
AnyDSL: A Partial Evaluation Framework for 
Programming High-Performance Libraries 

Richard Membarth, Arsène Pérard-Gayot, Stefan Lemme, Manuela Schuler, 
Puya Amiri, Philipp Slusallek (Visual Computing)
Roland Leißa, Simon Moll, Sebastian Hack (Compiler)

Intel Visual Computing Institute (IVCI) at Saarland University
German Research Center for Artificial Intelligence (DFKI)



Many-core hardware is everywhere – but programming it is still hard

Many-Core Dilemma

1

Intel Skylake (1.8B transistors) AMD Zen + Vega (4.9B transistors)

CPU GPU

AMD Polaris
(~5.7B transistors)

Intel Knights Landing
(~8B transistors)

GPU

Core 1 Core 2

Core 3 Core 4

Memory Controller I/O

Shared L3 Cache

System 
Agent, 
Display 

Engine & 
Memory 

Controller

CPU

GPU

CPU

CPU/GPU

CPU

Intel / Altera Cyclone

NVIDIA Kepler 
(~7B transistors)

GPU

CPU

Xilinx Zync



Still State-of-the-Art …

2

Math

Pseudo-Code

X1 X2 X3 X4

C sequential

abstract
maintainable
readable
portable
“slow”

concrete
fast

automated

manual

Xi⊆ { C, OpenMP, OpenACC, 
CUDA, OpenCL, 

OpenCL4X, OpenCL4Y, ... }
GPU

Core 
1

Core 
2

Core 
3

Core 
4

Memory Controller 
I/O

Shared L3 
Cache

Syste
m 

Agent, 
Displa

y 
Engin
e & 

Memo
ry 

Contr
oller

CPU
GPU

CPU

...



What can we do?

Challenges: Productivity, portability, and performance.

Manual tuning
rewrite code yourself

Annotations
use the compiler to rewrite code

Program generation
use a script to write code

Meta programming
write program to rewrite program

Domain-specific languages
write compiler to rewrite program

3

Math

Pseudo-Code

X

abstract
maintainable
readable
portable
“slow”

concrete
fast

automated

manual
?



The Vision

Single high-level representation of our algorithms

Simple transformations to wide range of target hardware architectures

First step: RTfact [HPG’08]

Use of C++ Template Metaprogramming

Great performance (-10%) – but largely unusable due to template syntax

AnyDSL: New compiler technology, enabling arbitrary Domain-Specific Libraries (DSLs) 

High-level algorithms + HW mapping of used abstractions + cross-layer specialization

Computer Vision: 10x shorter code, 25-50% faster than OpenCV on GPU & CPU

Ray Tracing: First cross-platform algorithm, beating best code on CPUs & GPUs
4



AnyDSL: Overview

Computer
Vision

DSL

Physics
DSL

…
Ray Tracing

DSL

Various Backends (via LLVM)

D
ev

el
o

p
er

Parallel 
Runtime

DSL

Layered DSLs

5

Unified Program Representation

Compiler Framework (Thorin) 



High-Level Program Representation

Uses functional Continuation Passing Style (CPS) and graph-based structure

All language constructs as higher-order functions

Structure well suited for transformations using “lambda mangling”

6

Source

AST

Low-level IR

Binary

Source

AST

High-level IR

Binary

Low-level IR

Source

AST

Low-level IR

Binary

Traditional Compilers „Functional“ Compilers AnyDSL



Compiler Framework

Impala language (Rust dialect)

Functional & imperative language

Thorin compiler [GPCE’15, OOPSLA’18]

Higher-order functional IR [CGO’15]

Special optimization passes

No overhead during runtime

Region Vectorizer [PLDI’18]

LLVM-based back ends

Full compiler optimization passes

Multi-target code generation

NVVM/NVPTX, AMDGPU

CPUs, GPUs, FPGAs, SX-Aurora, …

Thorin

LLVM

NVVM
NVPTX

Impala

AMDGPU

RV
Vectorizer

Native
Code

CUDA
OpenCL

HLS

7

Various Backends (via LLVM)

Unified Program Representation

Layered DSLs

Compiler Framework (Thorin) 



AnyDSL Key Feature: Partial Evaluation (in a Nutshell)

Normal program execution Execution with program specialization

PE as part of normal compilation process!!

PEInput D Output

Partial
EvaluatorInput S

Program P

Specialized
Program P’

10

Program PInput D
(dynamic)

Output

Input S
(static)



Impala: A Base Language for DSL Embedding

Impala is an imperative & functional language

A dialect of Rust (https://rust-lang.org)

Specialization when instantiating @-annotated functions [OOPSLA’18]

Partial evaluation executes all possible instructions at compile time

fn @(?n) dot(n: int,
u: &[float],
v: &[float]
) -> float {

let mut sum = 0.0f;

for i in unroll(0, n) {
sum += u(i)*v(i);

}

sum
}

// specialization at call-site
result = dot(3, a, b);

// specialized code for dot-call
result = 0;
result += a(0)*b(0);
result += a(1)*b(1);
result += a(2)*b(2);

11



Case Study: Image Processing

[GPCE’15, OOPSLA’18]

Stincilla – A DSL for Stencil Codes

https://github.com/AnyDSL/stincilla

12



Application developer: Simply wants to use a DSL

Example: Image processing, specifically Gaussian blur

Using OpenCV as reference

fn main() -> () {
let img = read_image(“lena.pgm”);
let result = gaussian_blur(img);
show_image(result);

}

Sample DSL: Stencil Codes in Impala

13



Higher level domain-specific code: DSL implementation

Gaussian blur implementation using generic apply_convolution

iterate function iterates over image (provided by machine expert)

fn @gaussian_blur(img: Img) -> Img {
let mut out = Img { data:   ~[img.width*img.height:float],

width:  img.width,
height: img.height };

let filter = [[0.057118f, 0.124758f, 0.057118f],
[0.124758f, 0.272496f, 0.124758f],
[0.057118f, 0.124758f, 0.057118f]];

for x, y in iterate(out) {
out.data(x, y) = apply_convolution(x, y, img, filter);

}

out
}

Sample DSL: Stencil Codes in Impala

14



Higher level domain-specific code: DSL implementation

for syntax: syntactic sugar for lambda function as last argument

fn @gaussian_blur(img: Img) -> Img {
let mut out = Img { data:   ~[img.width*img.height:float],

width:  img.width,
height: img.height };

let filter = [[0.057118f, 0.124758f, 0.057118f],
[0.124758f, 0.272496f, 0.124758f],
[0.057118f, 0.124758f, 0.057118f]];

iterate(out, |x, y| -> () {
out.data(x, y) = apply_convolution(x, y, img, filter);

});

out
}

Sample DSL: Stencil Codes in Impala

15



fn @apply_convolution(x: int, y: int,
img: Img,
filter: [float]
) -> float {

let mut sum = 0.0f;
let half = filter.size / 2;

for j in unroll(-half, half+1) {
for i in unroll(-half, half+1) {
sum += img.data(x+i, y+j) * filter(i, j);

}
}

sum
}

Domain-specific code: DSL implementation for image processing

Generic function that applies a given stencil to a single pixel

Partial evaluation
Unrolls stencil

Propagates constants

Inlines function calls

Sample DSL: Stencil Codes in Impala

16



fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
for y in range(0, img.height) {
for x in range(0, img.width) {
body(x, y);

}   
}

}

Mapping to Target Hardware: CPU

Scheduling & mapping provided by machine expert

Simple sequential code on a CPU

body gets inlined through specialization at higher level

17



Scheduling & mapping provided by machine expert 

CPU code using parallelization and vectorization (e.g. AVX)

parallel is provided by the compiler, maps to TBB or C++11 threads

vectorize is provided by the compiler, uses region vectorization

Mapping to Target Hardware: CPU with Optimization

18

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
let thread_number = 4;
let vector_length = 8;
for y in parallel(thread_number, 0, img.height) {
for x in range_step(0, img.width, vector_length) {
for lane in vectorize(vector_length) {
body(x + lane, y);

}
}

}
}



Mapping to Target Hardware: GPU

Scheduling & mapping provided by machine expert

Exposed NVVM (CUDA) code generation

Last argument of nvvm is function we generate NVVM code for

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
let grid  = (img.width, img.height, 1);
let block = (32, 4, 1);

with nvvm(grid, block) {
let x = nvvm_tid_x() + nvvm_ntid_x() * nvvm_ctaid_x();
let y = nvvm_tid_y() + nvvm_ntid_y() * nvvm_ctaid_y();
body(x, y);

}
}

19



Exploiting Boundary Handling (1)

M M

M M

M N O P M N O P

M N O P M N O P

P P

P P

M M

M M

I I

I I

E E

E E

A A

A A

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A B C D

P P

P P

L L

L L

H H

H H

D D

D D

A A

A A

A B C D A B C D

A B C D A B C D

D D

D D

BH _NO

BH _TL BH _T BH _TR

BH _L BH _R

BH _BL BH _B BH _BR

Boundary handling
Evaluated for all points

Unnecessary evaluation of conditionals

Specialized variants for different 
regions

Automatic generation of variants

→ Partial evaluation

20



Specialized implementation

Wrap memory access to image in an access() function

Distinction of variant via region variable (here only in horizontally)

Specialization discards unnecessary checks

fn @access(mut x: int, y: int,
img: Img,
region,
bh_lower: fn(int, int) -> int,
bh_upper: fn(int, int) -> int,
) -> float {

if region == left  { x = bh_lower(x, 0); }
if region == right { x = bh_upper(x, img.width); }
img(x, y)

}

Exploiting Boundary Handling (2)

21



Exploiting Boundary Handling: CPU & AVX

Specialized implementation

outer_loop maps to parallel and inner_loop calls either range (CPU) or vectorize (AVX)

unroll triggers image region specialization

Speedup over OpenCV: 40% (Intel CPU, vectorized)

22

fn @iterate(img: Img, body: fn(int, int, int) -> ()) -> () {
let offset = filter.size / 2;
//       left    right               center
let L = [0,      img.width - offset, offset];
let U = [offset, img.width,          img.width - offset];

for region in unroll(0, 3) {
for y in outer_loop(0, img.height) {
for x in inner_loop(L(region), U(region)) {
...
body(x, y, region);

}
}

}
}



Exploiting Boundary Handling: GPU

Specialized implementation

unroll triggers image region specialization

Generates multiple GPU kernels for each image region

Speedup over OpenCV: 25% (Intel GPU), 50% (AMD GPU), 45% (NVIDIA GPU)

23

fn @iterate(img: Img, body: fn(int, int, int) -> ()) -> () {
let offset = filter.size / 2;
//       left    right               center
let L = [0,      img.width - offset, offset];
let U = [offset, img.width,          img.width - offset];

for region in unroll(0, 3) {
let grid = (U(region) - L(region), img.height, 1);
with nvvm(grid, (128, 1, 1)) {
...
body(L(region) + x, y, region);

}
}

}



Mapping to Target Hardware: FPGA (WIP)

Scheduling & mapping provided by machine expert

Exposed AOCL code generation via opencl

Exposed VHLS code generation via hls

Mapping for simple point operators

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
with opencl((1, 1, 1), (1, 1, 1)) {
for y in range(0, img.height) {
for x in range(0, img.width) {
body(x, y);

}
}

}
}

24



Other Domains [OOPSLA‘18]

25

Ray Tracing Genome Sequence AlignmentImage Processing

Ray Traversal
Embree: -15% to +13%

OptiX: -19% to -2%

SeqAn: -19% to -7%
NVBIO: -8% to -2% 

OpenCV: +45% to +50% (Blur)
Halide: +7% to +12 (Blur)

Halide: +37% to +44% (Harris Corner)



Separation of Concerns

Separation of concerns through code 
refinement

Higher-order functions

Partial evaluation

Triggered code generation

30

Application developer

DSL developer

Machine expert
fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
let grid  = (img.width, img.height);
let block = (128, 1, 1);

with nvvm(grid, block) {
let x = nvvm_tid_x() + nvvm_ntid_x() + nvvm_ctaid_x();
let y = nvvm_tid_y() + nvvm_ntid_y() + nvvm_ctaid_y();
body(x, y);

}
}

fn @gaussian_blur(img: Img) -> Img {
let filter = /* ... */; let mut out = Img { /* ... */ };

for x, y in iterate(out) {
out(x, y) = apply(x, y, img, filter);

}
out

}

fn main() {
let result = gaussian_blur(img);

}



Case Study: Ray Tracing [SIGGRAPH’19]

Rodent: Generating Renderers without

Writing a Generator

https://github.com/AnyDSL/rodent

31



Rodent: Renderer + Traversal Library

Renderer-generating library:
Generate renderer that is optimized/specialized 
for a given input scene (or a class of scenes)

Generic, high-level, textbook code for

Shaders, lights, geometry, integrator, …

No low-level aspects

Strategy, scheduling, data layout, …

Separate mapping for each hardware

3D scenes are converted into code

E.g. from within Blender via exporter

Code triggers code generation

32

Continue

Terminate

Skip

No intersection

Emit

Trace

Surface Emission

Trace Shadow

Continue/Terminate

Next Sample

Emit Shadow Ray



Features

OptiX (NVIDIA)

NVIDIA GPU only

Generates megakernel (MK)

Not easy to extend (closed source)

Embree + ispc (Intel)

amd64 only

Low-level, write-only code

33

Rodent

NVIDIA & AMD GPUs

Megakernel & wavefront (WF)

Open source

amd64 & ARM support

High-level, textbook style code



Test Scenes

34



Performance Results

Cross-layer specialization (traversal + shading)

~20% speedup vs. no specialization

Optimal scheduling for each device

Megakernel vs. wavefront

35



Code Complexity

Halstead’s complexity measures

Reusable renderer core

More accurate than LoC

36

Polyvariant and nested vectorization

Reusable code across architectures

Change vector width within vectorized 
region (e.g. hybrid traversal)



Scene Statistics: Compile Time & Shader Fusion 

Megakernel only: shader fusion
#initial → #unique → #fused

Living room: 19 → 16 → 6

Bathroom: 16 → 15 → 5

Dining room: 58 → 51 → 28

Kitchen: 129 → 95 → 19

Staircase: 31 → 27 → 11

Bedroom: 41 → 38 → 13

37

Compilation times



Thank you for your attention.
Questions?



Case Study: Collision Avoidance &

Crash Impact Point Optimization [GTC’16,IV’19]

Joint Project with Audi and THI

39



Prediction Approach to Environment Analysis

Objects are described by their physical 
properties

Movement is sampled and extrapolated

All object hypotheses are combined with 
each other

40



Performance Results

Collision Avoidance

8.6 million hypotheses combinations 
per collision object

Scenario: 3 collision object + EGO vehicle

26 million hypotheses combinations

Crash Impact Point Optimization

0.9 million hypotheses combinations 
per collision object

Scenario: 2 critical objects + EGO vehicle

1.8 million hypotheses combinations

41

Lang HW Time

MatLab Intel Core i5 6 min

AnyDSL Tegra X1 CPU 2 s

AnyDSL Tegra X1 GPU 36 ms

AnyDSL Drive PX2 GPU 15 ms

Lang HW Time

MatLab Intel Core i5 16.5 s

AnyDSL Tegra X1 CPU 0.3 s

AnyDSL Tegra X1 GPU 8 ms

AnyDSL Drive PX2 GPU 12 ms



Case Study: DreamSpace EU Project

High Quality Rendering of Virtual Production Scenes

42



Key Achievements

Goals:

High quality, global illumination rendering for real-time use

With quality allowing creative use already during onset work

Fully integrated into the Dreamspace ecosystem

Technology Developments:

Improve and use of novel compiler framework (AnyDSL)

Optimize core ray traversal and intersection engine

Design a scalable, high-performance rendering architecture

Create real-time distribution framework

43



Conclusion

AnyDSL Framework

High-level, higher-order functional program representation

Novel code-refinement concept

Control over partial evaluation, vectorization, target code-generation

Sample high-performance, domain-specific libraries (DSLs)

Stincilla: Stencil codes, image processing

RaTrace: Ray traversal kernels

Rodent: Renderer generator

AnySeq: Genome sequence alignment

44



Future Work

Other high-performance libraries

Deep learning

Computer vision pipelines

Simulation, string matching, …

Hardware synthesis as a backend

Very promising results with FPGAs!

45


