Denoising Algorithms: Path to Neural Networks I

TRAINING

Philipp Slusallek Karol Myszkowski

Gurprit Singh

Previous Lecture Overview

Image-space Adaptive Sampling

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Image-space Adaptive Sampling

Hachisuka et al. [2008]

Depth of field

Depth of field

Depth of field

1 scanline

Slide from Jakko Lehtinen

Lens u

Slide from Jakko Lehtinen

 \bigcirc

 \bigcirc

The trajectories of samples originating from a single **apparent surface** never intersect.

The trajectories of samples originating from a single **apparent surface** never intersect.

Slide from Jakko Lehtinen

The trajectories of samples originating from a single **apparent surface** never intersect.

The trajectories of samples originating from a single **apparent surface** never intersect.

Introduction Denoising using Data

Path to Machine Learning

Introduction **Denoising using Data**

Path to Machine Learning

MLP based Denoising

Introduction **Denoising using Data**

Path to Machine Learning

MLP based Denoising

CNN based Denosing (Next lecture)

Filtering Monte Carlo Noise From **Random Parameters**

Realistic Image Synthesis SS2020

Sen and Darabi [2012]

input Monte Carlo (8 samples/pixel)

after RPF (8 samples/pixel)

High-dimensional Monte Carlo Integration

(a) Input MC (8 spp)

(b) Dependency on (u, v) (c) Our approach (RPF)

Parameters in Monte Carlo estimator

Random parameters: $\mathbf{r} = \{r_1, r_2, ..., r_n\}$

Color: $\mathbf{c}_i \leftarrow f(\mathbf{p}_{i,1},\mathbf{p}_{i,2};\mathbf{r}_{i,1},\mathbf{r}_{i,2},\ldots,\mathbf{r}_{i,n})$

screen position

random parameters

Realistic Image Synthesis SS2020

Random parameter for each pixel :

$$\mathbf{x}_i \Leftarrow f(\mathbf{p}_{i,1},\mathbf{p})$$

$$\mathbf{x}_{i} = \{\underbrace{\mathbf{p}_{i,1}, \mathbf{p}_{i,2}}_{\text{screen position}}; \underbrace{\mathbf{r}_{i,1}, \dots, \mathbf{r}_{i,2}}_{\text{random parameters}}; \underbrace{\mathbf{p}_{i,1}, \dots, \mathbf{r}_{i,2}}_{\text{random parameters}}; \underbrace{\mathbf{p}_{i,1}, \dots, \mathbf{r}_{i,2}}_{\text{parameters}}; \underbrace{\mathbf{p}_{i,2}, \dots, \mathbf{p}_{i,2}}_{\text{parameters}}; \underbrace{\mathbf{p}_{i,2}, \dots, \mathbf{p}_{i,2}, \dots, \mathbf{p}_{i,2}, \dots, \mathbf{p}_{i,2}}_{\text{parameters}}; \underbrace{\mathbf{p}_{i,2}, \dots, \mathbf{p}_{i,2}, \dots, \mathbf{p}_{i,2},$$

 $\mathbf{p}_{i,2}; \mathbf{r}_{i,1}, \mathbf{r}_{i,2}, \dots, \mathbf{r}_{i,n}$

Realistic Image Synthesis SS2020

Random parameter for each pixel :

$$\mathbf{x}_i \Leftarrow f(\mathbf{p}_{i,1},\mathbf{p})$$

15

 $\mathbf{p}_{i,2}; \mathbf{r}_{i,1}, \mathbf{r}_{i,2}, \dots, \mathbf{r}_{i,n}$

Random parameter for each pixel :

$$\mathbf{x}_i \Leftarrow f(\mathbf{p}_{i,1},\mathbf{p})$$

15

 $\mathbf{p}_{i,2}; \mathbf{r}_{i,1}, \mathbf{r}_{i,2}, \dots, \mathbf{r}_{i,n}$

Random parameter for each pixel :

$$\mathbf{x}_i \Leftarrow f(\mathbf{p}_{i,1},\mathbf{p})$$

15

 $\mathbf{p}_{i,2}; \mathbf{r}_{i,1}, \mathbf{r}_{i,2}, \dots, \mathbf{r}_{i,n}$

Random parameter for each pixel :

$$\mathbf{x}_i \Leftarrow f(\mathbf{p}_{i,1},\mathbf{p})$$

 $\mathbf{p}_{i,2}; \mathbf{r}_{i,1}, \mathbf{r}_{i,2}, \dots, \mathbf{r}_{i,n}$

Realistic Image Synthesis SS2020

Gaussian Filtering

 $\sigma = 8$ $\sigma = 4$

$$GC[I]_{\mathbf{p}} = \sum_{\mathbf{q}\in\mathcal{S}} G_{\sigma}(\|\mathbf{p}-\mathbf{q}\|) I_{\mathbf{q}}, \quad G_{\sigma}(x) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

 $\sigma = 16$

 $\sigma = 32$

٦в

Realistic Image Synthesis SS2020

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

 $W_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$

Bilateral filter weights at the central pixel

Realistic Image Synthesis SS2020

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) \frac{G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)}{G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)} I_{\mathbf{q}}$$

 $W_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$

Bilateral filter weights at the central pixel

Realistic Image Synthesis SS2020

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) \frac{G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)}{|I_{\mathbf{q}}|} I_{\mathbf{q}}$$

 $W_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$

Realistic Image Synthesis SS2020

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

 $W_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$

Realistic Image Synthesis SS2020

$$W_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$$

Realistic Image Synthesis SS2020

$$W_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$$

Realistic Image Synthesis SS2020

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

$$W_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$$

$$I_{\mathbf{p}}$$

al Filtering

Realistic Image Synthesis SS2020

Bilateral vs Gaussian Filtering

$\sigma_s \backslash \sigma_r$ 0.05

0.2

16

4

8

Realistic Image Synthesis SS2020

0.8

GC

18

Bilateral Filtering of Features $w_{ij} = \exp\left[-\frac{1}{2\sigma_{\mathbf{p}}^2} \sum_{1 < k < 2} (\bar{\mathbf{p}}_{i,k} - \bar{\mathbf{p}}_{j,k})^2\right] \times$ $\exp\left[-\frac{1}{2\sigma_{\mathbf{c}}^2}\sum_{1\leq k\leq 2}\alpha_k(\mathbf{\bar{c}}_{i,k}-\mathbf{\bar{c}}_{j,k})^2\right]\times$ $\exp\left[-\frac{1}{2\sigma_{\mathbf{f}}^2}\sum_{1 < k < m} \beta_k (\bar{\mathbf{f}}_{i,k} - \bar{\mathbf{f}}_{j,k})^2\right],$

Realistic Image Synthesis SS2020

Dependency on Random Parameters

Input Monte Carlo (8 spp)

Dependency of color on random parameters $(D_{\mathbf{c}}^{\mathbf{r}})$

Dependency of color on screen position $(D_{\mathbf{c}}^{\mathbf{p}})$

Fractional dependency on random parameters $(W_{\mathbf{c}}^{\mathbf{r}})$

Reference MC (512 spp)

Realistic Image Synthesis SS2020

Bilateral Weights

Realistic Image Synthesis SS2020

Pixels, Random Params, Features

(a) Screen position (b) Random parameters

(c) World space coords.

22

Pixels, Random Params, Features

(d) Surface normals

Realistic Image Synthesis SS2020

(e) Texture value

(f) Sample color

Pixels, Random Params, Features

(a) Screen position

(b) Random parameters

(c) World space coords.

(d) Surface normals

(e) Texture value

(f) Sample color

The algorithm computes the statistical dependency of (c-f) on the random parameters in (b)

Random Parameter Filtering

(a) Reference (b) MC Input

Realistic Image Synthesis SS2020

(d) no clustering (e) no DoF params

25

(c) RPF

Random Parameter Filtering

(a) $W^{\mathbf{r},1}_{\mathbf{c},k}$ and $W^{\mathbf{r},2}_{\mathbf{c},k}$

Realistic Image Synthesis SS2020

(b)

(c) Our output (RPF)

Mutual information between two random variables:

$$\mu(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

where, these probabilities are computed over the neighborhood of samples around a given pixel

Statistical Dependency

Realistic Image Synthesis SS2020

Functional dependency of the k-th scene parameter:

$$D_{\mathbf{f},k}^{\mathbf{r}} = \sum_{1 \le l \le n} D_{\mathbf{f},k}^{\mathbf{r},l} = \sum_{1 \le l \le n} \mu(\overline{\mathbf{f}}_{\mathcal{N},k}; \overline{\mathbf{r}}_{\mathcal{N},l})$$

$$\begin{split} D_{\mathbf{f},k}^{\mathbf{p}} &= \sum_{1 \leq l \leq 2} D_{\mathbf{f},k}^{\mathbf{p},l} = \sum_{1 \leq l \leq 2} \mu(\bar{\mathbf{f}}_{\mathcal{N},k}; \bar{\mathbf{p}}_{\mathcal{N},l}), \\ D_{\mathbf{c},k}^{\mathbf{r}} &= \sum_{1 \leq l \leq n} D_{\mathbf{c},k}^{\mathbf{r},l} = \sum_{1 \leq l \leq n} \mu(\bar{\mathbf{c}}_{\mathcal{N},k}; \bar{\mathbf{r}}_{\mathcal{N},l}), \\ D_{\mathbf{c},k}^{\mathbf{p}} &= \sum_{1 \leq l \leq 2} D_{\mathbf{c},k}^{\mathbf{p},l} = \sum_{1 \leq l \leq 2} \mu(\bar{\mathbf{c}}_{\mathcal{N},k}; \bar{\mathbf{p}}_{\mathcal{N},l}). \end{split}$$

Statistical Dependency

Realistic Image Synthesis SS2020

$W_{\mathbf{c}}^{\mathbf{f},k} = \frac{D_{\mathbf{c}}^{\mathbf{f},k}}{D_{\mathbf{c}}^{\mathbf{r}} + D_{\mathbf{c}}^{\mathbf{p}} + D_{\mathbf{c}}^{\mathbf{f}}}$

Statistical Dependency $D_{\mathbf{f},k}^{\mathbf{r}} = \sum D_{\mathbf{f},k}^{\mathbf{r},l} = \sum \mu(\bar{\mathbf{f}}_{\mathcal{N},k}; \bar{\mathbf{r}}_{\mathcal{N},l})$ $1 \leq l \leq n$ $1 \leq l \leq n$

 $1{\leq}k{\leq}3$

 $D_{\mathbf{c}}^{\mathbf{r}} = \sum D_{\mathbf{c},k}^{\mathbf{r}}, \quad D_{\mathbf{c}}^{\mathbf{p}} = \sum D_{\mathbf{c},k}^{\mathbf{p}}, \quad D_{\mathbf{c}}^{\mathbf{f}} = \sum D_{\mathbf{c},k}^{\mathbf{f}},$ $1{\leq}k{\leq}3$ $1 \le k \le 3$

Realistic Image Synthesis SS2020

Weighted Average Bilateral Filtering

 $\mathbf{c}_{i,k}' = rac{\sum_{j \in \mathcal{N}} w_{ij} \mathbf{c}_{j,k}}{\sum_{j \in \mathcal{N}} w_{ij}}$

(a) MC Input (8 spp) (b) Our approach (RPF) (c) $\alpha_k = 0, \beta_k = 0$

Results

Results

) (c) $\alpha_k = 0, \beta_k = 0$ (d) $\alpha_k = 1, \beta_k = 0$

(e) $\alpha_k = 0, \beta_k = 1$ (f) $\alpha_k = 1, \beta_k = 1$

Realistic Image Synthesis SS2020

Results

Multi-Layer Perceptrons

History of Neural Networks

- model for neural networks
- accelerated the training of multi-layer networks.

In 1943, McCulloch and Pitts created a computational

• In 1975, Werbos's back propagation algorithm generally

• In 1980s, Recurrent Neural Networks were developed

Classifiers

Realistic Image Synthesis SS2020

Complex classifier

Complex Classifiers

What features can produce this decision rule?

Realistic Image Synthesis SS2020

Complex classifier

1

1

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Multi-layer Perceptron

 x_1

1

Multi-layer Perceptron f \sum $\sum \rightarrow f$ f \sum

 x_1

1

Realistic Image Synthesis SS2020

Multi-layer Perceptron f \sum $\sum \rightarrow f$ f \sum

 x_1

1

Realistic Image Synthesis SS2020

44

Multi-layer Perceptron ff

44

Realistic Image Synthesis SS2020

Multi-layer Perceptron w_{11} w_{10} w_{21} f w_{20} w_{31} w_{30}

Realistic Image Synthesis SS2020

44

Multi-layer Perceptron w_{11} w_{10} w_{21} w_{20} w_{31} w_{30} $x_1 w_{11}$ w_{10} $x_1 w_{21} + w_{20}$

45

Realistic Image Synthesis SS2020

Hidden layers

Output layers

Realistic Image Synthesis SS2020

Hidden layers

Output layers

48

Realistic Image Synthesis SS2020

Matrix of first layer weights

w_{11}	w_{10}
w_{21}	w_{20}
w_{31}	w_{30}

Output layers

"Features" are outputs of perceptrons

Matrix of second layer weights

 w_1 w_2 w_3

Matrix of first layer weights

w_{11}	w_{10}
w_{21}	w_{20}
w_{31}	w_{30}

Output layers

"Features" are outputs of perceptrons

Matrix of second layer weights

Matrix of first layer weights

w_{11}	w_{10}
w_{21}	w_{20}
w_{31}	w_{30}

Output layers

"Features" are outputs of perceptrons

Matrix of second layer weights

Input features

Realistic Image Synthesis SS2020

Perceptron: Step function with linear decision boundary

These outputs are now input features to the next layer

These outputs are now input features to the next layer

"Features" are now decision boundaries (partitions)

- These outputs are now input features to the next layer
- "Features" are now decision boundaries (partitions)
- All linear combination of those partitions give complex partitions

Layer 2

These complex outputs become the features for the new layer

52

Deep Neural Networks

53

Realistic Image Synthesis SS2020

Computational Graph representation of Neural Networks

Realistic Image Synthesis SS2020

Fully connected layers

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Fully connected layers

Neural Networks

Realistic Image Synthesis SS2020

N represents number of pixels in an image

Neural Networks

Realistic Image Synthesis SS2020

59

UNIVERSITÄT DES SAARLANDES \odot

Realistic Image Synthesis SS2020

Neural Networks

Realistic Image Synthesis SS2020

Two-layer model

Fully connected layers

Realistic Image Synthesis SS2020

Two-layer model

Fully connected layers

Reference

Realistic Image Synthesis SS2020

Two-layer model

Fully connected layers

*

Realistic Image Synthesis SS2020

Two-layer model

Fully connected layers

*

Two-layer model

What can be a loss function ?

Realistic Image Synthesis SS2020

Reference

Two-layer model

What can be a loss function ?

Realistic Image Synthesis SS2020

Reference

67

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Gradient Descent Algorithm for back propagation

68

Gradient Descent Algorithm for back propagation

68

Realistic Image Synthesis SS2020

Gradient Descent Algorithm for back propagation

Realistic Image Synthesis SS2020

Gradient Descent Algorithm for back propagation

Realistic Image Synthesis SS2020

Back Propagation Slides courtesy: <u>Stanford Online Course</u>

69

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Back Propagation Slides courtesy: <u>Stanford Online Course</u>

Backpropagation: a simple example f(x, y, z) = (x + y)ze.g. x = -2, y = 5, z = -4

Back Propagation Slides courtesy: <u>Stanford Online Course</u>

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

q = x + y	$rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$
f = qz	$rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$
Want: $\frac{\partial f}{\partial x}$	$, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

77

Machine Learning for Filtering Monte Carlo Noise

Kalantari et al. [SIGGRAPH 2015]

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

 $\hat{\mathbf{c}}_{i} = \frac{\sum_{j \in \mathcal{N}(i)} d_{i,j} \bar{\mathbf{c}}_{j}}{\sum_{j \in \mathcal{N}(i)} d_{i,j}} \quad , \quad \hat{\mathbf{c}} = \{\hat{c}_{r}, \hat{c}_{g}, \hat{c}_{b}\}$

Realistic Image Synthesis SS2020

 $\hat{\mathbf{c}}_{i} = \frac{\sum_{j \in \mathcal{N}(i)} d_{i,j} \bar{\mathbf{c}}_{j}}{\sum_{j \in \mathcal{N}(i)} d_{i,j}} \quad , \quad \hat{\mathbf{c}} = \{\hat{c}_{r}, \hat{c}_{g}, \hat{c}_{b}\}$

Realistic Image Synthesis SS2020

 $\hat{\mathbf{c}}_{i} = \frac{\sum_{j \in \mathcal{N}(i)} d_{i,j} \bar{\mathbf{c}}_{j}}{\sum_{j \in \mathcal{N}(i)} d_{i,j}} \quad , \quad \hat{\mathbf{c}} = \{\hat{c}_{r}, \hat{c}_{g}, \hat{c}_{b}\}$ Pixel neighborhood

Realistic Image Synthesis SS2020

 $\hat{\mathbf{c}}_{i} = \frac{\sum_{j \in \mathcal{N}(i)} d_{i,j} \bar{\mathbf{c}}_{j}}{\sum_{j \in \mathcal{N}(i)} d_{i,j}}, \quad \hat{\mathbf{c}} = \{\hat{c}_{r}, \hat{c}_{g}, \hat{c}_{b}\}$ **Pixel neighborhood** 79

Realistic Image Synthesis SS2020

Filter weights $=\frac{\sum_{j\in\mathcal{N}(i)}d_{i,j}\bar{\mathbf{c}}_j}{\sum_{j\in\mathcal{N}(i)}d_{i,j}}$ $\hat{\mathbf{c}} = \{\hat{c}_r, \hat{c}_g, \hat{c}_b\}$ **Pixel neighborhood** 79

Filter weights $\hat{\mathbf{c}}_{i} = \frac{\sum_{j \in \mathcal{N}(i)} d_{i,j} \bar{\mathbf{c}}_{j}}{\sum_{j \in \mathcal{N}(i)} d_{i,j}}$ Pixel neighborhood

Realistic Image Synthesis SS2020

Filter weights

Filter weights $\hat{\mathbf{c}}_{i} = \frac{\sum_{j \in \mathcal{N}(i)} d_{i,j} \bar{\mathbf{c}}_{j}}{\sum_{j \in \mathcal{N}(i)} d_{i,j}}$ Pixel neighborhood

Realistic Image Synthesis SS2020

Filter weights

For cross Bilateral filters:

Filter weights $\hat{\mathbf{c}}_{i} = \frac{\sum_{j \in \mathcal{N}(i)} d_{i,j} \bar{\mathbf{c}}_{j}}{\sum_{j \in \mathcal{N}(i)} d_{i,j}}$ Pixel neighborhood $d_{i,j}$ =

Filter weights

For cross Bilateral filters:

$$= \exp\left[-\frac{\|\bar{\mathbf{p}}_{i} - \bar{\mathbf{p}}_{j}\|^{2}}{2\alpha_{i}^{2}}\right] \times \exp\left[-\frac{D(\bar{\mathbf{c}}_{i}, \bar{\mathbf{c}}_{j})}{2\beta_{i}^{2}}\right] \\ \times \prod_{k=1}^{K} \exp\left[-\frac{D_{k}(\bar{\mathbf{f}}_{i,k}, \bar{\mathbf{f}}_{j,k})}{2\gamma_{k,i}^{2}}\right],$$

Realistic Image Synthesis SS2020

Filter weights $\hat{\mathbf{c}}_{i} = \frac{\sum_{j \in \mathcal{N}(i)} d_{i,j} \bar{\mathbf{c}}_{j}}{\sum_{j \in \mathcal{N}(i)} d_{i,j}}$ Pixel neighborhood $d_{i,j}$ =

Filter weights

For cross Bilateral filters:

$$= \exp\left[-\frac{\|\bar{\mathbf{p}}_{i} - \bar{\mathbf{p}}_{j}\|^{2}}{2\alpha_{i}^{2}}\right] \times \exp\left[-\frac{D(\bar{\mathbf{c}}_{i}, \bar{\mathbf{c}}_{j})}{2\beta_{i}^{2}}\right] \\ \times \prod_{k=1}^{K} \exp\left[-\frac{D_{k}(\bar{\mathbf{f}}_{i,k}, \bar{\mathbf{f}}_{j,k})}{2\gamma_{k,i}^{2}}\right],$$

Filter weights $\hat{\mathbf{c}}_{i} = \frac{\sum_{j \in \mathcal{N}(i)} d_{i,j} \bar{\mathbf{c}}_{j}}{\sum_{j \in \mathcal{N}(i)} d_{i,j}}$ Pixel neighborhood

Filter weights

For cross Bilateral filters:

Sen and Darabi [2012]

For cross Bilateral filters:

$$d_{i,j} = \exp\left[-\frac{\|ar{\mathbf{p}}_i - ar{\mathbf{p}}_j\|^2}{2lpha_i^2}
ight] imes \exp\left[-rac{M_i \|ar{\mathbf{p}}_i - ar{\mathbf{p}}_j\|^2}{2lpha_i^2}
ight] imes \exp\left[-rac{D_k(ar{\mathbf{f}}_{i,k}, ar{\mathbf{f}}_{j,k})}{2\gamma_{k,i}^2}
ight]$$

Filter weights

 $\left[-\frac{D(\bar{\mathbf{c}}_i, \bar{\mathbf{c}}_j)}{2\beta_i^2}\right]$

,

Sen and Darabi [2012]

82

For cross Bilateral filters:

$$d_{i,j} = \exp\left[-\frac{\|\bar{\mathbf{p}}_i - \bar{\mathbf{p}}_j\|^2}{2\alpha_i^2}\right] \times \exp\left[-\frac{K}{2\gamma_{k,i}^2}\right] \times \exp\left[-\frac{D_k(\bar{\mathbf{f}}_{i,k}, \bar{\mathbf{f}}_{j,k})}{2\gamma_{k,i}^2}\right]$$

(a) Screen position

(b) Random parameters

(c) World space coords.

(d) Surface normals

Filter weights

 $-\frac{D(\bar{\mathbf{c}}_i, \bar{\mathbf{c}}_j)}{2\beta^2}$

,

(e) Texture value 83

(f) Sample color

For cross Bilateral filters:

(a) Screen position

(b) Random parameters

(c) World space coords.

(d) Surface normals

Realistic Image Synthesis SS2020

Filter weights

(e) Texture value 83

(f) Sample color

(a) Screen position

(b) Random parameters

(c) World space coords.

(d) Surface normals

Realistic Image Synthesis SS2020

(e) Texture value 83

(f) Sample color

Neural Network Approach

- Feed-forward Neural network
- Best part: We can learn weights in a training phase
- Back propagation: Important for training weights
- For Back propagation, the Loss function should be differentiable and
- all the intermediate functionals should be differentiable.

One Hidden-layer model

Relative Mean Square Error:

$$E_{i} = \frac{n}{2} \sum_{q \in \{r,g,b\}} \frac{(\hat{c}_{i,q} - c_{i,q})^{2}}{c_{i,q}^{2} + \varepsilon}$$

Realistic Image Synthesis SS2020

One Hidden-layer model

Relative Mean Square Error:

$$\frac{\partial E_i}{\partial w_{t,s}^l} = \sum_{m=1}^M \left[\sum_{q \in \{r,g,b\}} \left[\frac{\partial E_{i,q}}{\partial \hat{c}_{i,q}} \frac{\partial \hat{c}_{i,q}}{\partial \theta_{m,i}} \right] \frac{\partial \theta_{m,q}}{\partial w_{t,q}^l} \right]$$

$$\frac{\partial E_i}{\partial \hat{c}_{i,q}} = ???$$

Realistic Image Synthesis SS2020

One Hidden-layer model

Relative Mean Square Error:

Realistic Image Synthesis SS2020

$$\frac{\partial E_i}{\partial w_{t,s}^l} = \sum_{m=1}^M \left[\sum_{q \in \{r,g,b\}} \left[\frac{\partial E_{i,q}}{\partial \hat{c}_{i,q}} \frac{\partial \hat{c}_{i,q}}{\partial \theta_{m,i}} \right] \frac{\partial \theta_{m,q}}{\partial w_{t,q}^l} \right]$$

$$\frac{\partial E_i}{\partial \hat{c}_{i,q}} = n \frac{\hat{c}_{i,q} - c_{i,q}}{c_{i,q}^2 + \epsilon}$$

Results

Realistic Image Synthesis SS2020

Our result with a cross-bilateral filter (4 spp)

Our result with a non-local means filter (4 spp)

Introduction to CNNs

Introduction to CNNs

Kernel Predicting Denoising

Introduction to CNNs

Kernel Predicting Denoising

Sample-based MC Denoising

No zero padding

Convolution

Convolution

No zero padding

No zero padding

Stride-1 Convolution

No zero padding

Realistic Image Synthesis SS2020

Stride-1 Convolution

94

No zero padding

Stride-1 Convolution

-2	4	3	-2

95

No zero padding

Stride-1 Convolution

95

Realistic Image Synthesis SS2020

Stride-1 Convolution

-2	4	3	-2
-1	-2	3	-3

0

96

No zero padding

Realistic Image Synthesis SS2020

Stride-1 Convolution

0

Stride-2 Convolution

97

Stride-2 Convolution

Zero Padding and Strides

1D image to illustrate the strides and zero padding

98

Zero Padding and Strides

1D image to illustrate the strides and zero padding

98

1D image to illustrate the strides and zero padding

Strides

Max Pooling / Down Sampling

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

6	8
3	4

100

Overview on Convolutional Neural Networks

Image Courtesy: Mathworks (online tutorial)

Multi-layer Perceptron vs. CNNs

Realistic Image Synthesis SS2020

Multi-layer Perceptron vs. CNNs

Multi-layer perceptron

All nodes are fully connected in all layers

In theory, should be able to achieve good quality results in small number of layers.

Number of weights to be learnt are very high

CNNs

Weights are shared across layers

Requires significant number of layers to capture all the features (e.g. Deep CNNs)

Relatively small number of weights required

Introduction to CNNs

Kernel-Predicting Denoising

Kernel-Predicting Networks for Denoising Monte-Carlo Renderings

Realistic Image Synthesis SS2020

Bako et al. [2017]

Kernel was pre-selected to be joint bilateral filter

106

Kernel was pre-selected to be joint bilateral filter

- Unable to explicitly capture all details

106

- Kernel was pre-selected to be joint bilateral filter
 - Unable to explicitly capture all details
 - lacked flexibility to handle wide range of MC noise in production scenes

- Kernel was pre-selected to be joint bilateral filter
 - Unable to explicitly capture all details
 - lacked flexibility to handle wide range of MC noise in production scenes

Fixed

- Kernel was pre-selected to be joint bilateral filter
 - Unable to explicitly capture all details
 - lacked flexibility to handle wide range of MC noise in production scenes

Fixed

- can cause unstable weights causing bright ringing and color artifacts

- Kernel was pre-selected to be joint bilateral filter
 - Unable to explicitly capture all details
 - lacked flexibility to handle wide range of MC noise in production scenes

Fixed

- can cause unstable weights causing bright ringing and color artifacts

Too many parameters to optimize

Requirements

- The function must be flexible to capture complex relationship between input data and reference colors over wide range of scenarios.
- Choice of loss function is crucial. Should capture perceptual aspects of the scene.

To avoid overfitting, large dataset required

Denoising a raw, noisy color buffer causes overblurring

Using a Vanilla CNN

108

Denoising a raw, noisy color buffer causes overblurring

- difficulty in distinguishing scene details and MC noise

Using a Vanilla CNN

108

Denoising a raw, noisy color buffer causes overblurring - difficulty in distinguishing scene details and MC noise

High dynamic range

Realistic Image Synthesis SS2020

Using a Vanilla CNN

Denoising a raw, noisy color buffer causes overblurring

- difficulty in distinguishing scene details and MC noise

High dynamic range

Using a Vanilla CNN

- can cause unstable weights causing bright ringing and color artifacts

Realistic Image Synthesis SS2020

Vanilla CNN

Ours

Input (32 spp)

Realistic Image Synthesis SS2020

Vanilla CNN

Ours

Ref. (1K spp)

θ

Denoising Model $\widehat{\boldsymbol{\theta}}_p = \operatorname*{argmin}_{\boldsymbol{\rho}} \ell(\overline{\mathbf{c}}_p, g(\mathbf{X}_p; \boldsymbol{\theta}))$ Denoised function with parameters Reference image $\widehat{\mathbf{c}}_p = g(\mathbf{X}_p; \widehat{\boldsymbol{\theta}}_p)$ $\ell(\overline{\mathbf{c}}, \widehat{\mathbf{c}})$

Denoised value

Realistic Image Synthesis SS2020

Loss function

Computational Model

$$\widehat{\boldsymbol{\theta}}_{p} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{q \in \mathcal{N}(p)} \left(\mathbf{c}_{q} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x}_{q}) \right)^{2} \boldsymbol{\omega}(\mathbf{x}_{p}, \mathbf{x}_{q})$$
Neighborhood

$$\widehat{\mathbf{c}}_p = g(\mathbf{X}_p; \widehat{\boldsymbol{\theta}}_p)$$

Denoised value

$$\widehat{\mathbf{c}}_p = \widehat{\boldsymbol{\theta}}_p^\top \phi(\mathbf{x}_p)$$

Final denoised value

$$\phi: \mathbb{R}^{3+\bar{D}} \to \mathbb{R}^{\bar{M}}$$

 $\omega(\mathbf{x}_p, \mathbf{x}_q)$ Kernel weights

Realistic Image Synthesis SS2020

Direct Prediction Network

Direct prediction convolution network: outputs denoised image

$\widehat{\mathbf{c}}_p = g_{\text{direct}}$

$$\mathbf{z}_{t}(\mathbf{X}_{p};\boldsymbol{\theta}) = \mathbf{z}_{p}^{L}$$

Direct Prediction Network

Direct prediction convolution network: outputs denoised image

$$\widehat{\mathbf{c}}_p = g_{\text{direct}}(\mathbf{X}_p; \boldsymbol{\theta}) = \mathbf{z}_p^L$$

Issues:

The constrained nature and complexity of the problem makes optimization difficult.

The magnitude and variance of stochastic gradients computed during training can be large, which slows convergence of training loss.

Kernel Prediction Network

Kernel prediction convolution network: outputs learned kernel weights

 $w_{pq} = \frac{1}{\sum_{q' \in Q}}$

Denoised color values:

 $\widehat{\mathbf{c}}_p = g_{\text{weighter}}$

$$\begin{split} \exp([\mathbf{z}_{p}^{L}]_{q}) & 0 \leq w_{pq} \leq 1 \\ \in \mathcal{N}(p) \exp([\mathbf{z}_{p}^{L}]_{q'}) & \text{Softmax activation to enform on the set of the set$$

$$_{\mathrm{ed}}(\mathbf{X}_{p};\boldsymbol{\theta}) = \sum_{q \in \mathcal{N}(p)} \mathbf{c}_{q} w_{pq}$$

Realistic Image Synthesis SS2020

Kernel Prediction Network

$$w_{pq} = \frac{\exp([\mathbf{z}_{p}^{L}]_{q})}{\sum_{q' \in \mathcal{N}(p)} \exp([\mathbf{z}_{p}^{L}]_{q'})}$$
$$0 \le w_{pq} \le 1$$

Final color estimate always lies within the convex hull of the respective neighborhood (avoid color shifts).

Ensures well-behaved gradients of the error w.r.t the kernel weights

$$\widehat{\mathbf{c}}_p = g_{\text{weighted}}(\mathbf{X}_p; \boldsymbol{\theta}) = \sum_{q \in \mathcal{N}(p)} \mathbf{c}_q w_p$$

Realistic Image Synthesis SS2020

Proposed Architecture

Diffuse/Specular components

Each component is denoised separately

Diffuse components are well-behaved and typically has small ranges

albedo is factored out to allow large rate

Specular components are challenging due to high dynamic ranges: uses logarithmic transform

 $\mathbf{c}_{\text{specular}} = \mathbf{1}$

ange kernels
$$\tilde{\mathbf{c}}_{diffuse} = \mathbf{c}_{diffuse} \oslash (\mathbf{f}_{albedo} + \epsilon)$$

$$og(1 + c_{specular})$$

Training Dataset: 600 frames

8-hidden layers used with 100 kernels of 5x5 in each layer for each network

For KPCN (kernel-predicting network), output kernel size used = 21

Weights for 128 app and 32 spp networks were initialized using Xavier method

Diffuse and specular components were independently trained with L1 loss metric

Training

Learning rate of DPCN vs. KPCN

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

NFOR (log)

Realistic Image Synthesis SS2020

Input (32 spp)

Input (32 spp)

122

Input (32 spp)

w/o Decomposition, w/o Albedo divide

w/o Decomposition, w/o Albedo divide

w/ Decomposition, w/o Albedo divide

w/o Decomposition, w/ Albedo divide

w/ Decomposition, w/ Albedo divide

Ref. (2K spp)

Realistic Image Synthesis SS2020

Ours

Input (32 spp)

Ours

Input (32 spp)

Realistic Image Synthesis SS2020

NFOR (log)

Ours

Ref. (8K spp)

Also works on Piper short movie frames

Interactive Reconstruction of Monte Carlo Sequences

Realistic Image Synthesis SS2020

Chaitanya et al. [2017]

Motivation: Interactive Reconstruction

Limited to a few rays per pixel @ 1080p @ 30Hz

Never enough to reconstruct an image

Deep learning approach for interactive graphics

Motivation: Interactive Reconstruction

Limited to a few rays per pixel @ 1080p @ 30Hz

Never enough to reconstruct an image

Deep learning approach for interactive graphics

Realistic Image Synthesis SS2020

Handle generic effects:

- Soft shadows
- Diffuse and specular reflections
- Global illumination (one-bounce)
- No Motion blur or depth of field

Problem Statement

129

System setup: Path tracing

System setup: Path tracing

Rasterize primary hits in G-buffers

Path-tracing from the primary paths

- 1 ray for direct shadows
- 2 rays for indirect (sample + connect)

1 direct + 1 indirect path (spp)

Denoising Autoencoder (DAE)

Train auto encoders to reconstruct image from 1spp

Recurrent Autoencoder [Chaitanya et al. 2017]

Fig. 2. Architecture of our recurrent autoencoder. The input is 7 scalar values per pixel (noisy RGB, normal vector, depth, roughness). Each encoder stage has a convolution and 2×2 max pooling. A decoder stage applies a 2×2 nearest neighbor upsampling, concatenates the per-pixel feature maps from a skip connection (the spatial resolutions agree), and applies two sets of convolution and pooling. All convolutions have a 3×3 -pixel spatial support. On the right we visualize the internal structure of the recurrent RCNN connections. I is the new input and h refers to the hidden, recurrent state that persists between animation frames.

Encoder and decoder stages for dimensionality reduction

Realistic Image Synthesis SS2020

Encoder and decoder stages for dimensionality reduction

Decoder

Encoder and decoder stages for dimensionality reduction

Encoder and decoder stages for dimensionality reduction

Skip connections to reintroduce lost information

136

Auxillary Features

Untextured color

View space normals

Linearize depth

Training sequences

SponzaDiffuse

SponzaGlossy

Classroom

Training sequences

SponzaDiffuse

SponzaGlossy

Classroom

DAE 1spp approx. 70 ms + approx. 60 ms

Reference 1024 spp approx. 240 ms

Recurrent Denoising Autoencoder

Feedback loops to retain important information after every encoding stage

Recurrent Denoising Autoencoder

Feedback loops to retain important information after every encoding stage

Recurrent Neural Networks vs. Simple Feed-Forward NN

Recurrent Neural Network

Realistic Image Synthesis SS2020

Feed-Forward Neural Network

An unrolled recurrent neural network.

Realistic Image Synthesis SS2020

Source link

Fully convolutional blocks to support arbitrary image resolution

6 RNN blocks, one per pool layer in the encoder

Design:

- 1 conv layer (3x3) for current features
- 2 conv layers (3x3) for previous features

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

148

CNNs, fixed input, fixed output

one to one

148

CNNs, fixed input, fixed output

one to one

149

CNNs, fixed input, fixed output

149

CNNs, fixed input, fixed output

e.g., image captioning takes an image as input and outputs a sentence of words

Sequence output

Sequence output

Realistic Image Synthesis SS2020

e.g., to know the sentiments of a sentence

Sequence output

Sequence input, Sequence output. e.g. Machine translation

Sequence output

Sequence input, Sequence output. e.g. Machine translation

We video classification where i. Ф

152

Input is a sequence of 7 frames

128x128 random image crop per sequence

Play the sequence forward/backward

Each frame advance the camera or random seed

Training

153

Spatial Loss to emphasize more the dark regions

Realistic Image Synthesis SS2020

Loss Functions

Realistic Image Synthesis SS2020

Loss Functions

Temporal loss

Realistic Image Synthesis SS2020

Loss Functions

Imporal lossHigh frequency error norm left
for stable edges
$$V_{i}$$
 $\left(\left| \frac{\partial P_{i}}{\partial t} - \frac{\partial T_{i}}{\partial t} \right| \right)$ $L_{g} = \frac{1}{N} \sum_{i}^{N} |\nabla P_{i} - \nabla T_{i}|$

156

OSS

Final Loss is a weighted averaged of above losses

Realistic Image Synthesis SS2020

Loss Functions

Emporal loss
High frequency error norm less
for stable edges

$$L_g = \frac{1}{N} \sum_{i}^{N} |\nabla P_i - \nabla T_i|$$

$$+w_gL_g+w_tL_t$$

OSS

Training Loss depends on **Auxiliary Features**

Training loss

Auxiliary Features

Epochs

Temporal Stability

Realistic Image Synthesis SS2020

Recurrent autoencoder with temporal AA

Recurrent autoencoder

Autoencoder with skips

Recurrent autoencoder with temporal AA

Recurrent autoencoder

Autoencoder with skips

1

1

Recurrent autoencoder

Recurrent autoencoder

Introduction to CNNs

Kernel Predicting Denoising

Sample-based MC Denoising (next lecture)

Acknowledgments

Realistic Image Synthesis SS2020

Thanks to Chaitanya and colleagues for making their slides publicly available.

