= thrive
/% sivcraphanny

RODENT: GENERATING
RENDERERS WITHOUT
WRITING A GENERATOR;

A. Pérard-Gayot, R. Membarth,

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

i' PHOTOGRAPHY &

RECORDING ENCOURAGED

thrive

%smsRAPquw

ssssssssss = 28 JULY - 1 AUGUST

Scene
What this talk is about

Traditional
Renderer

Picture

- Generating renderers from high-level, textbook-like code

« Specialized/optimized for a scene type

+ High-performance: Up to 40%/20% faster than OptiX/Embree+ispc

Traditional
Renderer

Scene Picture
In a traditional renderer

« Shaders are compiled by a (shader) compiler
- Standard compiler optimizations
« Rest of the scene is interpreted during rendering

- if/else branches (e.g. for renderer config/options)
- Virtual function calls (e.g. for geometry types)

Specialized

Compile
Renderer

Scene Picture
In Rodent

« We compile the entire scene into a renderer
« We only use the scene type, not the actual scene data

+ No benefit from knowing e.g. the position of triangle 544
« We use Partial Evaluation

- To avoid writing a Renderer Generator

Traditional Execution vs. Partial Evaluation

Scene

Traditional
Renderer

Picture

Traditional program execution

Traditional Execution vs. Partial Evaluation

High-level
Rendering
Code

Partial Evaluation

Traditional Execution vs. Partial Evaluation

High-level
Rendering Rodent
Code

Partial Evaluation

Traditional Execution vs. Partial Evaluation

High-level
Rendering Rodent
Code

Scene type

Partial Evaluation

Traditional Execution vs. Partial Evaluation

High-level
Rendering Rodent
Code
—

Partial

Scene type
; P q> Evaluator

Partial Evaluation

Traditional Execution vs. Partial Evaluation

High-level
Rendering Rodent
Code
—

Partial

Scene type
‘ P q> Evaluator

=

Specialized
Renderer

Partial Evaluation

Traditional Execution vs. Partial Evaluation

High-level
Rendering Rodent
Code
—

Partial

Scene type
\ P q> Evaluator

=

Specialized

Scene g q> Renderer

Partial Evaluation

Scene type q>

Scene data q>

Traditional Execution vs. Partial Evaluation

High-level
Rendering
Code

=

Partial
Evaluator

=

Specialized
Renderer

Partial Evaluation

Rodent

Picture

AnyDSL

+ This work leverages the AnyDSL compiler framework
- https://github.com/AnyDSL

+ Provides user-guided Partial Evaluation

- High-performance code generation using LLVM

« Can target/optimize for CPUs or GPUs
« Intel/AMD/NVIDIA/ARM/...

Rendering Library Design

+ High-level, textbook-like

* In the spirit of PBRT
+ Descriptive and modular

- Separate the algorithm ("what”) from the schedule/hardware mapping ("how")
+ High-performance

- Different hardware mappings
+ CPUs/GPUs have different execution models
- Need efficient and flexible abstractions

The "What”

struct Bsdf {
// Evaluation of the function given a pair of directions
eval: fn (Vec3, Vec3) -> Color,

// Probability density function used during sampling
pdf: fn (Vec3, Vec3) -> f32,

// Samples a direction (importance sampled according to this BSDF)
sample: fn (Vec3) -> BsdfSample,

Example: Diffuse BSDF

fn @make_diffuse_bsdf(surf: SurfaceElement, kd: Color) -> Bsdf {
Bsdf {
eval: @ lin_dir, out_dir| kd * (1.0f / pi),
pdf: @lin_dir, out_dir]|
cosine_hemisphere_pdf(positive_cos(in_dir, surf.normal)),
sample: @ |out_dir| {
let sample = sample_cosine_hemisphere(rand(), rand());
let color = kd » (1.0f / pi);
make_bsdf_sample(surf, sample, color)
}
}

}

- @ triggers partial evaluation/specializes the function

+ Replaces the function by its contents at the call site to allow optimizations

Rendering Building Blocks

Defining a scene with Rodent

+ BSDFs:

let diff = make_diffuse_bsdf(kd);
let spec = make_phong_bsdf(ns, ks);
let bsdf = make_mix_bsdf(spec, diff, k);

Rendering Building Blocks

Defining a scene with Rodent

+ BSDFs:

let diff = make_diffuse_bsdf(kd);
let spec = make_phong_bsdf(ns, ks);
let bsdf = make_mix_bsdf(spec, diff, k);

- Light sources, textures, geometric objects, ...

Rodent is a Scene Description Language

let renderer = make_path_tracing_renderer(/+ ... */);
let geometry = make_tri_mesh_geometry(/+ ... */);

let tex = make_image_texture(/+ ... */);

let shader = |ray, hit, surface| {

let uv = surface.attribute(0).as_vec2;
make_diffuse_bsdf(surface, tex(uvil));

s

let scene = make_scene(geometry, /* ... x/);

BSDF DSL + Light DSL + Geometry DSL + ... = Scene language embedded in AnyDSL

Abstracting the Rendering Process

i Emit |

No il ion
| TmSL__JZZZZZ_-
Surface Emission

Emit Shadow Ray
Trace Shadow

Bounce

Continue

Terminate

Eﬂts@i

struct Tracer {
on_emit: OnEmitFn,
on_hit: OnHitFn,
on_shadow: OnShadowFn,
on_bounce: OnBounceFn,

+ Can also be used for bidir. algorithms

+ Green nodes: the algorithm
What should be computed

« Blue nodes: the schedule
How it should be computed

10

The "How”

Mapping Renderers to Hardware

« The Device contains hardware-specific routines:

struct Device {
trace: fn (Scene, Tracer) -> (),
[* .. %/

}

« Schedule renderers differently depending on the platform
- Wavefront: Batches (larger than SIMD width) of rays together
+ Megakernel: Large compute kernel, one ray at a time (used in OptiX)
« Rodent implements 3 devices:
1. CPU: Wavefront
2. GPU: Megakernel
3. GPU: Wavefront

1

Wavefront Devices

On CPUs

+ Processes a small (~1000 rays) batch of rays together
+ Maximize cache efficiency

« Sort rays by shader and process contiguous ranges
- Uses vectorization and specialization, simplified:

for shader in unroll(0, scene.num_shaders) {
// Get the range of rays for this shader
let (begin, end) = ray_range_by_shader(shader);
for i in vectorize(vector_width, begin, end) {
// Scalar code using on_hit(), on_shadow(), ...
// => automatically vectorized

}

}

12

On CPUs

Wavefront Devices

+ Processes a small (~1000 rays) batch of rays together

+ Maximize cache efficiency

« Sort rays by shader and process contiguous ranges

- Uses vectorization and specialization, simplified:

for shader in unroll(0, scene.num_shaders) {
// Get the range of rays for this shader
let (begin, end) = ray_range_by_shader(shader);
for i in vectorize(vector_width, begin, end) {

// => automatically vectorized
}
}

// Scalar code using on_hit(), on_shadow(), ...

ieunroll(o,3)
Ljevectorize(w,begin(i),end(i))

4

joevectorize(w,begin(0),end(0))
jlevectorize(w,begin(1),end(1))
j2evectorize(w,begin(2),end(2))

12

Wavefront Devices

On GPUs
- Processes a larger (~1M rays) batch of rays
+ Maximize parallelism
- Sort rays by shader and process contiguous ranges

- Generates one kernel per shader, with specialization , simplified:

for shader in unroll(0, scene.num_shaders) {
// Get the range of rays for this shader
let (begin, end) = ray_range_by_shader(shader);
let grid = (round_up(end — begin, block_size), 1, 1);
let block = (block_size, 1, 1);
with work_item in cuda(grid, block) {
// Use on_hit(), on_shadow(), ...
}
}

12

Wavefront Devices

On GPUs

- Processes a larger (~1M rays) batch of rays

+ Maximize parallelism

- Sort rays by shader and process contiguous ranges

- Generates one kernel per shader, with specialization , simplified:

}

for shader in unroll(0, scene.num_shaders) {

// Get the range of rays for this shader

let (begin, end) = ray_range_by_shader(shader);
block_size), 1

let grid = (round_up(end — begin,

let block = (block_size, 1, 1);

with work_item in cuda(grid, block) {
// Use on_hit(), on_shadow(),

}

ieunroll(o,3)
Lcuda(grld(l) block(i))

!

cuda(grid(0),block(0))
cuda(grid(1),block(1))
cuda(grid(2),block(2))

12

Megakernel GPU Device

- Rays are local to the current execution thread
« Rendering loop inside the kernel, simplified:

fn trace(scene: Scene, tracer: Tracer) -> () {

with work_item in cuda(grid, block) {
let (x, y) = (work_item.gidx(), work_item.gidy());
let (ray, state) = tracer.on_emit(x, y);
let mut terminated = false;
while !terminated {

// Trace + use on_hit(), on_shadow(),

}

I3

}

13

- Versus high-performance, state-of-the-art frameworks:

« Embree + ispc: only for x86/amd64
+ OptiX: only for CUDA hardware

+ Built custom, simple renderers based on those frameworks

+ Following documentation
+ Only implemented features required to render the test scenes

- Measured:
+ Performance
+ Code complexity

« Workflow: Convert scene to AnyDSL = compile = render

718k tris./ 44 mats. 612k tris./61 mats. 263Kk tris./23 mats.

Scenes by Wig42, nacimus, SlykDrako, MaTTeSr, Jay-Artist, licensed under CC-BY 3.0/CCO 1.0. See paper for details.
15

CPU (Intel™ i7 6700K)

GPU (AMD™ R9 Nano)

Scene Rodent? Embree Rodent’ Rodent? OptiX Rodent’ Rodent?
Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.87 35.11
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 3532 (+42%) 20.64 14.95 27.31
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88(+29%) 27.72 19.25 32.90
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 4037 (+29%) 2858 16.22 30.83
Kitchen 6.64 (+12%) 5.92 22.73 (+ 2%) 32.09 (+31%) 2222 16.68 28.13
Staircase 4.86 (+ 8%) 4,48 20.00 (+18%) 27.53(+39%) 16.89 11.74 22.21

(1) Megakernel, (2) Wavefront

Results: Performance

GPU (NVIDIA™ Titan X)

16

CPU (Intel™ i7 6700K)

GPU (AMD™ R9 Nano)

Scene Rodent? Embree Rodent’ Rodent? OptiX Rodent’ Rodent?
Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.87 35.11
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 3532 (+42%) 20.64 14.95 27.31
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88(+29%) 27.72 19.25 32.90
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 4037 (+29%) 2858 16.22 30.83
Kitchen 6.64 (+12%) 5.92 22.73 (+ 2%) 32.09 (+31%) 2222 16.68 28.13
Staircase 4.86 (+ 8%) 4,48 20.00 (+18%) 27.53(+39%) 16.89 11.74 22.21

- Between +1—23% vs. Embree

(1) Megakernel, (2) Wavefront

+ Around 60 — 70% of the time tracing rays
+ Traversal algorithms in Embree are already specialized

- Rodent’s shading alone is around 2x faster than with ispc

Results: Performance

GPU (NVIDIA™ Titan X)

16

CPU (Intel™ i7 6700K)

GPU (AMD™ R9 Nano)

Scene Rodent? Embree Rodent’ Rodent? OptiX Rodent’ Rodent?
Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.87 35.11
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 35.32 (+42%) 20.64 14.95 27.31
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88(4+29%) 27.72 19.25 32.90
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 40.37 (+29%) 28.58 16.22 30.83
Kitchen 6.64 (-+12%) 5.92 22.73 (+ 2%) 32.09(+31%) 2222 16.68 28.13
Staircase 4.86 (+ 8%) 4.48 20.00 (+18%) 27.53 (+39%) 16.89 11.74 2221

- Between +1—23% vs. Embree

(1) Megakernel, (2) Wavefront

+ Around 60 — 70% of the time tracing rays
+ Traversal algorithms in Embree are already specialized

- Rodent’s shading alone is around 2x faster than with ispc

- Between +2 — 31% vs OptiX (Megakernel)

Results: Performance

GPU (NVIDIA™ Titan X)

16

CPU (Intel™ i7 6700K)

GPU (AMD™ R9 Nano)

Scene Rodent? Embree Rodent’ Rodent? OptiX Rodent’ Rodent?
Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.87 35.11
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 3532 (+42%) 20.64 14.95 27.31
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88(+29%) 27.72 19.25 32.90
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 4037 (+29%) 2858 16.22 30.83
Kitchen 6.64 (+12%) 5.92 2273 (+ 2%) 32.09(+31%) 2222 16.68 28.13
Staircase 4.86 (+ 8%) 4,48 20.00 (+18%) 27.53(+39%) 16.89 11.74 22.21

- Between +1—23% vs. Embree

(1) Megakernel, (2) Wavefront

+ Around 60 — 70% of the time tracing rays
+ Traversal algorithms in Embree are already specialized

- Rodent’s shading alone is around 2x faster than with ispc

- Between +2 — 31% vs OptiX (Megakernel)
+ Between +29 — 42% vs OptiX (Wavefront)
+ Wavefront scales better with shader complexity
+ Not limited by register pressure

Results: Performance

GPU (NVIDIA™ Titan X)

16

Results: Code Complexity

10 10
Ocore] 1 |Ocore
Ocpu 0GpPu
o 8 [] — o 8 B
e e
5 6] 5 6l]
= =
S | B ol |
= =
I 2| i ju 21 |
0 , 0 .
Rodent Embree+ispc Rodent Optix
« Embree: only on x86/amd64 - OptiX: only Megakernel, only CUDA hw.
- Rodent: also on ARM - Rodent: also on AMD™ GPUs

+ other LLVM targets (RISC-V?) + other LLVM targets (Intel™ GPU?)
17

Conclusion

Rodent generates renderers without writing a generator

- Defines textbook-like, generic

« Provides tailored for different CPUs and GPUs
g code according to the scene via AnyDSL

« Runs up to 40% faster than state-of-the-art

18

Questions?

High-level
Rendering
Code

=

Partial

Scene type
» 4 % Evaluator

=

Specialized

Scenedata % Renderer

Rodent

Picture

https://github.com/AnyDSL/rodent

19

Results: Impact of Specialization

1 | 1 | 1

000 F pggpy | 7297]

) L 305.3 |

2 i 217.5 225.5 1

© | |
=

100; =

- 43.9 45.8 1

I I | |58

base T A T+A

- Base: No specialization
- T: Specialize the interface (shader <— texturing function)
- A: Specialize the interface (shader <— mesh attribute)

20

Specialization: Caveats

« Specialization may lead to increased compilation times
+ Specializing to much may increase register pressure

- Dangerous for the megakernel device
- Not a problem for the wavefront device

+ Rodent fuses simple/similar shaders together

+ Only for the megarkernel device
+ Mitigates problems of divergence and reg. pressure

21

Results: Compilation Times

|
120 g cpy 112 1
[0GPU (Wavefront)

—~ 100 il 8
v 0 GPU (Megakernel) 87
q) —
E 80|]
'—
=
S 60 .
i s 1
= | |
S 40 be 33
S

20h4 18 17 -

52 HG 2 H3 B ER R
0 H\mﬁ mﬁ T T ﬂ T [A=
< <) < S B
<e~oO @0 &00 on & \«@
& B o8 » v @
R $ S
" &
A Q

22

Improving Compilation Times

« The more there is to specialize, the slower
« Compiler itself is not particularly optimized for speed
« Parts of the renderer can be pre-compiled

+ Does not need to know everything in the scene

+ The less is known the less specialization will happen
+ Automatically done by the compiler thanks to annotations
 Can be exploited to make compilation faster

23

