
Realistic Image Synthesis SS2020

Path to Neural Networks II

1

Image courtesy Vogel et al. [2018], Gharbi et al. [2019]

Philipp Slusallek Karol Myszkowski Gurprit Singh

Realistic Image Synthesis SS2019

Today's Menu

2

Sample-based denoising

CNN-based approach to generate blue-noise samples

Normalizing Flows

Path guiding using Normalizing Flows

Realistic Image Synthesis SS2020

3

Recap

Realistic Image Synthesis SS2020

4

Realistic Image Synthesis SS2020

5

Realistic Image Synthesis SS2020

Bilateral Filtering

6

Realistic Image Synthesis SS2020

Bilateral Filtering

6

Realistic Image Synthesis SS2020

Bilateral Filtering of Features

7

Realistic Image Synthesis SS2020

8

x1

1

w11

w21

w31

w30

w20

w10

X

X

X

f

f

f
w11

w21
w30

w20

w10

w31

x1
x1
x1

+
+
+

y2
y1

y3

=
=
=

f
f
f

(
(
(

(
(
(

Multi-layer Perceptron

Realistic Image Synthesis SS2020

8

w1

w2

w3

X
Output

x1

1

w11

w21

w31

w30

w20

w10

X

X

X

f

f

f
w11

w21
w30

w20

w10

w31

x1
x1
x1

+
+
+

y2
y1

y3

=
=
=

f
f
f

(
(
(

(
(
(

Multi-layer Perceptron

Realistic Image Synthesis SS2020

9

w1

w2

w3

w1

w2

w3

X
Output

x1

1

w11

w21

w31

w30

w20

w10

X

X

X

f

f

f
w11

w21
w30

w20

w10

w31

x1
x1
x1

+
+
+

y1

y2 y3

y1 y2

y3

=
=
=

f
f
f

(
(
(

(
(
(

Input

features Hidden layers Output layers

Multi-layer Perceptron

Realistic Image Synthesis SS2020

9

w1

w2

w3

w1

w2

w3

X
Output

x1

1

w11

w21

w31

w30

w20

w10

X

X

X

f

f

f
w11

w21
w30

w20

w10

w31

x1
x1
x1

+
+
+

y1

y2 y3

y1 y2

y3

=
=
=

f
f
f

(
(
(

(
(
(

Input

features Hidden layers Output layers

Multi-layer Perceptron

Realistic Image Synthesis SS2020

For cross Bilateral filters:

10

Filter weights

Realistic Image Synthesis SS2020

For cross Bilateral filters:

10

Filter weights

Pixel screen coordinates

Realistic Image Synthesis SS2020

For cross Bilateral filters:

10

Filter weights

Pixel screen coordinates

Mean sample color value

Realistic Image Synthesis SS2020

For cross Bilateral filters:

10

Filter weights

Pixel screen coordinates

Mean sample color value

Scene features

Realistic Image Synthesis SS2020

Results

11

Overview on Convolutional Neural Networks (CNNs)

12

Image Courtesy: Mathworks (online tutorial)

Realistic Image Synthesis SS2018

13

Multi-layer perceptron CNNs

All nodes are fully connected in all layers Weights are shared across layers

In theory, should be able to achieve good quality

results in small number of layers.

Requires significant number of layers to capture

all the features (e.g. Deep CNNs)

Number of weights to be learnt are very high Relatively small number of weights required

Multi-layer Perceptron vs. CNNs

Realistic Image Synthesis SS2020

14

Kernel-Predicting Networks for Denoising
Monte-Carlo Renderings

Realistic Image Synthesis SS2019

15

Recurrent AutoEncoder for Interactive Reconstruction

Realistic Image Synthesis SS2018

Recurrent Neural Networks
vs. Simple Feed-Forward NN

16

Source link

https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5
https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5

Realistic Image Synthesis SS2019

Loss Functions

17

Spatial Loss to emphasize more

the dark regions

Temporal loss

Final Loss is a weighted averaged of above losses

High frequency error norm loss

for stable edges

Realistic Image Synthesis SS2020

18

#Learnable 
Parameters?

Pixel-space
Kernel Predicting

Denoising
How to compute "learnable" parameters?

Realistic Image Synthesis SS2020

18

#Learnable 
Parameters?

Pixel-space
Kernel Predicting

Denoising

Sample-based  
MC Denoising

How to compute "learnable" parameters?

Realistic Image Synthesis SS2020

19

Image Source: Google

How to compute "learnable" parameters?

Realistic Image Synthesis SS2020

19

Image Source: Google

How to compute "learnable" parameters?

Realistic Image Synthesis SS2020

20

Image Source: Google

How to compute "learnable" parameters?

Realistic Image Synthesis SS2020

20

Image Source: Google

How to compute "learnable" parameters?

Realistic Image Synthesis SS2020

21

Feed-Forward Neural Network

Image Source: towards-data-science

https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889
https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889

Realistic Image Synthesis SS2020

22

Feed-Forward Neural Network

Image Source: towards-data-science

(3 x 5) + (5 x 2) + (5 + 2) = 17 parameters
weights biases

https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889
https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889

Realistic Image Synthesis SS2020

23

Feed-Forward Neural Network

Image Source: towards-data-science

https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889
https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889

Realistic Image Synthesis SS2020

24

#Learnable 
Parameters?

Pixel-space
Kernel Predicting

Denoising

Realistic Image Synthesis SS2020

24

#Learnable 
Parameters?

Pixel-space
Kernel Predicting

Denoising

Sample-based  
MC Denoising

Realistic Image Synthesis SS2020

Sample-based Denoising Network

25

Michael Gharbi, Tzu-Mao Li, Miika Aittala, Jakko Lehtinen, Fredo Durand

SIGGRAPH 2019

Realistic Image Synthesis SS2020

Multimodal distribution of sample features

26

In
pu

t 1
6s

pp

Realistic Image Synthesis SS2020

Multimodal distribution of sample features

27

Depth histogram

BackgroundMoving

sphere

In
pu

t 1
6s

pp

Realistic Image Synthesis SS2020

Multimodal distribution of sample features

28

In
pu

t 1
6s

pp

BackgroundMoving

sphere

Inset 16spp Reference

Depth histogram

Realistic Image Synthesis SS2020

Multimodal distribution of sample features

28

In
pu

t 1
6s

pp

BackgroundMoving

sphere

Inset 16spp Reference

Depth histogram

Sen [2012]

Realistic Image Synthesis SS2020

Multimodal distribution of sample features

28

In
pu

t 1
6s

pp

BackgroundMoving

sphere

Inset 16spp Reference

Depth histogram

Sen [2012] Proposed

Realistic Image Synthesis SS2020

Reconstruction: Kernel Gather

29

Realistic Image Synthesis SS2020

Reconstruction: Kernel Gather

30

Realistic Image Synthesis SS2020

Reconstruction: Kernel Gather

30

Realistic Image Synthesis SS2020

Reconstruction: Kernel Gather

30

Realistic Image Synthesis SS2020

Reconstruction: Kernel Gather

31

Kernel

Realistic Image Synthesis SS2020

Reconstruction: Kernel Gather

31

Kernel

Realistic Image Synthesis SS2020

Reconstruction: Kernel Gather

32

Kernel gather

How should nearby samples influence me?

2D example

Realistic Image Synthesis SS2020

Reconstruction: Kernel Gather

32

Kernel gather

How should nearby samples influence me?

2D example

Realistic Image Synthesis SS2020

Reconstruction: Kernel Splatting

33

2D example 2D example

Kernel gather Kernel Splatting

How should nearby samples influence me?

Realistic Image Synthesis SS2020

Reconstruction: Kernel Splatting

33

2D example 2D example

Kernel gather Kernel Splatting

How should nearby samples influence me?

Realistic Image Synthesis SS2020

Reconstruction: Kernel Splatting

33

2D example 2D example

Kernel gather Kernel Splatting

How should nearby samples influence me?

Realistic Image Synthesis SS2020

Reconstruction: Kernel Splatting

34

2D example 1D example

Pixels

Pi
xe

l v
al

ue
s

Kernel gather Kernel Splatting

How should nearby samples influence me?

Realistic Image Synthesis SS2020

Reconstruction: Kernel Splatting

34

2D example 1D example

Pixels

Pi
xe

l v
al

ue
s

Kernel gather Kernel Splatting

How should nearby samples influence me?

Realistic Image Synthesis SS2020

Reconstruction: Kernel Splatting

34

2D example 1D example

Pixels

Pi
xe

l v
al

ue
s

Kernel gather Kernel Splatting

How should nearby samples influence me?

Realistic Image Synthesis SS2020

Reconstruction: Kernel Splatting

35

2D example

Pixels

Kernel gather Kernel Splatting

1D example

Pi
xe

l v
al

ue
s

How should nearby samples influence me?

Realistic Image Synthesis SS2020

Reconstruction: Kernel Splatting

35

2D example

Pixels

Kernel gather Kernel Splatting

1D example

Pi
xe

l v
al

ue
s

How should nearby samples influence me?

Realistic Image Synthesis SS2020

Reconstruction: Kernel Splatting

36

Kernel gather Kernel Splatting

Continue splatting kernels for the

rest of the samples....

How do I contribute to nearby pixels,
given all the samples around me?

2D example

How should nearby samples influence me?

Realistic Image Synthesis SS2020

Network: Kernel Gather vs Splatting

37

intput

Realistic Image Synthesis SS2020

Network: Kernel Gather vs Splatting

37

referenceintput

Realistic Image Synthesis SS2020

Network: Kernel Gather vs Splatting

37

gather

gather kernels

referenceintput

Realistic Image Synthesis SS2020

Network: Kernel Gather vs Splatting

37

splat

splat kernels

gather

gather kernels

referenceintput

Realistic Image Synthesis SS2020

Network: Kernel Gather vs Splatting

37

splat

splat kernels

gather

gather kernels

gather (larger network)

gather kernels

(large capacity network)

referenceintput

Realistic Image Synthesis SS2020

Network: Kernel Gather vs Splatting

37

splat

splat kernels

gather

gather kernels

gather (larger network)

gather kernels

(large capacity network)

referenceintput

Realistic Image Synthesis SS2020

Permutation Invariance

38

Realistic Image Synthesis SS2020

Permutation Invariance

39

A model that produces the same output regardless of the order of elements in the input vector

Realistic Image Synthesis SS2020

Permutation Invariance: Example

40

* =

Realistic Image Synthesis SS2020

Permutation Invariance: Example

41

* =

Realistic Image Synthesis SS2020

Permutation Invariance: Example

42

*

*

=

=N
ot

 P
er

m
ut

at
io

n
In

va
ri

an
ce

Realistic Image Synthesis SS2020

Permutation Invariance: Example

43

*

*

=

=N
ot

 P
er

m
ut

at
io

n
In

va
ri

an
ce

Realistic Image Synthesis SS2020

Permutation Invariance: Architectures

44

Realistic Image Synthesis SS2020

Permutation Invariance: Architectures

44

•A standard feedforward neural net such as multilayer perceptron (MLP) is insensitive
to order of elements in input vector - so it is inherently permutation insensitive

Realistic Image Synthesis SS2020

Permutation Invariance: Architectures

44

•A standard feedforward neural net such as multilayer perceptron (MLP) is insensitive
to order of elements in input vector - so it is inherently permutation insensitive

Realistic Image Synthesis SS2020

Permutation Invariance: Architectures

44

•A standard feedforward neural net such as multilayer perceptron (MLP) is insensitive
to order of elements in input vector - so it is inherently permutation insensitive

•However, both a Convnet and RNNs for instance make full use of input ordering -
they are permutation sensitive.

Realistic Image Synthesis SS2020

Permutation Invariance: Architectures

44

•A standard feedforward neural net such as multilayer perceptron (MLP) is insensitive
to order of elements in input vector - so it is inherently permutation insensitive

•However, both a Convnet and RNNs for instance make full use of input ordering -
they are permutation sensitive.

Realistic Image Synthesis SS2020

Permutation Invariance: Example

45

Permute pixels

MNIST Dataset

Permuting pixels makes it difficult for humans to understand the images.

However, permutation invariant networks like MLP can detect digits irrespective of the order of pixels

Realistic Image Synthesis SS2020

Permutation Invariance: Example

46

A graph labeling function F is graph permutation invariant (GPI) if permuting the names
of nodes maintains the output. Herzig et al.[2018]

Realistic Image Synthesis SS2020

Permutation Invariance

47

•In MLPs, since each component is connected to each other, the order does not
matter

•In structured convolutions, the order matters and therefore, it is not permutation
invariant.

Realistic Image Synthesis SS2020

Proposed Network Architecture

48

Realistic Image Synthesis SS2020

Dataset and Training Procedure

49

Procedurely generated dataset: 300,000 renderings with 128x128 resolution

Reference was generated for 4096 samples

Also generated input buffer (4, 32 spp), but this time also maintained auxiliary features

Realistic Image Synthesis SS2020

Splat vs Gather

50

Input Reference

Realistic Image Synthesis SS2020

Splat vs Gather

50

pe
r s

am
pl

e
ga

th
er

Input Reference

Realistic Image Synthesis SS2020

Splat vs Gather

50

pe
r s

am
pl

e
sp

lat

pe
r s

am
pl

e
ga

th
er

Input Reference

Realistic Image Synthesis SS2020

Splat vs Gather

50

pe
r s

am
pl

e
sp

lat

pe
r s

am
pl

e
ga

th
er

pe
r p

ixe
l g

at
he

r
Input Reference

Realistic Image Synthesis SS2020

Splat vs Gather

50

pe
r s

am
pl

e
sp

lat

pe
r s

am
pl

e
ga

th
er

pe
r p

ixe
l g

at
he

r

pe
r p

ixe
l s

pl
at

Input Reference

Realistic Image Synthesis SS2020

Results

51

Realistic Image Synthesis SS2020

Network Architecture Comparisons

52

(Deep) Convolutional Neural Networks

53

54

x1

N number of point samples

Unstructured data

Based on Convolutional Neural Networks

55

⌦Convolution

N number of point samples

x1

Unstructured data

Based on Convolutional Neural Networks

Based on Convolutional Neural Networks

56

⌦Convolution

N number of point samples

x1

Unstructured data

⌦

Based on Convolutional Neural Networks

57

⌦Convolution

N number of point samples

Loss function

x1

Unstructured data

⌦ ⌦

...

Based on Convolutional Neural Networks

57

⌦Convolution

N number of point samples

Loss function

x1

Unstructured data

⌦ ⌦

...

Back-propagate

Based on Convolutional Neural Networks

58

N number of point samples

⌦Convolution

Unstructured data

Based on Convolutional Neural Networks

59

⌦Convolution

Unstructured data

N number of point samples

⌦ ⌦

... Keep training the network!

Based on Convolutional Neural Networks

60

⌦Convolution

Unstructured data

N number of point samples

Which Loss function can we use?⌦ ⌦

... Keep training the network!

Spectral Loss Function

61

Spectral Loss

Lspectral = ||hPi(⌫)i � hP(⌫)i||2

at training iterationi-th

Spectral Loss Function

61

Spectral Loss

Lspectral = ||hPi(⌫)i � hP(⌫)i||2

at training iterationi-th

Radially averaged power

Spectral Loss Function

61

Spectral Loss

Lspectral = ||hPi(⌫)i � hP(⌫)i||2

at training iterationi-th

Radially averaged power

62

Training Process

62

Training Process

Kernels for BNOT
(de Goes et al.[2012])

Kernels for Step
(de Heck et al.[2013])

63

Training Process

Kernels for BNOT
(de Goes et al.[2012])

Kernels for Step
(de Heck et al.[2013])

63

Training Process

Kernels for BNOT
(de Goes et al.[2012])

Kernels for Step
(de Heck et al.[2013])

64

Architecture: Full pipeline

64

Architecture: Full pipeline

65

Results: Spectral Target Spectra

66

Results: Spectral Target Spectra

67

Results: Spectral Target Spectra

68

Results: Spectral Target Spectra

Spatial Loss Function

69

PCF Loss at training iterationi-th

70

Bl
ue

 N
oi

se

Spatial Domain

Samples

Pair Correlation Function

70

Bl
ue

 N
oi

se

Spatial Domain

Samples

Pair Correlation Function

70

Bl
ue

 N
oi

se

Spatial Domain

Samples

Pair Correlation Function

70

Bl
ue

 N
oi

se

Spatial Domain

Samples

Pair Correlation Function

70

Bl
ue

 N
oi

se

Spatial Domain

Samples

Pair Correlation Function

Distance

H
is

to
gr

am
 c

ou
nt

Loss Functions

71

PCF Loss at training iterationi-th

LPCF = ||hri(dist)i � hr(dist)i||2

Loss Functions

71

PCF Loss at training iterationi-th

LPCF = ||hri(dist)i � hr(dist)i||2
hr(dist)i

Distance

H
is

to
gr

am
 c

ou
nt

Loss Functions

71

PCF Loss at training iterationi-th

LPCF = ||hri(dist)i � hr(dist)i||2
hr(dist)i

Distance

H
is

to
gr

am
 c

ou
nt

72

Spatial Target PCFs

73

3D Point Samples (Different Projection Targets)

74

X

Y
Z

75

Ta
rg

et
 S

pe
ct

ra

XY YZ XZ
(BNOT) (Jitter) (Step)

3D Point Samples (Different Projection Targets)

X

Y
Z

76

Ta
rg

et
 S

pe
ct

ra

XY YZ XZ
(BNOT) (Jitter) (Step)

3D Point Samples (Different Projection Targets)

X

Y
Z

O
ur

 S
pe

ct
ra

Point set: Projections are Preserved

77

XY YZ XZ
(BNOT) (Jitter) (Step)

Ta
rg

et
 P

oi
nt

se
t

X

Y
Z

O
ur

 P
oi

nt
Se

t

78

Novel Sampling Patterns

Leimkuhler et al. [SIGGRAPH Asia 2019]

78

Novel Sampling Patterns

Leimkuhler et al. [SIGGRAPH Asia 2019]

79

Novel Sampling Patterns

Var(IN) = ⇥
X

⌦

Var(IN) = ⇥
X

⌦
Sampling

Power spectrum

Integrand
Power spectrum

Leimkuhler et al. [SIGGRAPH Asia 2019]

80

Novel Sampling Patterns

Var(IN) = ⇥
X

⌦

Leimkuhler et al. [SIGGRAPH Asia 2019]

Blue Noise Dithering

81 Leimkuhler et al. [SIGGRAPH Asia 2019]

82

Novel Sampling Patterns
using radially averaged loss

Frequency

Po
w

er

82

Novel Sampling Patterns
using radially averaged loss

Function's
power spectrum decay

Frequency

Po
w

er

82

Novel Sampling Patterns
using radially averaged loss

Function's
power spectrum decay

Sampler's power radial profile

Frequency

Po
w

er

83

Novel Sampling Patterns
using radially averaged loss

Frequency

Po
w

er

Function's
power spectrum decay

Sampler's power radial profile

84

Object Placement

84

Object Placement

Blue Noise Dithering

85

Realistic Image Synthesis SS2020

Normalizing Flows

86

Realistic Image Synthesis SS2020

Importance Sampling

87

IN =
1

N

NX

k=1

f(x)

p(x)

Realistic Image Synthesis SS2020

Importance Sampling

87

f(x)

IN =
1

N

NX

k=1

f(x)

p(x)

Realistic Image Synthesis SS2020

Importance Sampling

87

f(x)

p(x)

IN =
1

N

NX

k=1

f(x)

p(x)

Realistic Image Synthesis SS2020

Importance Sampling

88

IN =
1

N

NX

k=1

f(x)

p(x)

p(x) =???

Realistic Image Synthesis SS2020

Importance Sampling

88

f(x)

IN =
1

N

NX

k=1

f(x)

p(x)

p(x) =???

Realistic Image Synthesis SS2020

Normalizing Flows

89

Realistic Image Synthesis SS2020

Normalizing Flows

Technique used in Machine learning to build complex
probability distributions by transforming simple ones

Used in the context of generative modeling

Generative modeling: learning without any target
(unsupervised)

90

Realistic Image Synthesis SS2020

Complex Probability distributions
from simple ones

91

Realistic Image Synthesis SS2020

Complex Probability distributions
from simple ones

91

Realistic Image Synthesis SS2020

Complex Probability distributions
from simple ones

91

Realistic Image Synthesis SS2020

Complex Probability distributions
from simple ones

91

Realistic Image Synthesis SS2020

92

Complex Probability distributions
from simple ones

Realistic Image Synthesis SS2020

Normalizing Flows:
Basic mathematical framework

93

Realistic Image Synthesis SS2020

94

z p✓(z)

x = f✓(z) = fk � � � f2 � f1(z)

⇠

each fi is invertible (bijective)

Given a continuous variable with a distribution

New distribution obtained

Realistic Image Synthesis SS2020

Distributions

95

X

Realistic Image Synthesis SS2020

96

X
Z f

f�1

Distributions

Realistic Image Synthesis SS2020

96

X
Z f

f�1

Distributions

Realistic Image Synthesis SS2020

96

X
Z f

f�1

Distributions

p(x) =?

Realistic Image Synthesis SS2020

97

Distributions

p(x) =?

z p✓(z)

x = f✓(z) = fk � � � f2 � f1(z)

⇠

each fi is invertible (bijective)

Given a continuous variable with a distribution

p(x) = p(f�1(x))

Realistic Image Synthesis SS2020

97

Distributions

p(x) =?

z p✓(z)

x = f✓(z) = fk � � � f2 � f1(z)

⇠

each fi is invertible (bijective)

Given a continuous variable with a distribution

p(x) = p(f�1(x))

Realistic Image Synthesis SS2020

98

f : Z ! X, f is invertible

p(z) defined over z 2 Z

Change of Variables

Realistic Image Synthesis SS2020

98

f : Z ! X, f is invertible

p(z) defined over z 2 Z

Change of variable formula says that:

Change of Variables

Realistic Image Synthesis SS2020

98

f : Z ! X, f is invertible

p(z) defined over z 2 Z

p(x) = p(f�1(x))

����det
✓
@f�1(x)

@x

◆����

Change of variable formula says that:

Change of Variables

Realistic Image Synthesis SS2020

Change of Variables

99

f : Z ! X, f is invertible

p(z) defined over z 2 Z

p(x) = p(f�1(x))

����det
✓
@f�1(x)

@x

◆����

p(x) = p(z)

����det
✓
@z

@x

◆����

Realistic Image Synthesis SS2020

Jacobian Matrix

100

f : Rn ! Rm

Realistic Image Synthesis SS2020

Jacobian Matrix

101

f : R2 ! R2

Jacobian determinant gives the ratio of the area of the approximating parallelogram to that of the original square.

Realistic Image Synthesis SS2020

102

f : Z ! X, f is invertible

p(z) defined over z 2 Z

p(x) = p(f�1(x))

����det
✓
@f�1(x)

@x

◆����

p(x) = p(z)

����det
✓
@z

@x

◆����

Jacobian Matrix

Realistic Image Synthesis SS2020

103

XZ

f : Z ! X, f is invertible

p(z) defined over z 2 Z

Realistic Image Synthesis SS2020

103

XZ

det

✓
@x

@z

◆
= 4

f : Z ! X, f is invertible

p(z) defined over z 2 Z

Realistic Image Synthesis SS2020

103

XZ
p(x) = p(z) =

�����
1

det
�
@x
@z

�
�����

det

✓
@x

@z

◆
= 4

f : Z ! X, f is invertible

p(z) defined over z 2 Z

Realistic Image Synthesis SS2020

104

f : Z ! X, f is invertible

p(z) defined over z 2 Z

log p(x) = log p(z) + log

����det
✓
@f�1(x)

@x

◆����

Maximize Log-likelihood

Realistic Image Synthesis SS2020

105

f : Z ! X, f is invertible

p(z) defined over z 2 Z

log p(x) = log p(z) + log

����det
✓
@f�1(x)

@x

◆����

Maximize Log-likelihood

log p(x) = log p(z) +
KX

i=1

log

����det
✓
@f�1(x)

@x

◆����

Realistic Image Synthesis SS2020

106

f : Z ! X, f is invertible

p(z) defined over z 2 Z

Jacobian: Lower Triangular Matrix

J

Realistic Image Synthesis SS2020

106

f : Z ! X, f is invertible

p(z) defined over z 2 Z

Jacobian: Lower Triangular Matrix

J

Realistic Image Synthesis SS2020

How to ensure lower-triangular
Jacobian matrix?

107

z 2 RD

Realistic Image Synthesis SS2020

How to ensure lower-triangular
Jacobian matrix?

107

z1:d

zd+1:D

z 2 RD

Realistic Image Synthesis SS2020

How to ensure lower-triangular
Jacobian matrix?

108

Coupling layer

z1:d
zd+1:D

z 2 RD

Realistic Image Synthesis SS2020

How to ensure lower-triangular
Jacobian matrix?

108

Coupling layer

z1:d
zd+1:D

z 2 RD

=

Realistic Image Synthesis SS2020

How to ensure lower-triangular
Jacobian matrix?

108

Coupling layer

z1:d
zd+1:D

z 2 RD

=

x1:d

Realistic Image Synthesis SS2020

How to ensure lower-triangular
Jacobian matrix?

108

Coupling layer

z1:d
zd+1:D

z 2 RD

= g

x1:d

Realistic Image Synthesis SS2020

How to ensure lower-triangular
Jacobian matrix?

108

Coupling layer

z1:d
zd+1:D

z 2 RD

= g

x1:d xd+1:D

Realistic Image Synthesis SS2020

How to ensure lower-triangular
Jacobian matrix?

108

Coupling layer

z1:d
zd+1:D

z 2 RD

= g

m

x1:d xd+1:D

Neural Importance Sampling
Thomas Müller
Brian McWilliams
Fabrice Rousselle
Markus Gross
Jan Novák

Work done while at:

Affiliation:

What is Light Transport?

110

What is Light Transport?

110

What is Light Transport?

110

Render time: sometimes >100 cpu-hours

What is Light Transport?

112

What is Light Transport?

112

What is Light Transport?

113

What is Light Transport?

113

114

"Path tracing" algorithm2 spp512 paths per pixel

114Path tracing Neural path guiding

Path tracing: BSDF sampling

115

Path tracing: BSDF sampling

115

x

Path tracing: BSDF sampling

BSDF

115

x

Path tracing: direct-illumination sampling

BSDF

116

x

Path tracing: direct-illumination sampling

BSDF

116

x

Path tracing: direct-illumination sampling

BSDF

116

x

Multiple Importance Sampling
[Veach and Guibas 1995]

Where is path guiding useful?

117

x

118

x

Where is path guiding useful?

118

x

Where is path guiding useful?

118

x

Where is path guiding useful?

118

Incident radiance

x

Where is path guiding useful?

Goal: Sample proportional to incident radiance.

118

Incident radiance

x

Where is path guiding useful?

119

x

Where is path guiding useful?

119

x

Where is path guiding useful?

Learning incident radiance in a Cornell box

120

Learning incident radiance in a Cornell box

120

Learning incident radiance in a Cornell box

120

Reference

121

Neural networks as function approximators

Reference

SD-tree [Müller et al. 2017]

121

Neural networks as function approximators

Reference

SD-tree [Müller et al. 2017] GMM [Vorba et al. 2014]

121

Neural networks as function approximators

Reference

SD-tree [Müller et al. 2017] GMM [Vorba et al. 2014]

121

Neural networks as function approximators

Neural Network

Reference

Neural network

SD-tree

Gaussian mixture

Reference

Neural network

SD-tree

Gaussian mixture

Reference

Neural network

SD-tree

Gaussian mixture

Neural path guiding overview

123

Neural networkPath tracer

Neural path guiding overview

123

Sample

Neural networkPath tracer

Neural path guiding overview

123

Optimize

Sample

Neural networkPath tracer

Neural path guiding overview

123

Optimize

Sample

Neural networkPath tracer

Neural path guiding overview

123

Optimize

Sample

Neural networkPath tracer

Neural path guiding overview

123

Optimize

Sample

Feedback loop

Neural networkPath tracer

124
How?

How?
Neural path guiding overview

How to draw samples?

125

Goal: warp random numbers to good distribution with NN

126

z x

Goal: warp random numbers to good distribution with NN

126

z x

Random number

Goal: warp random numbers to good distribution with NN

126

z x

Random number Sample

Goal: warp random numbers to good distribution with NN

126

z x

Random number Sample

[Dinh et al. 2016]

Goal: warp random numbers to good distribution with NN

126

z x

Random number Sample

[Dinh et al. 2016] [Dinh et al. 2016]

Goal: warp random numbers to good distribution with NN

126

z x

F ≈
1
N

N

∑
i=1

f(Xi)
p(Xi)Monte Carlo estimator

Random number Sample

[Dinh et al. 2016] [Dinh et al. 2016]

Goal: warp random numbers to good distribution with NN

126

z x

F ≈
1
N

N

∑
i=1

f(Xi)
p(Xi)

Need p in closed form!

Monte Carlo estimator

Random number Sample

[Dinh et al. 2016] [Dinh et al. 2016]

Goal: warp random numbers to good distribution with NN

126

z x

F ≈
1
N

N

∑
i=1

f(Xi)
p(Xi)

Need p in closed form!
Addressed by "normalizing flows"Monte Carlo estimator

Random number Sample

[Dinh et al. 2016] [Dinh et al. 2016]

Parameterizing a bijection allows using the change-of-variable formula

127

m(z; ϕ)

Parametric bijective function

z x

SampleRandom number

[Dinh et al. 2016] [Dinh et al. 2016]

Parameterizing a bijection allows using the change-of-variable formula

127

m(z; ϕ)

Parametric bijective function

p(x) = p(z) ⋅ det (∂m(z)
∂zT)

−1

z x

SampleRandom number

[Dinh et al. 2016] [Dinh et al. 2016]

Parameterizing a bijection allows using the change-of-variable formula

127

m(z; ϕ)

Parametric bijective function

p(x) = p(z) ⋅ det (∂m(z)
∂zT)

−1

z x

Sample

Our choice, e.g. Gaussian

Random number

[Dinh et al. 2016] [Dinh et al. 2016]

Parameterizing a bijection allows using the change-of-variable formula

127

m(z; ϕ)

Parametric bijective function

p(x) = p(z) ⋅ det (∂m(z)
∂zT)

−1

z x

Sample

Squishing/stretching by m Our choice, e.g. Gaussian

Random number

[Dinh et al. 2016] [Dinh et al. 2016]

Parameterizing a bijection allows using the change-of-variable formula

127

m(z; ϕ)

Parametric bijective function

p(x) = p(z) ⋅ det (∂m(z)
∂zT)

−1

z x

Sample

Squishing/stretching by m Our choice, e.g. Gaussian

Random number

[Dinh et al. 2016] [Dinh et al. 2016]

A chain of simple bijections can model complicated functions

128

Parametric bijective functions
(normalizing flow)

m1 ∘ m2 ∘ … ∘ mLz x

Sample

p(x) = p(z) ⋅
L

∏
i=1

det (∂mi(z)
∂zT)

−1

Our choice, e.g. Gaussian

Random number

Squishing/stretching by m

[Dinh et al. 2016] [Dinh et al. 2016]

How to optimize?

129

Training with data from the correct distribution is simple

Optimize

Training data

130

Neural network

Training with data from the correct distribution is simple

Optimize

Training data

Desired distribution

130

Neural network

Training with data from the correct distribution is simple

Optimize

Training data

Desired distribution

∇θlog p(x; θ)

130

Neural network

Optimize

Arbitrarily distributed

∇θlog p(x; θ)

Training from Monte Carlo samples requires careful weighting

131

Neural networkTraining data

Optimize

Arbitrarily distributed

∇θlog p(x; θ)

Training from Monte Carlo samples requires careful weighting

131

Neural networkTraining data

Training with data from the correct distribution is simple

Optimize

∇θlog p(x; θ)

min KL-divergence

132

Neural network

Training data

Desired distribution

Training from Monte Carlo samples requires careful weighting

Optimize

 distributed

f(x)
p(x; θ)

∇θlog p(x; θ)

min KL-divergence

p(x; θ)

133

Neural networkTraining data

Optimize

f(x)2

p(x; θ)2
∇θlog p(x; θ)

min variance

 distributedp(x; θ)

Training from Monte Carlo samples requires careful weighting

134

Neural networkTraining data

Optimize

f(x)2

p(x; θ)2
∇θlog p(x; θ)

min -divergenceχ2

 distributedp(x; θ)

Training from Monte Carlo samples requires careful weighting

135

Neural networkTraining data

136

Putting it together...

137137

138

1 path per pixel

138Path tracing Neural path guiding

139

2 spp2 paths per pixel

139Path tracing Neural path guiding

140

2 spp4 paths per pixel

140Path tracing Neural path guiding

141

2 spp8 paths per pixel

141Path tracing Neural path guiding

142

2 spp16 paths per pixel

142Path tracing Neural path guiding

143

2 spp32 paths per pixel

Path tracing 143Neural path guiding

144

2 spp64 paths per pixel

144Path tracing Neural path guiding

145

2 spp128 paths per pixel

145Path tracing Neural path guiding

146

2 spp256 paths per pixel

146Path tracing Neural path guiding

147

"Path tracing" algorithm2 spp512 paths per pixel

147Path tracing Neural path guiding

Product guiding

148

ωo

149

Lr(x, ωo) = ∫ Li(x, ωi) f(x, ωi, ωo)cos θ dωi

x

Product path guiding

ωo

Incident radiance

149

Lr(x, ωo) = ∫ Li(x, ωi) f(x, ωi, ωo)cos θ dωi

x

Product path guiding

ωo

Incident radiance

BSDF

149

Lr(x, ωo) = ∫ Li(x, ωi) f(x, ωi, ωo)cos θ dωi

x

Product path guiding

ωo

150

x

Lr(x, ωo) = ∫ Li(x, ωi) f(x, ωi, ωo)cos θ dωi

Product path guiding

151

x

Lr(x, ωo) = ∫ Li(x, ωi) f(x, ωi, ωo)cos θ dωi

Product path guiding

ωo

152

x

Lr(x, ωo) = ∫ Li(x, ωi) f(x, ωi, ωo)cos θ dωi

Product path guiding

ωo

153

x

Lr(x, ωo) = ∫ Li(x, ωi) f(x, ωi, ωo)cos θ dωi

Product path guiding

ωo

154

x

Lr(x, ωo) = ∫ Li(x, ωi) f(x, ωi, ωo)cos θ dωi

Product path guiding

ωo

155

x

Lr(x, ωo) = ∫ Li(x, ωi) f(x, ωi, ωo)cos θ dωi

Product path guiding

ωo

156

Product path guiding

x

Lr(x, ωo) = ∫ Li(x, ωi) f(x, ωi, ωo)cos θ dωi

ωo

MIS optimization

157

158

MIS-aware optimization

Learned distribution

x

158

MIS-aware optimization

BSDFLearned distribution

x

158

MIS-aware optimization

BSDFLearned distribution
(1 − w) w+p(ωi; θ) =

x

158

MIS-aware optimization

BSDFLearned distribution
(1 − w) w+p(ωi; θ) =

x

159

(1 − w) w+
Learned distribution BSDF

MIS-aware optimization

x

p(ωi; θ) =

160

(1 − w(θ)) w(θ)+
Learned distribution BSDF

MIS-aware optimization

x

p(ωi; θ) =

Results

161

162

Equal time

Path tracing

162

Equal time

Path tracing Müller et al. [2017]

162

Equal time

Path tracing Neural path guidingMüller et al. [2017]

163

Equal spp

Path tracing Neural path guidingMüller et al. [2017]

164

Equal spp

Path tracing

164

Equal spp

Path tracing Müller et al. [2017]

164

Equal spp

Path tracing Neural path guidingMüller et al. [2017]

Conclusion

165

Conclusion

• Neural networks can drive unbiased MC integration

• Complicated integrands (e.g. product path guiding)

• Computational cost of neural path guiding is high, but quality is
state of the art

165

Realistic Image Synthesis SS2020

References

166

Sample-based Monte Carlo Denoising using a Kernel-Splatting Network, Gharbi et al. SIGGRAPH 2019

Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al. SIGGRAPH 2017

Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder,
Chaitanya et al. SIGGRAPH 2017

A Machine Learning Approach for Filtering Monte Carlo Noise, Kalantari et al. SIGGRAPH 2015

On Filtering the Noise from the Random Parameters in Monte Carlo Rendering, Sen and Darabi 2012

Temporal Light Field Reconstruction for Rendering Distribution Effects, Lehtinen et al. SIGGRAPH 2011

Frequency Analysis and Sheared Reconstruction for Rendering Motion Blur, Egan et al. SIGGRAPH 2009
A frequency analysis of light transport, Durand et al. SIGGRAPH 2005

NICE: Non-linear Independent Components Estimation

Normalizing Flows: An Introduction and Review of Current Methods

Neural Importance Sampling SIGGRAPH 2019

