

Philipp Slusallek Karol Myszkowski Gurprit Singh

ADVANCED SAMPLING

Part of Siggraph 2016 Course

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Gurprit Singh *Wojciech Jarosz Kartic Subr

Render the Possibilities

*First part of slides from Wojciech Jarosz

 $I = \int_D f(x) \, \mathrm{d}x$

 $I = \int_D f(x) \, \mathrm{d}x$

 $I = \int_D f(x) \, \mathrm{d}x$

 $I = \int_D f(x) \, \mathrm{d}x$ $\approx \int f(x) \mathbf{S}(x) \, \mathrm{d}x$

$$I = \int_{D} f(x) \, dx$$
$$\approx \int_{D} f(x) \, \mathbf{S}(x) \, dx$$
$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - \mathbf{x}_{k})$$

$$I = \int_{D} f(x) \, dx$$
$$\approx \int_{D} f(x) \, \mathbf{S}(x) \, dx$$
$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - \mathbf{x}_{k})$$

$$I = \int_{D} f(x) \, dx$$
$$\approx \int_{D} f(x) \, \mathbf{S}(x) \, dx$$
$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - \mathbf{x}_{k})$$

How to generate the locations x_k ?

k=1

 $\int \mathbf{V}$

for (int k = 0; k < num; k++)

- samples(k).x = randf();
- samples(k).y = randf();

for (int k = 0; k < num; k++)

- samples(k).x = randf();
- samples(k).y = randf();

Realistic Image Synthesis SS2020

for (int k = 0; k < num; k++)

samples(k).x = randf();samples(k).y = randf();

Trivially extends to higher dimensions

for (int k = 0; k < num; k++)

samples(k).x = randf();
samples(k).y = randf();

Trivially extends to higher dimensions
 Trivially progressive and memory-less

for (int k = 0; k < num; k++)

samples(k).x = randf();
samples(k).y = randf();

Trivially extends to higher dimensions
 Trivially progressive and memory-less
 Big gaps

for (int k = 0; k < num; k++)

samples(k).x = randf();
samples(k).y = randf();

Trivially extends to higher dimensions
 Trivially progressive and memory-less
 Big gaps
 Clumping

Input Image

Power Spectrum

Image courtesy: Laurent Belcour

Input Image

Power Spectrum

Image courtesy: Laurent Belcour

Fourier transform: $\hat{f}(\omega) = \int_D f(x) e^{-2\pi i \omega x} dx$

Fourier transform: $\hat{f}(\vec{\omega}) = \int_D f(\vec{x}) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$

Realistic Image Synthesis SS2020

Fourier transform: $\hat{f}(\vec{\omega}) = \int_{D} f(\vec{x}) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$

Sampling function: $\mathbf{\hat{S}}(\vec{\omega}) = \int_{D} \mathbf{S}(\vec{x}) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$

Fourier transform: $\hat{f}(\vec{\omega}) = \int_{D} f(\vec{x}) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$ Sampling function: $\hat{\mathbf{S}}(\vec{\omega}) = \int_D \frac{1}{N} \sum_{k=1}^N \delta(|\vec{x} - \vec{x}_k|) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$

Fourier transform: $\hat{f}(\vec{\omega}) = \int_{D} f(\vec{x}) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$ Sampling function: $\hat{\mathbf{S}}(\vec{\omega}) = \int_D \frac{1}{N} \sum_{k=1}^N \delta(|\vec{x} - \vec{x}_k|) e^{-2\pi i (\vec{\omega} \cdot \vec{x})} d\vec{x}$ $=\frac{1}{N}\sum_{k=0}^{N}e^{-2\pi i\left(\vec{\omega}\cdot\vec{x}_{k}\right)}$

Many sample set realizations

Many sample set realizations

Samples

Samples

Radial mean

$$\left|\frac{1}{N}\sum_{k=1}^{N} e^{-2\pi i \left(\vec{\omega} \cdot \vec{x}_{k}\right)}\right|$$

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

Extends to higher dimensions, but...

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

Extends to higher dimensions, but... **X** Curse of dimensionality

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

Extends to higher dimensions, but... **X** Curse of dimensionality **X** Aliasing

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;


```
for (uint i = 0; i < numX; i++)
     for (uint j = 0; j < numY; j++)
           samples(i,j).x = (i + randf())/numX;
           samples(i,j).y = (j + randf())/numY;
```



```
for (uint i = 0; i < numX; i++)
     for (uint j = 0; j < numY; j++)
           samples(i,j).x = (i + randf())/numX;
           samples(i,j).y = (j + randf())/numY;
```

Provably cannot increase variance


```
for (uint i = 0; i < numX; i++)
     for (uint j = 0; j < numY; j++)
           samples(i,j).x = (i + randf())/numX;
           samples(i,j).y = (j + randf())/numY;
```

Provably cannot increase variance Extends to higher dimensions, but...


```
for (uint i = 0; i < numX; i++)
     for (uint j = 0; j < numY; j++)
           samples(i,j).x = (i + randf())/numX;
           samples(i,j).y = (j + randf())/numY;
```

Provably cannot increase variance Extends to higher dimensions, but... **X** Curse of dimensionality


```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + randf())/numX;
        samples(i,j).y = (j + randf())/numY;
    }
}</pre>
```

Provably cannot increase variance

- Extends to higher dimensions, but...
- **X** Curse of dimensionality
- X Not progressive

ance s, but...

Independent Random Sampling

Monte Carlo (16 random samples)

Monte Carlo (16 jittered samples)

Stratifying in Higher Dimensions

Stratification requires O(N^d) samples - e.g. pixel (2D) + lens (2D) + time (1D) = 5D

Stratifying in Higher Dimensions

- Stratification requires O(N^d) samples
- e.g. pixel(2D) + lens(2D) + time(1D) = 5D
 - splitting 2 times in $5D = 2^5 = 32$ samples
 - splitting 3 times in $5D = 3^5 = 243$ samples!

Stratifying in Higher Dimensions

- Stratification requires O(N^d) samples
- e.g. pixel(2D) + lens(2D) + time(1D) = 5D
 - splitting 2 times in $5D = 2^5 = 32$ samples
 - splitting 3 times in $5D = 3^5 = 243$ samples!
- Inconvenient for large d
- cannot select sample count with fine granularity

Compute stratified samples in sub-dimensions

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel

; ₁ ,y ₁	<i>x</i> ₂ , <i>y</i> ₂
; ₃ ,y ₃	<i>x</i> ₄ , <i>y</i> ₄

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens x_1

; ₁ ,y ₁	<i>x</i> ₂ , <i>y</i> ₂
3,y ₃	<i>x</i> ₄ , <i>y</i> ₄

<i>u</i> ₁ , <i>v</i> ₁	u
<i>u</i> ₃ , <i>v</i> ₃	и

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens
 1D jittered (t) for time

y ₁ ,y ₁	<i>x</i> ₂ , <i>y</i> ₂
3,y ₃	<i>x</i> ₄ , <i>y</i> ₄

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens
- 1D jittered (t) for time
- combine dimensions in random order

Depth of Field (4D)

Reference

Realistic Image Synthesis SS2020 Image source: PBRTe2 [Pharr & Humphreys 2010]

Random Sampling

Uncorrelated Jitter

Stratify samples in each dimension separately

Stratify samples in each dimension separately

- for 5D: 5 separate 1D jittered point sets

ed point sets X X X1 X2 X3 X4 Y Y Y1 Y2 Y3 Y4 U U U1 U2 U3 U4 V

v2

v1

t				
	t1	t2	t3	t4

v3

v4

Stratify samples in each dimension separately

- for 5D: 5 separate 1D jittered point sets
- combine dimensions in random order

ed point sets X X X1 X2 X3 X4 Y Y Y1 Y2 Y3 Y4 U U U1 U2 U3 U4 V

v2

v1

t				
	t1	t2	t3	t4

v3

v4

Stratify samples in each dimension separately

- for 5D: 5 separate 1D jittered point sets
- combine dimensions in random order

Shuffle order

N-Rooks = 2D Latin Hypercube [Shirley 9

Stratify samples in each dimension separately

- for **2D**: **2** separate 1D jittered point sets
- combine dimensions in random order

Х				
	x1	x2	x3	x4

V				
J	y4	y2	y1	уЗ

	I	

Latin Hypercube (N-Rooks) Sampling [Shirley 91]

Realistic Image Synthesis SS2020

Image source: Michael Maggs, CC BY-SATA.

// initialize the diagonal for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++) shuffle(samples(d,:));

// initialize the diagonal for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++) shuffle(samples(d,:));

Initialize

// initialize the diagonal for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++) shuffle(samples(d,:));

// initialize the diagonal for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (unit d = 0; d < numDimensions; d++) shuffle(samples(d,:));

Shuffle rows

Realistic Image Synthesis SS2020

// initialize the diagonal for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (unit d = 0; d < numDimensions; d++) shuffle(samples(d,:));

Shuffle rows

// initialize the diagonal for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (unit d = 0; d < numDimensions; d++) shuffle(samples(d,:));

Shuffle rows

// initialize the diagonal for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (unit d = 0; d < numDimensions; d++) shuffle(samples(d,:));

// initialize the diagonal for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; (d++)) shuffle(samples(d,:));

Shuffle columns

// initialize the diagonal for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; (d++)) shuffle(samples(d,:));

Shuffle columns

Realistic Image Synthesis SS2020

// initialize the diagonal for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++) shuffle(samples(d,:));

Kenneth Chiu, Peter Shirley, and Changyaw Wang. "Multi-jittered sampling." In Graphics Gems IV, pp. 370-374. Academic Press, May 1994.

combine N-Rooks and Jittered stratification constraints


```
// initialize
float cellSize = 1.0 / (resX*resY);
for (uint i = 0; i < resX; i++)
      for (uint i = 0; i < resY; i++)
              samples(i,j).x = i/resX + (j+randf()) / (resX*resY);
              samples(i,j).y = j/resY + (i+randf()) / (resX*resY);
```

// shuffle x coordinates within each column of cells for (uint i = 0; i < resX; i++) for (uint $j = resY-1; j \ge 1; j--$) swap(samples(i, j).x, samples(i, randi(0, j)).x);

// shuffle y coordinates within each row of cells for (unsigned j = 0; j < resY; j++) for (unsigned $i = resX-1; i \ge 1; i--$) swap(samples(i, j).y, samples(randi(0, i), j).y);

Realistic Image Synthesis SS2020

Initialize

Realistic Image Synthesis SS2020

Shuffle x-coords

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Shuffle y-coords

Realistic Image Synthesis SS2020

Shuffle y-coords

Shuffle y-coords

Realistic Image Synthesis SS2020

DES SAARLANDES

Samples

Poisson-Disk/Blue-Noise Sampling

- Enforce a minimum distance between points Poisson-Disk Sampling:
- Mark A. Z. Dippé and Erling Henry Wold. "Antialiasing through stochastic sampling." ACM SIGGRAPH, 1985.
- Robert L. Cook. "Stochastic sampling in computer graphics." ACM Transactions on Graphics, 1986.
- Ares Lagae and Philip Dutré. "A comparison of methods for generating Poisson disk distributions." Computer Graphics Forum, 2008.

Random Dart Throwing

Poisson Disk Sampling

Samples

Expected power spectrum

Radial mean

Blue-Noise Sampling (Relaxation-based)

Realistic Image Synthesis SS2020

57

Blue-Noise Sampling (Relaxation-based)

1. Initialize sample positions (e.g. random)

57

Blue-Noise Sampling (Relaxation-based)

- 1. Initialize sample positions (e.g. random)
- 2. Use an iterative relaxation to move samples away from each other.

57

Samples

Poisson Disk Sampling

Samples

Expected power spectrum

Radial mean

Low-Discrepancy Sampling

Deterministic sets of points specially crafted to be evenly distributed (have low discrepancy).

- Entire field of study called Quasi-Monte Carlo (QMC)

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2

Radical Inverse Φ_b in base

Subsequent points "fall inte biggest holes"

2	k	Base 2	Φ_b
	1	1	.1 = 1/2
.U	2	10	.01 = 1/4

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8

`		
3		
•		
3		

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
6	110	.011 = 3/8

3		
3		
3		

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
6	110	.011 = 3/8
7	111	.111 = 7/8

3		
3		
3		
3		

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
6	110	.011 = 3/8
7	111	.111 = 7/8
•••		

Realistic Image Synthesis SS2020

<u> </u>		
3		
3		
3		
3		

61

- Halton: Radical inverse with different base for each dimension:
 - $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$

- Halton: Radical inverse with different base for each dimension:
 - $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.

- Halton: Radical inverse with different base for each dimension:
 - $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.
- Incremental/progressive generation of samples

- Halton: Radical inverse with different base for each dimension: $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.
- Incremental/progressive generation of samples
- **Hammersley**: Same as Halton, but first dimension is k/N: $\vec{x}_k = (k/N, \Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$

- Halton: Radical inverse with different base for each dimension: $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.
- Incremental/progressive generation of samples
- **Hammersley**: Same as Halton, but first dimension is k/N: $\vec{x}_k = (k/N, \Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_m}(k))$ - Not incremental, need to know sample count, N, in advance

1 sample in each "elementary interval"

1 sample in each "elementary interval"

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Realistic Image Synthesis SS2020

Monte Carlo (16 random samples)

Monte Carlo (16 jittered samples)

Scrambled Low-Discrepancy Sampling

More info on QMC in Rendering

S. Premoze, A. Keller, and M. Raab. In SIGGRAPH 2012 courses.

- Advanced (Quasi-) Monte Carlo Methods for Image Synthesis.

How can we predict error from these?

Part 2: Formal Treatment of MSE, Bias and Variance

Frequency

Convergence rate for Random Samples

Variance

Increasing Samples

Convergence rate for Random Samples

Increasing Samples

Increasing Samples

Increasing Samples

Increasing Samples

Increasing Samples

Increasing Samples

Convergence rate for Jittered Samples

Increasing Samples

Convergence rate for Jittered Samples

Increasing Samples

Increasing Samples

Increasing Samples

Increasing Samples

Increasing Samples

Samples and function in Fourier Domain

Spatial Domain

Fourier Domain

Samples and function in Fourier Domain

Spatial Domain

Fourier Domain

Samples and function in Fourier Domain

Spatial Domain

Samples and function in Fourier Domain

Spatial Domain

Samples and function in Fourier Domain

Spatial Domain

Realistic Image Synthesis SS2020

Samples and function in Fourier Domain

Spatial Domain

Realistic Image Synthesis SS2020

Convolution

Realistic Image Synthesis SS2020

Source: vdumoulin-github

Convolution

Realistic Image Synthesis SS2020

Source: vdumoulin-github

 $f(x) \mathbf{S}(x)$

Realistic Image Synthesis SS2020

 $f(x) \mathbf{S}(x)$

Realistic Image Synthesis SS2020

Fredo Durand [2011]

 $f(x) \mathbf{S}(x)$

Realistic Image Synthesis SS2020

Fredo Durand [2011]

 $f(x) \mathbf{S}(x)$

Fredo Durand [2011]

Aliasing in Reconstruction

Realistic Image Synthesis SS2020

-

Aliasing in Reconstruction

Realistic Image Synthesis SS2020

-

Aliasing in Reconstruction

Realistic Image Synthesis SS2020

_

Aliasing in Reconstruction

Realistic Image Synthesis SS2020

-

Aliasing in Reconstruction

Realistic Image Synthesis SS2020

Aliasing in Reconstruction

Aliasing in Reconstruction

Realistic Image Synthesis SS2020

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2020

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2020

UNIVERSITÄT DES SAARLANDES

Realistic Image Synthesis SS2020

UNIVERSITÄT DES SAARLANDES

Aliasing (Reconstruction) vs. Error (Integration)

Aliasing (Reconstruction) vs. Error (Integration)

Aliasing (Reconstruction) vs. Error (Integration)

Integration in the Fourier Domain

Integration is the DC term in the Fourier Domain

Spatial Domain:

 $I = \int_D f(x) dx$

Integration is the DC term in the Fourier Domain

Spatial Domain:

Fourier Domain:

 $I = \int_{D} f(x) dx$

Integration is the DC term in the Fourier Domain

Spatial Domain:

Fourier Domain:

Realistic Image Synthesis SS2020

 $I = \int_{D} f(x) dx$

 $\hat{f}(0)$

 $\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$

Realistic Image Synthesis SS2020

 $\tilde{\mu}_N = \int_{\mathcal{D}} f(x) \mathbf{S}(x) dx$

 $\tilde{\mu}_N = \int_{\mathcal{D}} f(x) \mathbf{S}(x) dx$

91

 $\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$

91

 $\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x) dx$

91

 $\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x)$

Realistic Image Synthesis SS2020

$$f_{\Omega}(x) dx = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$\frac{1}{N} \sum_{k=1}^{N} \delta(x - x_k)$$

91

Monte Carlo Estimator in Fourier Domain

 $\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x)$

 $\mathbf{S}(x) = \frac{1}{N}$

$$\mathbf{x} dx = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$$

$$\frac{1}{N} \sum_{k=1}^N \delta(x - x_k)$$

Monte Carlo Estimator in Fourier Domain

 $\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x)$

 $\mathbf{S}(x) = \frac{1}{N}$

Realistic Image Synthesis SS2020

$$\mathbf{x})dx = \int_{\Omega} \hat{f}^{*}(\omega)\hat{\mathbf{S}}(\omega)d\omega$$

$$\frac{1}{N}\sum_{k=1}^{N}\delta(x-x_{k})$$

Monte Carlo Estimator in Fourier Domain

 $\tilde{\mu}_N = \int_D f(x) \mathbf{S}(x)$

 $\mathbf{S}(x) = \frac{1}{N}$

 $\hat{\mathbf{S}}(\omega) =$

Realistic Image Synthesis SS2020

$$\begin{aligned} \mathbf{x} dx &= \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \\ \frac{1}{N} \sum_{k=1}^N \delta(x - x_k) \\ \frac{1}{N} \sum_{k=1}^N e^{-i2\pi\omega x_k} \end{aligned}$$

 $I = \hat{f}(0)$

 $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$

 $I = \hat{f}(0)$

 $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $I = \hat{f}(0)$

Realistic Image Synthesis SS2020

 $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Monte Carlo Estimator

 $I = \hat{f}(0)$

 $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$

 $I = \hat{f}(0)$

 $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $I - \tilde{\mu}_N = \int_D f(x) dx - \int_D f(x) \mathbf{S}(x) dx$

Error in Fourier Domain

 $I = \hat{f}(0)$

 $I - \tilde{\mu}_N = \int_{D} f(x) dx - \int_{D} f(x) \mathbf{S}(x) dx$

 $\tilde{\mu}_N = \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Fredo Durand [2011]

Error in Fourier Domain

$Error = Bias^2 + Variance$

Realistic Image Synthesis SS2020

• Bias

• Variance

• Bias: Expected value of the Error

• Variance

Realistic Image Synthesis SS2020

- Bias: Expected value of the Error $\langle I - \tilde{\mu}_N angle$

• Variance

• Bias: Expected value of the Error $\langle I - \tilde{\mu}_N \rangle$

• Variance: $Var(I - \mu_N)$

Realistic Image Synthesis SS2020

Subr and Kautz [2013]

Bias in the Monte Carlo Estimator

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Bias:

Error:

 $\langle I - \tilde{\mu}_N \rangle$

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$

Realistic Image Synthesis SS2020

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \left\langle \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega \right\rangle$ $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle d\omega$

Subr and Kautz [2013]

Realistic Image Synthesis SS2020

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle d\omega$

Subr and Kautz [2013]

Realistic Image Synthesis SS2020

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle \, d\omega$

Subr and Kautz [2013]

To obtain an unbiased estimator:

Realistic Image Synthesis SS2020

 $\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \langle \hat{\mathbf{S}}(\omega) \rangle \, d\omega$

Subr and Kautz [2013]

$\langle I - \tilde{\mu}_N \rangle = \hat{f}(0) - \hat{f}(0)$

To obtain an unbiased estimator:

$$-\int_{\Omega} \hat{f}^*(\omega) \left< \hat{\mathbf{S}}(\omega) \right> d\omega$$

Subr and Kautz [2013]

$\langle \hat{\mathbf{S}}(\omega) \rangle = 0$ for frequencies other than zero

How to obtain $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$?

Complex form in Amplitude and Phase

$\langle \hat{\mathbf{S}}(\omega) \rangle = |\langle \hat{\mathbf{S}}(\omega) \rangle| e^{-\Phi(\langle \hat{\mathbf{S}}(\omega) \rangle)}$

Realistic Image Synthesis SS2020

Complex form in Amplitude and Phase

Amplitude $\langle \hat{\mathbf{S}}(\omega) \rangle = |\langle \hat{\mathbf{S}}(\omega) \rangle| e^{-\Phi(\langle \hat{\mathbf{S}}(\omega) \rangle)}$

Complex form in Amplitude and Phase

Pauly et al. [2000] Ramamoorthi et al. [2012]

Multiple realizations

$Error = Bias^2 + Variance$

in terms of variance

Realistic Image Synthesis SS2020

Homogenization allows representation of error only

- Homogenization allows representation of error only in terms of variance
- We can take any sampling pattern and homogenize it to make the Monte Carlo estimator unbiased.

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$

$\operatorname{Var}(I - \tilde{\mu}_N)$

Error:

 $I - \tilde{\mu}_N = \hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \hat{\mathbf{S}}(\omega) d\omega$ $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(\mathbf{0}) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(I - \tilde{\mu}_N) = \operatorname{Var}\left(\hat{f}(0) - \int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) \,d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

where,

 $P_f(\omega) = |\hat{f}^*(\omega)|^2$ Power Spectrum

 $\operatorname{Var}(\tilde{\mu}_N) = \operatorname{Var}\left(\int_{\Omega} \hat{f}^*(\omega) \,\hat{\mathbf{S}}(\omega) d\omega\right)$

 $\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$

 $\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

Realistic Image Synthesis SS2020

Subr and Kautz [2013]

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

This is a general form, both for homogenised as well as non-homogenised sampling patterns

Subr and Kautz [2013]

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega}$$

 $P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

For purely random samples:

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

For purely random samples:

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$$

where

$$P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$$

Realistic Image Synthesis SS2020

Fredo Durand [2011]

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Omega} P_f(\omega) \operatorname{Var}\left(\hat{\mathbf{S}}(\omega)\right) d\omega$$

For purely random samples: $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Sigma}$$

where

$$P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$$

Realistic Image Synthesis SS2020

 $\int P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$ Ω

Fredo Durand [2011]

Homogenizing any sampling pattern makes $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$

Homogenizing any sampling pattern makes $\langle \hat{\mathbf{S}}(\omega) \rangle = 0$

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Sigma}$$

where,

 $P_S(\omega) = |\hat{\mathbf{S}}(\omega)|^2$

 $\int P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$

Pilleboue et al. [2015]

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

 \mathbf{P} $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ Ω

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

ſ $P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$ Ω

Variance in terms of n-dimensional Power Spectra

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

1 $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ \sum

Variance in terms of n-dimensional Power Spectra

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

1 $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ \sum

Variance in the Polar Coordinates

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

ſ $P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$ Ω

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{\Sigma}$$

In polar coordinates:

Realistic Image Synthesis SS2020

Variance in the Polar Coordinates

 $P_f(\omega) \left\langle P_S(\omega) \right\rangle d\omega$ Ω

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

In polar coordinates:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$$

Realistic Image Synthesis SS2020

Variance in the Polar Coordinates

 $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ Ω

$$\operatorname{Var}(\tilde{\mu}_N) = \int_{S}$$

In polar coordinates:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$$

Realistic Image Synthesis SS2020

Variance in the Polar Coordinates

 $P_f(\omega) \langle P_S(\omega) \rangle d\omega$ Ω

Variance in the Polar Coordinates

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} \frac{P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}$

Variance in the Polar Coordinates

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}}^\infty P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$

Realistic Image Synthesis SS2020

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}}^\infty P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$

For isotropic power spectra:

Realistic Image Synthesis SS2020

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}}^\infty P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho$

For isotropic power spectra:

Realistic Image Synthesis SS2020

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}}^\infty P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle d\mathbf{n} d\rho$

For isotropic power spectra:

Realistic Image Synthesis SS2020

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathbf{S}^{d-1}} \frac{P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}$

For isotropic power spectra:

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \int_{\mathcal{S}^{d-1}} \frac{P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}$

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \langle \tilde{P}_{\mathbf{S}}(\rho) \rangle d\rho$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty$$

For isotropic power spectra:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^d)$$

 $\int_{0}^{\infty} \int_{\mathbf{S}^{d-1}}^{\infty} \frac{P_f(\rho \mathbf{n}) \langle P_{\mathbf{S}}(\rho \mathbf{n}) \rangle \, d\mathbf{n} \, d\rho}{|\mathbf{S}^{d-1}|^2}$

 $^{d-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty$$

For isotropic power spectra:

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^d)$$

 $\int_{0}^{\infty} \int_{S^{d-1}}^{\infty} P_{f}(\rho \mathbf{n}) \left\langle P_{\mathbf{S}}(\rho \mathbf{n}) \right\rangle d\mathbf{n} \, d\rho$

 $^{d-1}$) $\int_{0}^{\infty} \tilde{P}_{f}(\rho) \langle \tilde{P}_{\mathbf{S}}(\rho) \rangle d\rho$

Variance in terms of 1-dimensional Power Spectra

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d
ho$

Variance in terms of 1-dimensional Power Spectra

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

 $Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d-1}) \int_0^\infty \tilde{P}_f(\rho) \left\langle \tilde{P}_{\mathbf{S}}(\rho) \right\rangle d\rho$

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

For given number of Samples

Realistic Image Synthesis SS2020

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

Sampling Radial Power Spectrum

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

For given number of Samples

Realistic Image Synthesis SS2020

 $^{l-1})\int_{0}^{0}\tilde{P}_{f}(\rho)\langle\tilde{P}_{S}(\rho)\rangle\,d\rho$

Sampling Radial Power Spectrum

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

For given number of Samples

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

For given number of Samples

Realistic Image Synthesis SS2020

$$Var[\tilde{\mu}_N] = \mathcal{M}(\mathcal{S}^{d})$$

Integrand Radial Power Spectrum

Realistic Image Synthesis SS2020

 $^{l-1})\int_{0}^{\infty}\tilde{P}_{f}(\rho)\langle\tilde{P}_{\mathbf{S}}(\rho)\rangle\,d\rho$

For given number of Samples

Spatial Distribution vs Radial Mean Power Spectra

itter

Jisk

SSON

Realistic Image Synthesis SS2020

For 2-dimensions

Samplers	Worst Case	Best Case
Random		
Jitter		
Poisson Disk		
CCVT		

Pilleboue et al. [2015]

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	
Jitter		
Poisson Disk		
CCVT		

Pilleboue et al. [2015]

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter		
Poisson Disk		
CCVT		

Pilleboue et al. [2015]

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	
Poisson Disk		
CCVT		

Pilleboue et al. [2015]

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk		
CCVT		

Pilleboue et al. [2015]

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	
CCVT		

Pilleboue et al. [2015]

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT		

Pilleboue et al. [2015]

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	

Pilleboue et al. [2015]

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Jitter	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-3})$

Pilleboue et al. [2015]

Vorst Case	Best Case
$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-2})$
$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-3})$

Pilleboue et al. [2015]

Poisson Disk

Jitter

Power

Power

Realistic Image Synthesis SS2020

Low Frequency Region

Poisson Disk

Jitter

Power

Power

Realistic Image Synthesis SS2020

Low Frequency Region

Realistic Image Synthesis SS2020

Low Frequency Region

Variance for Low Sample Count

Variance for Low Sample Count

Variance for Increasing Sample Count

Experimental Verification

Convergence rate

Increasing Samples

Convergence rate

Increasing Samples

Convergence rate

Increasing Samples

Gaussian as Best Case

Gaussian as Best Case

Ambient Occlusion Examples

Random vs Jittered

96 Secondary Rays

MSE: 4.74 x 10e-3

MSE: 8.56 x 10e-4

96 Secondary Rays

MSE: 4.24 x 10e-4

Realistic Image Synthesis SS2020

CCVT vs. Poisson Disk

MSE: 6.95 x 10e-4

Convergence rates

Convergence rates

Jittered vs Poisson Disk

What are the benefits of this analysis?

What are the benefits of this analysis ?

For offline rendering, an would converge faster.

Realistic Image Synthesis SS2020

• For offline rendering, analysis tells which samplers

What are the benefits of this analysis?

- would converge faster.
- number of samples

• For offline rendering, analysis tells which samplers

• For real time rendering, blue noise samples are more effective in reducing variance for a given

