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Fourier Analysis of Temporal reconstruction

Light Transport of distribution effects




Multi-dimensional adaptive
spatio-temporal sampling

Hachisuka et al. [2008]
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Understanding, manipulating
and computing signals

* Discontinuites
 where things change
* Gradients
e Useful for interpoloation
e Frequency content (today's main course)
e Useful for sampling
e Useful for inverse problems
e Sometimes useful as basis functions
e Statistics

And all these capture perceptual properties
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Frequency contents matter in vision

Textured Region Spectrogram

Inverse lighting Shape from texture Shape from (de)focus
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llumination effects

Blurry reflections
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llumination effects

Shadow boundaries:
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Frequency contents matter in graphics
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Low frequency assumption
Irradiance caching
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How does light interactions in a scene
explain the frequency content?
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How does light interactions In a scene
explain the frequency content?

Theoretical framework:

Understanding the frequency content of the radiance function

Mathematical equations ﬁ Fourier spectrum of the
of the light transport lllumination in the scene
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Spatial and Angular frequency

Spatial frequency Angular frequency

(e.g., shadows, textures) (e.g., blurry highlights)
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Disclaimer: no Fourier optics

Only geometrical optics
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Light transport in a scene
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Light transport in a scene
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Flatland: Light transport in a scene
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Flatland: Light transport in a scene
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Flatland: Light transport in a scene
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Flatland: Light transport
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Flatland: Light transport

Ray Space
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Flatland: Light transport
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Ray Space Ray Space
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Flatland: Light transport
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Flatland: Light transport
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Flatland: Light transport
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Primal
domain

Fourier

domain

Flatland: Light transport

Ray Space Ray Space =l
O,
[e) Shear in primal
% Elj Z
space space

Shear in Fourier, but
along the other dimension
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Transport --> Shear

Consistent with literature [see Plenoptic Sampling by Chai et al. 2000]
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(d1)Scene image (d2) EPI (d3) Fourier transform of EPI
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Occlusions

Consider planar occluders a

Multiplication by binary function | %

- mostly In space

"

Before Occlusion Blocker function After occlusion
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Occlusions

Before Occlusion Blocker function After occlusion
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Main Transforms: Summary

Transformations Effects

Occlusion Convolution/Multiplication Adds spatial frequencies
BRDF Multiplication/Convolution Removes angular frequencies

Frequency analysis of light transport [Durand et al. 2009]
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Reconstructing Motion Blur
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Motion blur

Objects move while the camera shutter is open

Image is "blurred” over time Necessary to remove "strobing"”

iNn animation
Expensive for special effects
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Garfield: A tale of two kitties
Rhythm & Hues Studios
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The Incredibles

Pixar Animation Studios
Walt Disney Pictures
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Motion blur: Simple approach
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Motion blur: Simple approach

0.8
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Motion blur: Simple approach

t e 0,1
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Simple approach

The simple approach is expensive

Can we do better?
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Observation

Motion blur Is expensive

Motion blur removes spatial complexity
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Standard Method

Use axis-aligned pixel filters at each pixel

Requires many samp

Pixels (Space)
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Standard Method

Use axis-aligned pixel filters at each pixel

Requires many samp

Pixels (Space)
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Filter shearing based on frequency
analysis of light transport

We will look at how to reuse nearby pixel samples to reconstruct using filters
derived using the frequency analysis of light transport
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Pixels (Space)
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Basic Example

No velocity: static scene t¢<[0,1)
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Basic Example

Low velocity t € [0,1)

©® UNIVERSITAT
WUIIIIUW DES
V SAARLANDES

T



Basic Example

Low velocity t € [0,1)
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Basic Example

Low velocity t € [0,1)
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Basic Example

High velocity t € [0,1)

T



Basic Example

High velocity t € [0,1)
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Shear in space-time

Object moving with low velocity ¢ € [0,1)
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Large shear In space-time

Object moving with high velocity ¢ € [0,1)
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Shear in space-time

Object moving away from the camera t € [0, 1)
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Camera shutter filter

Applying shutter blur across time t € [0, 1)
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Basic example: Fourier domain

Fourier spectrum, zero velocity t €10,1)
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Basic example: Fourier domain

Low velocity, small shear in both domains

t € [O,l) F(QaﬁQt)
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Basic example: Fourier domain

Low velocity, small shear in both domains

t € [0,1) F(Qmaﬂt)
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Basic example: Fourier domain

Due to camera motion, slopes are varying

t € 0,1)

Slope = - min_speed
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Basic example: Fourier domain

When shutter blur is applied, only low frequencies matter

t € 0,1)
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Basic example: Fourier domain

When shutter blur is applied, only low frequencies matter

t € [0,1) F(Qxaﬂt)
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Main Insights

Common case = double wedge spectra

Shutter indirectly removes spatial frequencies

F(Q, Q)

Ilghtlng( (6, t) v rotatlon speed S

«
VIeW norm

reflected view

Incoming
lighting

moving

receiver Ill*
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Sampling and Filtering Goals

Minimal sampling rate to prevent aliasing

Derive shape of the reconstruction filters
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Sampling in Fourier Domain

Sampling produces replicas in the Fourier domain
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Sampling in Fourier Domain

Let's say the corresponding image has a Fourier spectrum as shown on the right side

Fourier domain
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Sampling in Fourier Domain

Sampling produces replicas in the Fourier domain

Fourier domain
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Sampling in Fourier Domain

Sampling produces replicas in the Fourier domain
Sparse sampling produces denser replicas

Fourier domain
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Standard Reconstruction Filtering

Standard filer, dense sampling, slow
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Standard Reconstruction Filtering

Standard filer, dense sampling, slow
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No aliasing
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Standard Reconstruction Filtering

Standard filer, sparse sampling, fast

Aliasing
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Sheared Reconstruction Filter

Standard filer, sparse sampling, fast

No aliasing
(2
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Sheared Reconstruction Filter

Compact shape in Fourier = wide space-time
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Main Insights

Sheared filter allows for many fewer samples
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Implementation: stage 1

Sparse sampling to compute velocity bounds

min speed max speed
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Implementation: stage 1

Calculate filter widths and sampling rates

PE——— e

filter width

min speed

max speed
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Implementation: stage 1

Uniform velocities, wide filter, low samples

filter width

min speed

max speed
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Implementation: stage 1

Static surface, small filter, low samples

filter width

min speed

max speed
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Implementation: stage 1

Varying velocities, small filter, high samples

min speed

max speed
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Implementation: stage 2

Then, compute sampling densities

_Samples per pixel

Uniform velocities = low sample count
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Implementation: stage 2

Then, compute sampling densities

Varying velocities = high sample count

_Samples per pixel
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Implementation: stage 3

Render sample locations in space-time

Apply sheared filters to nearby samples

Sheared filters
overlaps samples across
multiple pixels
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Pixels (Space)

T



Implementation: stage 3

Filters stretched along the direction of motion

Preseve frequencies orthogonal to the motion

Filter shapes
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Results

Sheared Filters Stratified Sampling
4spp 4spp
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Fourier Analysis of Temporal reconstruction

Light Transport of distribution effects




Temporal Light-Field Reconstruction for
Rendering Distribution Effects

Lehtinen et al. [2011]

Slides courtesy: Jakko Lehtinen
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Pinhole image



Requires dense samphng of 5D function:

Pixel area\@D - ‘

Le@sap ture (2D) “o+

With motion blur and depth of field
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‘Motion blur and depth of field 1 sample per pixel
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Our reconstruction
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Thin lens camera model

background

object

lens

SENSOr
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Depth of fie
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Depth of fie




1 scanline
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Screén x



1 pixel
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Light fle‘d [leevay 1996]
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Lens u

Monte Carlo sampling

L ow sample density leads to noise

Screen x
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Monte Carlo sampling

Need many samples to capture the signal.

computationally expensive
R &

Lens u
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Temporal light fields

Traditional light field is 4D [Levoy 1996]

X,y over sensor (2D)
u,v over lens (2D)

Add time dimension for
moving geometry (5D)
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Qur approach

Start with sparse input sampling

|% Lens U

Screen x
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Qur approach

Start with sparse input sampling

Perform dense reconstructio
using sparse input samples

i
:

- Standard Monte-Carlo integraﬂ

2 using dense reconstruction
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Screen x 106



Lens u

B B

Our input has slope information
e

For defocus, "

l ) ol

poroportional to
inverse depth 1/z [chaioo

For motion,
poroportional to
INVerse VE'OCity 1/v [Egan09]

Easy to output from
any renderer.

Screen x
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What Is the
radiance at the
red location”

Use slope to reproject radiance <
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What Is the
radiance at the
red location”

Use slope to reproject radianc

Must account for occlusion
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Recap: our approacn

Start with sparse input sampling

Perform dense reconstructio
Using sparse input samples

Use slopes to reproject

Account for visibility

Standard Monte-Carlo integrati
using dense reconstruction
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Reprojection and filtering

Simplity visibility by reprojecting
INto screen space.

Reproject to u, v, t of
reconstruction location.

Pixel tilter over visible samples
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Visibility ° o

|
|
— °
Cluster samples into apparent O
surfaces to resolve z-order
|
. |
SameSurface algorithm ®
n | ® ®

Determining coverage: -

Does the apparent surface
cover my reconstruction location?




Visibility: SameSurtace ® °

Input: ®

sparse points with slopes




Visibility: SameSurfacT
i
|

The trajectories of
samples originating
from a single
apparent surface
never intersect.
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ersections




Visibility: Coverage
Does foreground apparent surface cover reconstruction location?

Search foreground samples for spanning triangle.

foreground Q0 “
® surface ®
o® o
backgrounad (‘
@ surface

reconstruction
location



Recap: our approacn

Start with sparse input sampling

Perform dense reconstructio
Using sparse input samples

Use slopes to reproject

Account for visibility

Standard Monte-Carlo integrati
using dense reconstruction
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Observations

We only need sample radiance, depth, and velocity (i.e., slopes).
Reconstruction is independent of the original renderer.

We can discard the scene.



Observations

We only need sample radiance, depth, and velocity (i.e., slopes).
Reconstruction is independent of the original renderer.

We can discard the scene.

Need efficient sample search:

Fast motion and large defocus can lead to a single
sample contributing to hundreds of pixels.

Build a hierarchy over input samples.



Extension to soft shadows

An area light is very much like a lens.

lens ~ light, sensor ~ virtual plane ight source -
Reconstruct z instead of radiance , coordinate e

(7))
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P
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Egan et al. [2010] reconstruct
far field binary visibility only.

7D path-tracing style reconstruction
avolding combinatorial explosion light source

IX coordinate

Reconstruct scene point (5D)
Reconstruct shadow z shade (2D)






Implementation

Multithreaded CPU
GPU, excluding hierarchy construction

Common sample buffer format accepts outputs from:
PBRT
Pixie (Open source RenderMan)
Custom ray tracer
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Input: 16 spp
1072 sec (PBRT)
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Our result: 16 spp + reconstruction at 128spp
1072 sec (PBRT) + 10 sec (reconstruction)
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Our result: 16 spp + reconstruction at 128spp
1072 sec (PBRT) + 10 sec (reconstruction) 125




Input: 16 spp
771 sec (PBRT)
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Our result: 16 spp + reconstruction at 128spp
771 sec (PBRT) + 10 sec (reconstruction)
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Our result: 16 spp + reconstruction at 128spp
771 sec (PBRT) + 10 sec (reconstruction)

W gt . — W

Input: 16 spp Our result at 128 spp Reference: 256 spp
using same input (16X time)




Comparison to reference

Reconstruction quality (higher is better)

Input samples/pixel
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Motion blur and
1 sample per pixel
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Proposed reconstruction
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Comparison to Egan et al. [2009]

—gan et al. [2009] Proposed method Reference
8 samples / pixel 4 samples / pixel 256 samples / pixel



Comparison to Egan et al. [2009]

—gan et al. [2009] Our method Reference
8 samples / pixel 4 samples / pixel 256 samples / pixel



Soft shadows, 4 spp

Our reconstruction

Input, 4 samples/pixel

e

/-
i
- - 4




/D soft shadows with motion and defocus, 4 spp

Input, 4 samples/pixel Our reconstruction




Acknowledgments

Thanks to everyone below for making the slides available online.

Fredo Durand and colleagues [Frequency analysis of light transport 20095]

Toshiya Hachisuka and colleagues [Multi-dimensional adaptive sampling and reconstruction for ray tracing 2008]

Kevin Egan and colleagues [Frequency Analysis and Sheared Reconstruction for Rendering Motion Blur 2009]

Jakko Lehtinen and colleagues [Temporal Light Field Reconstruction for Rendering Distribution Effects 2011]

137

OOLm UNIVERSITAT
) . PodistcimageSynthesisss20t9 | Iipn
SAARLANDES



http://www.cs.columbia.edu/cg/mb/
http://groups.csail.mit.edu/graphics/tlfr/

