
Realistic Image Synthesis SS2019

Spatio-temporal Sampling for
Reconstructing Distribution Effects

Philipp Slusallek Karol Myszkowski
Gurprit Singh

�1

Realistic Image Synthesis SS2019

!2

Fourier Analysis of
Light Transport

Multi-dimensional
adaptive sampling

of distribution effects

Temporal reconstruction
of distribution effects

Realistic Image Synthesis SS2019

Multi-dimensional adaptive
spatio-temporal sampling

!3

Hachisuka et al. [2008]

Realistic Image Synthesis SS2019

!4

Fourier Analysis of
Light Transport

Multi-dimensional
adaptive sampling

of distribution effects

Realistic Image Synthesis SS2019

!5

Light Transport

Realistic Image Synthesis SS2019

Understanding, manipulating
and computing signals

• Discontinuites

• where things change

• Gradients

• Useful for interpoloation

• Frequency content (today's main course)

• Useful for sampling

• Useful for inverse problems

• Sometimes useful as basis functions

• Statistics

And all these capture perceptual properties
!6

Realistic Image Synthesis SS2019

Frequency contents matter in vision

!7

Inverse lighting Shape from (de)focusShape from texture

Realistic Image Synthesis SS2019

Illumination effects

!8

Blurry reflections

Realistic Image Synthesis SS2019

Illumination effects

!9

Shadow boundaries:

Realistic Image Synthesis SS2019

Frequency contents matter in graphics

!10

Sampling, antialiasing

Texture filtering

Light Field Sampling

Precomputed radiance transfer

Wavelet radiosity

Spherical harmonics

Low frequency assumptionFourier-like basis

Irradiance caching

Realistic Image Synthesis SS2019

How does light interactions in a scene
explain the frequency content?

!11

Realistic Image Synthesis SS2019

!12

Understanding the frequency content of the radiance function

Mathematical equations

of the light transport

Fourier spectrum of the

Illumination in the scene

Theoretical framework:

How does light interactions in a scene
explain the frequency content?

Realistic Image Synthesis SS2019

Spatial and Angular frequency

!13

Spatial frequency
(e.g., shadows, textures)

Angular frequency
(e.g., blurry highlights)

Realistic Image Synthesis SS2019

Disclaimer: no Fourier optics

!14

Only geometrical optics

Realistic Image Synthesis SS2019

Light transport in a scene

!15

Realistic Image Synthesis SS2019

Light transport in a scene

!16

Realistic Image Synthesis SS2019

Flatland: Light transport in a scene

!17

Realistic Image Synthesis SS2019

Flatland: Light transport in a scene

!18

Realistic Image Synthesis SS2019

Flatland: Light transport in a scene

!19

Realistic Image Synthesis SS2019

!20

Flatland: Light transport

Realistic Image Synthesis SS2019

Flatland: Light transport

!21

an
gl

e

space

Ray Space

Realistic Image Synthesis SS2019

Flatland: Light transport

!22

an
gl

e

space

Ray Space

space
an

gl
e

Ray Space

!22

Realistic Image Synthesis SS2019

!23

an
gl

e

space space
an

gl
e

Ray Space Ray Space

Flatland: Light transport

Realistic Image Synthesis SS2019

!24

an
gl

e

space space
an

gl
e

Ray Space Ray Space

Flatland: Light transport

Realistic Image Synthesis SS2019

!25

an
gl

e

space space
an

gl
e

Ray Space Ray Space

Flatland: Light transport

Realistic Image Synthesis SS2019

!26

Shear in primal

Shear in Fourier, but

along the other dimension

Flatland: Light transport

an
gl

e

space space

an
gl

e

Ray Space Ray Space

Pr
im

al

do
m

ai
n

Fo
ur

ie
r

 d
om

ai
n

Realistic Image Synthesis SS2019

Transport --> Shear

!27

Consistent with literature [see Plenoptic Sampling by Chai et al. 2000]

Realistic Image Synthesis SS2019

!28

Consider planar occluders

Multiplication by binary function

- mostly in space

Before Occlusion Blocker function After occlusion

Pr
im

al
 s

pa
ce

Occlusions
an

gl
e

space

Realistic Image Synthesis SS2019

!29

Multiplication in Primal domain is Convolution in Fourier domain

Before Occlusion Blocker function After occlusion

Pr
im

al
Fo

ur
ie

r

Blocker Spectrum

Occlusions
an

gl
e

space

⌦x(space)

⌦
v
(a
n
gl
e)

Realistic Image Synthesis SS2019

Main Transforms: Summary

!30

Convolution/Multiplication

Transport

Occlusion

BRDF

Curvature

Multiplication/Convolution

Shear

Shear

Adds spatial frequencies

Removes angular frequencies

EffectsTransformations

Frequency analysis of light transport [Durand et al. 2005]

Realistic Image Synthesis SS2019

Reconstructing Motion Blur

!31

Realistic Image Synthesis SS2019

Motion blur

!32

Objects move while the camera shutter is open

Image is "blurred" over time

Expensive for special effects

Necessary to remove "strobing"

 in animation

Realistic Image Synthesis SS2019

!33

Garfield: A tale of two kitties

Rhythm & Hues Studios

Realistic Image Synthesis SS2019

!34

The Incredibles

Pixar Animation Studios
Walt Disney Pictures

Realistic Image Synthesis SS2019

!35

t = 0.1

t = 0.3

t = 0.5

t = 0.7

t = 0.9

Motion blur: Simple approach

Realistic Image Synthesis SS2019

Motion blur: Simple approach

!36

t = 0.1t = 0.3t = 0.5t = 0.7t = 0.9

Realistic Image Synthesis SS2019

!37

t 2 [0, 1]

Motion blur: Simple approach

Realistic Image Synthesis SS2019

Simple approach

!38

The simple approach is expensive

Can we do better?

Realistic Image Synthesis SS2019

Observation

!39

Motion blur is expensive

Motion blur removes spatial complexity

Realistic Image Synthesis SS2019

Standard Method

!40

Use axis-aligned pixel filters at each pixel

Requires many samples

Pixels (Space)

Ti
m

e

Realistic Image Synthesis SS2019

Standard Method

!41

Use axis-aligned pixel filters at each pixel

Requires many samples

Pixels (Space)

Ti
m

e

Realistic Image Synthesis SS2019

Filter shearing based on frequency
analysis of light transport

!42

We will look at how to reuse nearby pixel samples to reconstruct using filters

derived using the frequency analysis of light transport

Pixels (Space)

Ti
m

e

Realistic Image Synthesis SS2019

Basic Example

!43

f(x,y) f(x,t)

x

y

x

t

No velocity: static scene t 2 [0, 1)

Realistic Image Synthesis SS2019

!44

f(x,y) f(x,t)

x

y

x

t

Basic Example
t 2 [0, 1)Low velocity

Realistic Image Synthesis SS2019

!45

f(x,y) f(x,t)

x

y

x

t

Basic Example
t 2 [0, 1)Low velocity

Realistic Image Synthesis SS2019

Basic Example

!46

Low velocity

f(x,y) f(x,t)

x

y

x

t

t 2 [0, 1)

Realistic Image Synthesis SS2019

Basic Example

!47

High velocity

f(x,y) f(x,t)

x x

ty

t 2 [0, 1)

Realistic Image Synthesis SS2019

Basic Example

!48

f(x,y) f(x,t)

x x

ty

t 2 [0, 1)High velocity

Realistic Image Synthesis SS2019

Shear in space-time
t 2 [0, 1)Object moving with low velocity

!49

f(x,y) f(x,t)

x

y

x

t

Realistic Image Synthesis SS2019

Large shear in space-time

!50

f(x,y) f(x,t)

x

y

x

t

Object moving with high velocity t 2 [0, 1)

Realistic Image Synthesis SS2019

Shear in space-time

!51

f(x,y) f(x,t)

x

y

x

t

Object moving away from the camera t 2 [0, 1)

Realistic Image Synthesis SS2019

Camera shutter filter

!52

f(x,y) f(x,t)

x

y

x

t

Applying shutter blur across time t 2 [0, 1)

Realistic Image Synthesis SS2019

Basic example: Fourier domain

!53

Fourier spectrum, zero velocity t 2 [0, 1)

f(x,t)

x

t ⌦x

⌦t

F (⌦x,⌦t)

Realistic Image Synthesis SS2019

Basic example: Fourier domain

!54

Low velocity, small shear in both domains

t 2 [0, 1)

f(x,t)

x

t

Slope = -speed

⌦x

⌦t

F (⌦x,⌦t)

Realistic Image Synthesis SS2019

Basic example: Fourier domain

!55

Low velocity, small shear in both domains

t 2 [0, 1)

f(x,t)

x

t

Slope = -speed

⌦x

⌦t

F (⌦x,⌦t)

Realistic Image Synthesis SS2019

Basic example: Fourier domain

!56

Due to camera motion, slopes are varying

t 2 [0, 1)

f(x,t)

x

t ⌦x

⌦t

F (⌦x,⌦t)

Slope = - max_speed

Slope = - min_speed

Realistic Image Synthesis SS2019

Basic example: Fourier domain

!57

When shutter blur is applied, only low frequencies matter

t 2 [0, 1)

f(x,t)

x

t ⌦x

⌦t

F (⌦x,⌦t)

Realistic Image Synthesis SS2019

Basic example: Fourier domain

!58

t 2 [0, 1)

f(x,t)

x

t ⌦x

⌦t

F (⌦x,⌦t)

When shutter blur is applied, only low frequencies matter

Realistic Image Synthesis SS2019

Main Insights

!59

Common case = double wedge spectra

⌦x

⌦t

F (⌦x,⌦t)

Shutter indirectly removes spatial frequencies

Realistic Image Synthesis SS2019

Sampling and Filtering Goals

!60

Minimal sampling rate to prevent aliasing

Derive shape of the reconstruction filters

Realistic Image Synthesis SS2019

Sampling in Fourier Domain

!61

Sampling produces replicas in the Fourier domain

Realistic Image Synthesis SS2019

Sampling in Fourier Domain

!62

Let's say the corresponding image has a Fourier spectrum as shown on the right side

⌦x

⌦t

Fourier domain

Realistic Image Synthesis SS2019

Sampling in Fourier Domain

!63

⌦x

⌦t

Fourier domain

Sampling produces replicas in the Fourier domain

Realistic Image Synthesis SS2019

Sampling in Fourier Domain

!64

Sampling produces replicas in the Fourier domain

Sparse sampling produces denser replicas

⌦x

⌦t

Fourier domain

Realistic Image Synthesis SS2019

Standard Reconstruction Filtering

!65

⌦x

⌦t

Standard filer, dense sampling, slow

Realistic Image Synthesis SS2019

!66

⌦x

⌦t

No aliasing

Standard filer, dense sampling, slow

Standard Reconstruction Filtering

Realistic Image Synthesis SS2019

!67

Standard filer, sparse sampling, fast

⌦x

⌦t

Aliasing

Aliasing

Standard Reconstruction Filtering

Realistic Image Synthesis SS2019

!68

Standard filer, sparse sampling, fast

⌦x

⌦t

No aliasing

Sheared Reconstruction Filter

Realistic Image Synthesis SS2019

!69

Compact shape in Fourier = wide space-time

⌦x

⌦t

Sheared Reconstruction Filter

⌦t

Realistic Image Synthesis SS2019

Main Insights

!70

Sheared filter allows for many fewer samples

Realistic Image Synthesis SS2019

Filters in action: Car example

!71

Motion blurredStatic

Realistic Image Synthesis SS2019

Implementation: stage 1

!72

max speedmin speed

Sparse sampling to compute velocity bounds

Realistic Image Synthesis SS2019

Implementation: stage 1

!73

max speed

min speed

Calculate filter widths and sampling rates

filter width

Realistic Image Synthesis SS2019

Implementation: stage 1

!74

max speed

min speed

Uniform velocities, wide filter, low samples

filter width

Realistic Image Synthesis SS2019

Implementation: stage 1

!75

max speed

min speed

Static surface, small filter, low samples

filter width

Realistic Image Synthesis SS2019

Implementation: stage 1

!76

max speed

min speed

Varying velocities, small filter, high samples

filter width

Realistic Image Synthesis SS2019

Implementation: stage 2

!77

Uniform velocities = low sample count

Then, compute sampling densities
Samples per pixel

Realistic Image Synthesis SS2019

Implementation: stage 2

!78

Varying velocities = high sample count

Then, compute sampling densities
Samples per pixel

Realistic Image Synthesis SS2019

Implementation: stage 3

!79

Render sample locations in space-time

Apply sheared filters to nearby samples

Pixels (Space)

Ti
m

e

 Sheared filters

overlaps samples across

multiple pixels

Realistic Image Synthesis SS2019

Implementation: stage 3

!80

Filters stretched along the direction of motion

Preseve frequencies orthogonal to the motion

Filter shapes

Realistic Image Synthesis SS2019

Results

!81

Sheared Filters

4spp

Stratified Sampling

4spp

Realistic Image Synthesis SS2019

!82

Fourier Analysis of
Light Transport

Multi-dimensional
adaptive sampling

of distribution effects

Temporal reconstruction
of distribution effects

Realistic Image Synthesis SS2018

Temporal Light-Field Reconstruction for
Rendering Distribution Effects

!83

Lehtinen et al. [2011]
Slides courtesy: Jakko Lehtinen

Pinhole image !84

With motion blur and depth of field !85

Requires dense sampling of 5D function:

 Pixel area (2D)
 Lens aperture (2D)
 Time (1D)

Motion blur and depth of field 1 sample per pixel !86

Our reconstruction !87

Pinhole camera model

!88
sensor

pinhole

object

background

Thin lens camera model

sensor

lens

object

background

!89

!90

Depth of field

Depth of field

!91

1 scanline 

!92

Screen x

Lens u

!93

1 pixel

Screen x

Lens u

!94

Lens u

Screen x!95

Light field [Levoy 1996]

∫

Lens u

Screen x!96

Output:
integration over lens

1 pixelMonte Carlo sampling

Screen x

Le
ns

 u

Low sample density leads to noise

!97

Screen x

Le
ns

 u

Need many samples to capture the signal:

computationally expensive

Monte Carlo sampling 1 pixel

!98

!99

Temporal light fields

x

y

v

u

Traditional light field is 4D [Levoy 1996]

x,y over sensor (2D)
u,v over lens (2D)

Add time dimension for
moving geometry (5D)

Screen x

Le
ns

 u

!100

Screen x

Le
ns

 u

!101

The Integrand is Anisotropic

Screen x

Le
ns

 u

[Chai00, Durand05, Hachisuka08, Soler09, Egan09, ...]

!102

Screen x

Le
ns

 u
Multi-dimensional Adaptive Sampling [Hachisuka 08]

!103

Screen x

Ti
m

e
t

Frequency Analysis and Sheared Reconstruction [Egan 09]

!104

Screen x

Le
ns

 u
Our approach

Start with sparse input sampling

!105

Screen x

Le
ns

 u
Our approach

Start with sparse input sampling

Perform dense reconstruction
using sparse input samples

Standard Monte-Carlo integration
using dense reconstruction

!106

Screen x

Le
ns

 u
Our input has slope information

For defocus,
proportional to
inverse depth 1/z [Chai00]  

For motion,
proportional to
inverse velocity 1/v [Egan09]

Easy to output from
any renderer.

!107

What is the
radiance at the
red location?

Use slope to reproject radiance

!108

?
Use slope to reproject radiance

Must account for occlusion

What is the
radiance at the
red location?

!109

Recap: our approach

Start with sparse input sampling

Perform dense reconstruction
using sparse input samples

Standard Monte-Carlo integration
using dense reconstruction

Use slopes to reproject

Account for visibility

!110

Reprojection and filtering

Simplify visibility by reprojecting
into screen space.

Reproject to u, v, t of
reconstruction location.

Pixel filter over visible samples.

!111

Visibility

?

Cluster samples into apparent
surfaces to resolve z-order

SameSurface algorithm

Determining coverage:
Does the apparent surface
cover my reconstruction location?

!112

?

Input:

sparse points with slopes

Visibility: SameSurface

!113

The trajectories of  
samples originating
from a single 
apparent surface
never intersect.  

Visibility: SameSurface

!114

Visibility: SameSurface

!115

Visibility events  
show up as intersections  

background
surface

Visibility: Coverage

Does foreground apparent surface cover reconstruction location?

Search foreground samples for spanning triangle.

foreground
surface R

reconstruction
location

Recap: our approach

Start with sparse input sampling

Perform dense reconstruction
using sparse input samples

Standard Monte-Carlo integration
using dense reconstruction

Use slopes to reproject

Account for visibility

!117

Observations

We only need sample radiance, depth, and velocity (i.e., slopes).
Reconstruction is independent of the original renderer. 

We can discard the scene.  

!118

Observations

We only need sample radiance, depth, and velocity (i.e., slopes).
Reconstruction is independent of the original renderer. 

We can discard the scene.

Need efficient sample search:

Fast motion and large defocus can lead to a single 
sample contributing to hundreds of pixels.  

Build a hierarchy over input samples.
!119

Extension to soft shadows

An area light is very much like a lens.

lens ~ light, sensor ~ virtual plane
Reconstruct z instead of radiance

Egan et al. [2010] reconstruct
far field binary visibility only.

light source
lu coordinate

light source
lx coordinate plane Π

view rays

lig
ht

 ra
ys

object 1

object 2

z

7D path-tracing style reconstruction
avoiding combinatorial explosion

Reconstruct scene point (5D)
Reconstruct shadow z shade (2D) !120

Results

!121

Implementation

Multithreaded CPU  
GPU, excluding hierarchy construction  
 

Common sample buffer format accepts outputs from:  
 PBRT 
 Pixie (Open source RenderMan)  
 Custom ray tracer

!122

Input: 16 spp
1072 sec (PBRT) !123

Our result: 16 spp + reconstruction at 128spp
1072 sec (PBRT) + 10 sec (reconstruction) !124

Our result: 16 spp + reconstruction at 128spp
1072 sec (PBRT) + 10 sec (reconstruction)

Input: 16 spp  Our result at 128 spp
using same input 

Reference: 256 spp
(16x time) 

!125

Input: 16 spp
771 sec (PBRT)

!126

Our result: 16 spp + reconstruction at 128spp
771 sec (PBRT) + 10 sec (reconstruction)

!127

Our result: 16 spp + reconstruction at 128spp
771 sec (PBRT) + 10 sec (reconstruction)

Input: 16 spp  Our result at 128 spp
using same input 

Reference: 256 spp
(16x time) 

!128

Comparison to reference

!129

25
16 32 64 128 256

30

35

40

P
S

N
R

 (d
B

)

Number of reconstruction locations

Reconstruction quality (higher is better)

16
Input samples/pixel

8

2
4

1

25
16 32 64 128 256

30

35

40

P
S

N
R

 (d
B

)

Number of reconstruction locations

Reconstruction quality (higher is better)

16
Input samples/pixel

Motion blur and depth of field
1 sample per pixel !130

Proposed reconstruction !131

Our reconstruction !132

Input: 1 spp  Proposed result:
1 spp -> 128 spp 

Reference 256 spp
(256x time) 

Comparison to Egan et al. [2009]

!133
Egan et al. [2009]
8 samples / pixel

Proposed method
4 samples / pixel

Reference
256 samples / pixel

Comparison to Egan et al. [2009]

!134
Egan et al. [2009]
8 samples / pixel

Our method
4 samples / pixel

Reference
256 samples / pixel

Soft shadows, 4 spp

!135

7D soft shadows with motion and defocus, 4 spp

!136

Realistic Image Synthesis SS2019

Acknowledgments

!137

Thanks to everyone below for making the slides available online.

Fredo Durand and colleagues [Frequency analysis of light transport 2005]

Toshiya Hachisuka and colleagues [Multi-dimensional adaptive sampling and reconstruction for ray tracing 2008]

Kevin Egan and colleagues [Frequency Analysis and Sheared Reconstruction for Rendering Motion Blur 2009]

Jakko Lehtinen and colleagues [Temporal Light Field Reconstruction for Rendering Distribution Effects 2011]

http://www.cs.columbia.edu/cg/mb/
http://groups.csail.mit.edu/graphics/tlfr/

