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Fourier Analysis of  
Light Transport

Multi-dimensional  
adaptive sampling   

of distribution effects 

Temporal reconstruction 
of distribution effects
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Multi-dimensional adaptive 
spatio-temporal sampling
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Hachisuka et al. [2008]
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Fourier Analysis of  
Light Transport

Multi-dimensional  
adaptive sampling   

of distribution effects 
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Light Transport
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Understanding, manipulating 
and computing signals

• Discontinuites 


• where things change


• Gradients 


• Useful for interpoloation


• Frequency content (today's main course) 

• Useful for sampling


• Useful for inverse problems


• Sometimes useful as basis functions


• Statistics


And all these capture perceptual properties
!6
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Frequency contents matter in vision
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Inverse lighting Shape from (de)focusShape from texture
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Illumination effects
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Blurry reflections
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Illumination effects
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Shadow boundaries:
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Frequency contents matter in graphics
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Sampling, antialiasing

Texture filtering

Light Field Sampling

Precomputed radiance transfer

Wavelet radiosity

Spherical harmonics

Low frequency assumptionFourier-like basis

Irradiance caching
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How does light interactions in a scene 
explain the frequency content?
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Understanding  the frequency content of the radiance function

Mathematical equations 

of the light transport 

Fourier spectrum of the 

Illumination in the scene

Theoretical framework:

How does light interactions in a scene 
explain the frequency content?
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Spatial and Angular frequency
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Spatial frequency
(e.g., shadows, textures)

Angular frequency
(e.g., blurry highlights)
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Disclaimer: no Fourier optics
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Only geometrical optics
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Light transport in a scene
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Light transport in a scene
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Flatland: Light transport in a scene
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Flatland: Light transport in a scene
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Flatland: Light transport in a scene
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Flatland: Light transport
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Flatland: Light transport
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Flatland: Light transport

!22

an
gl

e

space

Ray Space

space
an

gl
e

Ray Space

!22



Realistic Image Synthesis SS2019

!23

an
gl

e

space space
an

gl
e

Ray Space Ray Space

Flatland: Light transport



Realistic Image Synthesis SS2019

!24

an
gl

e

space space
an

gl
e

Ray Space Ray Space

Flatland: Light transport



Realistic Image Synthesis SS2019

!25

an
gl

e

space space
an

gl
e

Ray Space Ray Space

Flatland: Light transport



Realistic Image Synthesis SS2019

!26

Shear in primal

Shear in Fourier, but 

along the other dimension

Flatland: Light transport
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Transport --> Shear
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Consistent with literature [see Plenoptic Sampling by Chai et al. 2000]
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Consider planar occluders 

Multiplication by binary function

- mostly in space

Before Occlusion Blocker function After occlusion
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Multiplication in Primal domain is Convolution in Fourier domain

Before Occlusion Blocker function After occlusion
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Blocker Spectrum
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Main Transforms: Summary
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Convolution/Multiplication

Transport

Occlusion

BRDF

Curvature

Multiplication/Convolution

Shear

Shear

Adds spatial frequencies

Removes angular frequencies

EffectsTransformations

Frequency analysis of light transport [Durand et al. 2005]
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Reconstructing Motion Blur
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Motion blur
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Objects move while the camera shutter is open

Image is "blurred" over time

Expensive for special effects

Necessary to remove "strobing"

 in animation
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Garfield: A tale of two kitties

Rhythm & Hues Studios
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The Incredibles

Pixar Animation Studios
Walt Disney Pictures
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t = 0.1

t = 0.3

t = 0.5

t = 0.7

t = 0.9

Motion blur: Simple approach
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Motion blur: Simple approach
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t = 0.1t = 0.3t = 0.5t = 0.7t = 0.9
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t 2 [0, 1]

Motion blur: Simple approach
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Simple approach
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The simple approach is expensive

Can we do better?
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Observation
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Motion blur is expensive

Motion blur removes spatial complexity
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Standard Method
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Use axis-aligned pixel filters at each pixel

Requires many samples

Pixels (Space)

Ti
m

e
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Standard Method
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Use axis-aligned pixel filters at each pixel

Requires many samples

Pixels (Space)

Ti
m

e
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Filter shearing based on frequency 
analysis of light transport
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We will look at how to reuse nearby pixel samples to reconstruct using filters 

derived using the frequency analysis of light transport 


Pixels (Space)

Ti
m

e
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Basic Example
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f(x,y) f(x,t)

x

y

x

t

No velocity: static scene t 2 [0, 1)
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f(x,y) f(x,t)

x

y

x

t

Basic Example
t 2 [0, 1)Low velocity
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f(x,y) f(x,t)

x

y

x

t

Basic Example
t 2 [0, 1)Low velocity
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Basic Example
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Low velocity

f(x,y) f(x,t)

x

y

x

t

t 2 [0, 1)
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Basic Example
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High velocity

f(x,y) f(x,t)

x x

ty

t 2 [0, 1)
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Basic Example
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f(x,y) f(x,t)

x x

ty

t 2 [0, 1)High velocity
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Shear in space-time
t 2 [0, 1)Object moving with low velocity
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f(x,y) f(x,t)

x

y

x
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Large shear in space-time
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f(x,y) f(x,t)

x

y

x

t

Object moving with high velocity t 2 [0, 1)
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Shear in space-time
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f(x,y) f(x,t)

x

y

x

t

Object moving away from the camera t 2 [0, 1)



Realistic Image Synthesis SS2019

Camera shutter filter
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f(x,y) f(x,t)

x

y

x

t

Applying shutter blur across time t 2 [0, 1)
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Basic example: Fourier domain

!53

Fourier spectrum, zero velocity t 2 [0, 1)

f(x,t)

x

t ⌦x

⌦t

F (⌦x,⌦t)
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Basic example: Fourier domain
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Low velocity, small shear in both domains

t 2 [0, 1)

f(x,t)

x

t

Slope = -speed

⌦x

⌦t

F (⌦x,⌦t)
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Basic example: Fourier domain
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Low velocity, small shear in both domains

t 2 [0, 1)

f(x,t)

x

t

Slope = -speed

⌦x

⌦t

F (⌦x,⌦t)
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Basic example: Fourier domain
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Due to camera motion, slopes are varying

t 2 [0, 1)

f(x,t)

x

t ⌦x

⌦t

F (⌦x,⌦t)

Slope = - max_speed

Slope = - min_speed
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Basic example: Fourier domain
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When shutter blur is applied, only low frequencies matter

t 2 [0, 1)

f(x,t)

x

t ⌦x

⌦t

F (⌦x,⌦t)
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Basic example: Fourier domain
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t 2 [0, 1)

f(x,t)

x

t ⌦x

⌦t

F (⌦x,⌦t)

When shutter blur is applied, only low frequencies matter
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Main Insights
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Common case = double wedge spectra

⌦x

⌦t

F (⌦x,⌦t)

Shutter indirectly removes spatial frequencies
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Sampling and Filtering Goals
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Minimal sampling rate to prevent aliasing

Derive shape of the reconstruction filters
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Sampling in Fourier Domain
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Sampling produces replicas in the Fourier domain
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Sampling in Fourier Domain
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Let's say the corresponding image has a Fourier spectrum as shown on the right side

⌦x

⌦t

Fourier domain
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Sampling in Fourier Domain
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⌦x

⌦t

Fourier domain

Sampling produces replicas in the Fourier domain



Realistic Image Synthesis SS2019

Sampling in Fourier Domain
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Sampling produces replicas in the Fourier domain

Sparse sampling produces denser replicas

⌦x

⌦t

Fourier domain
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Standard Reconstruction Filtering
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⌦x

⌦t

Standard filer, dense sampling, slow
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⌦x

⌦t

No aliasing

Standard filer, dense sampling, slow

Standard Reconstruction Filtering
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Standard filer, sparse sampling, fast

⌦x

⌦t

Aliasing

Aliasing

Standard Reconstruction Filtering
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Standard filer, sparse sampling, fast

⌦x

⌦t

No aliasing

Sheared Reconstruction Filter
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Compact shape in Fourier = wide space-time

⌦x

⌦t

Sheared Reconstruction Filter

⌦t
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Main Insights

!70

Sheared filter allows for many fewer samples
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Filters in action: Car example
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Motion blurredStatic
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Implementation: stage 1
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max speedmin speed

Sparse sampling to compute velocity bounds
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Implementation: stage 1
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max speed

min speed

Calculate filter widths and sampling rates

filter width
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Implementation: stage 1
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max speed

min speed

Uniform velocities, wide filter, low samples

filter width
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Implementation: stage 1
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max speed

min speed

Static surface, small filter, low samples

filter width
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Implementation: stage 1
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max speed

min speed

Varying velocities, small filter, high samples

filter width
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Implementation: stage 2

!77

Uniform velocities = low sample count

Then, compute sampling densities
Samples per pixel
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Implementation: stage 2
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Varying velocities = high sample count

Then, compute sampling densities
Samples per pixel
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Implementation: stage 3
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Render sample locations in space-time

Apply sheared filters to nearby samples

Pixels (Space)

Ti
m

e

 Sheared filters 

overlaps samples across 


multiple pixels
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Implementation: stage 3
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Filters stretched along the direction of motion

Preseve frequencies orthogonal to the motion 

Filter shapes
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Results
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Sheared Filters

4spp

Stratified Sampling

4spp
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!82

Fourier Analysis of  
Light Transport

Multi-dimensional  
adaptive sampling   

of distribution effects 

Temporal reconstruction 
of distribution effects
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Temporal Light-Field Reconstruction for 
Rendering Distribution Effects
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Lehtinen et al. [2011]
Slides courtesy: Jakko Lehtinen



Pinhole image !84



With motion blur and depth of field !85

Requires dense sampling of 5D function: 

  Pixel area (2D) 
  Lens aperture (2D) 
  Time (1D)



Motion blur and depth of field 1 sample per pixel !86



Our reconstruction !87



Pinhole camera model

!88
sensor

pinhole

object

background



Thin lens camera model

sensor

lens

object

background

!89
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Depth of field



Depth of field
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1 scanline 

!92



Screen x

Lens u
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1 pixel

Screen x

Lens u

!94



Lens u

Screen x!95



Light field [Levoy 1996]

∫

Lens u

Screen x!96

Output: 
integration over lens



1 pixelMonte Carlo sampling

Screen x

Le
ns

 u

Low sample density leads to noise
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Screen x

Le
ns

 u

Need many samples to capture the signal: 

computationally expensive

Monte Carlo sampling 1 pixel

!98
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Temporal light fields

x

y

v

u

Traditional light field is 4D [Levoy 1996] 

x,y over sensor (2D) 
u,v over lens (2D) 

Add time dimension for 
moving geometry (5D)
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Screen x

Le
ns

 u

!101



The Integrand is Anisotropic

Screen x

Le
ns

 u

[Chai00, Durand05, Hachisuka08, Soler09, Egan09, ...]
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Screen x

Le
ns

 u
Multi-dimensional Adaptive Sampling [Hachisuka 08]
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Screen x

Ti
m

e 
t

Frequency Analysis and Sheared Reconstruction [Egan 09]
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Screen x

Le
ns

 u
Our approach

Start with sparse input sampling
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Screen x

Le
ns

 u
Our approach

Start with sparse input sampling

Perform dense reconstruction 
using sparse input samples

Standard Monte-Carlo integration 
using dense reconstruction

!106



Screen x

Le
ns

 u
Our input has slope information

For defocus, 
proportional to 
inverse depth 1/z [Chai00]  

For motion, 
proportional to 
inverse velocity 1/v [Egan09] 

Easy to output from 
any renderer.

!107



What is the  
radiance at the 
red location?

Use slope to reproject radiance

!108



?
Use slope to reproject radiance  

Must account for occlusion

What is the  
radiance at the 
red location?

!109



Recap: our approach

Start with sparse input sampling

Perform dense reconstruction 
using sparse input samples

Standard Monte-Carlo integration 
using dense reconstruction

Use slopes to reproject

Account for visibility

!110



Reprojection and filtering

Simplify visibility by reprojecting 
into screen space. 

Reproject to u, v, t of 
reconstruction location.

Pixel filter over visible samples.

!111



Visibility

?

Cluster samples into apparent 
surfaces to resolve z-order 

SameSurface algorithm

Determining coverage: 
Does the apparent surface 
cover my reconstruction location?

!112



?

Input: 

sparse points with slopes

Visibility: SameSurface

!113



The trajectories of  
samples originating 
from a single 
apparent surface 
never intersect.  

Visibility: SameSurface

!114



Visibility: SameSurface

!115

Visibility events  
show up as intersections  



background
surface

Visibility: Coverage

Does foreground apparent surface cover reconstruction location? 

Search foreground samples for spanning triangle.

foreground
surface R

reconstruction 
location



Recap: our approach

Start with sparse input sampling

Perform dense reconstruction 
using sparse input samples

Standard Monte-Carlo integration 
using dense reconstruction

Use slopes to reproject

Account for visibility

!117



Observations

We only need sample radiance, depth, and velocity (i.e., slopes). 
Reconstruction is independent of the original renderer. 

We can discard the scene.  

!118



Observations

We only need sample radiance, depth, and velocity (i.e., slopes). 
Reconstruction is independent of the original renderer. 

We can discard the scene.

Need efficient sample search: 

Fast motion and large defocus can lead to a single 
sample contributing to hundreds of pixels.  

Build a hierarchy over input samples.
!119



Extension to soft shadows

An area light is very much like a lens. 

lens ~ light, sensor ~ virtual plane 
Reconstruct z instead of radiance 

Egan et al. [2010] reconstruct 
far field binary visibility only.

light source
lu coordinate

light source
lx coordinate plane Π

view rays

lig
ht

 ra
ys

object 1

object 2

z

7D path-tracing style reconstruction 
avoiding combinatorial explosion

Reconstruct scene point (5D) 
Reconstruct shadow z  shade (2D) !120



Results
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Implementation

Multithreaded CPU  
GPU, excluding hierarchy construction  
 

Common sample buffer format accepts outputs from:  
    PBRT 
    Pixie (Open source RenderMan)  
    Custom ray tracer 

!122



Input: 16 spp 
1072 sec (PBRT) !123



Our result: 16 spp + reconstruction at 128spp 
1072 sec (PBRT) + 10 sec (reconstruction) !124



Our result: 16 spp + reconstruction at 128spp 
1072 sec (PBRT) + 10 sec (reconstruction)

Input: 16 spp  Our result at 128 spp 
using same input 

Reference: 256 spp 
(16x time) 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Input: 16 spp 
771 sec (PBRT)
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Our result: 16 spp + reconstruction at 128spp 
771 sec (PBRT) + 10 sec (reconstruction)
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Our result: 16 spp + reconstruction at 128spp 
771 sec (PBRT) + 10 sec (reconstruction)

Input: 16 spp  Our result at 128 spp 
using same input 

Reference: 256 spp 
(16x time) 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Comparison to reference

!129

25
16 32 64 128 256

30

35

40

P
S

N
R

 (d
B

)

Number of reconstruction locations

Reconstruction quality (higher is better)

16
Input samples/pixel

8

2
4

1

25
16 32 64 128 256

30

35

40

P
S

N
R

 (d
B

)

Number of reconstruction locations

Reconstruction quality (higher is better)

16
Input samples/pixel



Motion blur and depth of field 
1 sample per pixel !130



Proposed reconstruction !131



Our reconstruction !132

Input: 1 spp  Proposed result:  
1 spp -> 128 spp 

Reference 256 spp 
(256x time) 



Comparison to Egan et al. [2009]
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Egan et al. [2009] 
8 samples / pixel

Proposed method 
4 samples / pixel

Reference 
256 samples / pixel



Comparison to Egan et al. [2009]
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Egan et al. [2009] 
8 samples / pixel

Our method 
4 samples / pixel

Reference 
256 samples / pixel



Soft shadows, 4 spp
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7D soft shadows with motion and defocus, 4 spp

!136
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