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Image courtesy Vogel et al. [2018], Gharbi et al. [2019]
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Today's Menu
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Sample-based denoising

CNN-based approach to generate blue-noise samples

Normalizing Flows

Path guiding using Normalizing Flows
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Filter weights
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Filter weights

Pixel screen coordinates
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Filter weights

Pixel screen coordinates
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For cross Bilateral filters:
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Filter weights

Pixel screen coordinates

Mean sample color value

Scene features
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Overview on Convolutional Neural Networks (CNNs)
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Image Courtesy: Mathworks (online tutorial)
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Multi-layer perceptron CNNs

All nodes are fully connected in all layers Weights are shared across layers

In theory, should be able to achieve good quality 

results in small number of layers.

Requires significant number of layers to capture 

all the features (e.g. Deep CNNs)

Number of weights to be learnt are very high Relatively small number of weights required

Multi-layer Perceptron vs. CNNs
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Kernel-Predicting Networks for Denoising  
Monte-Carlo Renderings
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Recurrent AutoEncoder for Interactive Reconstruction
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Recurrent Neural Networks  
vs. Simple Feed-Forward NN
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Source link

https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5
https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5
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Spatial Loss to emphasize more 

the dark regions

Temporal loss

Final Loss is a weighted averaged of above losses

High frequency error norm loss

for stable edges
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#Learnable 
Parameters?

Pixel-space  
Kernel Predicting  

Denoising
How to compute "learnable" parameters?
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#Learnable 
Parameters?

Pixel-space  
Kernel Predicting  

Denoising

Sample-based  
MC Denoising

How to compute "learnable" parameters?
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Image Source: Google

How to compute "learnable" parameters?
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Image Source: Google

How to compute "learnable" parameters?
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Feed-Forward Neural Network

Image Source: towards-data-science

https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889
https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889
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Feed-Forward Neural Network

Image Source: towards-data-science

(3 x 5) + (5 x 2) + (5 + 2) = 17 parameters
weights biases

https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889
https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889
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Feed-Forward Neural Network

Image Source: towards-data-science

https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889
https://towardsdatascience.com/counting-no-of-parameters-in-deep-learning-models-by-hand-8f1716241889
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#Learnable 
Parameters?

Pixel-space  
Kernel Predicting  

Denoising

Sample-based  
MC Denoising
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Sample-based Denoising Network 
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Michael Gharbi, Tzu-Mao Li, Miika Aittala, Jakko Lehtinen, Fredo Durand

SIGGRAPH 2019
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Multimodal distribution of sample features
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sphere

Inset 16spp Reference

Depth histogram

Sen [2012] Proposed
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Reconstruction: Kernel Gather
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Kernel
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Kernel
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Reconstruction: Kernel Gather
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Kernel gather

How should nearby samples influence me?

2D example
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Reconstruction: Kernel Gather
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Kernel gather

How should nearby samples influence me?

2D example
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Reconstruction: Kernel Splatting
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Reconstruction: Kernel Splatting
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Kernel gather Kernel Splatting

Continue splatting kernels for the 

rest of the samples....

How do I contribute to nearby pixels,  
given all the samples around me?

2D example

How should nearby samples influence me?
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Network: Kernel Gather vs Splatting
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Permutation Invariance

39

A model that produces the same output regardless of the order of elements in the input vector
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Permutation Invariance: Example
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Permutation Invariance: Example
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Permute pixels

MNIST Dataset

Permuting pixels makes it difficult for humans to understand the images.

However, permutation invariant networks like MLP can detect digits irrespective of the order of pixels
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Permutation Invariance: Example
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A graph labeling function F is graph permutation invariant (GPI) if permuting the names 
of nodes maintains the output. Herzig et al.[2018] 
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Permutation Invariance
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•In MLPs, since each component is connected to each other, the order does not 
matter 

•In structured convolutions, the order matters and therefore, it is not permutation 
invariant. 
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Proposed Network Architecture
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Dataset and Training Procedure
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Procedurely generated dataset: 300,000 renderings with 128x128 resolution

Reference was generated for 4096 samples 

Also generated input buffer (4, 32 spp), but this time also maintained auxiliary features
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Network Architecture Comparisons
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(Deep) Convolutional Neural Networks
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⌦Convolution

N number of point samples

Loss function

x1

Unstructured data

⌦ ⌦

...

Back-propagate
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N number of point samples

⌦Convolution

Unstructured data
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⌦Convolution

Unstructured data

N number of point samples

⌦ ⌦

... Keep training the network!



Based on Convolutional Neural Networks
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⌦Convolution

Unstructured data

N number of point samples

Which Loss function can we use?⌦ ⌦

... Keep training the network!
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Spectral Loss

Lspectral = ||hPi(⌫)i � hP(⌫)i||2

at        training iterationi-th

Radially averaged power
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Training Process
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(de Goes et al.[2012])

Kernels for Step  
(de Heck et al.[2013])
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Training Process

Kernels for BNOT  
(de Goes et al.[2012])

Kernels for Step  
(de Heck et al.[2013])
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Architecture: Full pipeline
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Architecture: Full pipeline
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Results: Spectral Target Spectra
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67

Results: Spectral Target Spectra
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Results: Spectral Target Spectra



Spatial Loss Function
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PCF Loss at        training iterationi-th
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Spatial Target PCFs
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3D Point Samples (Different Projection Targets)
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Point set: Projections are Preserved
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Novel Sampling Patterns

Leimkuhler et al. [SIGGRAPH Asia 2019]
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Novel Sampling Patterns

Var(IN ) = ⇥
X

⌦

Var(IN ) = ⇥
X

⌦
Sampling 

Power spectrum

Integrand 
Power spectrum

Leimkuhler et al. [SIGGRAPH Asia 2019]
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Novel Sampling Patterns

Var(IN ) = ⇥
X

⌦

Leimkuhler et al. [SIGGRAPH Asia 2019]
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Novel Sampling Patterns
using radially averaged loss
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power spectrum decay

Sampler's power radial profile
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Object Placement
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Normalizing Flows
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Normalizing Flows
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Normalizing Flows

Technique used in Machine learning to build complex 
probability distributions by transforming simple ones  

Used in the context of generative modeling 

Generative modeling: learning without any target 
(unsupervised)

90
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Complex Probability distributions 
from simple ones
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Normalizing Flows:  
Basic mathematical framework
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z p✓(z)

x = f✓(z) = fk � � � f2 � f1(z)

⇠

each fi is invertible (bijective)

Given a continuous variable with a distribution

New distribution obtained



Realistic Image Synthesis SS2020

Distributions

95

X



Realistic Image Synthesis SS2020

96

X
Z f

f�1

Distributions



Realistic Image Synthesis SS2020

96

X
Z f

f�1

Distributions



Realistic Image Synthesis SS2020

96

X
Z f

f�1

Distributions

p(x) =?



Realistic Image Synthesis SS2020

97

Distributions

p(x) =?

z p✓(z)

x = f✓(z) = fk � � � f2 � f1(z)

⇠

each fi is invertible (bijective)

Given a continuous variable with a distribution

p(x) = p(f�1(x))



Realistic Image Synthesis SS2020

97

Distributions

p(x) =?

z p✓(z)

x = f✓(z) = fk � � � f2 � f1(z)

⇠

each fi is invertible (bijective)

Given a continuous variable with a distribution

p(x) = p(f�1(x))
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f : Z ! X, f is invertible

p(z) defined over z 2 Z

p(x) = p(f�1(x))

����det
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@x

◆����

Change of variable formula says that:

Change of Variables
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Change of Variables

99

f : Z ! X, f is invertible

p(z) defined over z 2 Z

p(x) = p(f�1(x))

����det
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@f�1(x)

@x

◆����

p(x) = p(z)

����det
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Jacobian Matrix

100

f : Rn ! Rm
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Jacobian Matrix

101

f : R2 ! R2

Jacobian determinant gives the ratio of the area of the approximating parallelogram to that of the original square.
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f : Z ! X, f is invertible

p(z) defined over z 2 Z

p(x) = p(f�1(x))

����det
✓
@f�1(x)

@x

◆����

p(x) = p(z)

����det
✓
@z

@x

◆����

Jacobian Matrix
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XZ

f : Z ! X, f is invertible

p(z) defined over z 2 Z
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XZ

det

✓
@x

@z

◆
= 4

f : Z ! X, f is invertible

p(z) defined over z 2 Z
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XZ
p(x) = p(z) =

�����
1

det
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@x
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det
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@x

@z

◆
= 4

f : Z ! X, f is invertible

p(z) defined over z 2 Z
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f : Z ! X, f is invertible

p(z) defined over z 2 Z

log p(x) = log p(z) + log

����det
✓
@f�1(x)

@x

◆����

Maximize Log-likelihood
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f : Z ! X, f is invertible

p(z) defined over z 2 Z

log p(x) = log p(z) + log

����det
✓
@f�1(x)

@x

◆����

Maximize Log-likelihood

log p(x) = log p(z) +
KX

i=1

log

����det
✓
@f�1(x)

@x

◆����
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f : Z ! X, f is invertible

p(z) defined over z 2 Z

Jacobian: Lower Triangular Matrix

J
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f : Z ! X, f is invertible
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"Path tracing" algorithm2 spp512 paths per pixel
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Multiple Importance Sampling 
[Veach and Guibas 1995]
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Goal: Sample proportional to incident radiance.
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z x

F ≈
1
N

N

∑
i=1

f(Xi)
p(Xi)

Need p in closed form!
Addressed by "normalizing flows"Monte Carlo estimator

Random number Sample

[Dinh et al. 2016] [Dinh et al. 2016]
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A chain of simple bijections can model complicated functions
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Parametric bijective functions
(normalizing flow)

m1 ∘ m2 ∘ … ∘ mLz x
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Training with data from the correct distribution is simple

Optimize
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Training from Monte Carlo samples requires careful weighting

Optimize

     distributed
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     distributedp(x; θ)

Training from Monte Carlo samples requires careful weighting
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Conclusion

• Neural networks can drive unbiased MC integration 

• Complicated integrands (e.g. product path guiding) 

• Computational cost of neural path guiding is high, but quality is 
state of the art
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