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MLP based Denoising

Introduction 
Denoising using Data 

Path to Machine Learning 

CNN based Denosing 
(Next lecture)
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Filtering Monte Carlo Noise From  
Random Parameters
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Sen and Darabi [2012]
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Parameters in Monte Carlo estimator
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Random parameters:

Color:
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Pixels,Random Params,Features

The algorithm computes the statistical dependency of (c-f) on the random parameters in (b)
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Random Parameter Filtering
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Statistical Dependency
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Mutual information between two random variables: 

where, these probabilities are computed over 

the neighborhood of samples around a given pixel
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Functional dependency of the k-th scene parameter:

Statistical Dependency
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Weighted Average Bilateral Filtering
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Multi-Layer Perceptrons
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History of Neural Networks

• In 1943, McCulloch and Pitts created a computational 
model for neural networks


• In 1975, Werbos's back propagation algorithm generally 
accelerated the training of multi-layer networks.


• In 1980s, Recurrent Neural Networks were developed 
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Complex classifieryj = f(wjxj + bj)
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Complex classifier

What features can produce this decision rule ?
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Perceptron Classifier
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Multi-layer Perceptron
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Input

features

Perceptron: Step function

 with linear decision boundary
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Layer 1

2-layer: 
These outputs are now input features to the next layer
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Layer 1

2-layer: 

"Features" are now decision boundaries (partitions)

All linear combination of those partitions give complex partitions

These outputs are now input features to the next layer
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Layer 1 Layer 2
These complex outputs become 


the features for the new layer



Realistic Image Synthesis SS2020

Features of MLPs

53

Layer 1 Layer 2

Deep Neural Networks
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Fully connected layers

What can be a loss function ?
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Fully connected layers

* max

ReLU

* max

ReLU

L2 Loss

R R .W1 W2

What can be a loss function ?

Two-layer  
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Two-layer model: Back propagation
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Source link

https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5
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Two-layer model: Back propagation
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Gradient Descent Algorithm 

for back propagation
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Two-layer model: Back propagation
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Random initialization

Global cost minimum

Gradient Descent Algorithm 

for back propagation
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Back Propagation
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Slides courtesy: Stanford Online Course

https://www.youtube.com/watch?v=d14TUNcbn1k&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=4
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Slides courtesy: Stanford Online Course

https://www.youtube.com/watch?v=d14TUNcbn1k&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=4
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Slides courtesy: Stanford Online Course

https://www.youtube.com/watch?v=d14TUNcbn1k&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=4
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Slides courtesy: Stanford Online Course

https://www.youtube.com/watch?v=d14TUNcbn1k&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=4
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Slides courtesy: Stanford Online Course

https://www.youtube.com/watch?v=d14TUNcbn1k&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=4
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Slides courtesy: Stanford Online Course

https://www.youtube.com/watch?v=d14TUNcbn1k&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=4
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Slides courtesy: Stanford Online Course

https://www.youtube.com/watch?v=d14TUNcbn1k&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=4
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Slides courtesy: Stanford Online Course

https://www.youtube.com/watch?v=d14TUNcbn1k&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=4
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Slides courtesy: Stanford Online Course

https://www.youtube.com/watch?v=d14TUNcbn1k&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=4
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Machine Learning for 
Filtering Monte Carlo Noise
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Kalantari et al. [SIGGRAPH 2015]
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Pixel neighborhood

Filter weights

For cross Bilateral filters:

Filter weights
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Pixel neighborhood

Filter weights

Filter weights

Sen and Darabi [2012]
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Filter weights

Sen and Darabi [2012]
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Filter weights
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Filter weights

Pixel screen coordinates
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Filter weights

Pixel screen coordinates

Mean sample color value
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Filter weights

Pixel screen coordinates

Mean sample color value

Scene features
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Filter weights

What are the optimal parameters ?

For cross Bilateral filters:

Pixel screen coordinates

Mean sample color value

Scene features
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Neural Network Approach

• Feed-forward Neural network


• Best part: We can learn weights in a training phase


• Back propagation: Important for training weights


• For Back propagation, the Loss function should be 
differentiable and


• all the intermediate functionals should be differentiable. 

85
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One Hidden-layer model
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Relative Mean Square Error:
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Relative Mean Square Error:

???
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One Hidden-layer model
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Relative Mean Square Error:
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Kernel Predicting  
DenoisingIntroduction to CNNs
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Kernel Predicting  
DenoisingIntroduction to CNNs Sample-based  

MC Denoising
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Zero Padding and Strides

Stride 1 Stride 2

zero padding 

1D image to illustrate the strides and zero padding
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Strides

Stride 1 Stride 2

zero padding zero padding 

1D image to illustrate the strides and zero padding
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Max Pooling / Down Sampling



Overview on Convolutional Neural Networks
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Image Courtesy: Mathworks (online tutorial)
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Multi-layer Perceptron vs. CNNs
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Multi-layer perceptron CNNs

All nodes are fully connected in all layers Weights are shared across layers

In theory, should be able to achieve good quality 

results in small number of layers.

Requires significant number of layers to capture 

all the features (e.g. Deep CNNs)

Number of weights to be learnt are very high Relatively small number of weights required

Multi-layer Perceptron vs. CNNs
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Kernel-Predicting  
DenoisingIntroduction to CNNs
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Kernel-Predicting Networks for Denoising  
Monte-Carlo Renderings

Bako et al. [2017]
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Limitations of MLP based Denoiser

Kernel was pre-selected to be joint bilateral filter
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Limitations of MLP based Denoiser

Kernel was pre-selected to be joint bilateral filter

- Unable to explicitly capture all details

Fixed 
- can cause unstable weights causing bright ringing and color artifacts

- lacked flexibility to handle wide range of MC noise in production scenes

Too many parameters to optimize
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Requirements

The function must be flexible to capture complex relationship between 

input data and reference colors over wide range of scenarios.

Choice of loss function is crucial. Should capture perceptual aspects of the scene.

To avoid overfitting, large dataset required
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Using a Vanilla CNN

Denoising a raw, noisy color buffer causes overblurring
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Using a Vanilla CNN

Denoising a raw, noisy color buffer causes overblurring

- difficulty in distinguishing scene details and MC noise

High dynamic range

- can cause unstable weights causing bright ringing and color artifacts
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Vanilla CNN
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Denoising Model

Denoised function with parameters

Reference image

Denoised value Loss function
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Computational Model

Neighborhood

Final denoised value

Denoised value

Kernel weights



Realistic Image Synthesis SS2020

112

Direct Prediction Network

Direct prediction convolution network: outputs denoised image
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Direct Prediction Network

Direct prediction convolution network: outputs denoised image

Issues:

The constrained nature and complexity of the problem makes optimization difficult.

The magnitude and variance of stochastic gradients computed during training can be large, 

which slows convergence of training loss.
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Kernel Prediction Network

Kernel prediction convolution network: outputs learned kernel weights

Softmax activation to enforce 

weights within range

Denoised color values:
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Kernel Prediction Network

Final color estimate always lies within the convex hull of the respective 

neighborhood (avoid color shifts).

Ensures well-behaved gradients of the error w.r.t the kernel weights



Realistic Image Synthesis SS2020

116

Proposed Architecture
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Diffuse/Specular components

Diffuse components are well-behaved and typically has small ranges

Specular components are challenging due to high dynamic ranges: uses logarithmic transform

- albedo is factored out to allow large range kernels

Each component is denoised separately
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Training Dataset: 600 frames
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Training

8-hidden layers used with 100 kernels of 5x5 in each layer for each network

For KPCN (kernel-predicting network), output kernel size used = 21

Weights for 128 app and 32 spp networks were initialized using Xavier method 

Diffuse and specular components were independently trained with L1 loss metric
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Learning rate of DPCN vs. KPCN

On Cars 3 dataset, KPCN converges 5-6x faster
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Results
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Results
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Results

Also works on Piper short movie frames



Realistic Image Synthesis SS2020

125

Interactive Reconstruction of Monte Carlo Sequences
Chaitanya et al. [2017]
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Motivation: Interactive Reconstruction
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Limited to a few rays per pixel @ 1080p @ 30Hz

Never enough to reconstruct an image

Deep learning approach for interactive graphics
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Limited to a few rays per pixel @ 1080p @ 30Hz

Never enough to reconstruct an image

Deep learning approach for interactive graphics
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Problem Statement

129

Handle generic effects:

- Soft shadows

- Diffuse and specular reflections

- Global illumination (one-bounce)

- No Motion blur or depth of field



System setup: Path tracing
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System setup: Path tracing



System setup: Path tracing

Rasterize primary hits in G-buffers

Path-tracing from the primary paths

- 1 ray for direct shadows

- 2 rays for indirect (sample + connect)

1 direct + 1 indirect path (spp)



Train auto encoders to reconstruct image from 1spp

Denoising Autoencoder (DAE)
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Recurrent Autoencoder 
[Chaitanya et al. 2017]
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Recurrent Neural Networks
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Encoder and decoder stages for dimensionality reduction

Encoder Decoder
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Recurrent Neural Networks
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Encoder and decoder stages for dimensionality reduction

Skip connections  to reintroduce lost information

Encoder Decoder
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Auxillary Features
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Untextured color View space normals Linearize depth



Realistic Image Synthesis SS2020

Training Features
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Training Features
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1spp approx. 70 ms
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DAE 1spp  
approx. 70 ms + approx. 60 ms
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Reference 1024 spp 
approx. 240 ms
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DAE Results
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DAE Results
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Recurrent Denoising Autoencoder
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Encoder Decoder

Feedback loops to retain important information after every encoding stage 

RCNN
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Recurrent Denoising Autoencoder

143

Encoder Decoder

Feedback loops to retain important information after every encoding stage 

RCNN
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Recurrent Neural Networks  
vs. Simple Feed-Forward NN
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Source link

https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5
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Recurrent Neural Networks
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Source link

https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912
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Recurrent Neural Networks
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Source link

Conv

Conv

Conv

Conv

Conv

Conv

h-1 h h+1

l-1 l
Fully convolutional blocks to support arbitrary 


image resolution

6 RNN blocks, one per pool layer 

in the encoder

Design:

- 1 conv layer (3x3) for current features

- 2 conv layers (3x3) for previous features

https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912
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Recurrent Neural Networks
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Recurrent Neural Networks
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CNNs, 

fixed input, 

fixed output

 Sequence output

e.g., image captioning takes an image as input and 

outputs a sentence of words
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Recurrent Neural Networks

150

CNNs, 

fixed input, 

fixed output

 Sequence output

 Sequence input

e.g., to know the sentiments of a sentence 
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Recurrent Neural Networks
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CNNs, 

fixed input, 

fixed output

 Sequence output

 Sequence input

 Sequence input,

Sequence output.


e.g. Machine translation
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Recurrent Neural Networks
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CNNs, 

fixed input, 

fixed output

 Sequence output

 Sequence input

 Sequence input,

Sequence output.


e.g. Machine translation

Synced sequence 

Input & output
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Training
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Input is a sequence of 7 frames

128x128 random image crop per sequence

Play the sequence forward/backward

Each frame advance the camera or random seed
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Loss Functions
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Spatial Loss to emphasize more 

the dark regions
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Spatial Loss to emphasize more 

the dark regions

Temporal loss
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Spatial Loss to emphasize more 

the dark regions

Temporal loss High frequency error norm loss

for stable edges
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Loss Functions

157

Spatial Loss to emphasize more 

the dark regions

Temporal loss

Final Loss is a weighted averaged of above losses

High frequency error norm loss

for stable edges
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Training Loss depends on 
Auxiliary Features

158

Untextured + normal + depth
Untextured + normal
Untextured + depth

Color only

100 101 102 103Epochs

Auxiliary Features

10-4

5·
10-3

10-3
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ng
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ss

Untextured color

Untextured + normal + depth + roughness
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Temporal Stability
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Kernel Predicting  
DenoisingIntroduction to CNNs Sample-based  

MC Denoising

(next lecture)
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