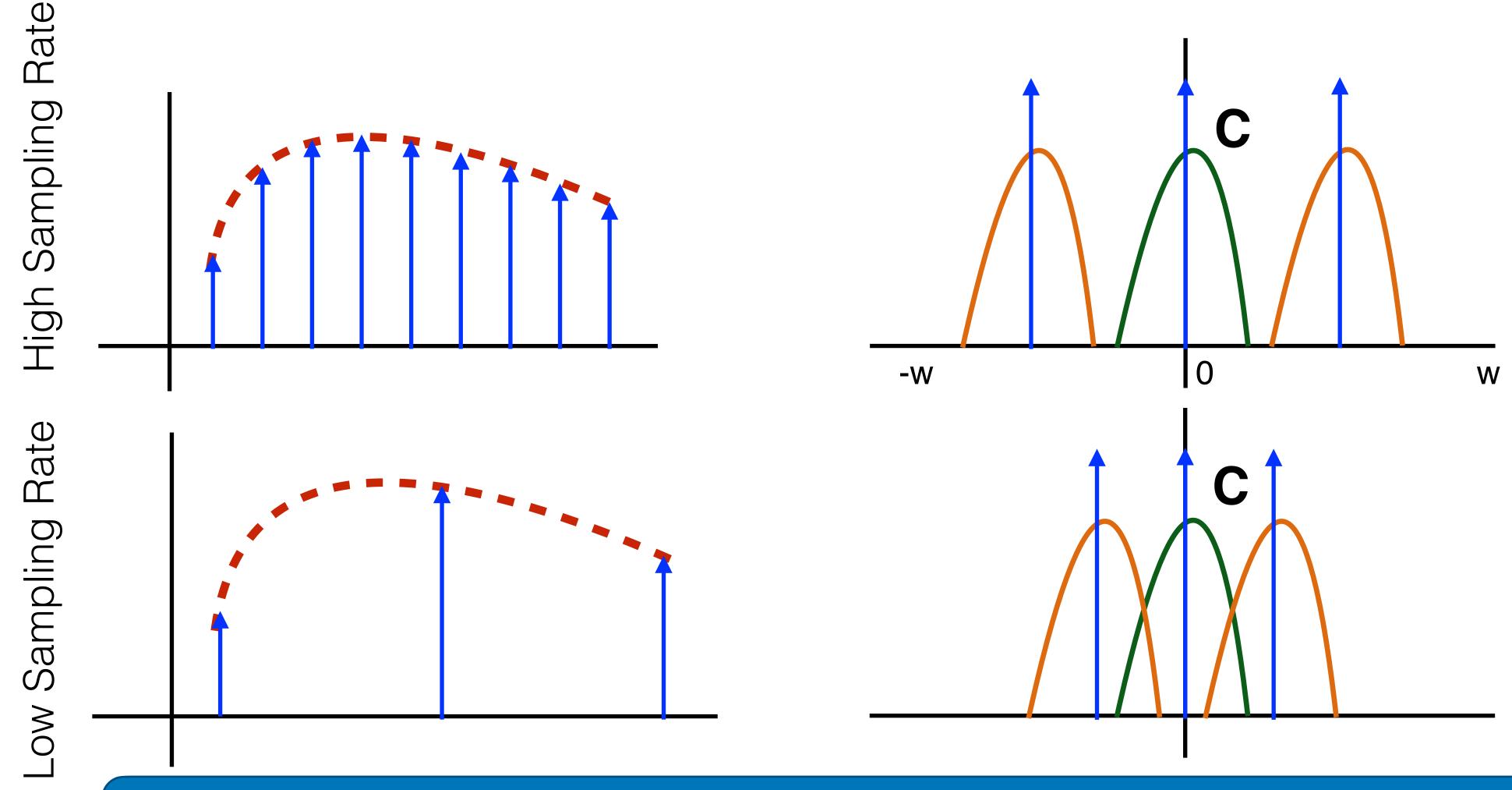


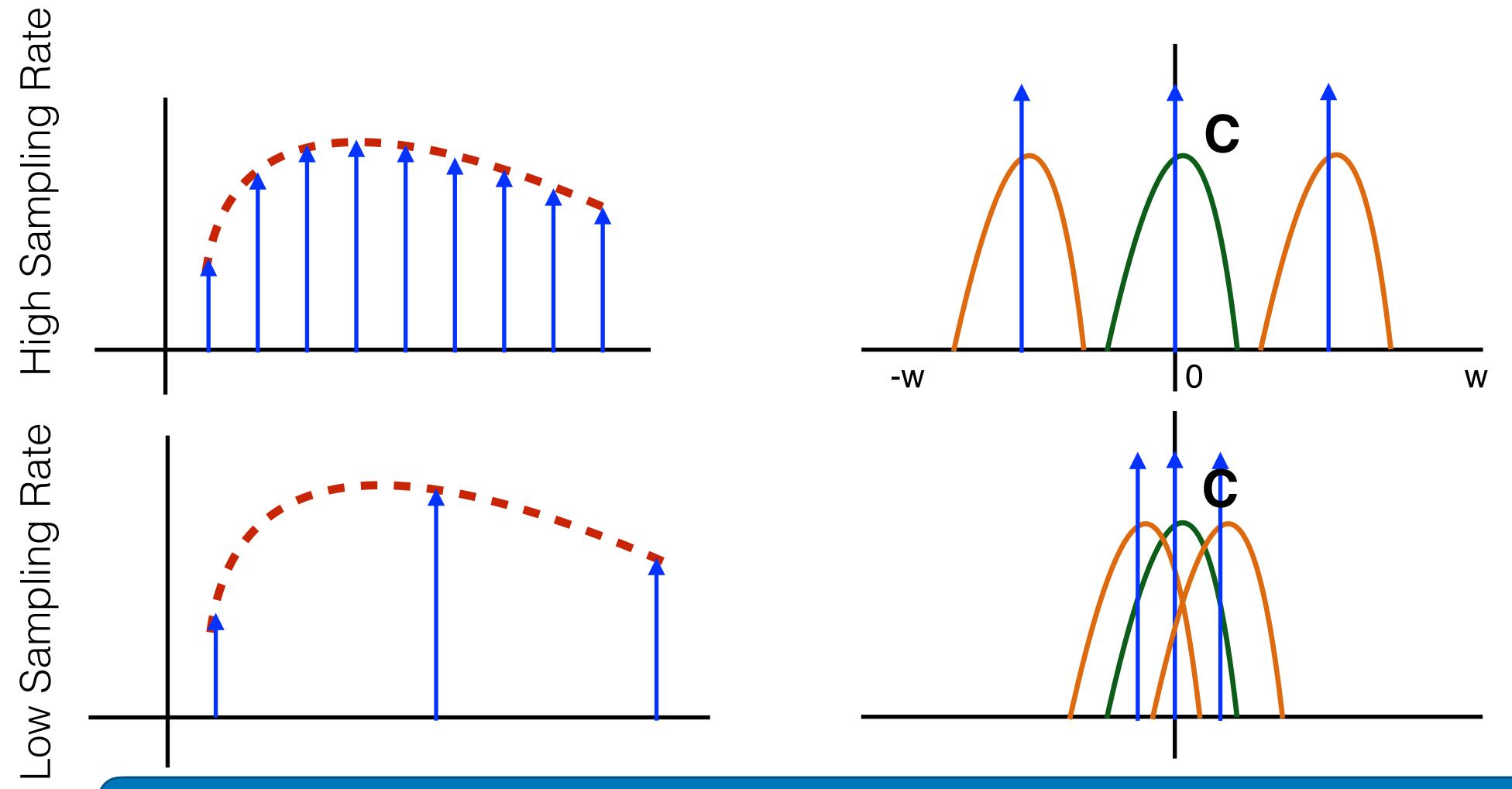
W

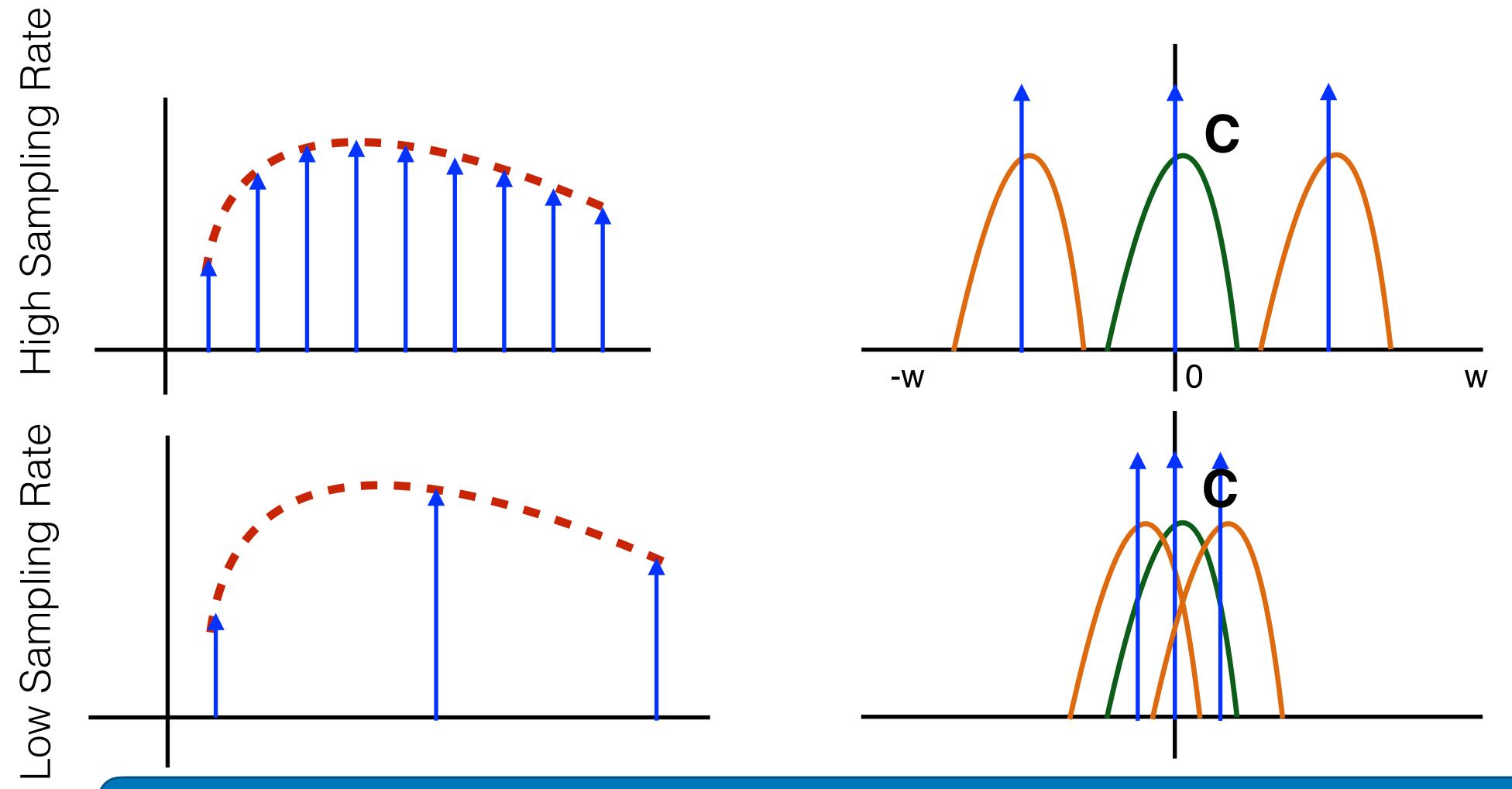


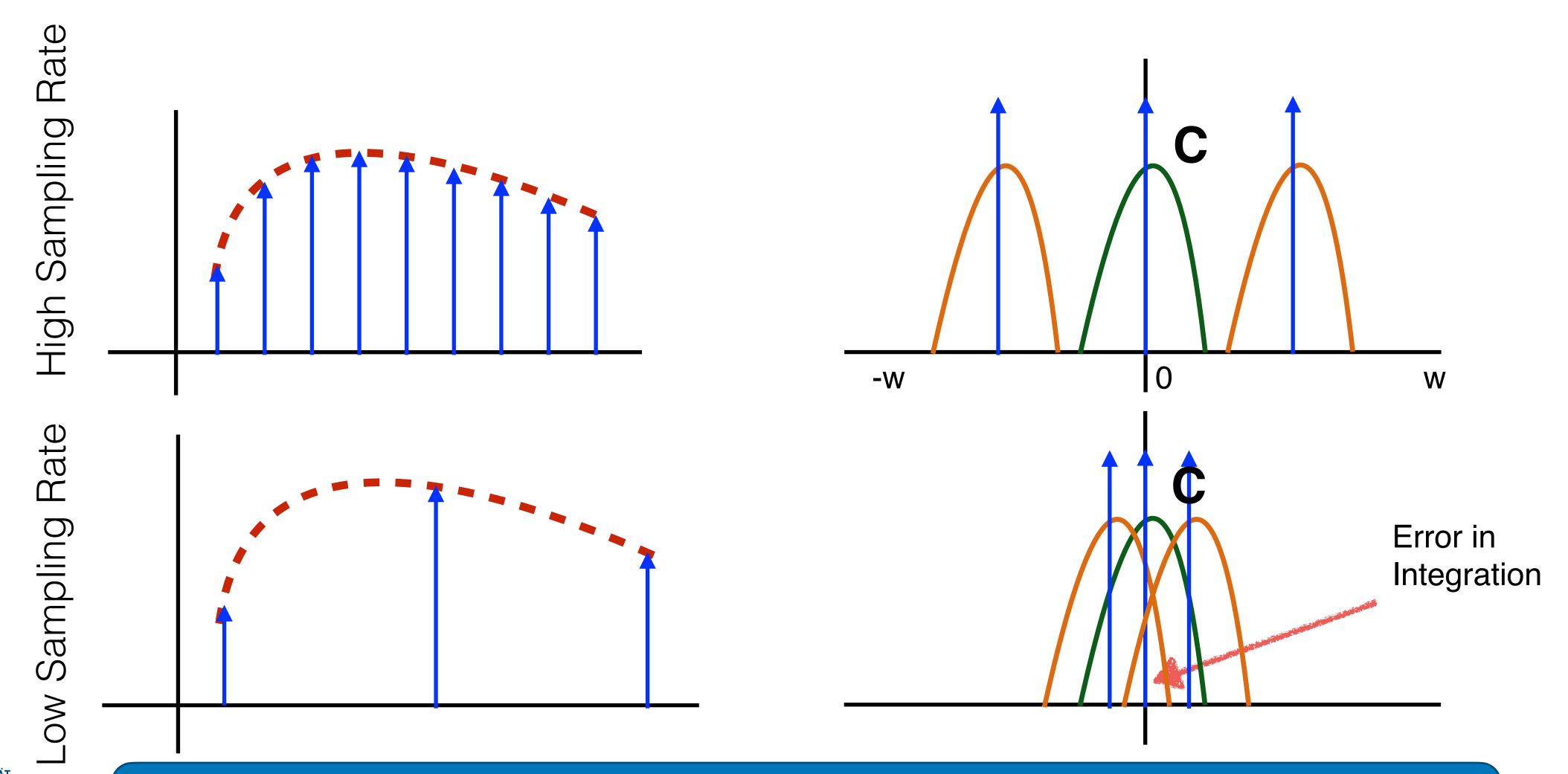




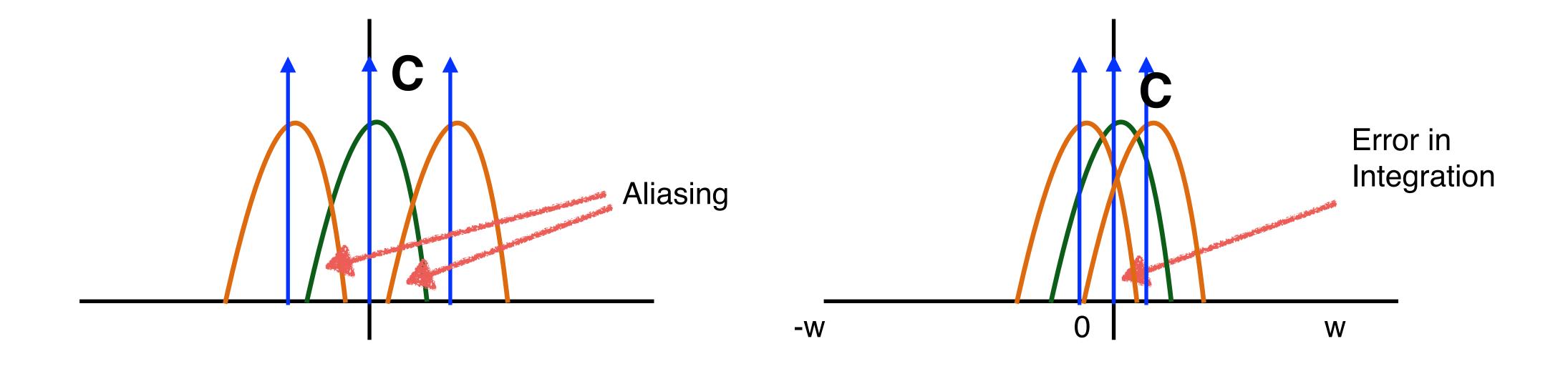






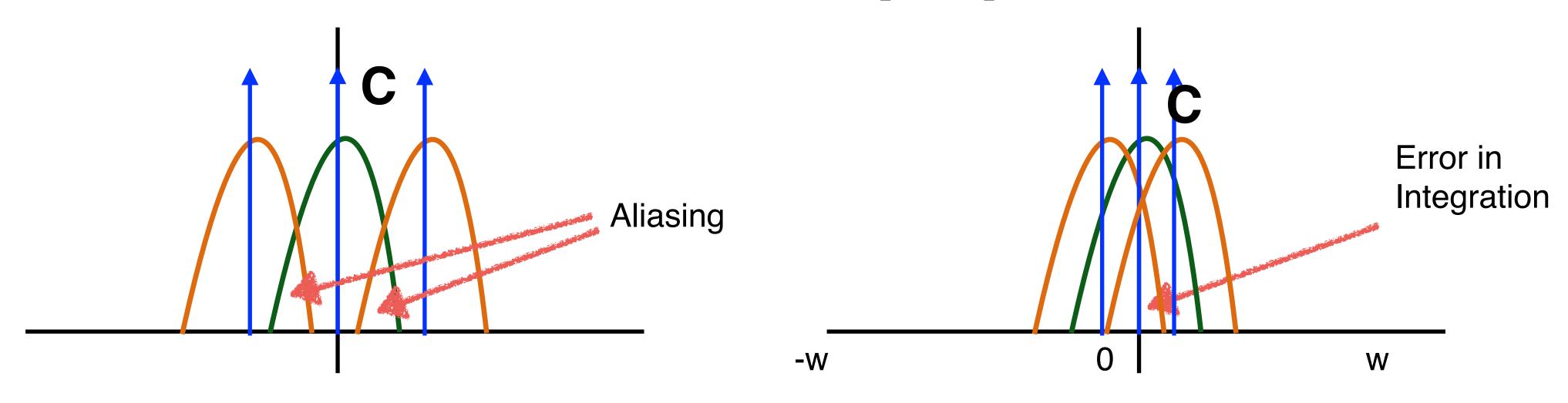


Aliasing (Reconstruction) vs. Error (Integration)



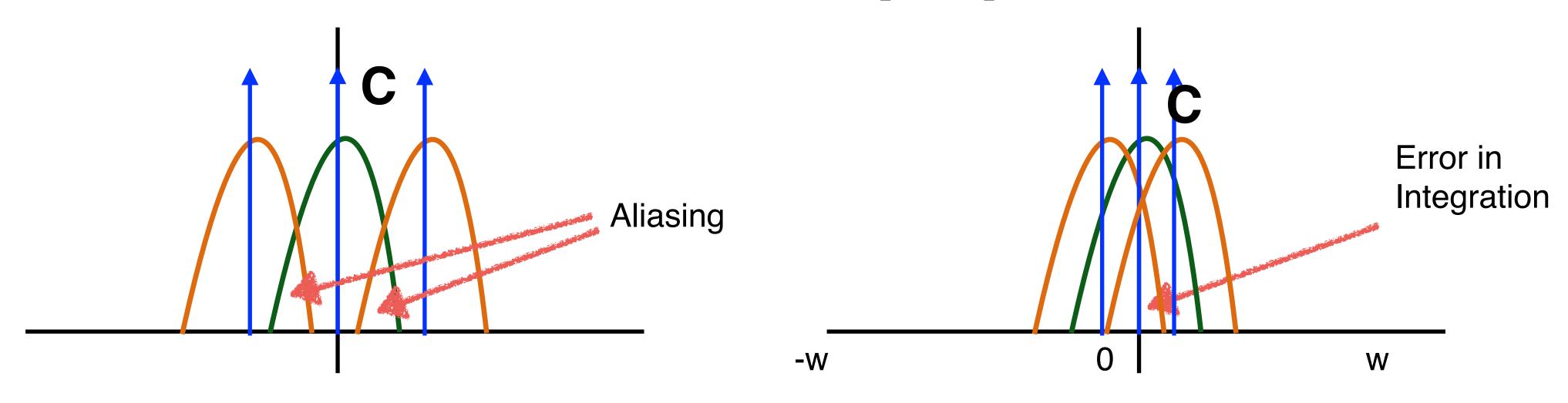
Aliasing (Reconstruction) vs. Error (Integration)

Fredo Durand [2011] Belcour et al. [2013]



Aliasing (Reconstruction) vs. Error (Integration)

Fredo Durand [2011] Belcour et al. [2013]



Integration in the Fourier Domain

Integration is the DC term in the Fourier Domain

Spatial Domain:

$$I = \int_{D} f(x) dx$$

Integration is the DC term in the Fourier Domain

Spatial Domain:

$$I = \int_{D} f(x) dx$$

Fourier Domain:

Integration is the DC term in the Fourier Domain

Spatial Domain:

$$I = \int_{D} f(x) dx$$

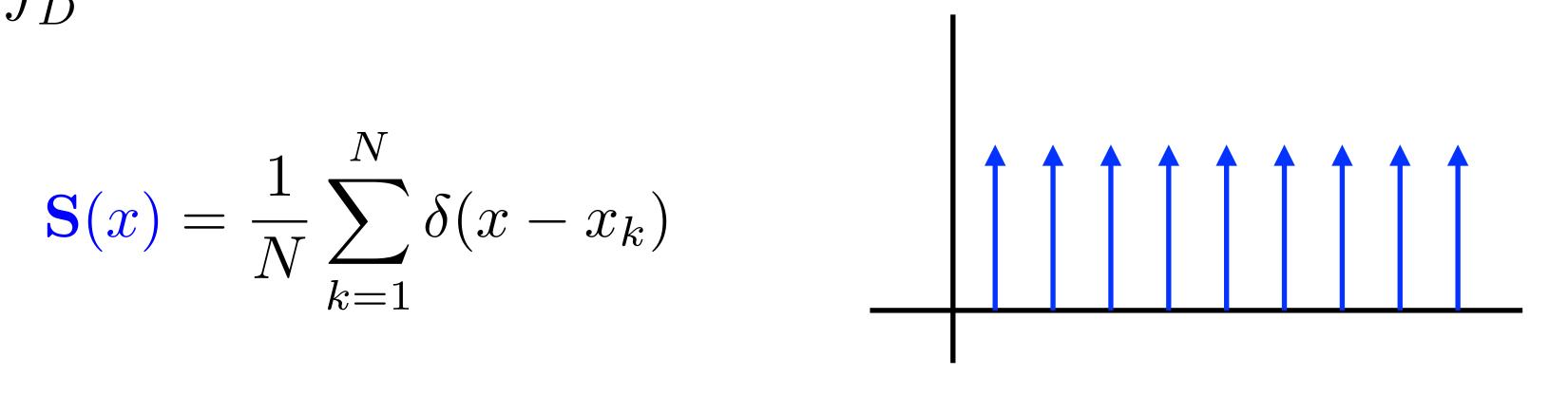
Fourier Domain:

$$\hat{f}(0)$$

$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$$

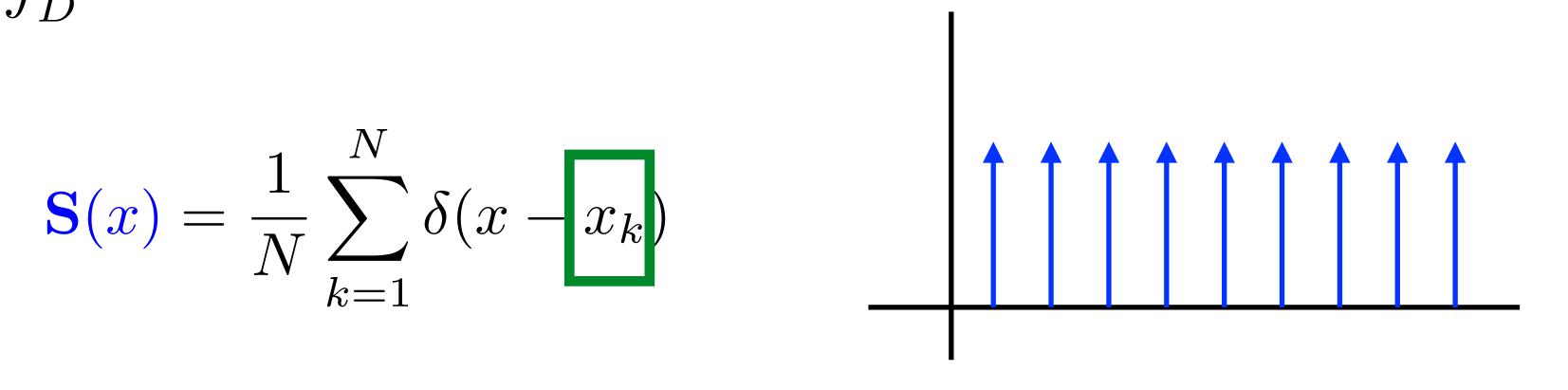
$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$$

$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$



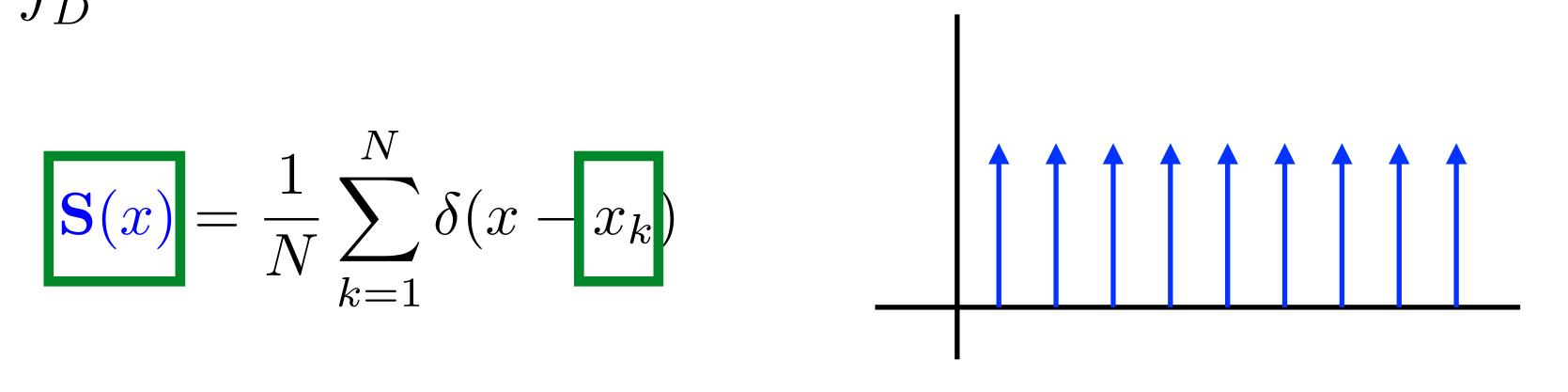
$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$$

$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$



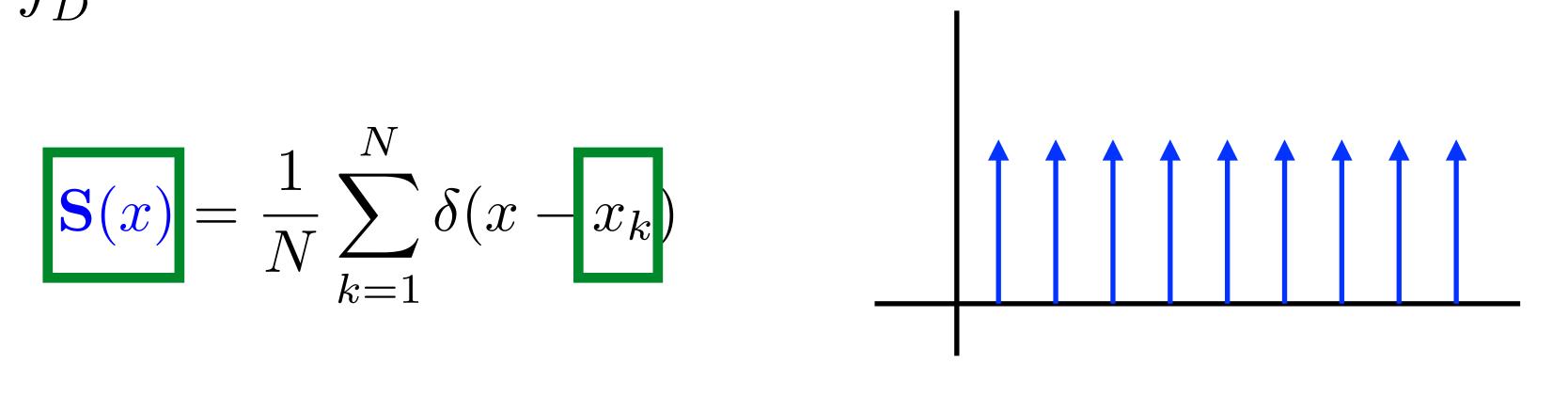
$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$$

$$\frac{\mathbf{S}(x)}{N} = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$



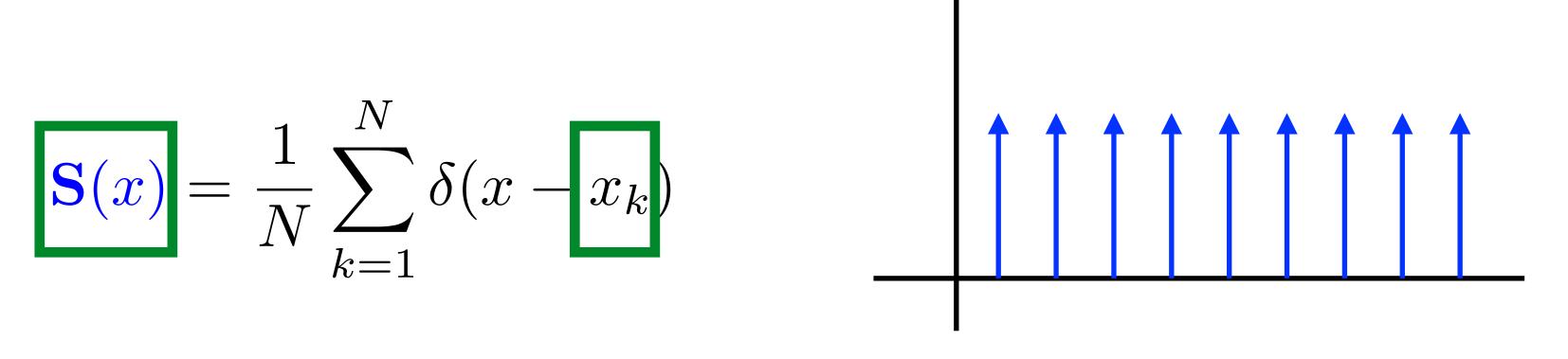
$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$$

$$\frac{\mathbf{S}(x)}{N} = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$



$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

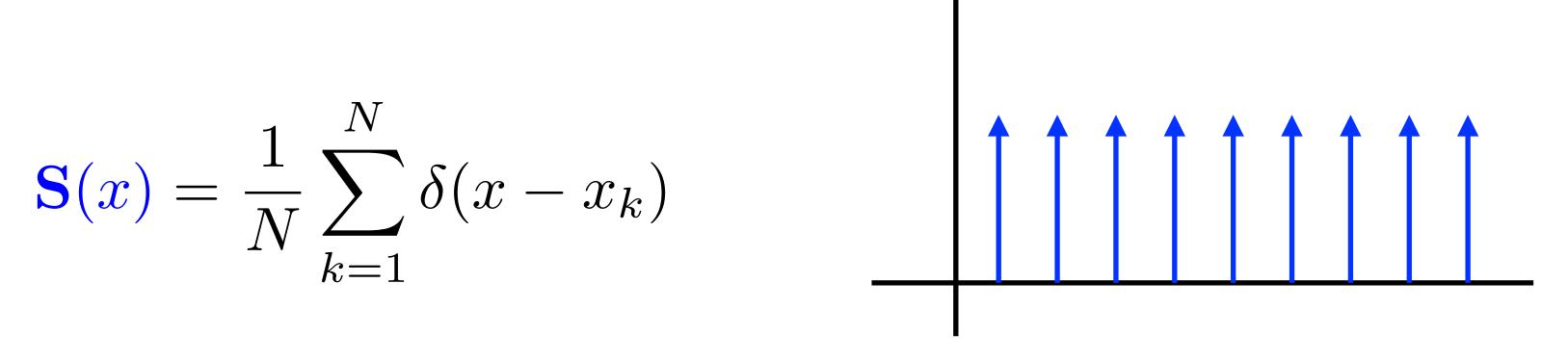
$$\frac{\mathbf{S}(x)}{N} = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$



Monte Carlo Estimator in Fourier Domain

$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

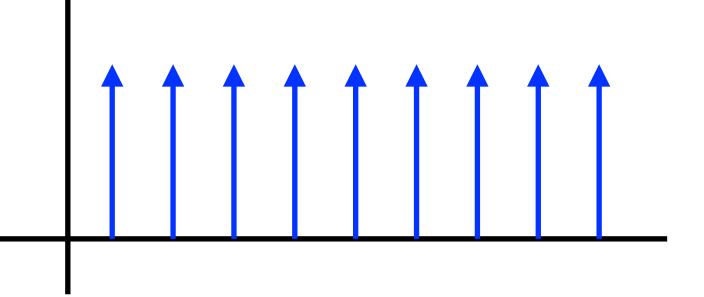
$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$



Monte Carlo Estimator in Fourier Domain

$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$

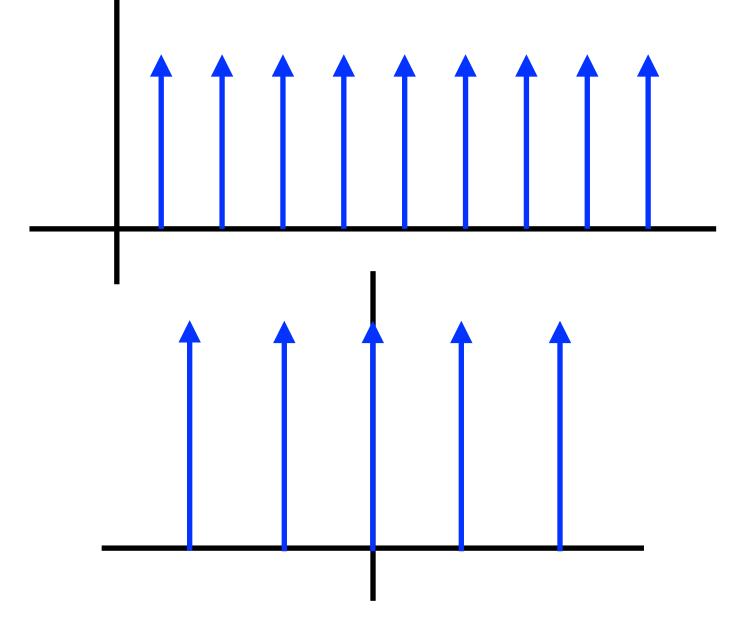


Monte Carlo Estimator in Fourier Domain

$$\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$\frac{\mathbf{S}(x)}{N} = \frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$

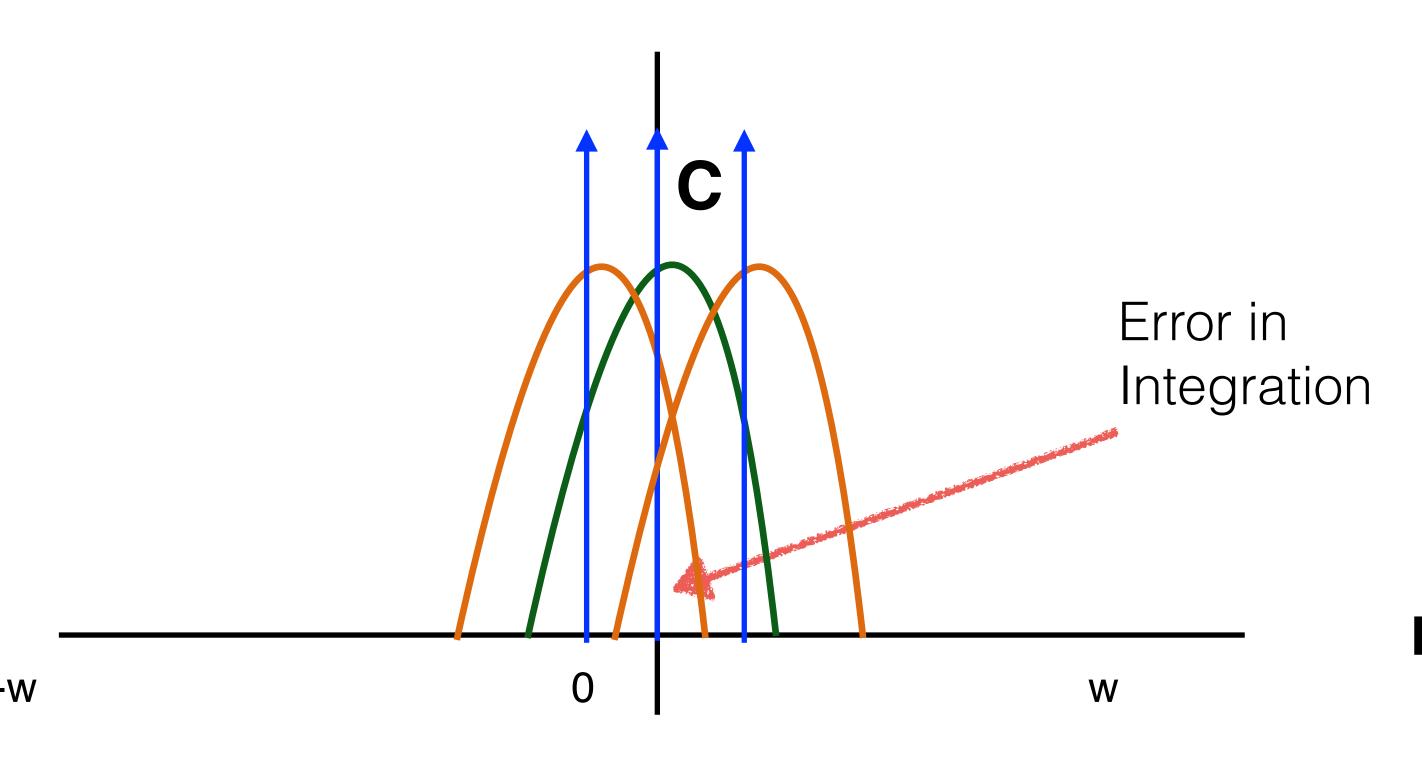
$$\hat{\mathbf{S}}(\omega) = \frac{1}{N} \sum_{k=1}^{N} e^{-i2\pi\omega x_k}$$



How to Formulate Error in Fourier Domain?

$$I = \hat{f}(0)$$

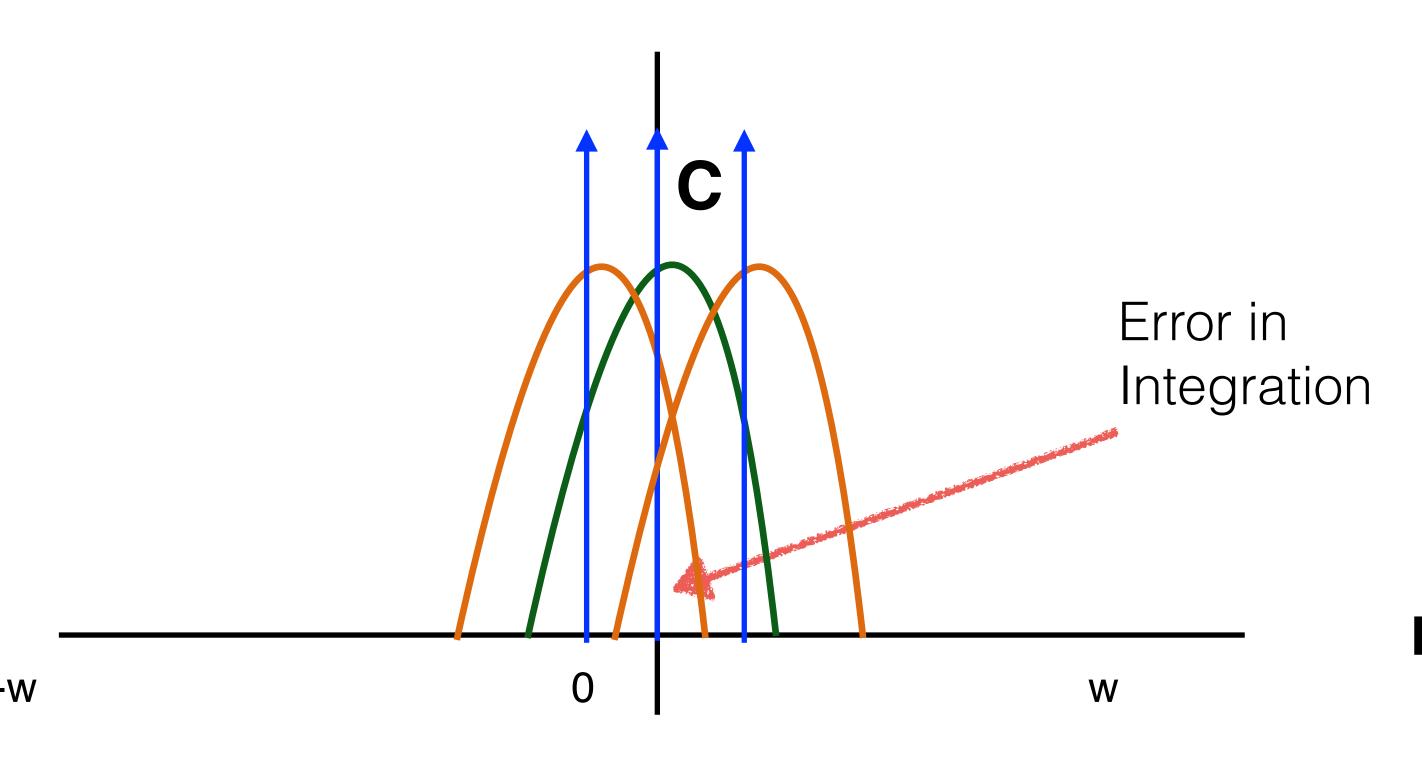
$$\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$



How to Formulate Error in Fourier Domain?

$$I = \hat{f}(0)$$

$$\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$



Error in Spatial Domain

$$I = \hat{f}(0)$$

$$\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$$

Error in Spatial Domain

$$I = \hat{f}(0)$$

$$\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

True Integral
$$I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$$

Error in Spatial Domain

$$I = \hat{f}(0)$$

$$\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

True Integral
$$I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$$

Monte Carlo Estimator

Error in Spatial Domain

$$I = \hat{f}(0)$$

$$\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$$

Error in Spatial Domain

$$I = \hat{f}(0)$$

$$\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$$

Error in Fourier Domain

$$I = \hat{f}(0)$$

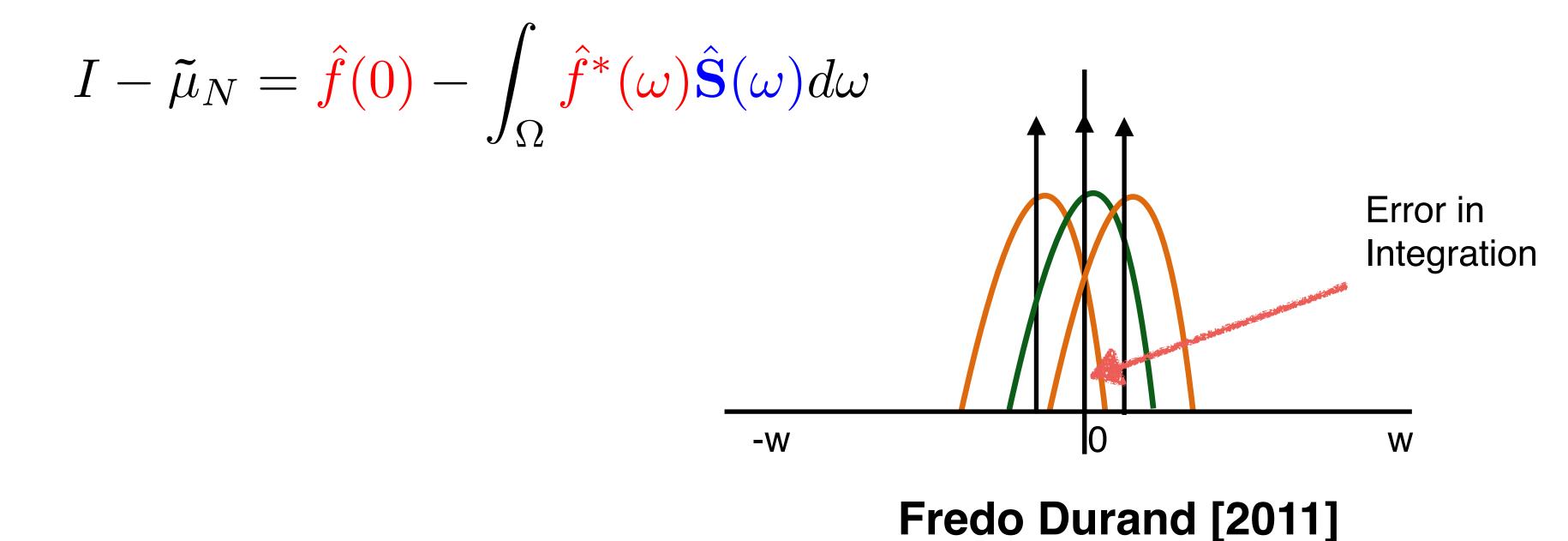
$$\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$$

$$I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

Fredo Durand [2011]

Error in Fourier Domain



- Bias
- Variance

- Bias: Expected value of the Error
- Variance

- Bias: Expected value of the Error $\langle I \tilde{\mu}_N
 angle$
- Variance

- Bias: Expected value of the Error $\langle I \tilde{\mu}_N
 angle$
- Variance: $\mathrm{Var}(I-\mu_N)$

Subr and Kautz [2013]

Bias in the Monte Carlo Estimator

$$I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

Error:

$$I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$\langle I - \tilde{\mu}_N \rangle$$

$$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$$

$$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$$

$$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$$

$$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$$

$$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \left\langle \hat{\mathbf{S}}(\omega) \right\rangle d\omega$$

$$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle d\omega$$

$$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle d\omega$$

$$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle d\omega$$

To obtain an unbiased estimator:

$$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle d\omega$$

To obtain an unbiased estimator:

Subr and Kautz [2013]

$$\langle \hat{\mathbf{S}}(\omega) \rangle = 0$$

for frequencies other than zero

How to obtain $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$?

Complex form in Amplitude and Phase

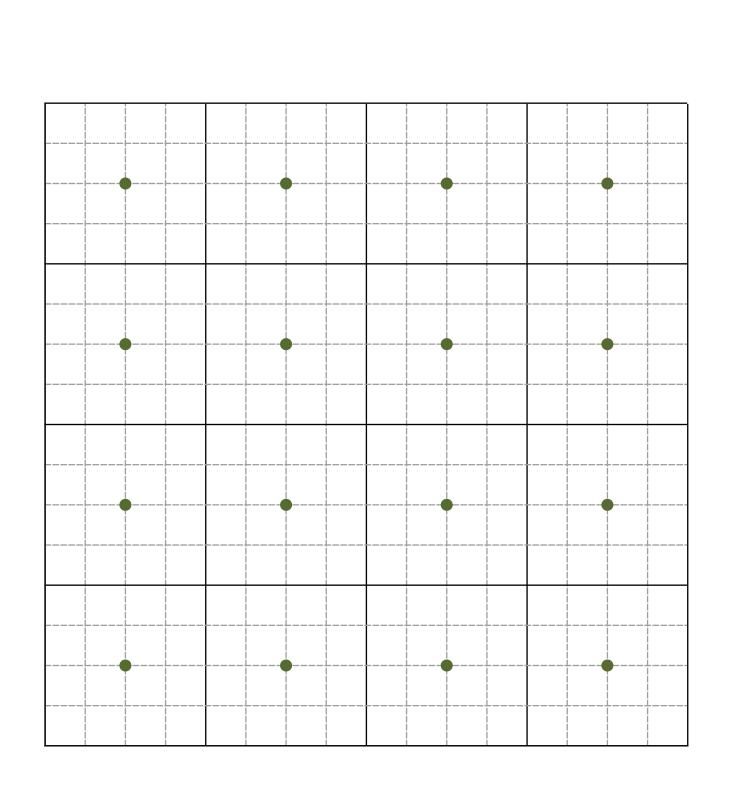
$$\langle \hat{\mathbf{S}}(\omega) \rangle = |\langle \hat{\mathbf{S}}(\omega) \rangle| e^{-\Phi(\langle \hat{\mathbf{S}}(\omega) \rangle)}$$

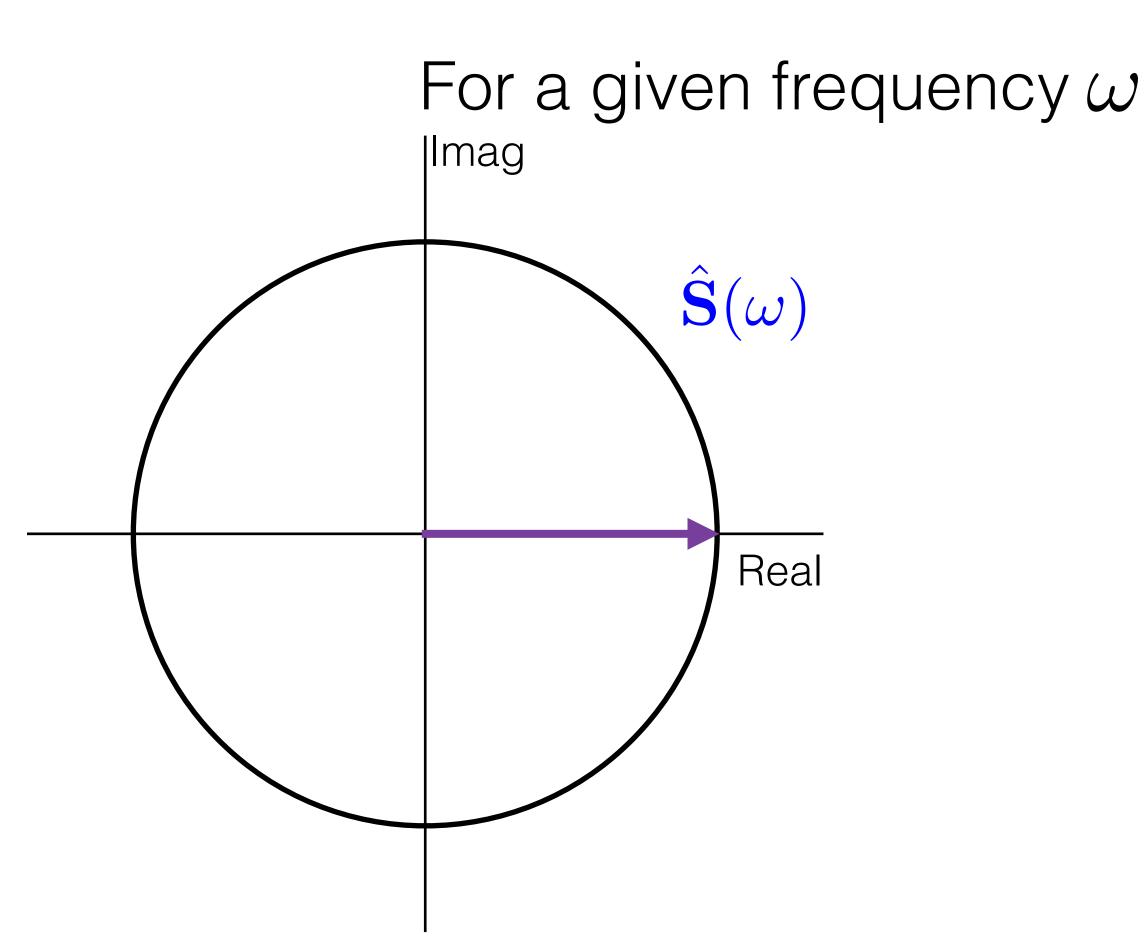
Complex form in Amplitude and Phase

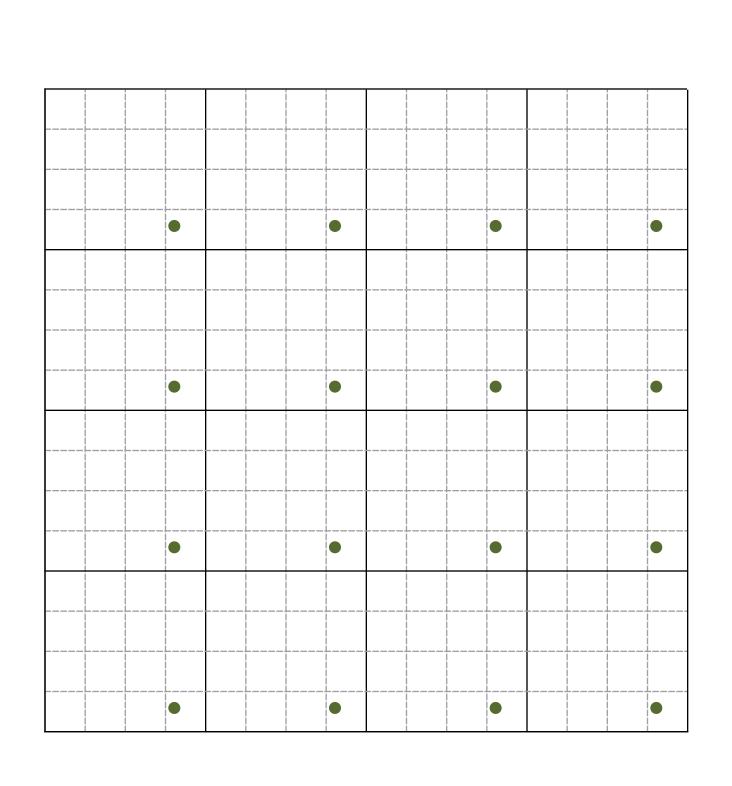
Amplitude
$$\langle \hat{\mathbf{S}}(\omega) \rangle = |\hat{\langle \hat{\mathbf{S}}(\omega) \rangle}| e^{-\Phi(\langle \hat{\mathbf{S}}(\omega) \rangle)}$$

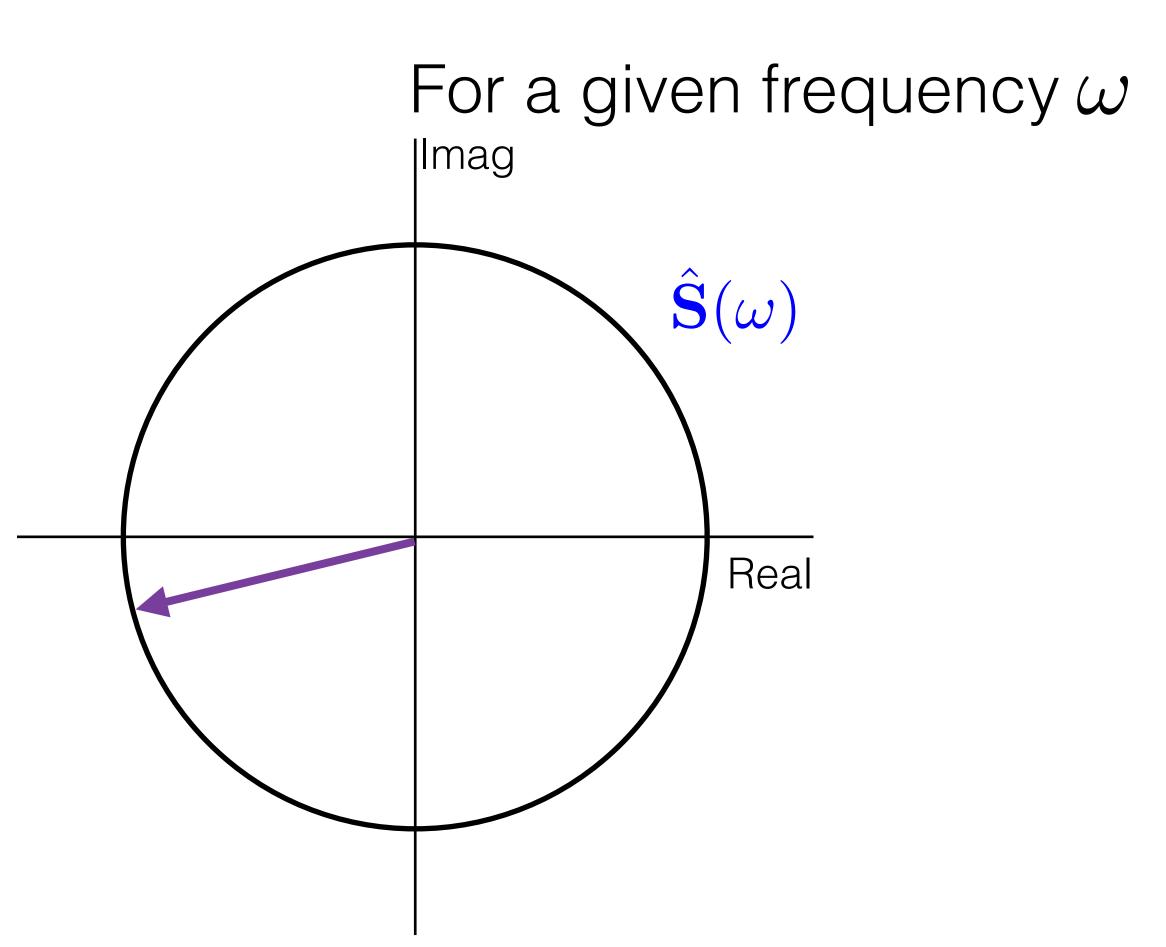
Complex form in Amplitude and Phase

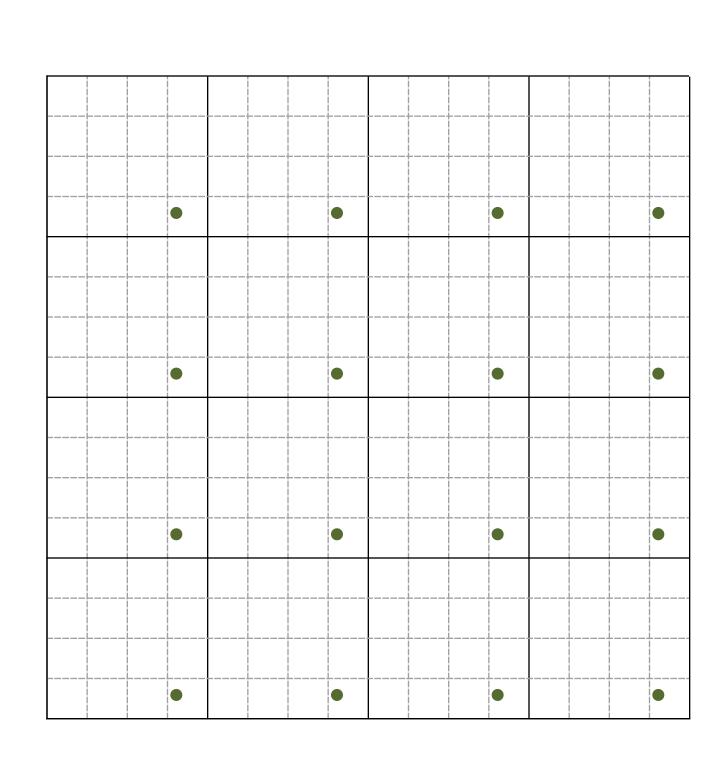
Amplitude Phase
$$\langle \hat{\mathbf{S}}(\omega) \rangle = |\langle \hat{\mathbf{S}}(\omega) \rangle| e^{-\Phi(\langle \hat{\mathbf{S}}(\omega) \rangle)}$$



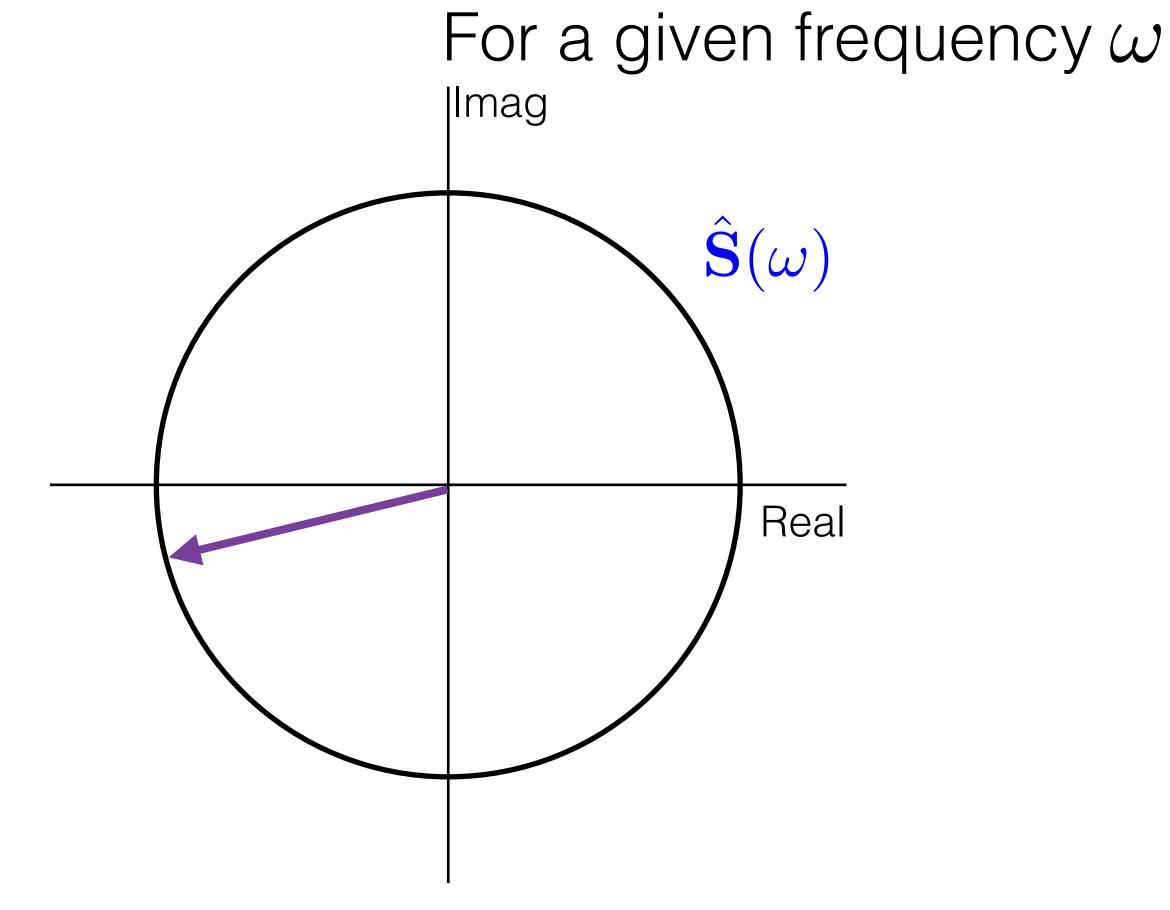


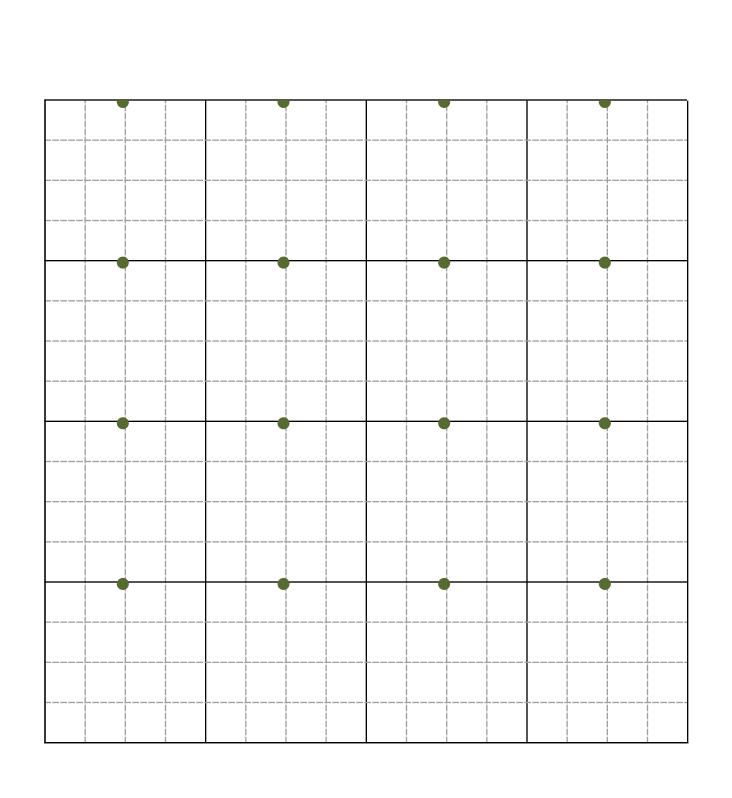






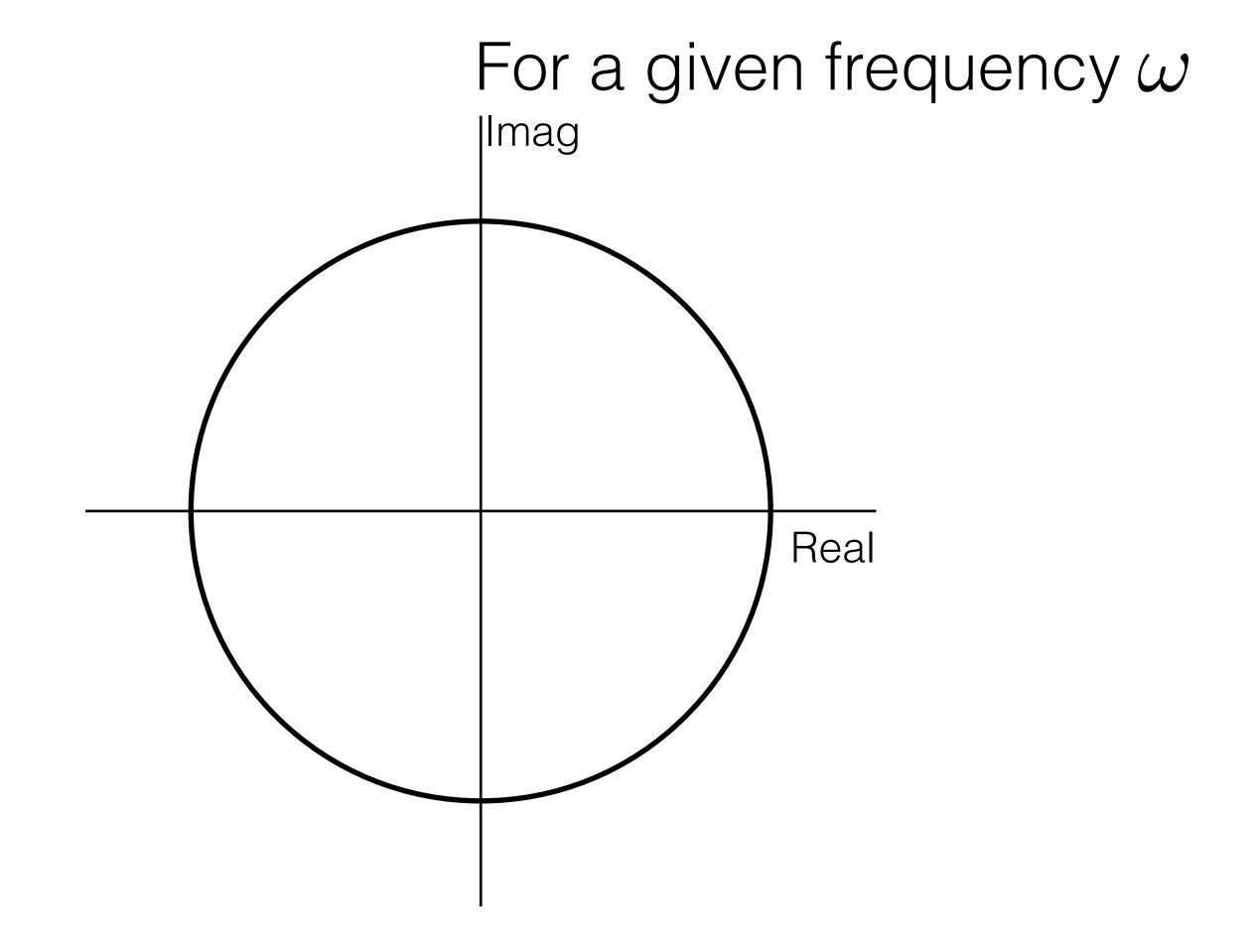
Pauly et al. [2000] Ramamoorthi et al. [2012]

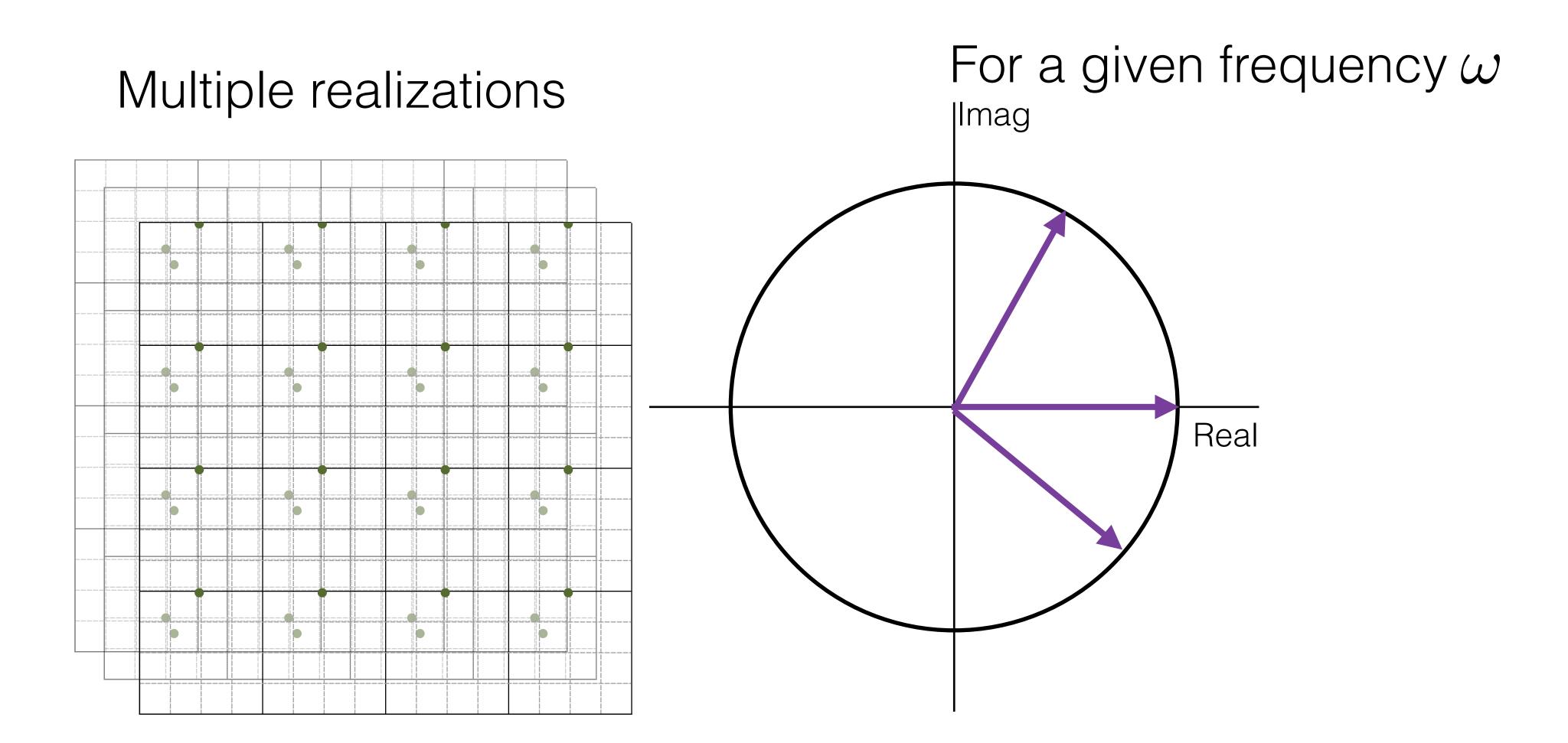


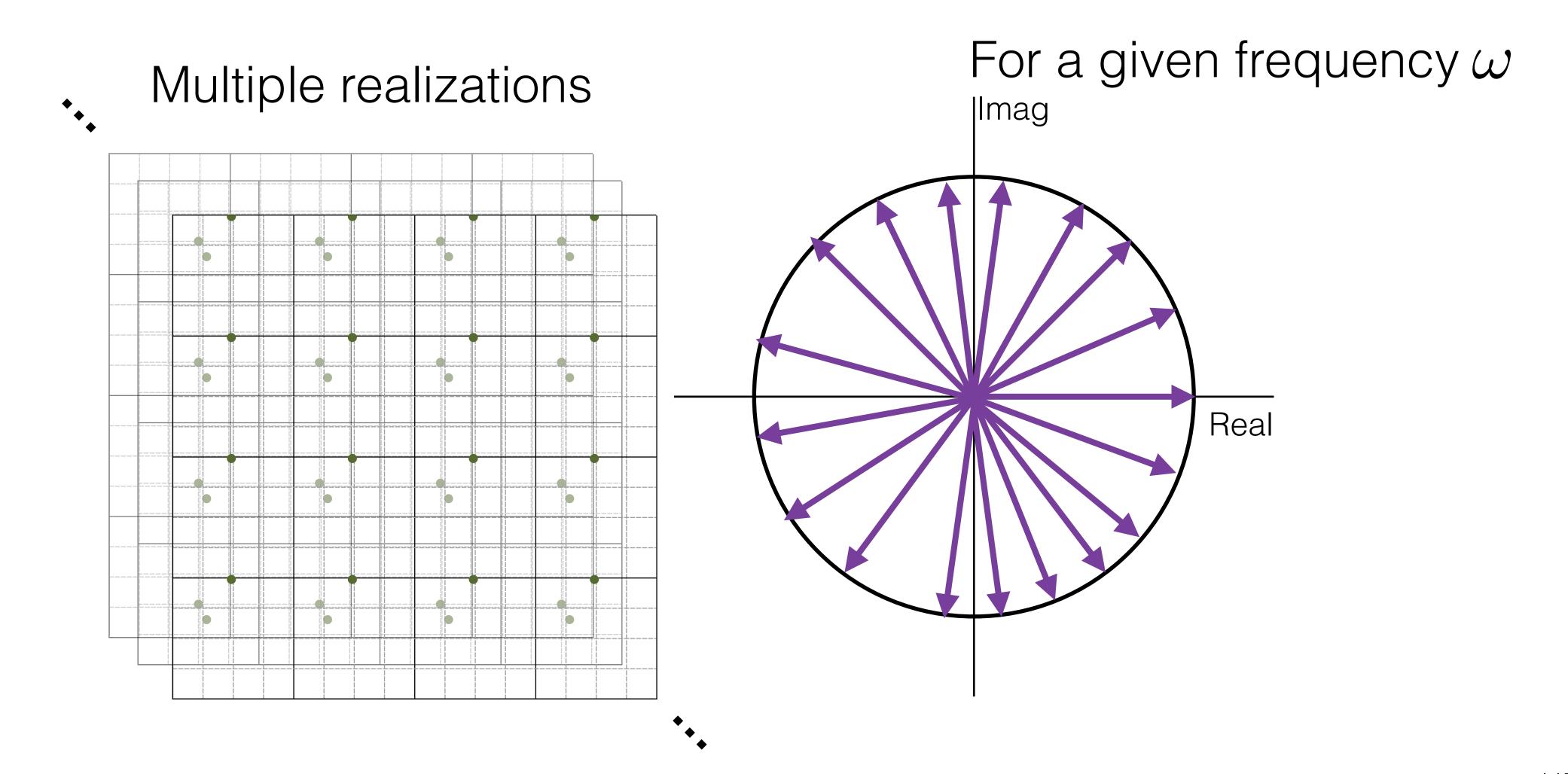


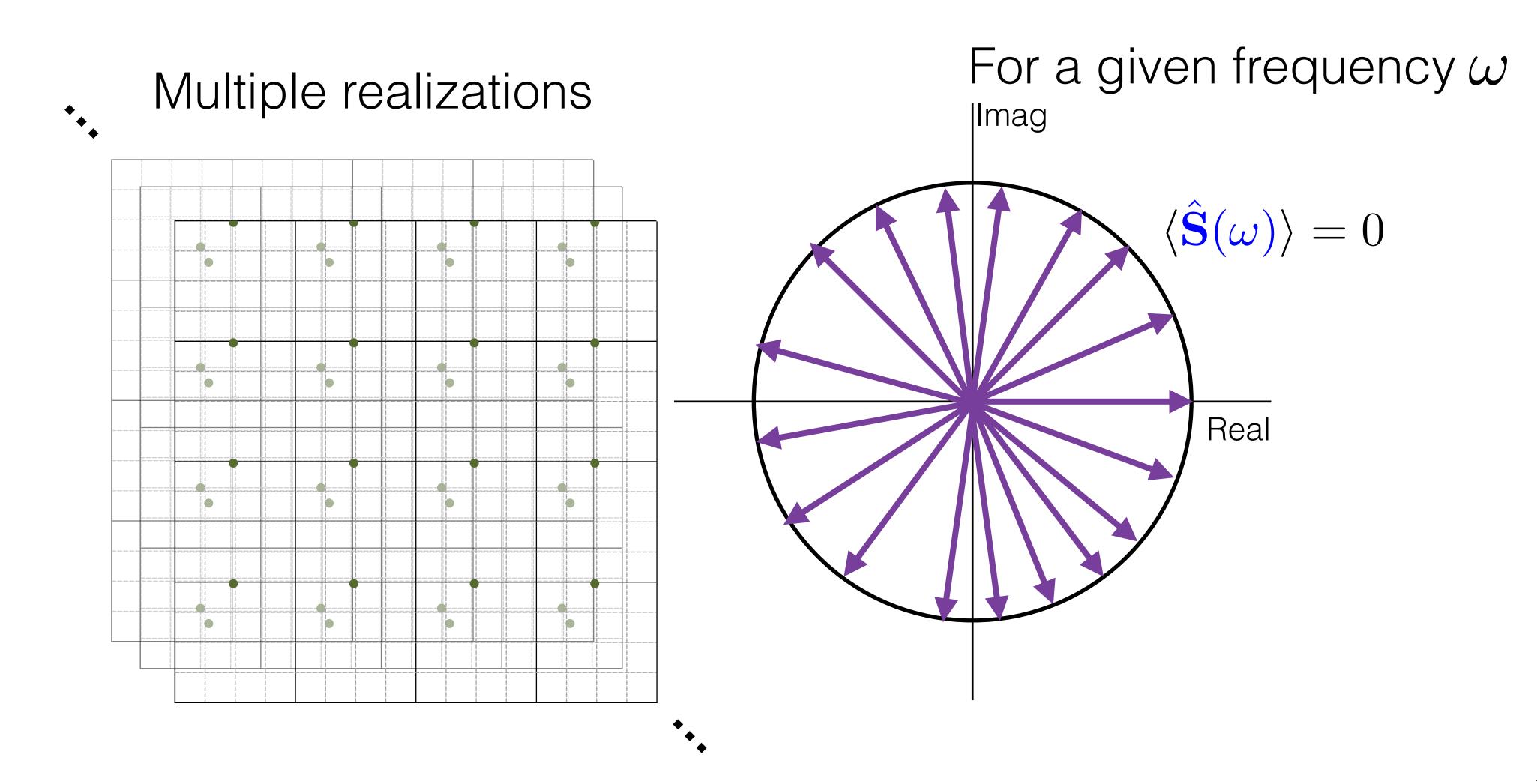
For a given frequency ω |Imag $\hat{\mathbf{S}}(\omega)$ Real

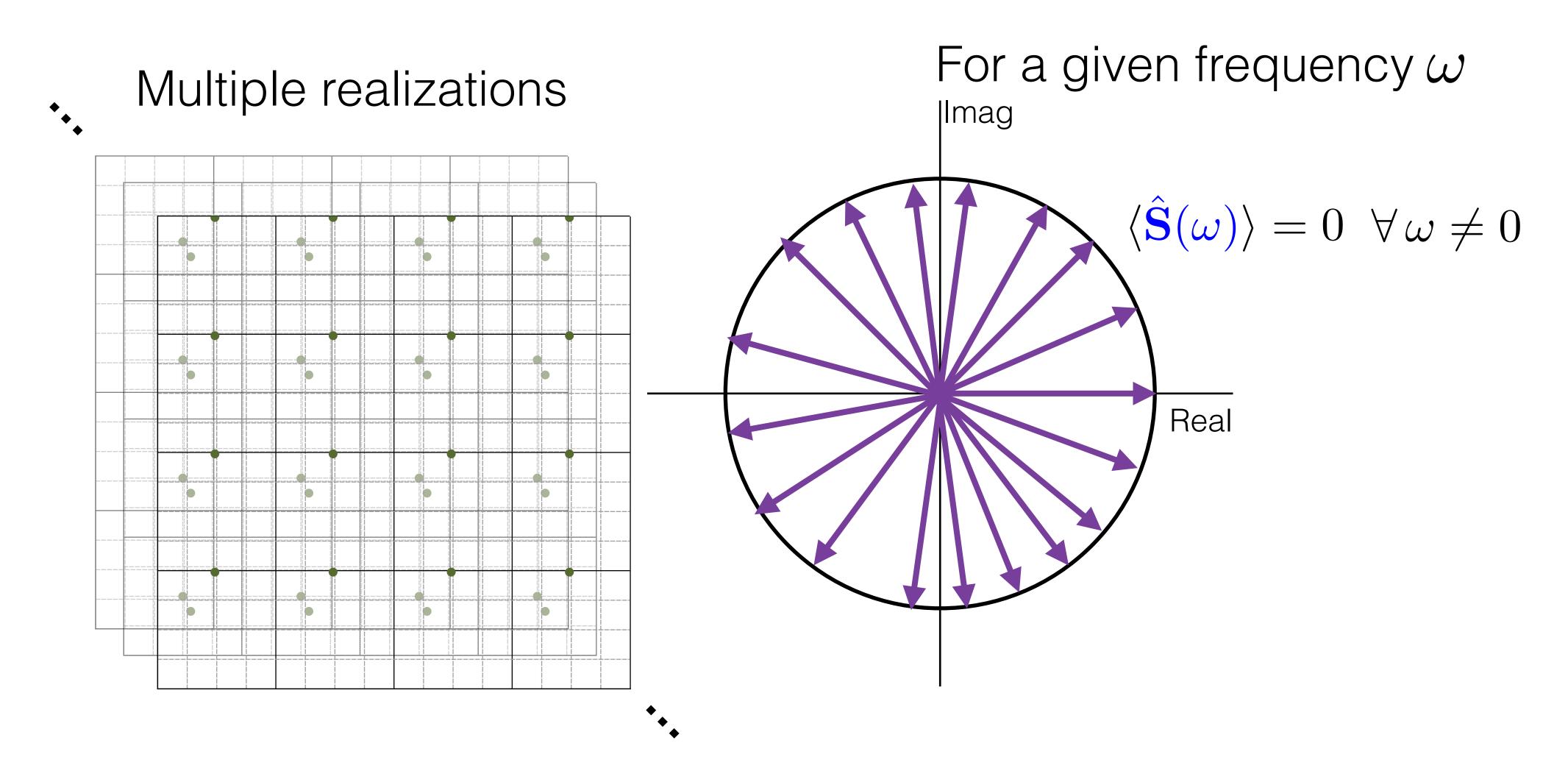
Multiple realizations











Homogenization allows representation of error only in terms of variance

- Homogenization allows representation of error only in terms of variance
- We can take any sampling pattern and homogenize it to make the Monte Carlo estimator unbiased.

Error:

$$I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$\operatorname{Var}(I - \tilde{\mu}_N)$$

$$I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$Var(I - \tilde{\mu}_N) = Var\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$$

$$Var(I - \tilde{\mu}_N) = Var\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$$

$$Var(I - \tilde{\mu}_N) = Var\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$$

$$Var(I - \tilde{\mu}_N) = Var\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$$

$$Var(I - \tilde{\mu}_N) = Var\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$$

$$\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$$

$$\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$$

$$\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega\right)$$

$$\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$$

$$\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

where,

$$P_f(\omega) = |\hat{f}^*(\omega)|^2$$
 Power Spectrum

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

Subr and Kautz [2013]

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

Subr and Kautz [2013]

This is a general form, both for homogenised as well as non-homogenised sampling patterns

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

For purely random samples:

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

For purely random samples:

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$

Fredo Durand [2011]

where,

$$P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$$

127

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

For purely random samples: $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$

Fredo Durand [2011]

where,

$$P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$$

127

Homogenizing any sampling pattern makes $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$

Homogenizing any sampling pattern makes $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$

Pilleboue et al. [2015]

where,

$$P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$$

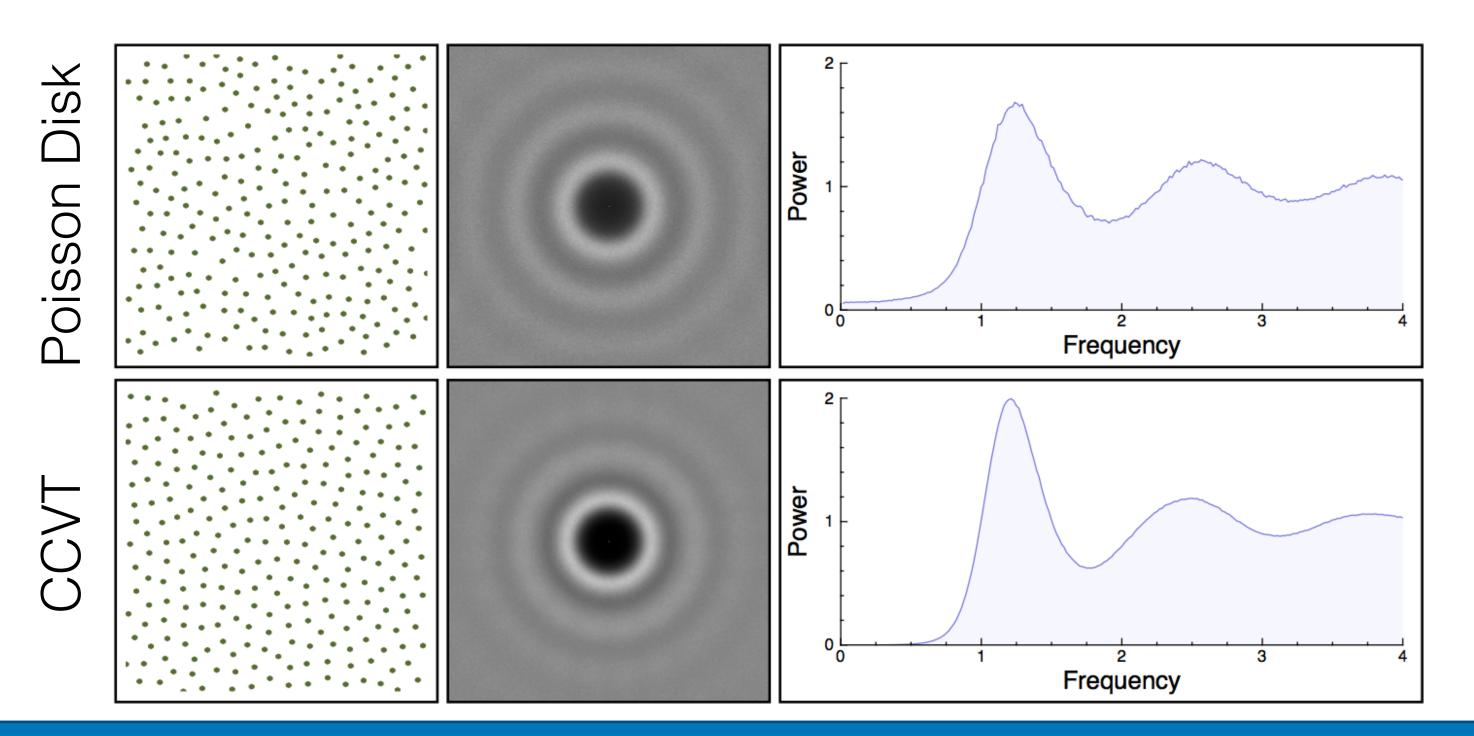
128

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$

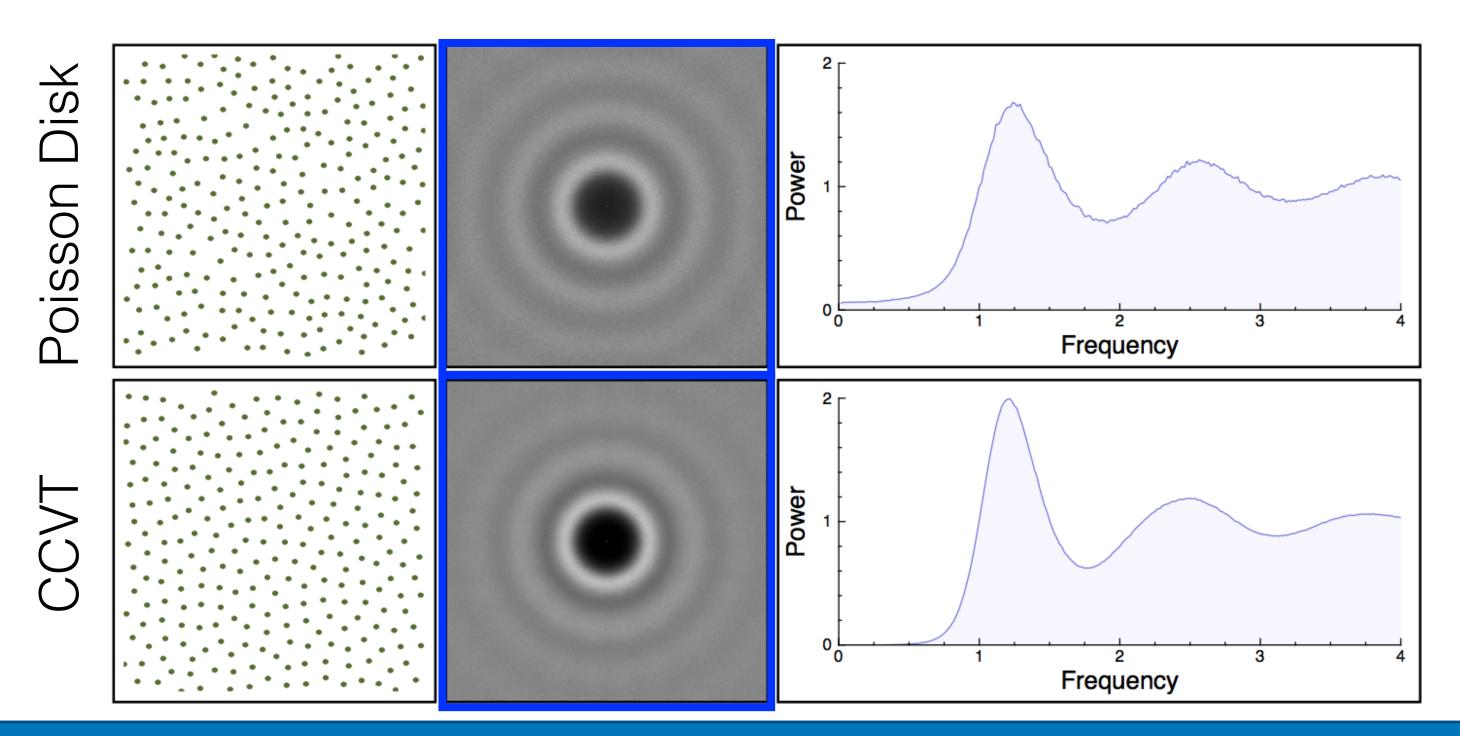
Variance in terms of n-dimensional Power Spectra

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$



Variance in terms of n-dimensional Power Spectra

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$



$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$

In polar coordinates:

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$

In polar coordinates:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \langle P_S(\omega) \rangle d\omega$$

In polar coordinates:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$

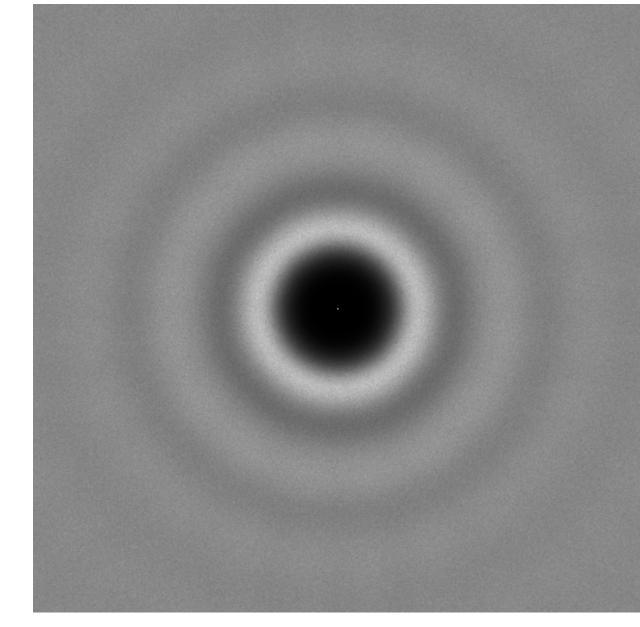
$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$

Variance for Isotropic Power Spectra

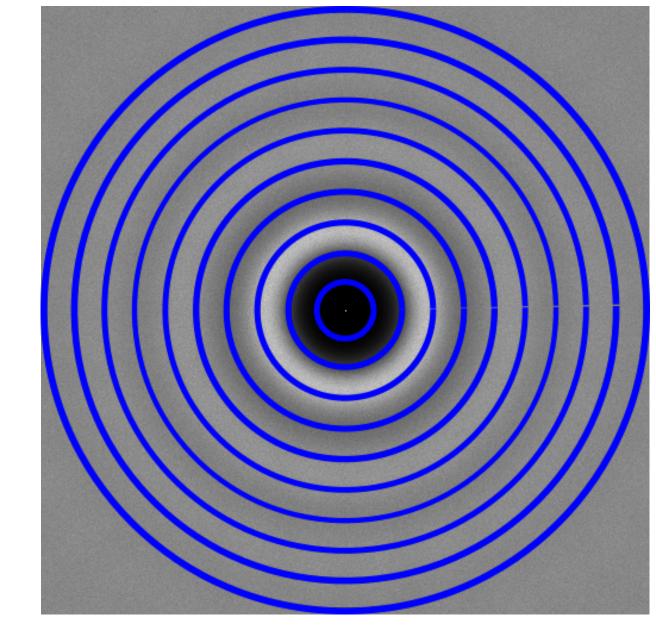
$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$

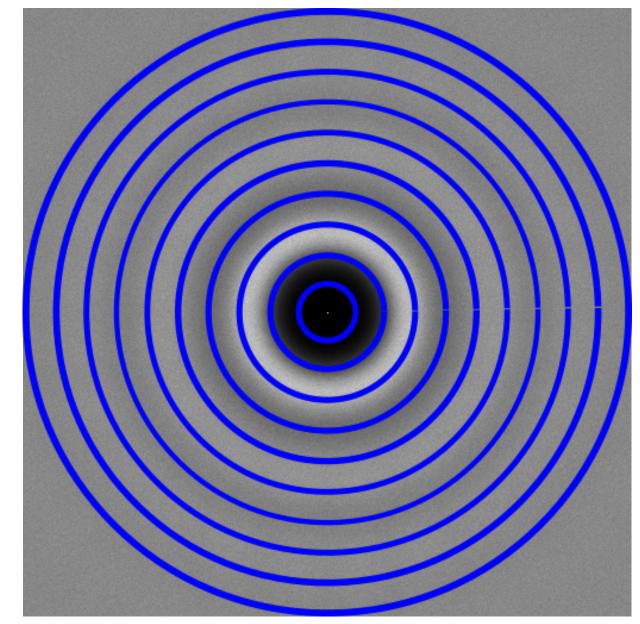


$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$



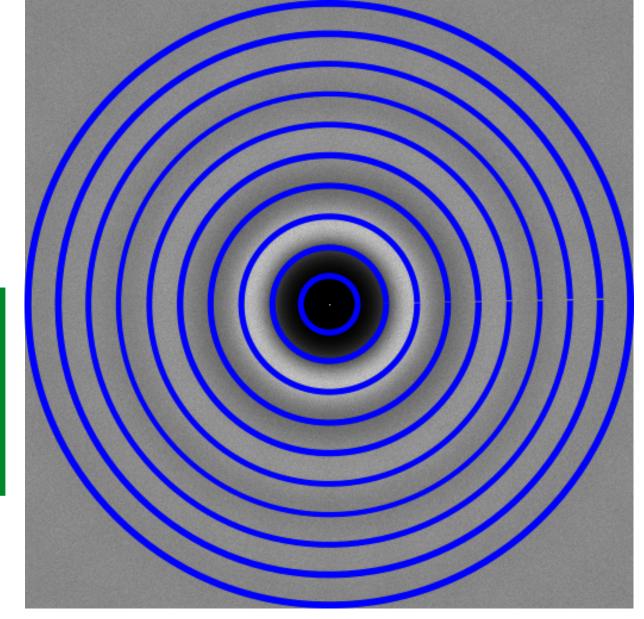
$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$



$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$

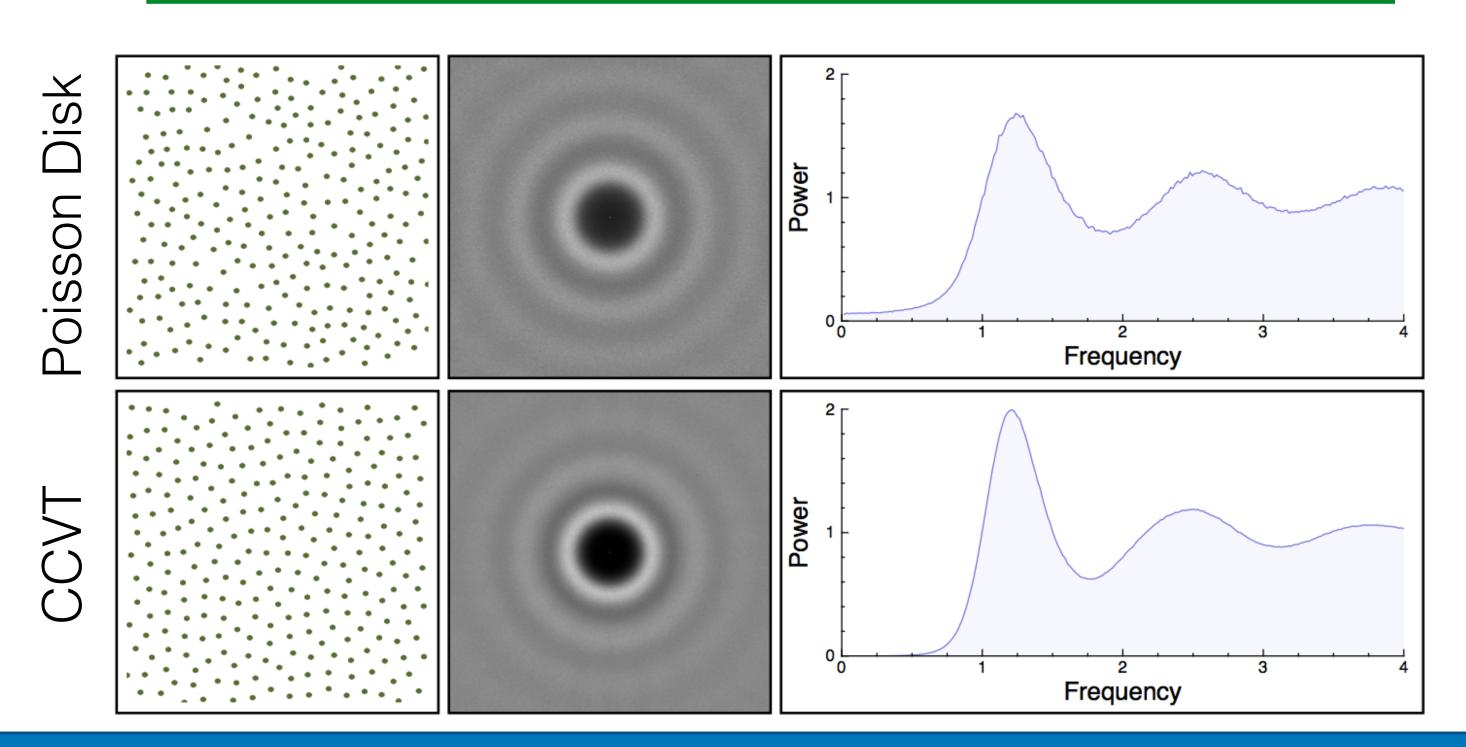


$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_S(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$

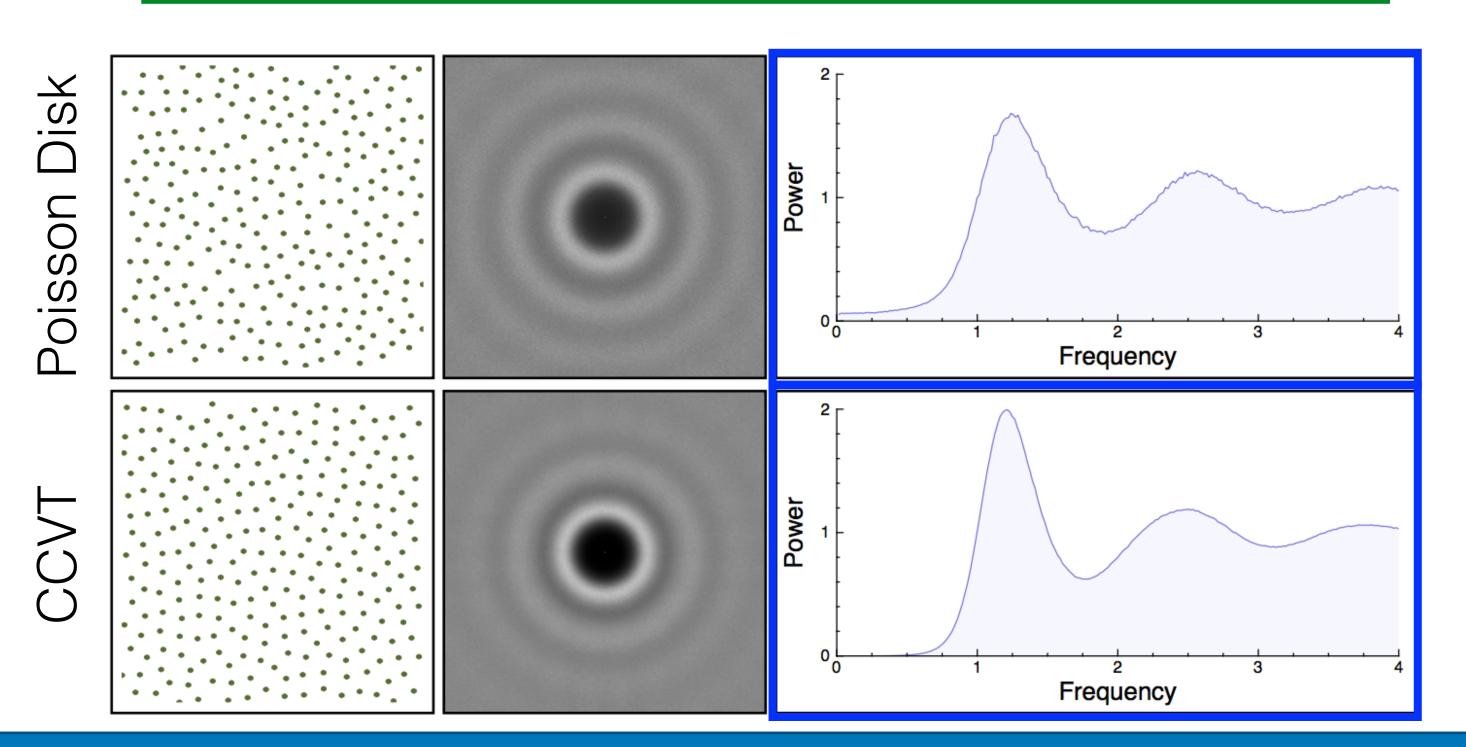
Variance in terms of 1-dimensional Power Spectra

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$



Variance in terms of 1-dimensional Power Spectra

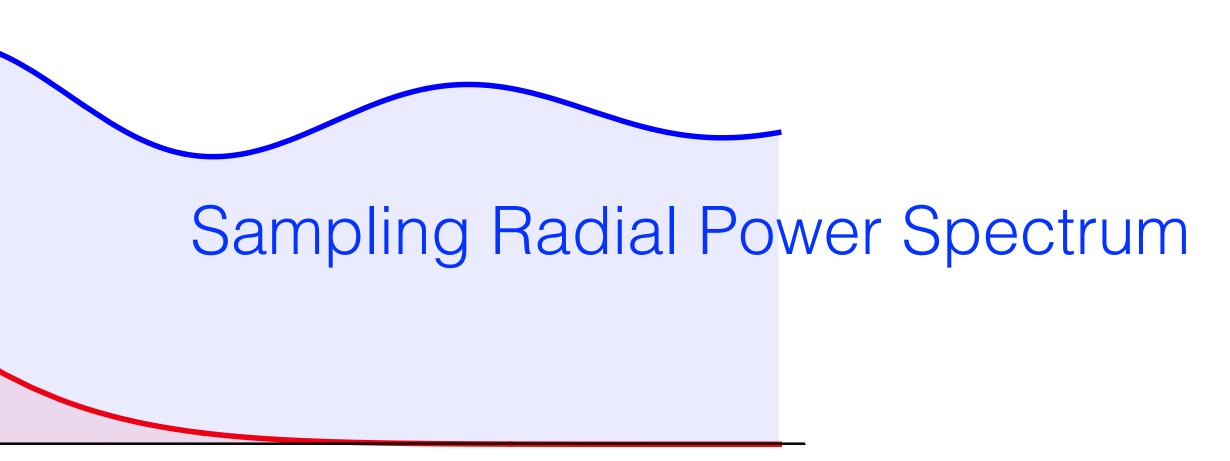
$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$



$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$

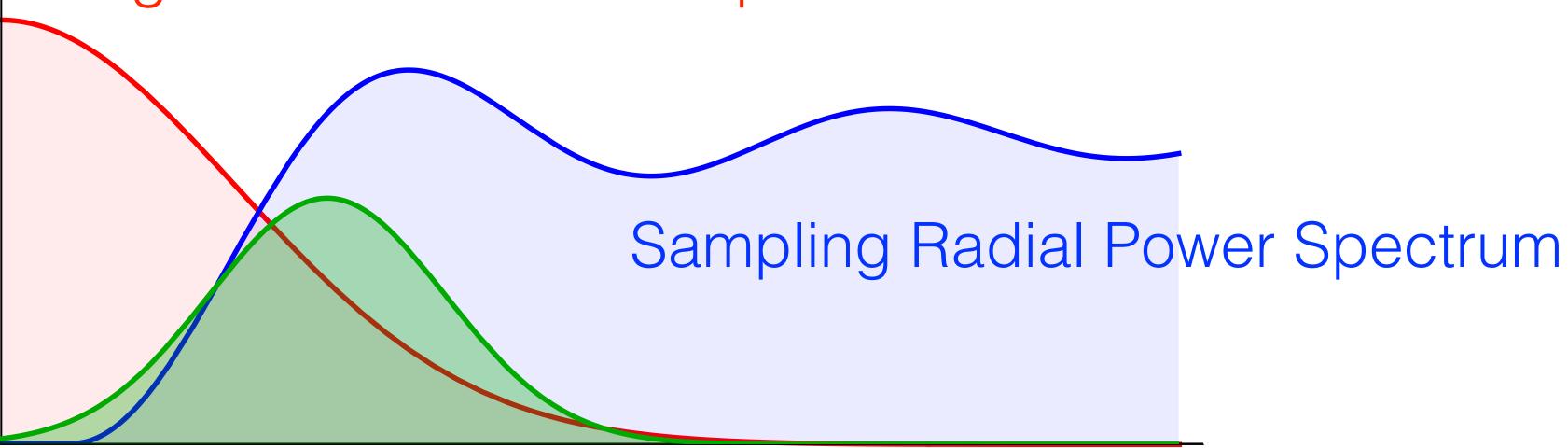
Integrand Radial Power Spectrum



For given number of Samples

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$

Integrand Radial Power Spectrum



For given number of Samples

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$

Integrand Radial Power Spectrum

Sampling Radial Power Spectrum

For given number of Samples

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$

Integrand Radial Power Spectrum

Sampling Radial Power Spectrum

For given number of Samples

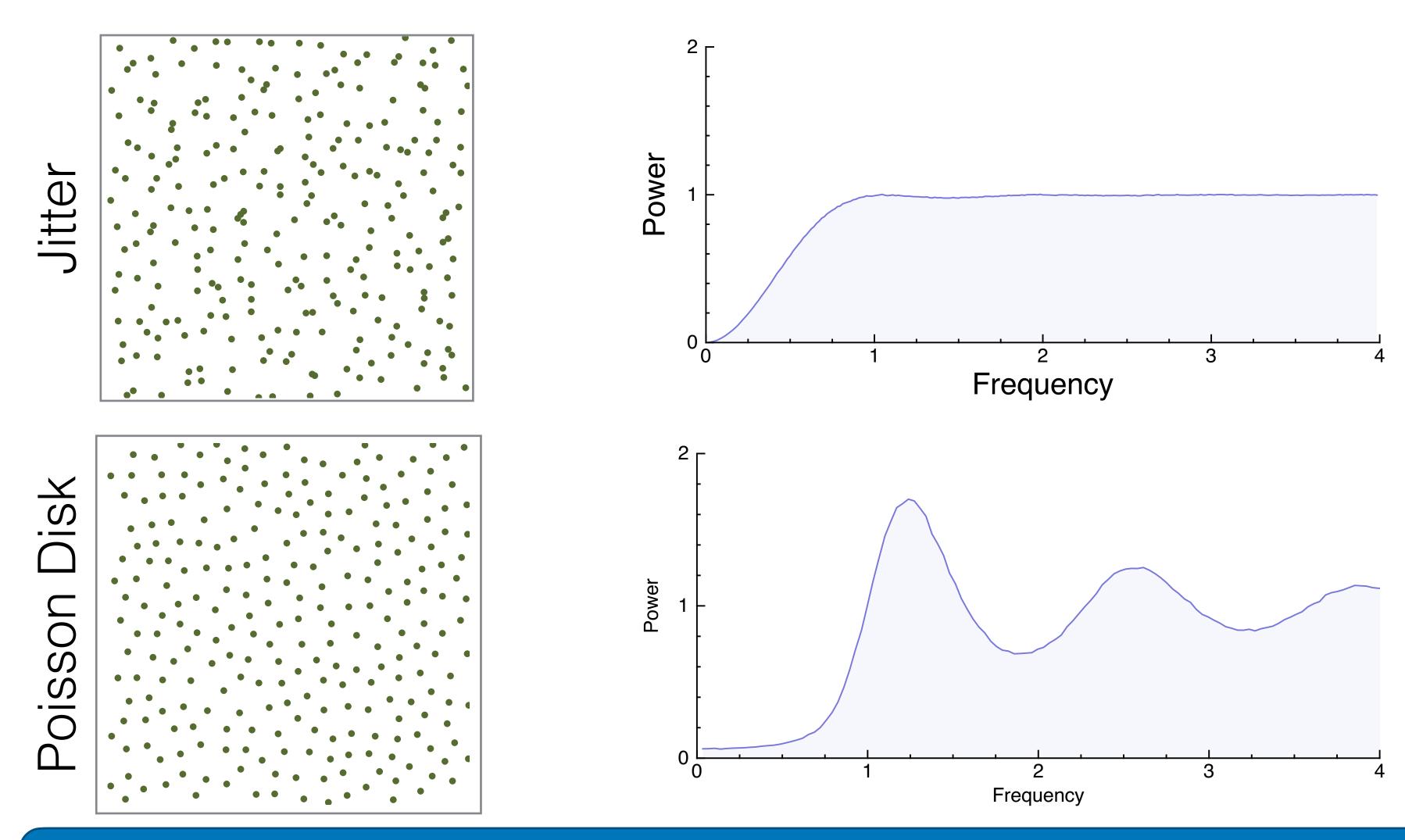
$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_S(\rho) \rangle d\rho$$

Integrand Radial Power Spectrum

Sampling Radial Power Spectrum

For given number of Samples

Spatial Distribution vs Radial Mean Power Spectra



Samplers	Worst Case	Best Case
Random		
Jitter		
Poisson Disk		
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	
Jitter		
Poisson Disk		
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter		
Poisson Disk		
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	
Poisson Disk		
CCVT		

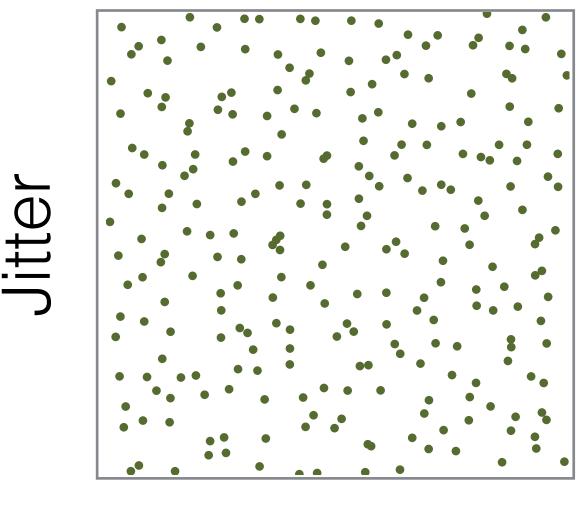
Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk		
CCVT		

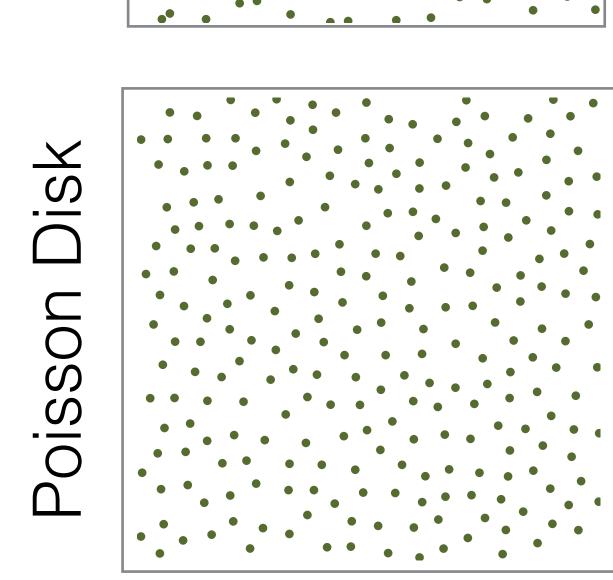
Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT		

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-3})$



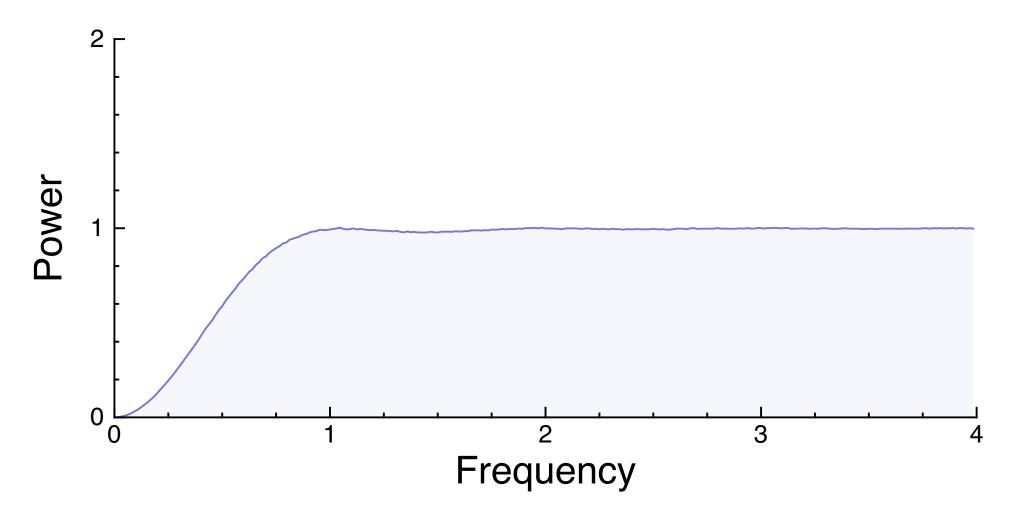


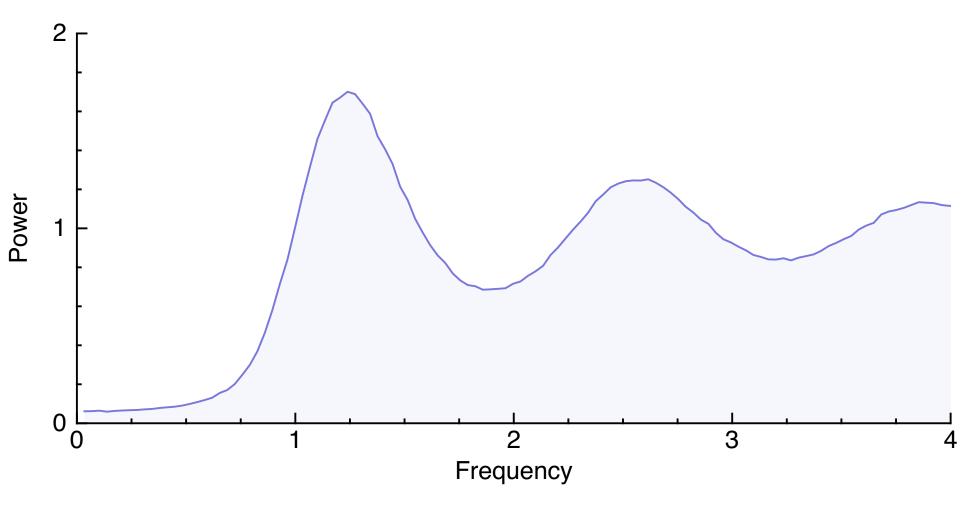
Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-3})$

Low Frequency Region

Jitter

Poisson Disk

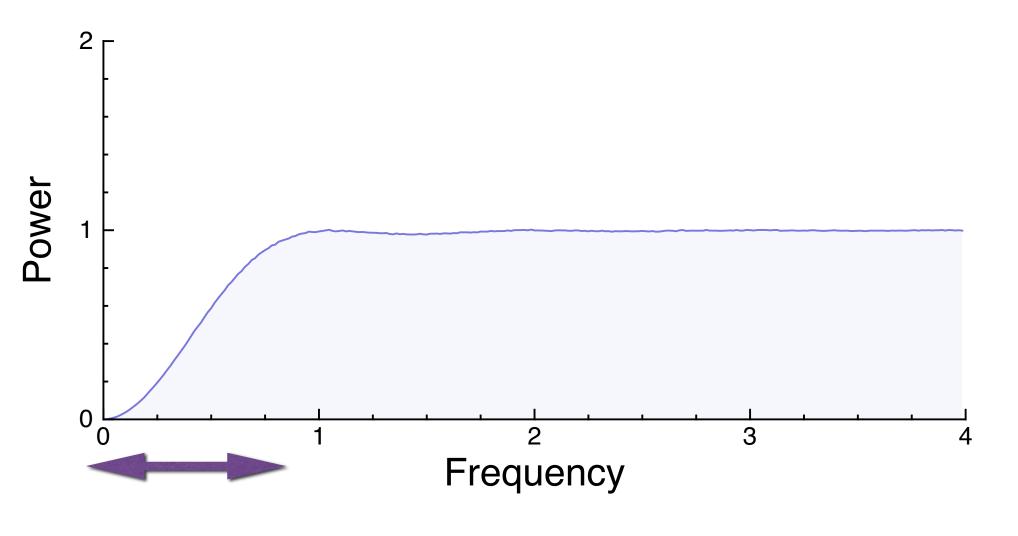


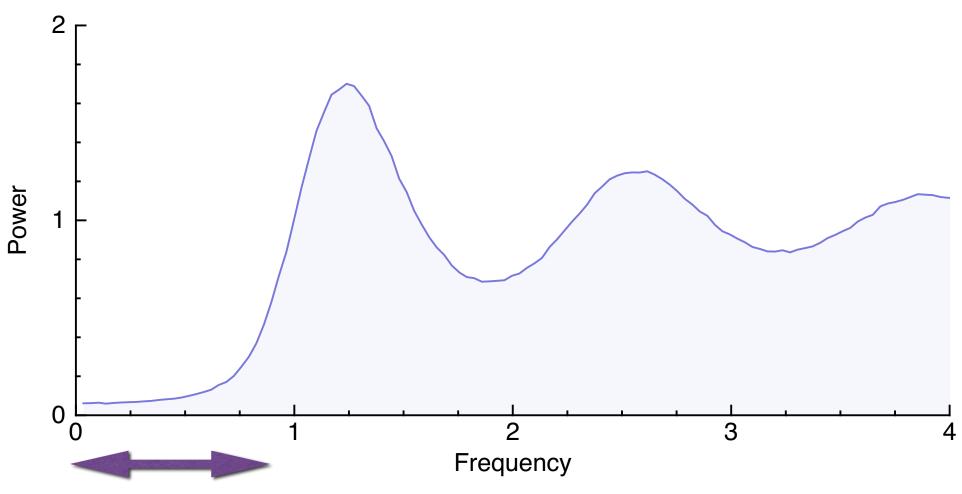


Low Frequency Region

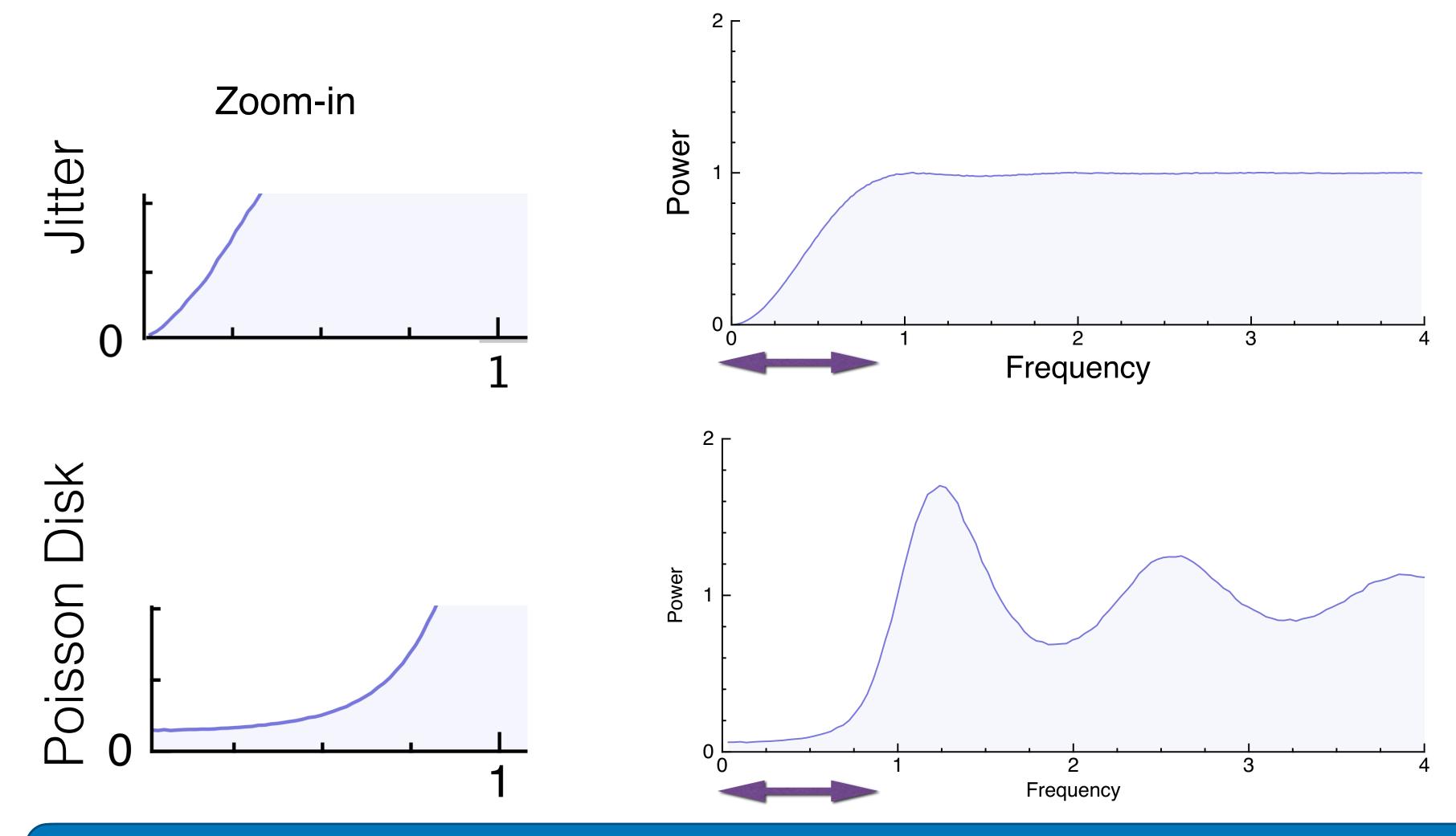
Jitter

Poisson Disk

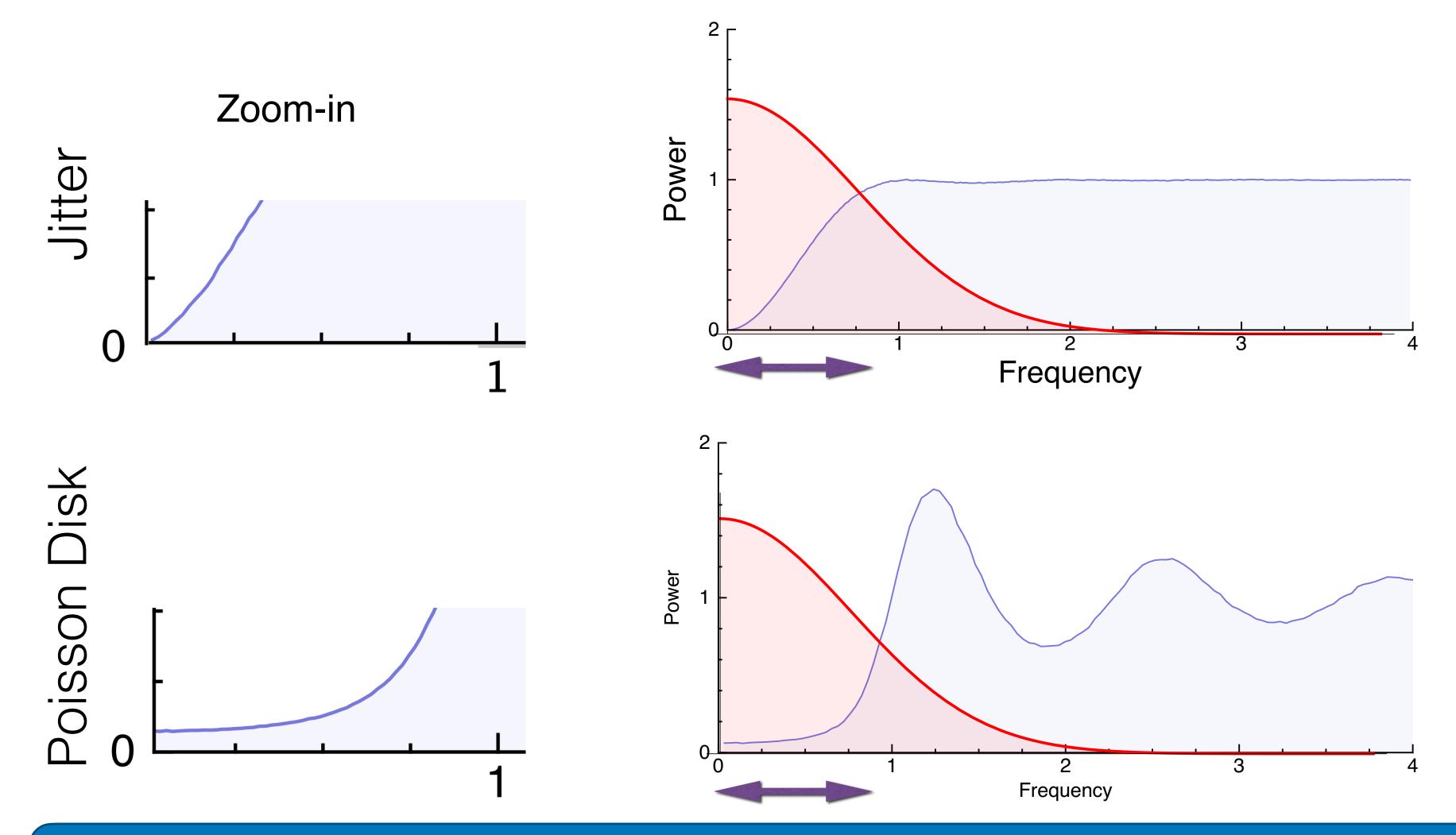




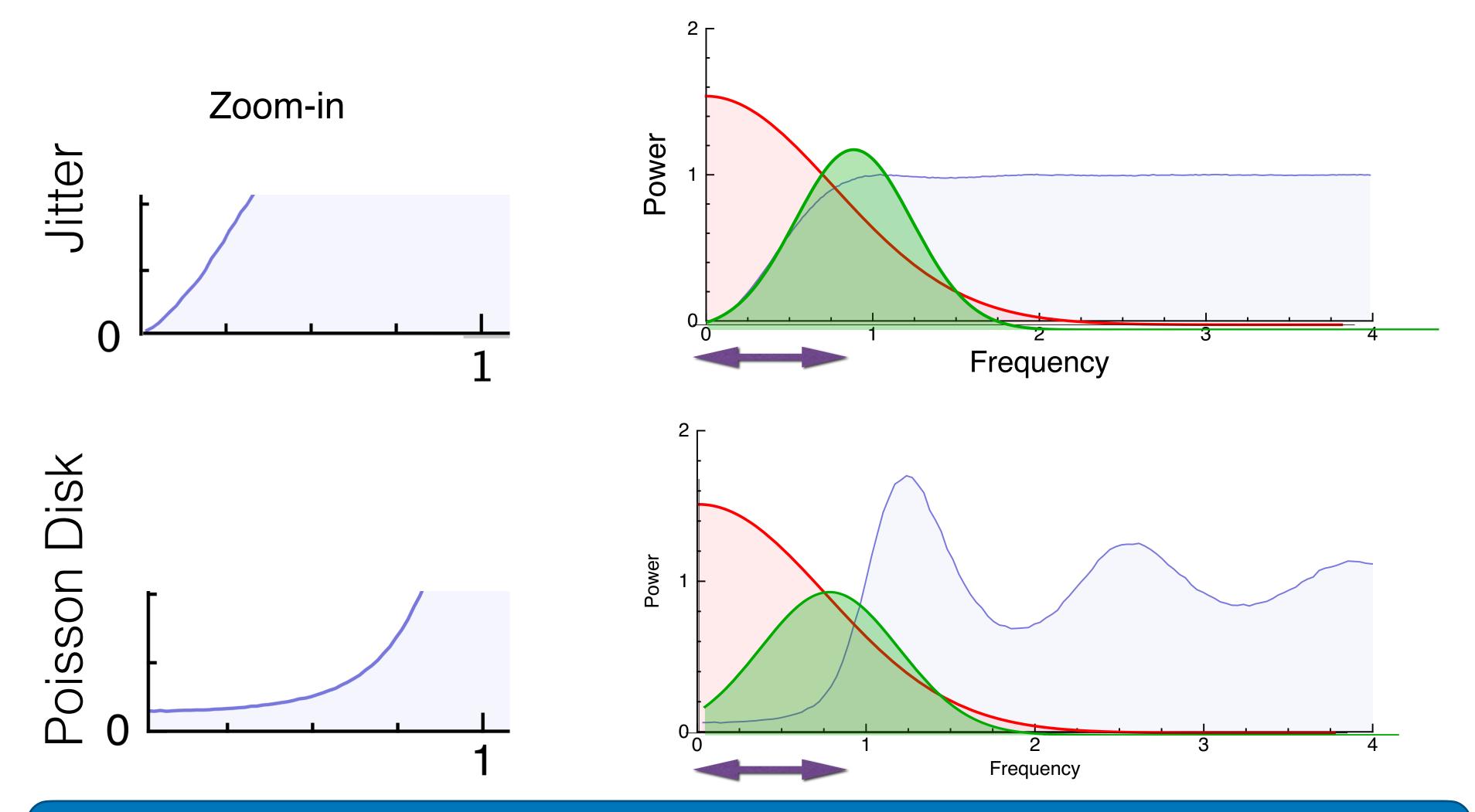
Low Frequency Region



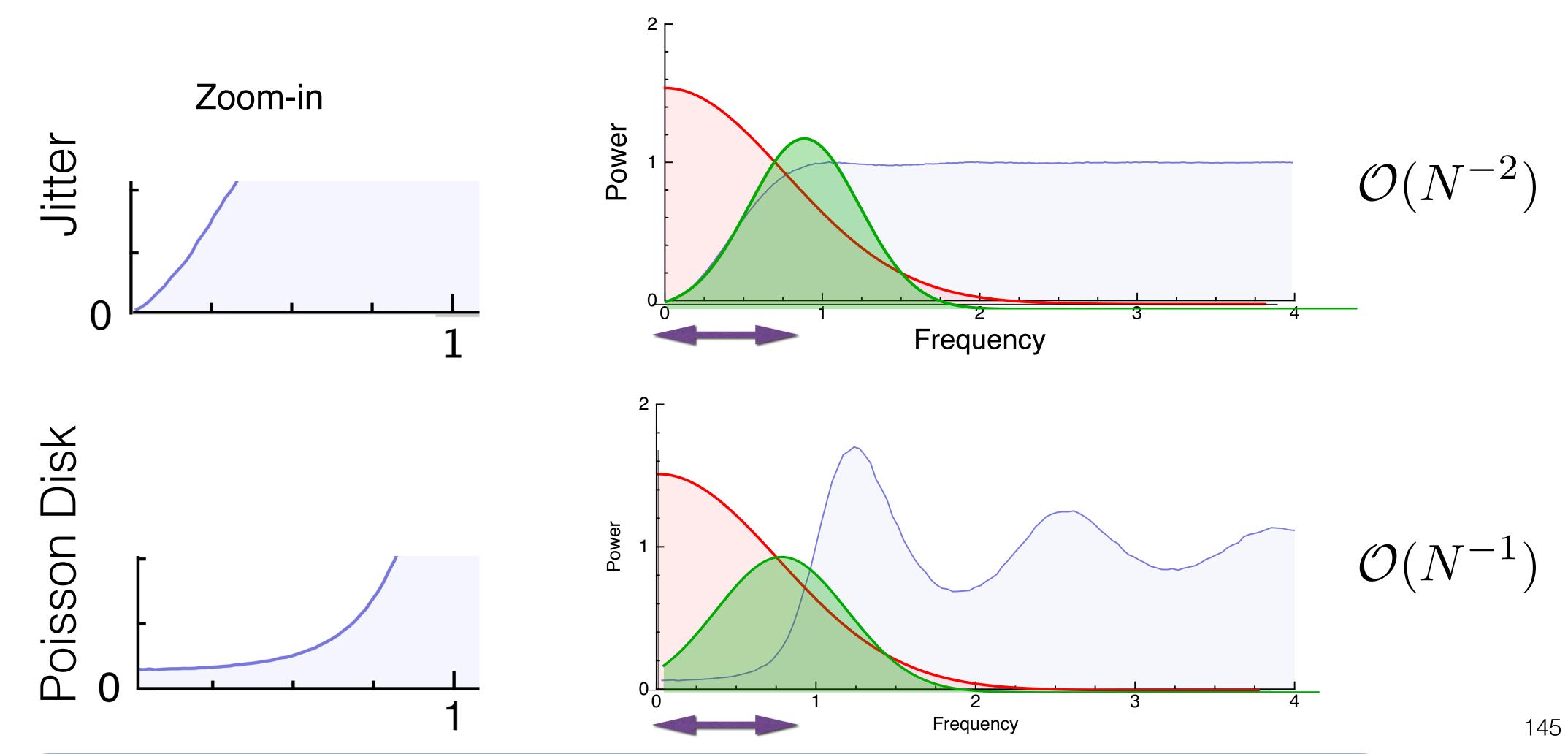
Variance for Low Sample Count



Variance for Low Sample Count

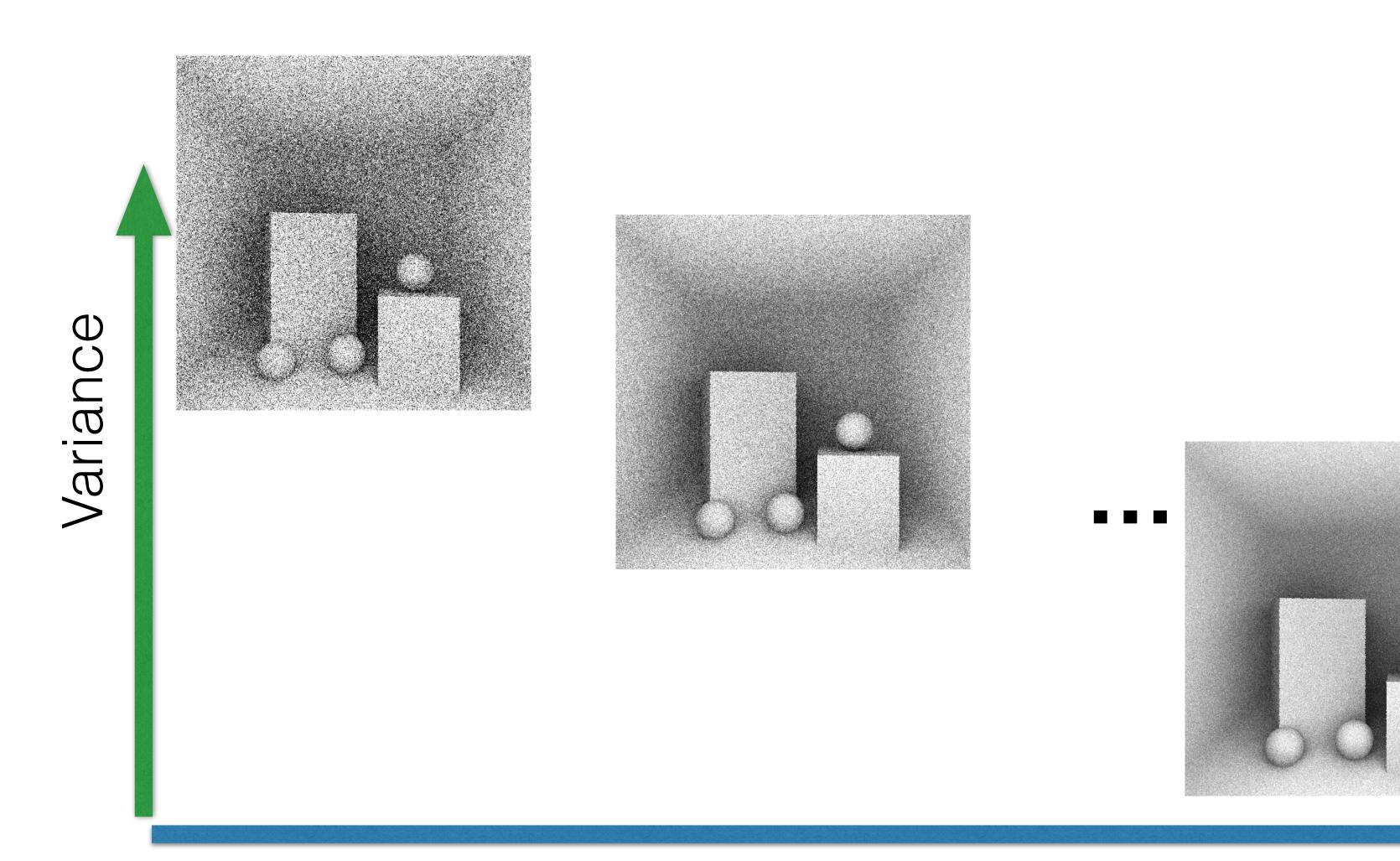


Variance for Increasing Sample Count



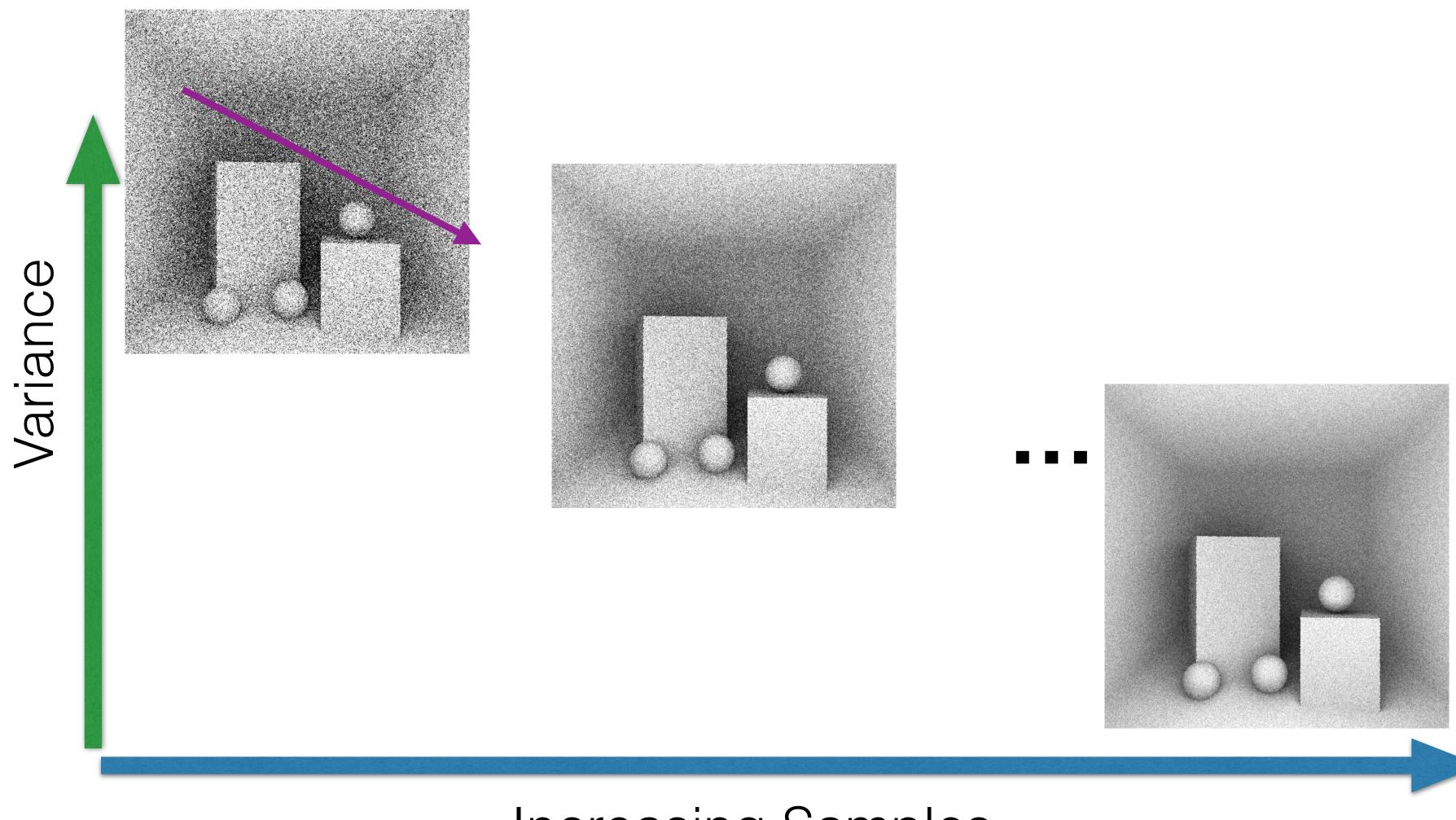
Experimental Verification

Convergence rate

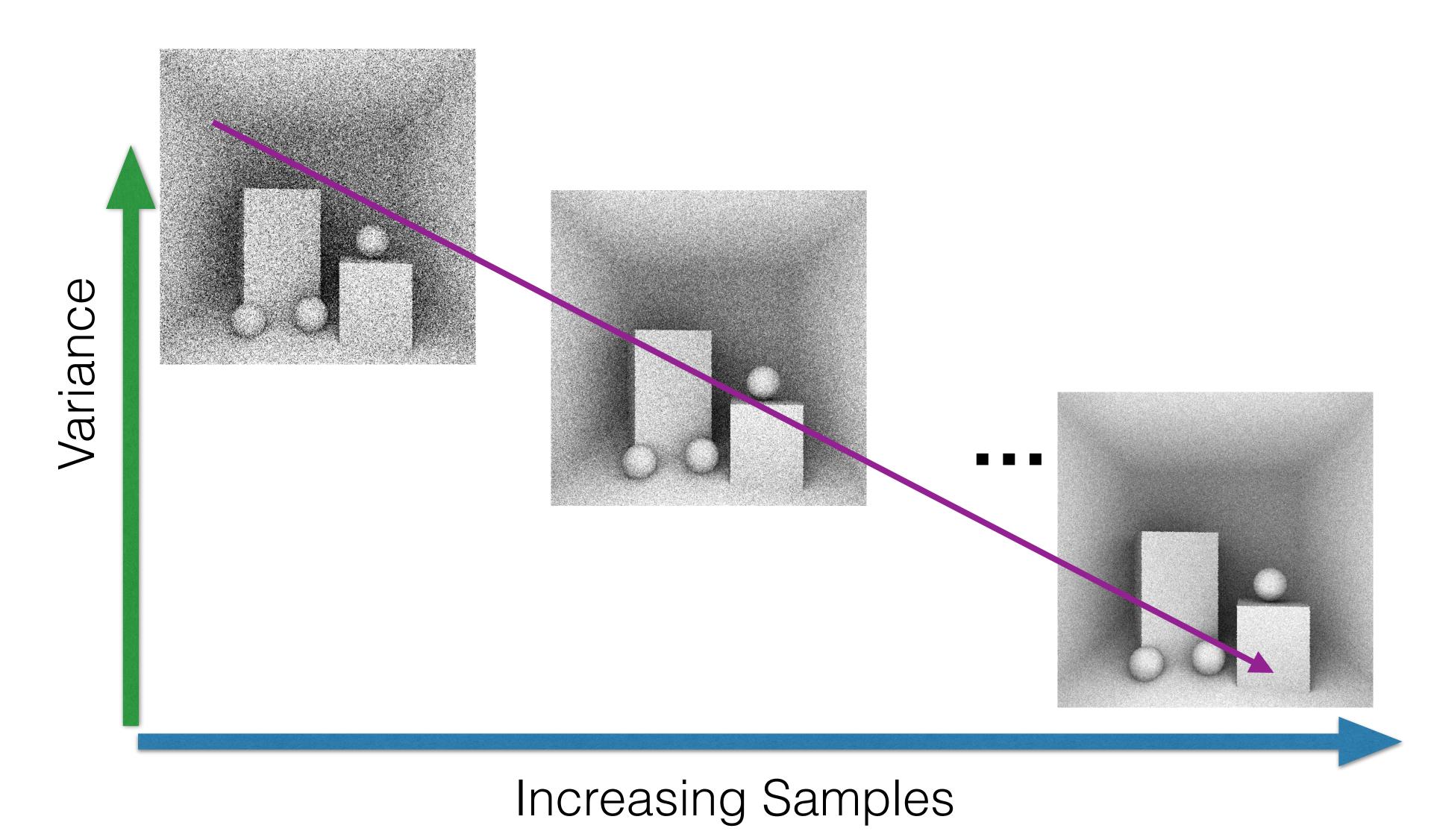


Increasing Samples

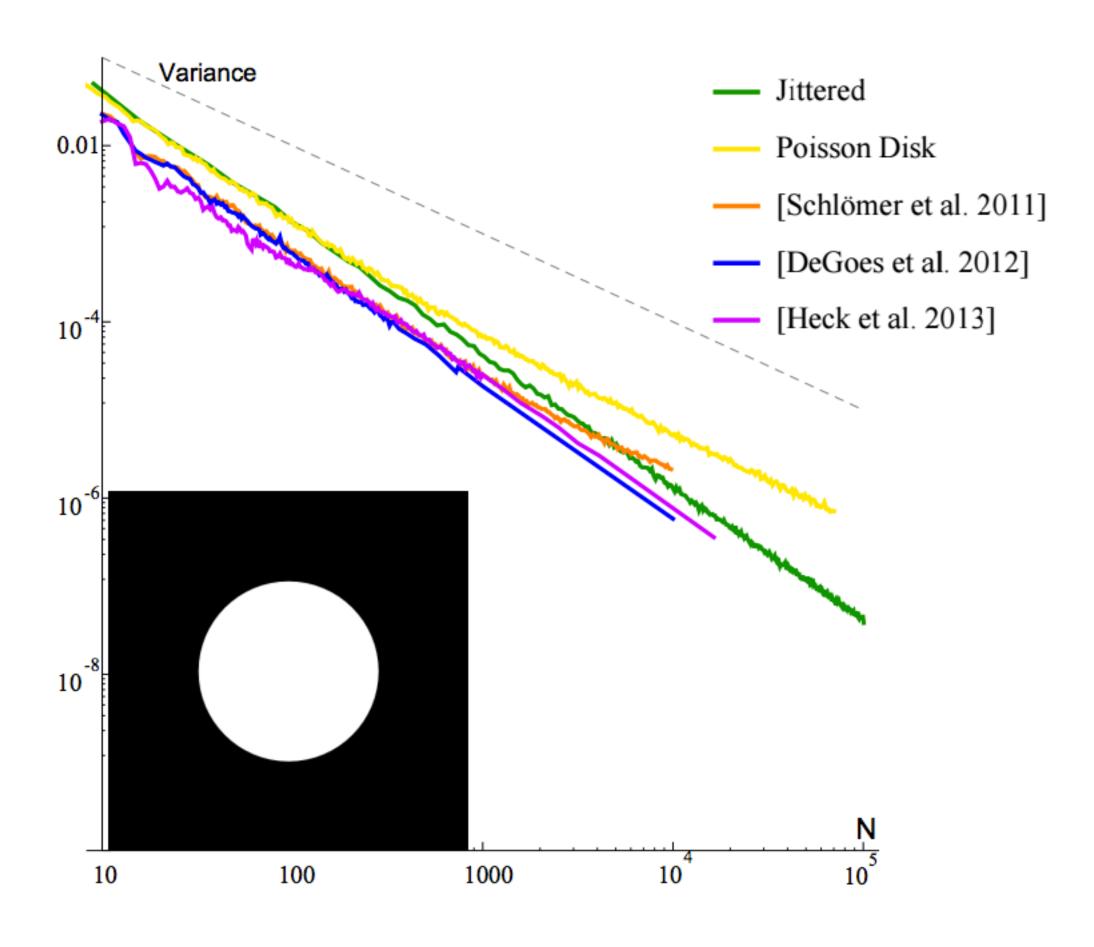
Convergence rate



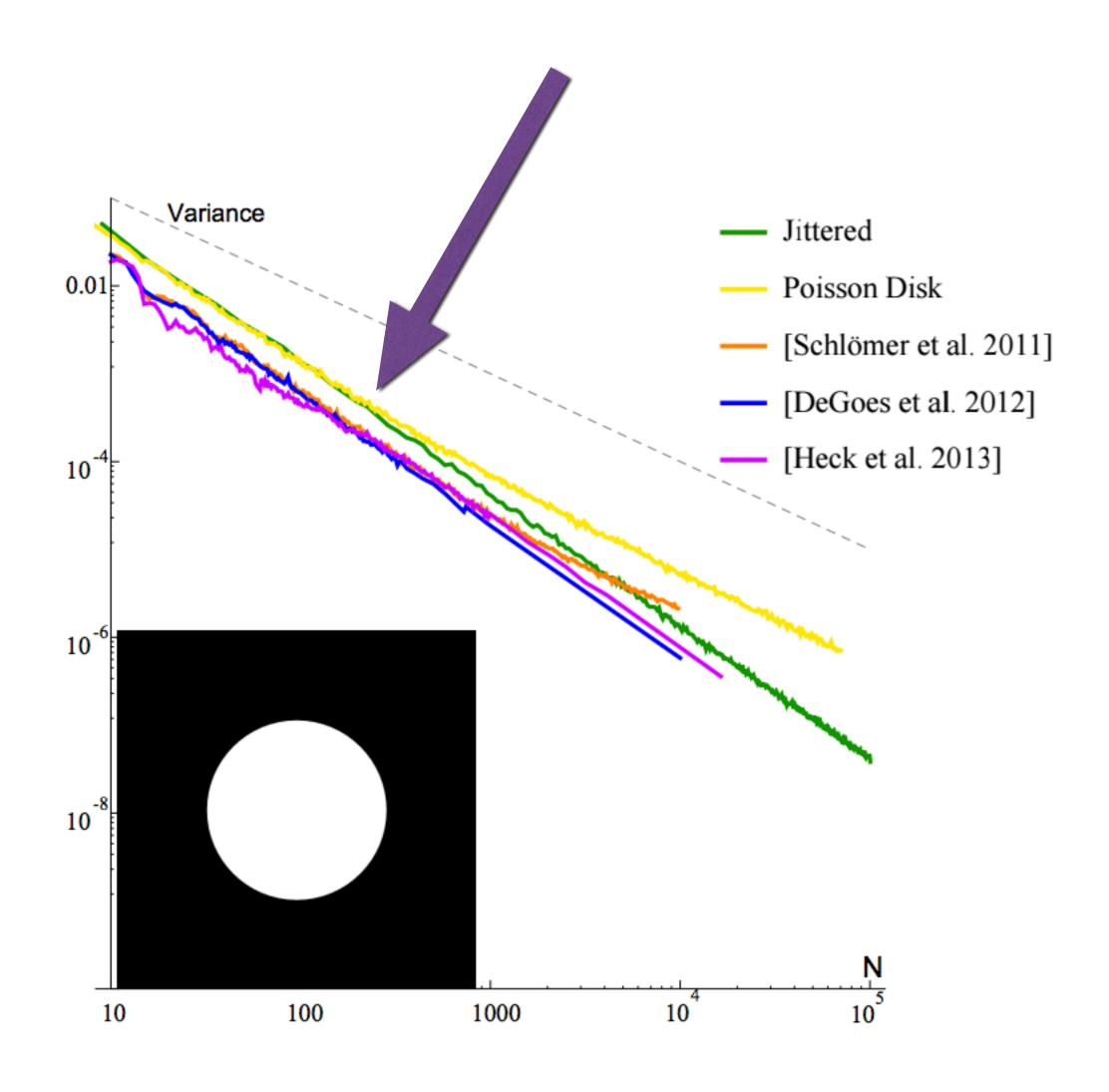
Convergence rate



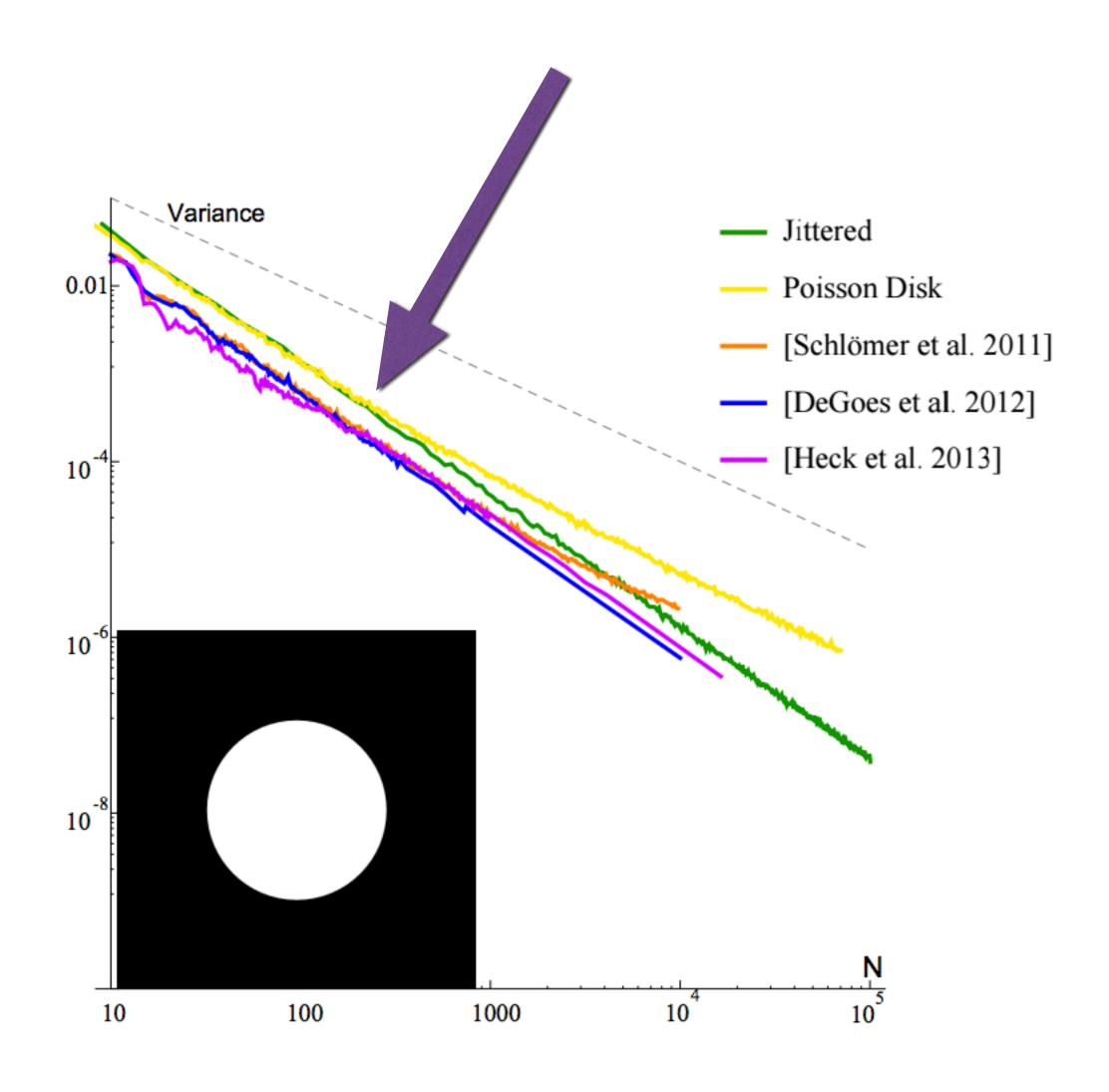
Disk Function as Worst Case



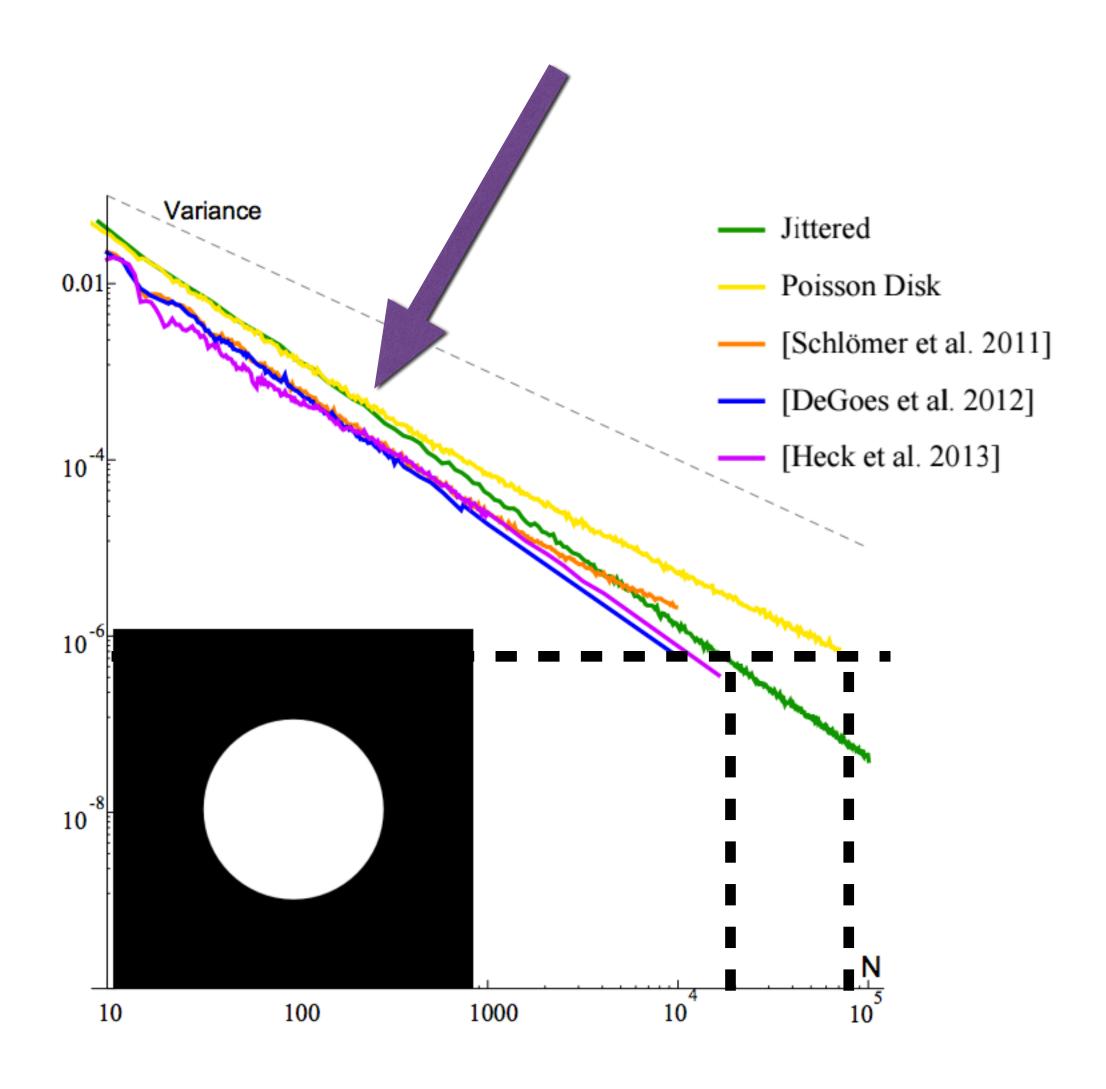
Disk Function as Worst Case



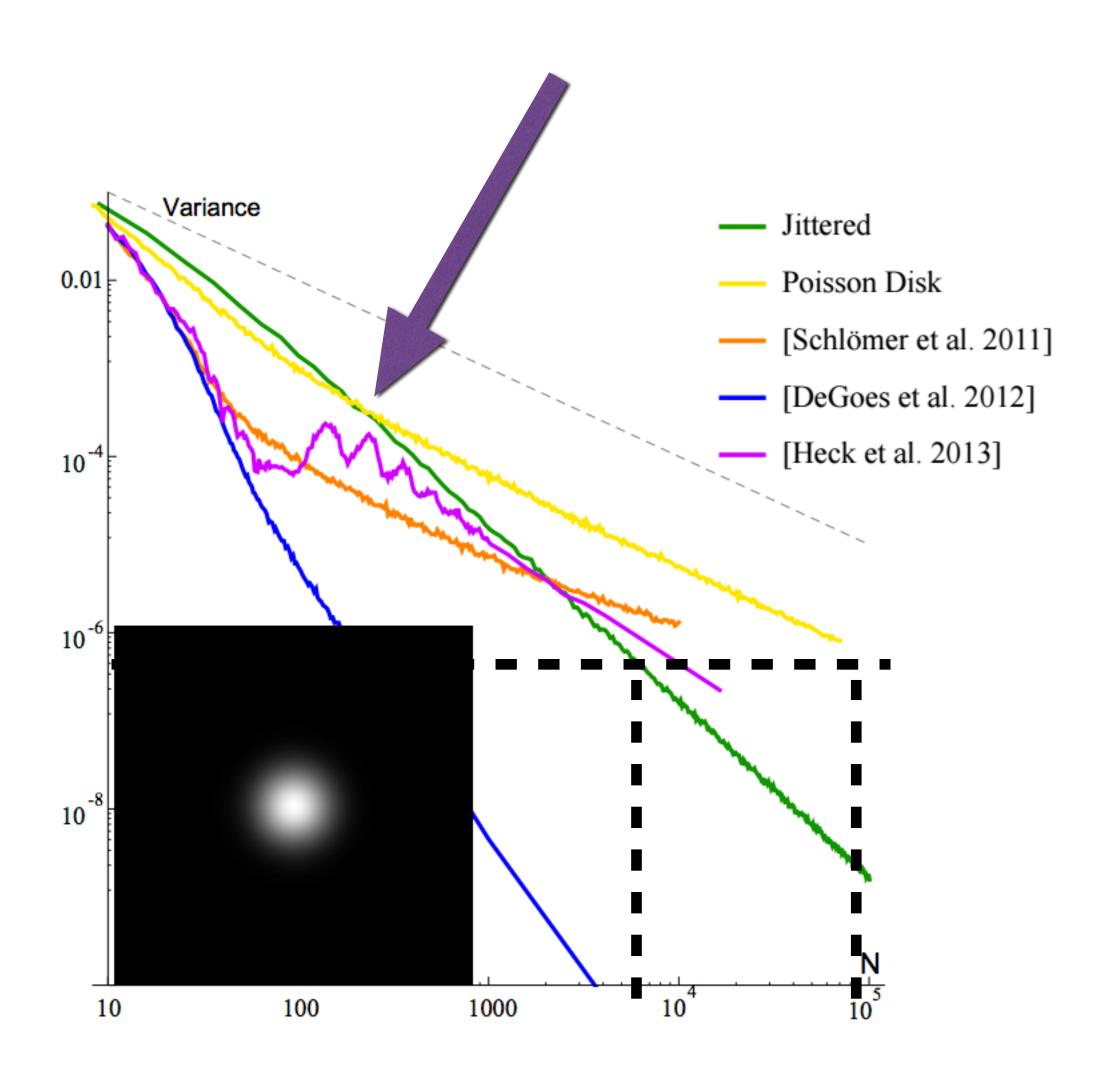
Disk Function as Worst Case



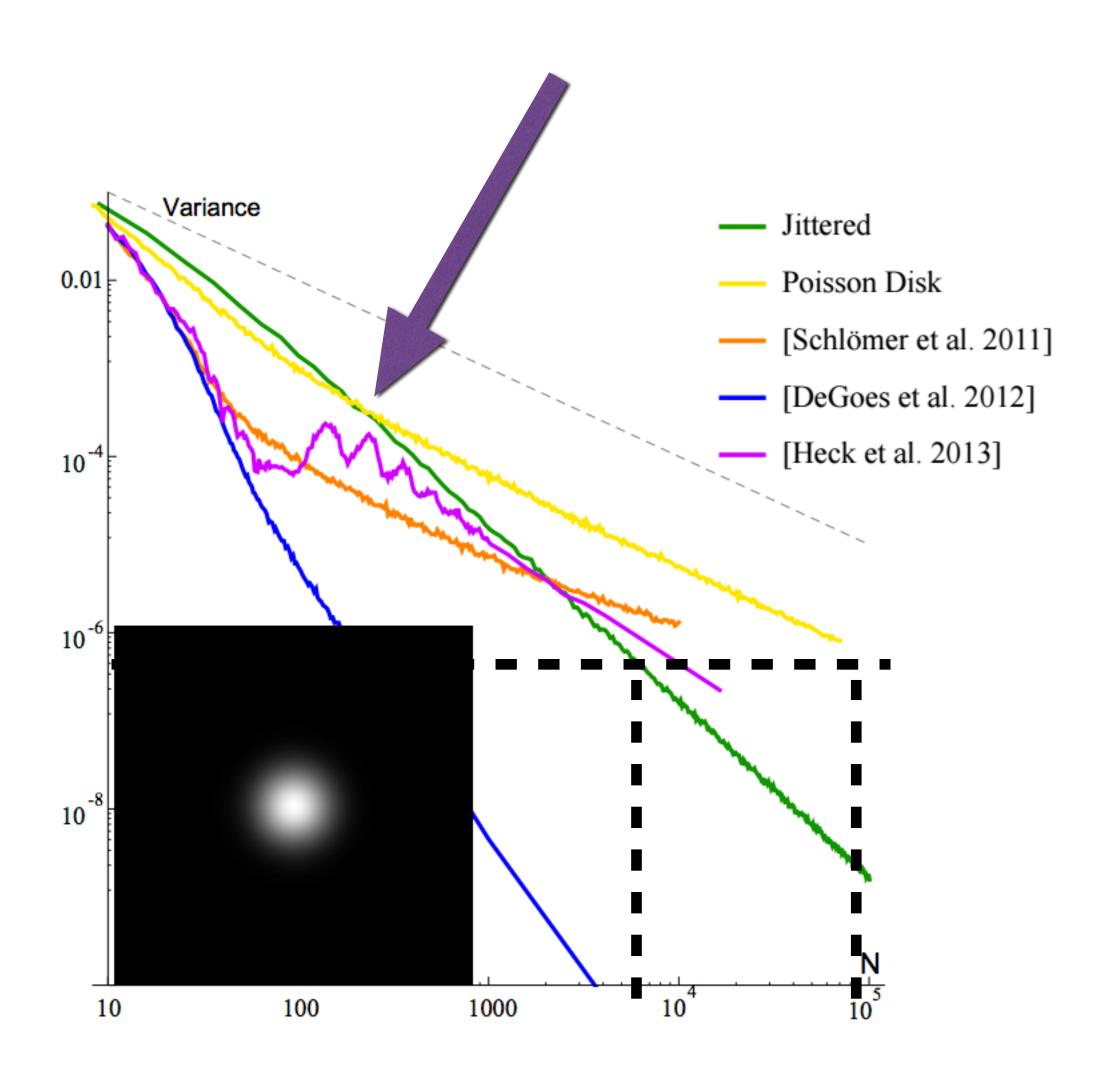
Disk Function as Worst Case



Gaussian as Best Case



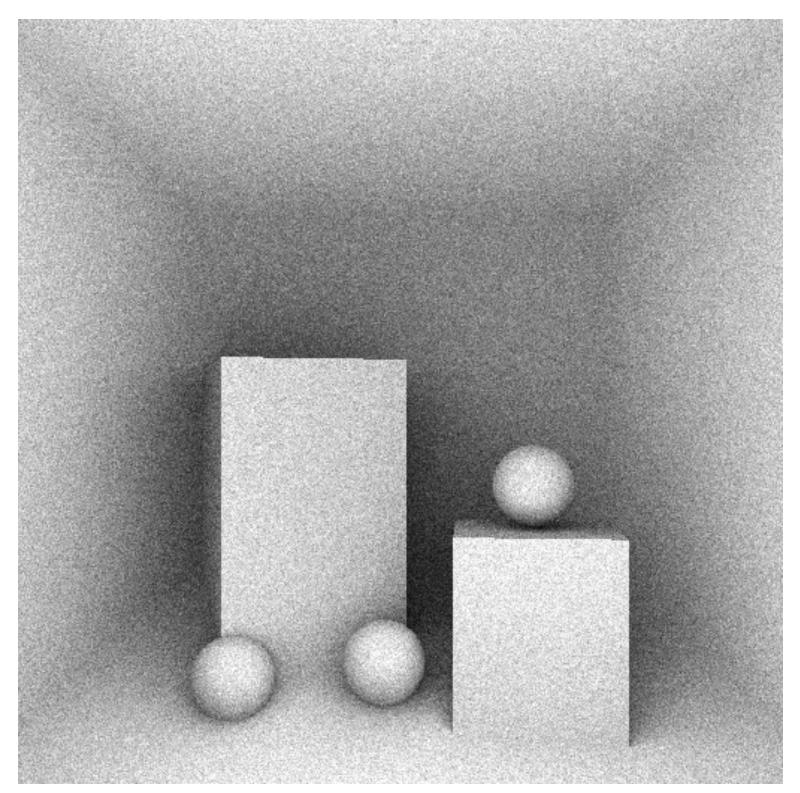
Gaussian as Best Case



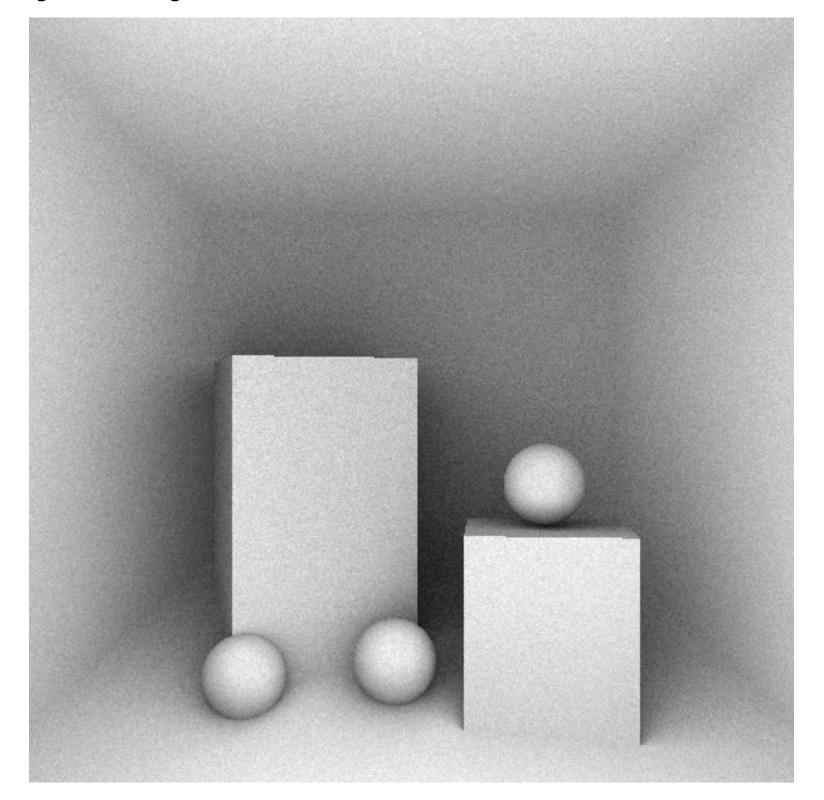
Ambient Occlusion Examples

Random vs Jittered

96 Secondary Rays



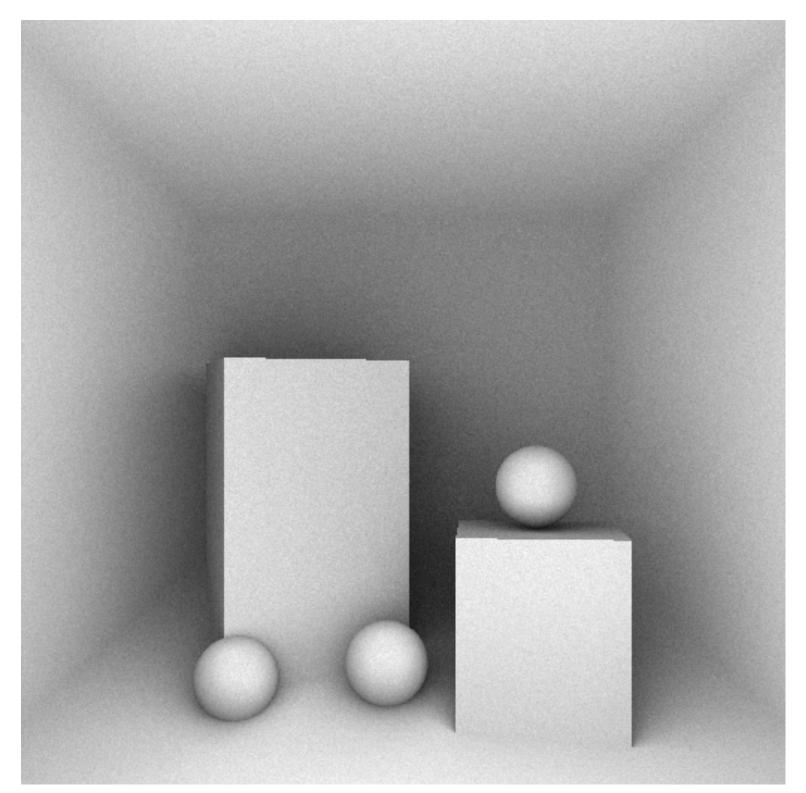
MSE: 4.74 x 10e-3



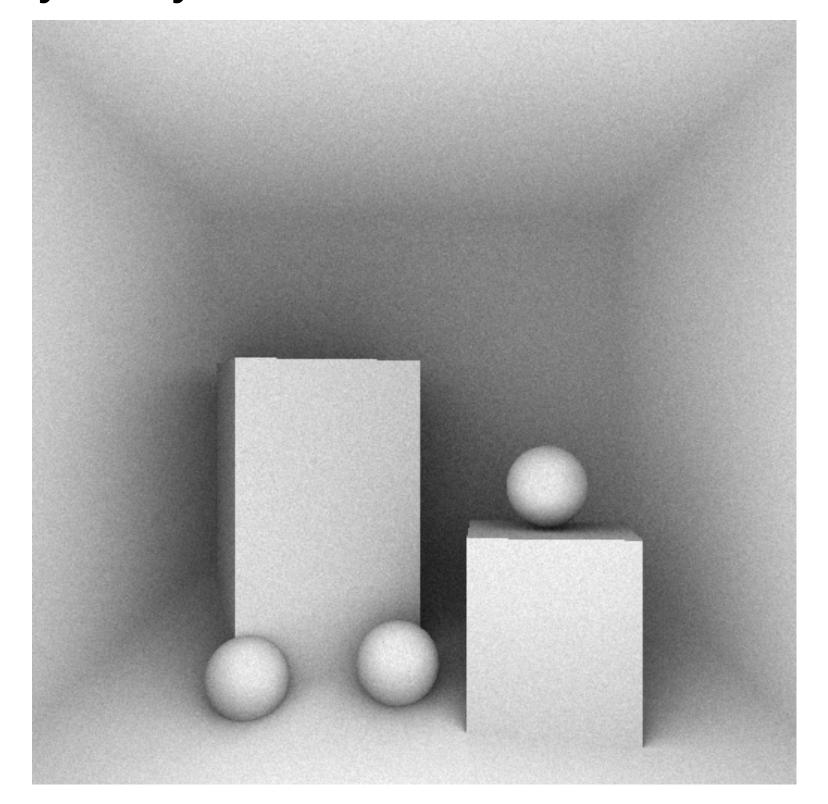
MSE: 8.56 x 10e-4

CCVT vs. Poisson Disk

96 Secondary Rays

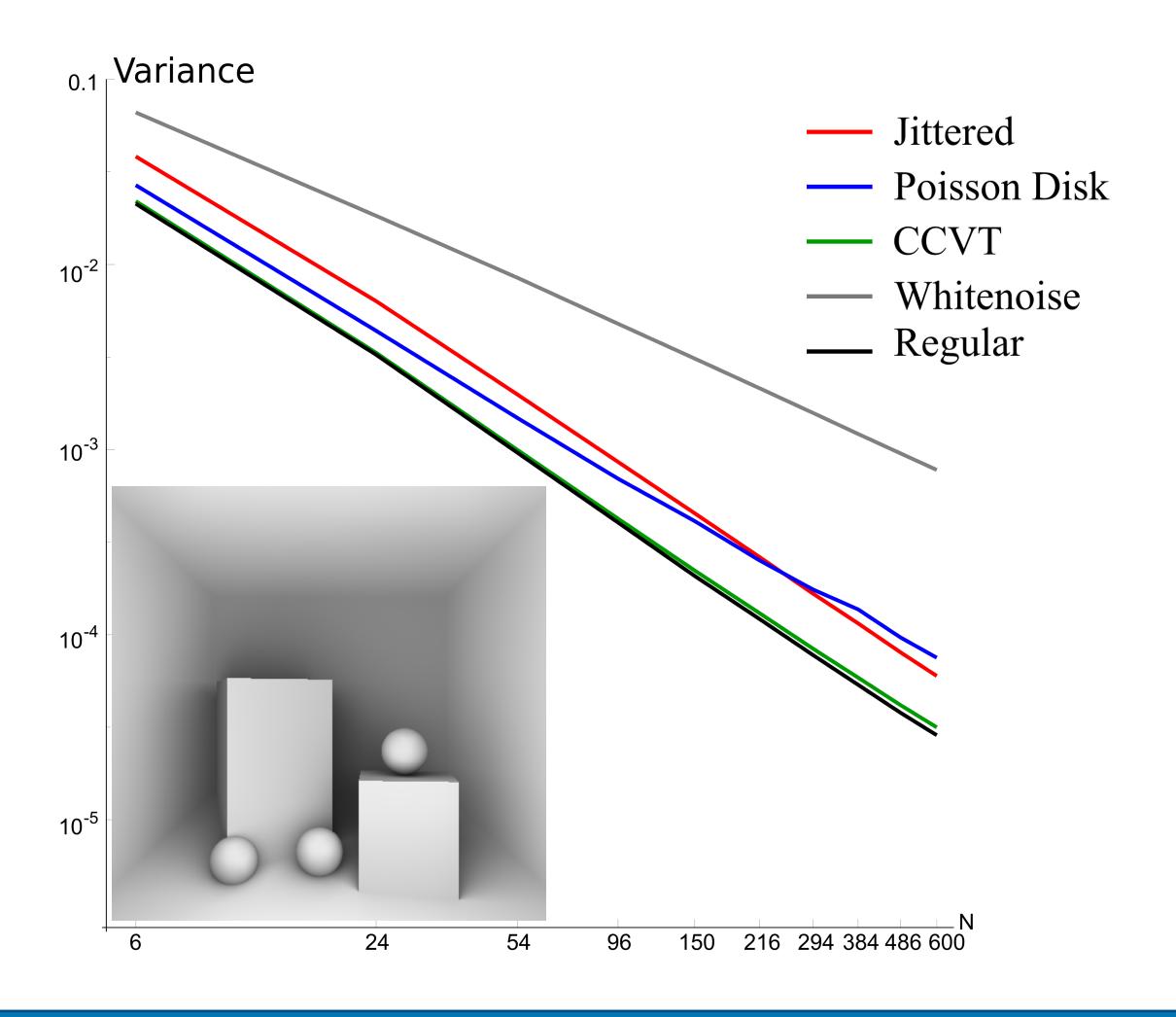


MSE: 4.24 x 10e-4

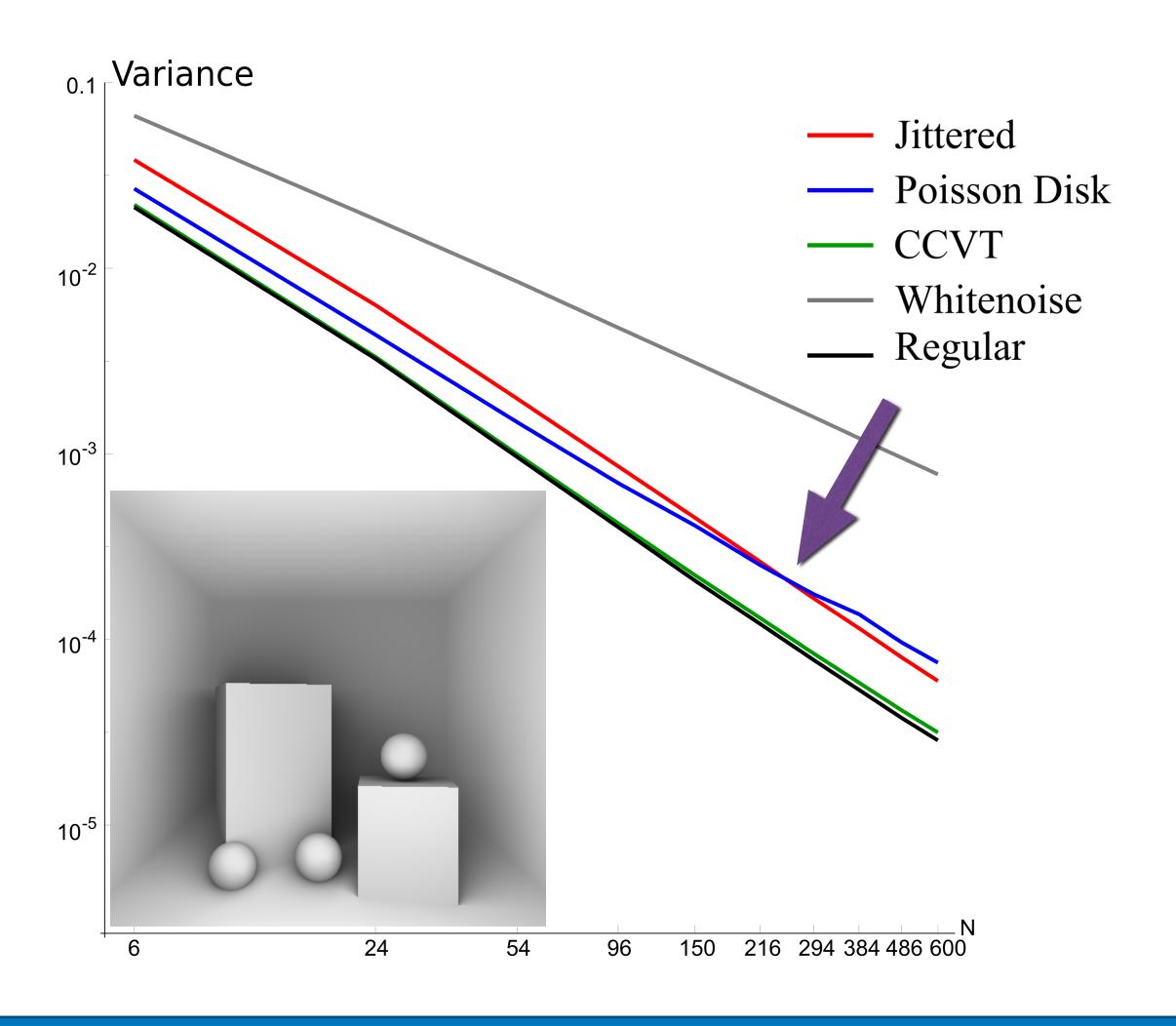


MSE: 6.95 x 10e-4

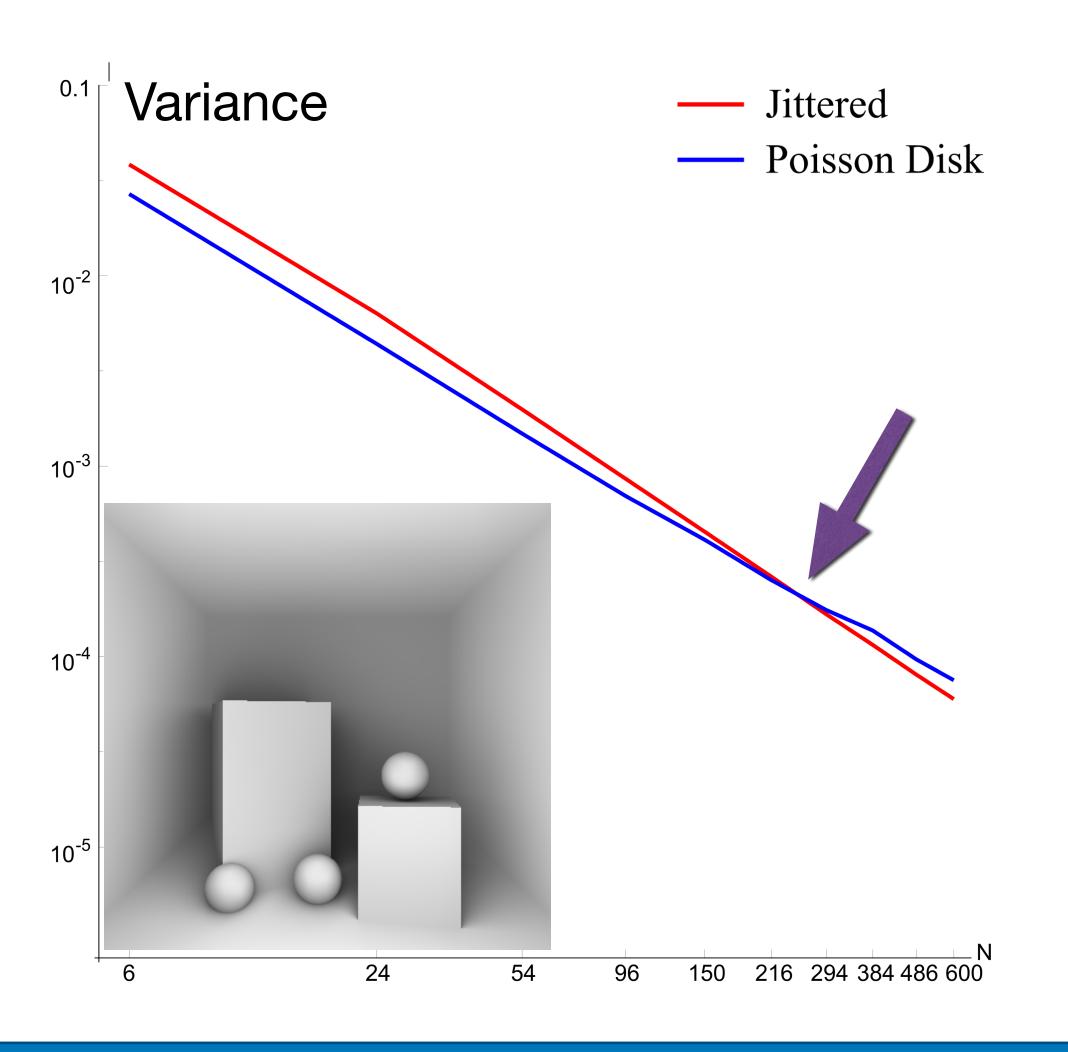
Convergence rates



Convergence rates



Jittered vs Poisson Disk



What are the benefits of this analysis?

What are the benefits of this analysis?

• For offline rendering, analysis tells which samplers would converge faster.

What are the benefits of this analysis?

- For offline rendering, analysis tells which samplers would converge faster.
- For real time rendering, blue noise samples are more effective in reducing variance for a given number of samples

Acknowledgements

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Kartic Subr

Gurprit Singh

*Wojciech Jarosz

*First part of slides are from Wojciech Jarosz