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Vlotivation Il (intel) Ic

* |nstant Radiosity (IR) — two-pass

= Cheap pre-processing
= Expensive rendering

* Previous approaches

= Bidirectional/Metropolis Instant Radiosity [Segovia et al.]
* Difficult to implement
* Multiple sampling strategies
* Many parameters
- Difficult to stratify

= “One-pixel image” assumption
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Our method Il inteD 1 c

* Simple extension of IR

= Generate VPLs from light sources only

* Probabilistically accept VPLs
= Proportionally to total contribution
= All VPLs bring the same power to the image
= “One-pixel image” assumption
* Minimum importance storage
= Filter VPLs on the fly
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Probabilistic VPL acceptance Il (intel.
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* VPL energy
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* One-sample Monte Carlo integration with ¢
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* Allows to control VPL density



Choosing the acceptance probability @ Ic

* Want N VPLs with equal total contribution
D
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* For each VPL candidate i with energy L;

= Estimate total contribution ®;

. < . . [ D;
= Russian roulette decision with p; = min (qu + &p, 1)

v

* Accept with energy 5
l
* Discard



®@®

Estimating Image Contribution Il inteD 1 c

* Computing @;
= Create a number of samples from camera rays
 Analogs of importons

= Connect VPLs to camera samples
* Computing ©

= Progressively
- Setd® =0
- Loop

- Render frame, compute ®!

* Accumulate ® = (1 — %) D + %CDi

= |n a single pass — path tracing, using VPLs, etc.
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Instant Radiosity Our Extension (0.07 acceptance)



Results

Average acceptance probability: 0.28
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Average acceptance probability: 0.23
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Wrap Up

* Simple extension of IR

= Generate VPLs from light sources only

* Probabilistically accept VPLs on the fly
= Fixed minimal additional storage
= Easy to parallelize
* Two parameters
= &, = 0.05
= Number of camera samples, e.g. 100

* “One-pixel image” assumption
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Vlotivation Il (intel) Ic

* Global illumination still very costly
= |[ndirect illumination
= Even direct illumination — environment, area lights

* Two basic algorithmic improvements

= [mportance sampling
- Better sample distribution (ideally proportional to integrand)
* Higher quality with fewer samples
= Exploiting coherence
* Pixel integrands are often highly correlated
- Amortize sampling effort among pixels
* Fast!
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Background Il inteD 1 c

Importance Sampling

* Global — virtual point lights (VPLs)

= Importance-driven sample generation/filtering
* Find relevant VPLs for the current view point (one-pixel image)
/ Fast — few VPLs

Suboptimal — VPL importance varies across pixels

* Local (per pixel)
= Construct product PDF specialized for integrand
# Robust — PDF often matches integrand well
Not in the presence of occlusion
Costly — per-pixel PDF construction (BRDF pre-processing)



Motivation (Single Sample per Pixel)
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Background
Exploiting Coherence

* |llumination is often smooth
= Especially indirect
» Correlated pixel integrals

* Filtering

= |dea — share samples among integrals

Reuse samples by interpolation/filtering

* Irradiance caching, photon mapping
* Preserve discontinuities

= Smooth, low-variance results
= Biased, smeared edges = indirect only
= Slow convergence, increased memory usage

Images by J. Kfivanek and P. Gautron



Algorithm Overview Il ineeD |

* |ldea — combine all three

= Unbiased VPL sampling framework

= Shade only few most relevant VPLs

* Approach
= Consider full integrand (w/ visibility)
= Shade all VPLs at few locations
= Reuse VPL evaluations as importance at other locations

% Issue — illumination discontinuities
= Additional more conservative distributions
= Efficient MIS combination at shading points
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Algorithm Outline I GinteD Ic

* Progressive rendering
= Interactive feedback, fixed-memory convergence
* For each frame

1) Create importance records (IR) from camera
2) Create virtual point lights (VPLs)
* Probabilistic rejection (global)
3) Store VPL distributions at each IR (local)
4) Render

* Borrow nearby IR distributions for VPL sampling (coherence)



Preprocess il mm@=$

* VPLs —on light sources and indirect
* |IRs store VPL contributions

= Accumulated during VPL generation
* Discard VPLs irrelevant for the image

= |[mmediately after generation

= Subset of IRs for contribution estimate
* Halton sequence periodicity

% Accumulate VPL contribution to IRs



Rendering s intel) ”

* For each pixel shading point
= Find nearest IRs
= Use IR distributions defined for VPL sampling

* Robust sampling if at least one IR correlates
* Increased variance when all IRs irrelevant

= |dentify causes for VPL contribution changes

= Additional, increasingly conservative distributions
* Many strategies — combine efficiently

= Bilateral MIS combination framework



Sampling distributions

* Four sampling distributions at each IR

F: Full U: Unoccluded




Distribution Combination
Horizontal Combination

' | I
% Matrix structure ;‘ 1 ‘
J R
% Distributions often 2| -
correlate among IRs T

= Combine first horizontally ¢

* Balance heuristic
* Corresponds to mixture

- Directly sample mixture

» Collapse columns into one
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Distribution Combination Il inteD 1 c
Vertical Combination

* Balance/power heuristics suboptimal
* Novel a-max combination heuristic

= Prioritize distributions: F,U, B, C 7. L
= Define confidences: ar, aq, g, Ae i
: R
= Discard low-probability samples /.
*If pr(x) < aypy(x) —
* Distribution optimization
J
= Apply heuristic at each IR j;p ‘ I
» Exactly one distribution is non-zero for f” ________ ;
each VPL ’ N
—_— e N\




Results AN inteD i|¥
Study Hall (diffuse)

Technique comparison
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Results
Glossy
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Results
Preview quality (0.5 FPS)

4 Illll'. IR
=

i

—— e



®@®

Summary I GinteD o

* Exploiting coherence in an unbiased way
= Can capture discontinuities

* Only error is noise (and VPL clamping)
= Specialized sampling techniques
* All VPL types handled simultaneously
* Progressive rendering

= First good approximation within a second
= Full convergence with fixed memory footprint
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Efficient Sampling of Direct Lighting

« How to handle huge numbers of dynamic light sources
at interactive rates (in an unbiased way)?

[Moreau et al. 2019] ReSTIR (unbiased) ReSTIR(biased) [Moreau et al. 2019]

|

Fig. 1. Two complex scenes ray traced with direct lighting from many dynamic lights. (Left) A still from the Zero Day video [Winkelmann 2015] with 11,000
dynamic emissive triangles. (Right) A view of one ride in an AMUSEMENT PARK scene containing 3.4 million dynamic emissive triangles. Both images show three
methods running in equal time on a modern GPU, from left to right: Moreau et al. [2019]’s efficient light-sampling BVH, our new unbiased estimator, and our
new biased estimator. The ZEro DAY image is rendered in 15 ms and AMUSEMENT PARK in 50 ms, both at 1920 x 1080 resolution. ZEro DAy ©beeple, Pirate Ship

See Bitterli et al., Siggraph 2020
Realistic Image Synthesis SS21 — Efficient Direct Lighting 36




Resampled Importance Sampling (RIS)
« Paper by Talbot [EGSR 2005]

— Randomly select a candidate set of M VPLs (e.g. according p ~ L,)
— Per pixel g compute probability of each VPL p, (e.g. according to

irradiance)
— Select from list according to via CDF over candidate set
w(x;) . Pq(X)
(z|x) = , with w(x)=
P = S e

— Compute contribution
M
f) [ 1
<L >pps= —Z w(x;)
RIS pq (y) M T ]
— Second term correct for the fact that the sampling is from a subset

« Can also be combined with MIS
— Select candidates from N distributions with MIS weights as p
— Cost increases quadratically with N for computing weights ®

Realistic Image Synthesis SS21 — Efficient Direct Lighting 37



Reservoir Sampling

« Choosing N samples from a stream of items
— Length and content of stream may be unknown

— Select probability of replacing an item based on weight to relative to
already seen items

— Randomly replace one of the existing items

- - " W (ma1)
— Replacement happens with desired probability p =
T wx))
— Ensures others in previous samples are OK
w4 wlme) | wx
m . m+1 . - ym+1 .
Zj:l W(x]) j=1 W(x]) j=1 W(x])
— Algorithm of Chao: |« . ‘
S has items to sample, R will contain the result
S[i].Weight contains weight for each item
)
WeightedReservoir-Chao(S[1..n], R[1..k])
1 1 WS =0
- Greatly Slmpllfles //ur;tll the reservoir array
for 1 := 1 to k
for N=1 R[1] := S[i]
WSum := WSum + S[i].Weight
T i = k+l t
* No random e ;u'Sumoﬂ-nS[i.].Weight
. p := k * S[1].Weight / WSum // probability for this item
SeleC'“Oﬂ j := random(); // uniformly random between @ and 1
if j<=p // select item according to probability
RLrandomInteger(1,k)] := S[i1] //uniform selection in reservoir for replacement

Realistic Image Synthesis SS21 — Efficient Direct Lighting 38



Streaming RIS

 Generating M random samples over all light sources

« Select N via Streaming RIS (via Reservoir Sampling)
— Proportional to unoccluded contribution

« Computing shadows only for selected N samples

M=16, N=8 M=64, N=8 M=256, N=8 M=10247N=8=sM=4096;

"

IEqdal quality |Equal time

[Moreau et al 2019]

Fig. 4. Streaming RIS quality improves with increased M (candidates) and
N (samples for shading). Here we show the effect of increasing M in the
multi-room SuBwAY scene with 23,000 textured emissive triangles. Tracing 8
shadow rays costs 6 ms; selecting those samples costs (left to right) 1.0, 2.5,
10.1, 42, and 168 ms. Moreau et al. [2019]’s total cost is 48 ms when shooting
8 rays, comparable to M = 1024, but with quality comparable to M = 256.
SuBwAy ©silvertm

Realistic Image Synthesis SS21 — Efficient Direct Lighting
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Extending RIS

RIS can be extended both spatially and temporally
— Jointly increases sample count by orders of magnituse
— With very little extra work
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Spatiotemporal Reuse

Multiple Reservoirs can be combined into new reservoir
— Using Reservoir Sampling with input from each reservoir

— Using the weight wg,,,,, ; of each reservoir i

— Can be done in constant time with access to original input streams

Spatial reuse

— Store reservoir of M samples for each pixel (in an image)

— Combine reservoirs from k neighboring pixels

— Takes differences in lighting between these pixels into account
— Can be repeated n times for taking k™ pixels into account

Temporal reuse
— Keep multiple such images around from previous time steps

Taking visibility into account

— Before spatiotemporal reuse, eliminate occluded samples per pixel
— Unlikely to be occluded for spatiotemporally neighboring pixels

Realistic Image Synthesis SS21 — Efficient Direct Lighting 41



Spatial Reuse

M=32 M=32 M=32 -« ME.3 <
0 Iterations (8ms) 1 Iteration (11ms) 2|terations.(14m§‘te@i{m

AR L)<

Fig. 5. Starting from m = 32 candidates generated by streaming RIS (left),
we iteratively apply our spatial reuse operation, gathering k = 5 neighbors
at each step. The number of repeated applications increase from left to
right with 1, 2 and 4 iterations respectively. The image quality increases
dramatically without much added cost. SuBwAy ©silvertm
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Spatiotemporal Reuse

Spatial Reuse (11 ms

Fig. 6. Compared to one iteration of spatial reuse alone (left, M = 4, k = 5),
adding candidates from previous frames to candidates from the current
frame can greatly increase the image quality of streaming RIS (right, after
20 frames) with little added computational cost. SuBwAy ©silvertm
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Extensions & Related Work

 Approach can also be modified to be more efficient but

biased

— See https://web.cs.dartmouth.edu/news/2020/05/rendering-millions-
dynamic-lights-realtime

« Other Related Work: Bayesien Direct lllumination

— See https://cqg.mff.cuni.cz/~jaroslav/papers/2018-
bayesianlighting/2018-vevoda-bayesianlighting-slides.pdf
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