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Many-core hardware is everywhere – but programming it is still hard

Many-Core Dilemma
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Still State-of-the-Art …
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What can we do?

Challenges: Productivity, portability, and performance.

Manual tuning
rewrite code yourself

Annotations
use the compiler to rewrite code

Program generation
use a script to write code

Meta programming
write program to rewrite program

Domain-specific languages
write compiler to rewrite program
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The Vision

Single high-level representation of our algorithms

Simple transformations to wide range of target hardware architectures

First step: RTfact [HPG’08]

Use of C++ Template Metaprogramming

Great performance (-10%) – but largely unusable due to template syntax

AnyDSL: New compiler technology, enabling arbitrary Domain-Specific Libraries (DSLs) 

High-level algorithms + HW mapping of used abstractions + cross-layer specialization

Computer Vision: 10x shorter code, 25-50% faster than OpenCV on GPU & CPU

Ray Tracing: First cross-platform algorithm, beating best code on CPUs & GPUs
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AnyDSL: Overview
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Unified Program Representation

Compiler Framework (Thorin) 



High-Level Program Representation

Uses functional Continuation Passing Style (CPS) and graph-based structure

All language constructs as higher-order functions

Structure well suited for transformations using “lambda mangling”
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Compiler Framework

Impala language (Rust dialect)

Functional & imperative language

Thorin compiler [GPCE’15, OOPSLA’18]

Higher-order functional IR [CGO’15]

Special optimization passes

No overhead during runtime

Region Vectorizer [PLDI’18]

LLVM-based back ends

Full compiler optimization passes

Multi-target code generation

NVVM/NVPTX, AMDGPU
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AnyDSL Key Feature: Partial Evaluation (in a Nutshell)

Normal program execution Execution with program specialization

PE as part of normal compilation process!!
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Impala: A Base Language for DSL Embedding

Impala is an imperative & functional language

A dialect of Rust (https://rust-lang.org)

Specialization when instantiating @-annotated functions [OOPSLA’18]

Partial evaluation executes all possible instructions at compile time

fn @(?n) dot(n: int,
u: &[float],
v: &[float]
) -> float {

let mut sum = 0.0f;

for i in unroll(0, n) {
sum += u(i)*v(i);

}

sum
}

// specialization at call-site
result = dot(3, a, b);

// specialized code for dot-call
result = 0;
result += a(0)*b(0);
result += a(1)*b(1);
result += a(2)*b(2);
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Case Study: Image Processing

[GPCE’15, OOPSLA’18]

Stincilla – A DSL for Stencil Codes

https://github.com/AnyDSL/stincilla
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Application developer: Simply wants to use a DSL

Example: Image processing, specifically Gaussian blur

Using OpenCV as reference

fn main() -> () {
let img = read_image(“lena.pgm”);
let result = gaussian_blur(img);
show_image(result);

}

Sample DSL: Stencil Codes in Impala
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Higher level domain-specific code: DSL implementation

Gaussian blur implementation using generic apply_convolution

iterate function iterates over image (provided by machine expert)

fn @gaussian_blur(img: Img) -> Img {
let mut out = Img { data:   ~[img.width*img.height:float],

width:  img.width,
height: img.height };

let filter = [[0.057118f, 0.124758f, 0.057118f],
[0.124758f, 0.272496f, 0.124758f],
[0.057118f, 0.124758f, 0.057118f]];

for x, y in iterate(out) {
out.data(x, y) = apply_convolution(x, y, img, filter);

}

out
}

Sample DSL: Stencil Codes in Impala
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Higher level domain-specific code: DSL implementation

for syntax: syntactic sugar for lambda function as last argument

fn @gaussian_blur(img: Img) -> Img {
let mut out = Img { data:   ~[img.width*img.height:float],

width:  img.width,
height: img.height };

let filter = [[0.057118f, 0.124758f, 0.057118f],
[0.124758f, 0.272496f, 0.124758f],
[0.057118f, 0.124758f, 0.057118f]];

iterate(out, |x, y| -> () {
out.data(x, y) = apply_convolution(x, y, img, filter);

});

out
}

Sample DSL: Stencil Codes in Impala
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fn @apply_convolution(x: int, y: int,
img: Img,
filter: [float]
) -> float {

let mut sum = 0.0f;
let half = filter.size / 2;

for j in unroll(-half, half+1) {
for i in unroll(-half, half+1) {
sum += img.data(x+i, y+j) * filter(i, j);

}
}

sum
}

Domain-specific code: DSL implementation for image processing

Generic function that applies a given stencil to a single pixel

Partial evaluation
Unrolls stencil

Propagates constants

Inlines function calls

Sample DSL: Stencil Codes in Impala
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fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
for y in range(0, img.height) {
for x in range(0, img.width) {
body(x, y);

}   
}

}

Mapping to Target Hardware: CPU

Scheduling & mapping provided by machine expert

Simple sequential code on a CPU

body gets inlined through specialization at higher level
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Scheduling & mapping provided by machine expert 

CPU code using parallelization and vectorization (e.g. AVX)

parallel is provided by the compiler, maps to TBB or C++11 threads

vectorize is provided by the compiler, uses region vectorization

Mapping to Target Hardware: CPU with Optimization
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fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
let thread_number = 4;
let vector_length = 8;
for y in parallel(thread_number, 0, img.height) {
for x in range_step(0, img.width, vector_length) {
for lane in vectorize(vector_length) {
body(x + lane, y);

}
}

}
}



Mapping to Target Hardware: GPU

Scheduling & mapping provided by machine expert

Exposed NVVM (CUDA) code generation

Last argument of nvvm is function we generate NVVM code for

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
let grid  = (img.width, img.height, 1);
let block = (32, 4, 1);

with nvvm(grid, block) {
let x = nvvm_tid_x() + nvvm_ntid_x() * nvvm_ctaid_x();
let y = nvvm_tid_y() + nvvm_ntid_y() * nvvm_ctaid_y();
body(x, y);

}
}
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Exploiting Boundary Handling (1)
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Specialized implementation

Wrap memory access to image in an access() function

Distinction of variant via region variable (here only in horizontally)

Specialization discards unnecessary checks

fn @access(mut x: int, y: int,
img: Img,
region,
bh_lower: fn(int, int) -> int,
bh_upper: fn(int, int) -> int,
) -> float {

if region == left  { x = bh_lower(x, 0); }
if region == right { x = bh_upper(x, img.width); }
img(x, y)

}

Exploiting Boundary Handling (2)
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Exploiting Boundary Handling: CPU & AVX

Specialized implementation

outer_loop maps to parallel and inner_loop calls either range (CPU) or vectorize (AVX)

unroll triggers image region specialization

Speedup over OpenCV: 40% (Intel CPU, vectorized)
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fn @iterate(img: Img, body: fn(int, int, int) -> ()) -> () {
let offset = filter.size / 2;
//       left    right               center
let L = [0,      img.width - offset, offset];
let U = [offset, img.width,          img.width - offset];

for region in unroll(0, 3) {
for y in outer_loop(0, img.height) {
for x in inner_loop(L(region), U(region)) {
...
body(x, y, region);

}
}

}
}



Exploiting Boundary Handling: GPU

Specialized implementation

unroll triggers image region specialization

Generates multiple GPU kernels for each image region

Speedup over OpenCV: 25% (Intel GPU), 50% (AMD GPU), 45% (NVIDIA GPU)
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fn @iterate(img: Img, body: fn(int, int, int) -> ()) -> () {
let offset = filter.size / 2;
//       left    right               center
let L = [0,      img.width - offset, offset];
let U = [offset, img.width,          img.width - offset];

for region in unroll(0, 3) {
let grid = (U(region) - L(region), img.height, 1);
with nvvm(grid, (128, 1, 1)) {
...
body(L(region) + x, y, region);

}
}

}



Mapping to Target Hardware: FPGA (WIP)

Scheduling & mapping provided by machine expert

Exposed AOCL code generation via opencl

Exposed VHLS code generation via hls

Mapping for simple point operators

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
with opencl((1, 1, 1), (1, 1, 1)) {
for y in range(0, img.height) {
for x in range(0, img.width) {
body(x, y);

}
}

}
}
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Other Domains [OOPSLA‘18]
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Ray Tracing Genome Sequence AlignmentImage Processing

Ray Traversal
Embree: -15% to +13%

OptiX: -19% to -2%

SeqAn: -19% to -7%
NVBIO: -8% to -2% 

OpenCV: +45% to +50% (Blur)
Halide: +7% to +12 (Blur)

Halide: +37% to +44% (Harris Corner)



Separation of Concerns

Separation of concerns through code 
refinement

Higher-order functions

Partial evaluation

Triggered code generation
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Application developer

DSL developer

Machine expert
fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
let grid  = (img.width, img.height);
let block = (128, 1, 1);

with nvvm(grid, block) {
let x = nvvm_tid_x() + nvvm_ntid_x() + nvvm_ctaid_x();
let y = nvvm_tid_y() + nvvm_ntid_y() + nvvm_ctaid_y();
body(x, y);

}
}

fn @gaussian_blur(img: Img) -> Img {
let filter = /* ... */; let mut out = Img { /* ... */ };

for x, y in iterate(out) {
out(x, y) = apply(x, y, img, filter);

}
out

}

fn main() {
let result = gaussian_blur(img);

}



Case Study: Ray Tracing [SIGGRAPH’19]

Rodent: Generating Renderers without

Writing a Generator

https://github.com/AnyDSL/rodent
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Rodent: Renderer + Traversal Library

Renderer-generating library:
Generate renderer that is optimized/specialized 
for a given input scene (or a class of scenes)

Generic, high-level, textbook code for

Shaders, lights, geometry, integrator, …

No low-level aspects

Strategy, scheduling, data layout, …

Separate mapping for each hardware

3D scenes are converted into code

E.g. from within Blender via exporter

Code triggers code generation
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Features

OptiX (NVIDIA)

NVIDIA GPU only

Generates megakernel (MK)

Not easy to extend (closed source)

Embree + ispc (Intel)

amd64 only

Low-level, write-only code
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Rodent

NVIDIA & AMD GPUs

Megakernel & wavefront (WF)

Open source

amd64 & ARM support

High-level, textbook style code



Test Scenes
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Performance Results

Cross-layer specialization (traversal + shading)

~20% speedup vs. no specialization

Optimal scheduling for each device

Megakernel vs. wavefront
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Code Complexity

Halstead’s complexity measures

Reusable renderer core

More accurate than LoC
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Polyvariant and nested vectorization

Reusable code across architectures

Change vector width within vectorized 
region (e.g. hybrid traversal)



Scene Statistics: Compile Time & Shader Fusion 

Megakernel only: shader fusion
#initial → #unique → #fused

Living room: 19 → 16 → 6

Bathroom: 16 → 15 → 5

Dining room: 58 → 51 → 28

Kitchen: 129 → 95 → 19

Staircase: 31 → 27 → 11

Bedroom: 41 → 38 → 13
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Compilation times



Thank you for your attention.
Questions?



Case Study: Collision Avoidance &

Crash Impact Point Optimization [GTC’16,IV’19]

Joint Project with Audi and THI
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Prediction Approach to Environment Analysis

Objects are described by their physical 
properties

Movement is sampled and extrapolated

All object hypotheses are combined with 
each other
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Performance Results

Collision Avoidance

8.6 million hypotheses combinations 
per collision object

Scenario: 3 collision object + EGO vehicle

26 million hypotheses combinations

Crash Impact Point Optimization

0.9 million hypotheses combinations 
per collision object

Scenario: 2 critical objects + EGO vehicle

1.8 million hypotheses combinations
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Lang HW Time

MatLab Intel Core i5 6 min

AnyDSL Tegra X1 CPU 2 s

AnyDSL Tegra X1 GPU 36 ms

AnyDSL Drive PX2 GPU 15 ms

Lang HW Time

MatLab Intel Core i5 16.5 s

AnyDSL Tegra X1 CPU 0.3 s

AnyDSL Tegra X1 GPU 8 ms

AnyDSL Drive PX2 GPU 12 ms



Case Study: DreamSpace EU Project

High Quality Rendering of Virtual Production Scenes
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Key Achievements

Goals:

High quality, global illumination rendering for real-time use

With quality allowing creative use already during onset work

Fully integrated into the Dreamspace ecosystem

Technology Developments:

Improve and use of novel compiler framework (AnyDSL)

Optimize core ray traversal and intersection engine

Design a scalable, high-performance rendering architecture

Create real-time distribution framework
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Conclusion

AnyDSL Framework

High-level, higher-order functional program representation

Novel code-refinement concept

Control over partial evaluation, vectorization, target code-generation

Sample high-performance, domain-specific libraries (DSLs)

Stincilla: Stencil codes, image processing

RaTrace: Ray traversal kernels

Rodent: Renderer generator

AnySeq: Genome sequence alignment
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Future Work

Other high-performance libraries

Deep learning

Computer vision pipelines

Simulation, string matching, …

Hardware synthesis as a backend

Very promising results with FPGAs!
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