
AnyDSL: A Partial Evaluation Framework for
Programming High-Performance Libraries

Richard Membarth, Arsène Pérard-Gayot, Stefan Lemme, Manuela Schuler,
Puya Amiri, Philipp Slusallek (Visual Computing)
Roland Leißa, Simon Moll, Sebastian Hack (Compiler)

Intel Visual Computing Institute (IVCI) at Saarland University
German Research Center for Artificial Intelligence (DFKI)

Many-core hardware is everywhere – but programming it is still hard

Many-Core Dilemma

1

Intel Skylake (1.8B transistors) AMD Zen + Vega (4.9B transistors)

CPU GPU

AMD Polaris
(~5.7B transistors)

Intel Knights Landing
(~8B transistors)

GPU

Core 1 Core 2

Core 3 Core 4

Memory Controller I/O

Shared L3 Cache

System
Agent,
Display

Engine &
Memory

Controller

CPU

GPU

CPU

CPU/GPU

CPU

Intel / Altera Cyclone
NVIDIA Kepler

(~7B transistors)

GPU

CPU

Xilinx Zync

Still State-of-the-Art …

2

Math

Pseudo-Code

X1 X2 X3 X4

C sequential

abstract
maintainable
readable
portable
“slow”

concrete
fast

automated

manual

Xi⊆ { C, OpenMP, OpenACC,
CUDA, OpenCL,

OpenCL4X, OpenCL4Y, ... }
GPU

Core
1

Core
2

Core
3

Core
4

Memory Controller
I/O

Shared L3
Cache

Syste
m

Agent,
Displa

y
Engin
e &

Memo
ry

Contr
oller

CPU
GPU

CPU

...

What can we do?

Challenges: Productivity, portability, and performance.

Manual tuning
rewrite code yourself
Annotations
use the compiler to rewrite code
Program generation
use a script to write code
Meta programming
write program to rewrite program
Domain-specific languages
write compiler to rewrite program

3

Math

Pseudo-Code

X

abstract
maintainable
readable
portable
“slow”

concrete
fast

automated

manual
?

The Vision

Single high-level representation of our algorithms
Simple transformations to wide range of target hardware architectures

First step: RTfact [HPG’08]
Use of C++ Template Metaprogramming
Great performance (-10%) – but largely unusable due to template syntax

AnyDSL: New compiler technology, enabling arbitrary Domain-Specific Libraries (DSLs)
High-level algorithms + HW mapping of used abstractions + cross-layer specialization
Computer Vision: 10x shorter code, 25-50% faster than OpenCV on GPU & CPU
Ray Tracing: First cross-platform algorithm, beating best code on CPUs & GPUs

4

AnyDSL: Overview

Computer
Vision

DSL

Physics
DSL …Ray Tracing

DSL

Various Backends (via LLVM)

De
ve

lo
pe

rParallel
Runtime

DSL

Layered DSLs

5

Unified Program Representation

Compiler Framework (Thorin)

High-Level Program Representation

Uses functional Continuation Passing Style (CPS) and graph-based structure
All language constructs as higher-order functions
Structure well suited for transformations using “lambda mangling”

6

Source

AST

Low-level IR

Binary

Source

AST

High-level IR

Binary

Low-level IR

Source

AST

Low-level IR

Binary

Traditional Compilers „Functional“ Compilers AnyDSL

Compiler Framework

Impala language (Rust dialect)
Functional & imperative language

Thorin compiler [GPCE’15, OOPSLA’18]
Higher-order functional IR [CGO’15]

Special optimization passes
No overhead during runtime

Region Vectorizer [PLDI’18]
LLVM-based back ends

Full compiler optimization passes
Multi-target code generation

NVVM/NVPTX, AMDGPU
CPUs, GPUs, FPGAs, SX-Aurora, …

Thorin

LLVM

NVVM
NVPTX

Impala

AMDGPU

RV
Vectorizer

Native
Code

CUDA
OpenCL

HLS

7

Various Backends (via LLVM)

Unified Program Representation

Layered DSLs

Compiler Framework (Thorin)

AnyDSL Key Feature: Partial Evaluation (in a Nutshell)

Normal program execution Execution with program specialization
PE as part of normal compilation process!!

PEInput D Output

Partial
EvaluatorInput S

Program P

Specialized
Program P’

10

Program PInput D
(dynamic) Output

Input S
(static)

Impala: A Base Language for DSL Embedding

Impala is an imperative & functional language
A dialect of Rust (https://rust-lang.org)
Specialization when instantiating @-annotated functions [OOPSLA’18]
Partial evaluation executes all possible instructions at compile time

fn @(?n) dot(n: int,
u: &[float],
v: &[float]
) -> float {

let mut sum = 0.0f;

for i in unroll(0, n) {
sum += u(i)*v(i);

}

sum
}

// specialization at call-site
result = dot(3, a, b);

// specialized code for dot-call
result = 0;
result += a(0)*b(0);
result += a(1)*b(1);
result += a(2)*b(2);

11

Case Study: Image Processing
[GPCE’15, OOPSLA’18]

Stincilla – A DSL for Stencil Codes
https://github.com/AnyDSL/stincilla

12

Application developer: Simply wants to use a DSL
Example: Image processing, specifically Gaussian blur
Using OpenCV as reference

fn main() -> () {
let img = read_image(“lena.pgm”);
let result = gaussian_blur(img);
show_image(result);

}

Sample DSL: Stencil Codes in Impala

13

Higher level domain-specific code: DSL implementation
Gaussian blur implementation using generic apply_convolution
iterate function iterates over image (provided by machine expert)

fn @gaussian_blur(img: Img) -> Img {
let mut out = Img { data: ~[img.width*img.height:float],

width: img.width,
height: img.height };

let filter = [[0.057118f, 0.124758f, 0.057118f],
[0.124758f, 0.272496f, 0.124758f],
[0.057118f, 0.124758f, 0.057118f]];

for x, y in iterate(out) {
out.data(x, y) = apply_convolution(x, y, img, filter);

}

out
}

Sample DSL: Stencil Codes in Impala

14

Higher level domain-specific code: DSL implementation
for syntax: syntactic sugar for lambda function as last argument

fn @gaussian_blur(img: Img) -> Img {
let mut out = Img { data: ~[img.width*img.height:float],

width: img.width,
height: img.height };

let filter = [[0.057118f, 0.124758f, 0.057118f],
[0.124758f, 0.272496f, 0.124758f],
[0.057118f, 0.124758f, 0.057118f]];

iterate(out, |x, y| -> () {
out.data(x, y) = apply_convolution(x, y, img, filter);

});

out
}

Sample DSL: Stencil Codes in Impala

15

fn @apply_convolution(x: int, y: int,
img: Img,
filter: [float]
) -> float {

let mut sum = 0.0f;
let half = filter.size / 2;

for j in unroll(-half, half+1) {
for i in unroll(-half, half+1) {
sum += img.data(x+i, y+j) * filter(i, j);

}
}

sum
}

Domain-specific code: DSL implementation for image processing
Generic function that applies a given stencil to a single pixel
Partial evaluation

Unrolls stencil
Propagates constants
Inlines function calls

Sample DSL: Stencil Codes in Impala

16

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
for y in range(0, img.height) {
for x in range(0, img.width) {
body(x, y);

}
}

}

Mapping to Target Hardware: CPU

Scheduling & mapping provided by machine expert
Simple sequential code on a CPU
body gets inlined through specialization at higher level

17

Scheduling & mapping provided by machine expert
CPU code using parallelization and vectorization (e.g. AVX)
parallel is provided by the compiler, maps to TBB or C++11 threads
vectorize is provided by the compiler, uses region vectorization

Mapping to Target Hardware: CPU with Optimization

18

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
let thread_number = 4;
let vector_length = 8;
for y in parallel(thread_number, 0, img.height) {
for x in range_step(0, img.width, vector_length) {
for lane in vectorize(vector_length) {
body(x + lane, y);

}
}

}
}

Mapping to Target Hardware: GPU

Scheduling & mapping provided by machine expert
Exposed NVVM (CUDA) code generation
Last argument of nvvm is function we generate NVVM code for

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
let grid = (img.width, img.height, 1);
let block = (32, 4, 1);

with nvvm(grid, block) {
let x = nvvm_tid_x() + nvvm_ntid_x() * nvvm_ctaid_x();
let y = nvvm_tid_y() + nvvm_ntid_y() * nvvm_ctaid_y();
body(x, y);

}
}

19

Exploiting Boundary Handling (1)

Boundary handling
Evaluated for all points
Unnecessary evaluation of conditionals

Specialized variants for different
regions

Automatic generation of variants
 Partial evaluation

20

Specialized implementation
Wrap memory access to image in an access() function

Distinction of variant via region variable (here only in horizontally)
Specialization discards unnecessary checks

fn @access(mut x: int, y: int,
img: Img,
region,
bh_lower: fn(int, int) -> int,
bh_upper: fn(int, int) -> int,
) -> float {

if region == left { x = bh_lower(x, 0); }
if region == right { x = bh_upper(x, img.width); }
img(x, y)

}

Exploiting Boundary Handling (2)

21

Exploiting Boundary Handling: CPU & AVX

Specialized implementation
outer_loop maps to parallel and inner_loop calls either range (CPU) or vectorize (AVX)
unroll triggers image region specialization
Speedup over OpenCV: 40% (Intel CPU, vectorized)

22

fn @iterate(img: Img, body: fn(int, int, int) -> ()) -> () {
let offset = filter.size / 2;
// left right center
let L = [0, img.width - offset, offset];
let U = [offset, img.width, img.width - offset];

for region in unroll(0, 3) {
for y in outer_loop(0, img.height) {
for x in inner_loop(L(region), U(region)) {
...
body(x, y, region);

}
}

}
}

Exploiting Boundary Handling: GPU

Specialized implementation
unroll triggers image region specialization
Generates multiple GPU kernels for each image region
Speedup over OpenCV: 25% (Intel GPU), 50% (AMD GPU), 45% (NVIDIA GPU)

23

fn @iterate(img: Img, body: fn(int, int, int) -> ()) -> () {
let offset = filter.size / 2;
// left right center
let L = [0, img.width - offset, offset];
let U = [offset, img.width, img.width - offset];

for region in unroll(0, 3) {
let grid = (U(region) - L(region), img.height, 1);
with nvvm(grid, (128, 1, 1)) {
...
body(L(region) + x, y, region);

}
}

}

Mapping to Target Hardware: FPGA (WIP)

Scheduling & mapping provided by machine expert
Exposed AOCL code generation via opencl
Exposed VHLS code generation via hls
Mapping for simple point operators

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
with opencl((1, 1, 1), (1, 1, 1)) {
for y in range(0, img.height) {
for x in range(0, img.width) {
body(x, y);

}
}

}
}

24

Other Domains [OOPSLA‘18]

25

Ray Tracing Genome Sequence AlignmentImage Processing

Ray Traversal
Embree: -15% to +13%

OptiX: -19% to -2%

SeqAn: -19% to -7%
NVBIO: -8% to -2%

OpenCV: +45% to +50% (Blur)
Halide: +7% to +12 (Blur)

Halide: +37% to +44% (Harris Corner)

Separation of Concerns

Separation of concerns through code
refinement

Higher-order functions
Partial evaluation
Triggered code generation

30

Application developer

DSL developer

Machine expert
fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {

let grid = (img.width, img.height);
let block = (128, 1, 1);

with nvvm(grid, block) {
let x = nvvm_tid_x() + nvvm_ntid_x() + nvvm_ctaid_x();
let y = nvvm_tid_y() + nvvm_ntid_y() + nvvm_ctaid_y();
body(x, y);

}
}

fn @gaussian_blur(img: Img) -> Img {
let filter = /* ... */; let mut out = Img { /* ... */ };

for x, y in iterate(out) {
out(x, y) = apply(x, y, img, filter);

}
out

}

fn main() {
let result = gaussian_blur(img);

}

Case Study: Ray Tracing [SIGGRAPH’19]

Rodent: Generating Renderers without
Writing a Generator

https://github.com/AnyDSL/rodent

31

Rodent: Renderer + Traversal Library

Renderer-generating library:
Generate renderer that is optimized/specialized
for a given input scene (or a class of scenes)

Generic, high-level, textbook code for
Shaders, lights, geometry, integrator, …

No low-level aspects
Strategy, scheduling, data layout, …

Separate mapping for each hardware
3D scenes are converted into code

E.g. from within Blender via exporter
Code triggers code generation

32

Features

OptiX (NVIDIA)
NVIDIA GPU only
Generates megakernel (MK)
Not easy to extend (closed source)

Embree + ispc (Intel)
amd64 only
Low-level, write-only code

33

Rodent
NVIDIA & AMD GPUs
Megakernel & wavefront (WF)
Open source

amd64 & ARM support
High-level, textbook style code

Test Scenes

34

Performance Results

Cross-layer specialization (traversal + shading)
~20% speedup vs. no specialization

Optimal scheduling for each device
Megakernel vs. wavefront

35

Code Complexity

Halstead’s complexity measures
Reusable renderer core
More accurate than LoC

36

Polyvariant and nested vectorization
Reusable code across architectures
Change vector width within vectorized
region (e.g. hybrid traversal)

Scene Statistics: Compile Time & Shader Fusion

Megakernel only: shader fusion
#initial #unique #fused

Living room: 19 16 6
Bathroom: 16 15 5
Dining room: 58 51 28
Kitchen: 129 95 19
Staircase: 31 27 11
Bedroom: 41 38 13

37

Compilation times

Thank you for your attention.
Questions?

Case Study: Collision Avoidance &
Crash Impact Point Optimization [GTC’16,IV’19]

Joint Project with Audi and THI

39

Prediction Approach to Environment Analysis

Objects are described by their physical
properties
Movement is sampled and extrapolated
All object hypotheses are combined with
each other

40

Performance Results

Collision Avoidance
8.6 million hypotheses combinations
per collision object

Scenario: 3 collision object + EGO vehicle
26 million hypotheses combinations

Crash Impact Point Optimization
0.9 million hypotheses combinations
per collision object

Scenario: 2 critical objects + EGO vehicle
1.8 million hypotheses combinations

41

Lang HW Time
MatLab Intel Core i5 6 min
AnyDSL Tegra X1 CPU 2 s
AnyDSL Tegra X1 GPU 36 ms
AnyDSL Drive PX2 GPU 15 ms

Lang HW Time
MatLab Intel Core i5 16.5 s
AnyDSL Tegra X1 CPU 0.3 s
AnyDSL Tegra X1 GPU 8 ms
AnyDSL Drive PX2 GPU 12 ms

Case Study: DreamSpace EU Project
High Quality Rendering of Virtual Production Scenes

42

Key Achievements

Goals:
High quality, global illumination rendering for real-time use
With quality allowing creative use already during onset work
Fully integrated into the Dreamspace ecosystem

Technology Developments:
Improve and use of novel compiler framework (AnyDSL)
Optimize core ray traversal and intersection engine
Design a scalable, high-performance rendering architecture
Create real-time distribution framework

43

Conclusion

AnyDSL Framework
High-level, higher-order functional program representation
Novel code-refinement concept
Control over partial evaluation, vectorization, target code-generation

Sample high-performance, domain-specific libraries (DSLs)
Stincilla: Stencil codes, image processing
RaTrace: Ray traversal kernels
Rodent: Renderer generator
AnySeq: Genome sequence alignment

44

Future Work

Other high-performance libraries
Deep learning
Computer vision pipelines
Simulation, string matching, …

Hardware synthesis as a backend
Very promising results with FPGAs!

45

RODENT: GENERATING
RENDERERS WITHOUT
WRITING A GENERATOR
A. Pérard-Gayot, R. Membarth,
R. Leissa, S. Hack, P. Slusallek

© 2019 SIGGRAPH. ALL RIGHTS RESERVED.

Overview

Traditional
Renderer

Scene Picture
What this talk is about

• Generating renderers from high-level, textbook-like code
• Specialized/optimized for a scene type
• High-performance: Up to 40%/20% faster than OptiX/Embree+ispc

1

Rendering

Traditional
Renderer

Picture

Compile

Interpret

Shaders

Others

Scene
In a traditional renderer

• Shaders are compiled by a (shader) compiler
• Standard compiler optimizations

• Rest of the scene is interpreted during rendering
• if/else branches (e.g. for renderer config/options)
• Virtual function calls (e.g. for geometry types)
• ...

2

Rendering

Specialized
Renderer

Picture

Compile

Scene
In Rodent

• We compile the entire scene into a renderer
• We only use the scene type, not the actual scene data

• No benefit from knowing e.g. the position of triangle 544
• We use Partial Evaluation

• To avoid writing a Renderer Generator

2

Traditional Execution vs. Partial Evaluation

Traditional
Renderer

Scene Picture
Traditional program execution

3

Traditional Execution vs. Partial Evaluation

High-level
Rendering

Code

Partial Evaluation
3

Traditional Execution vs. Partial Evaluation

High-level
Rendering

Code }Rodent

Partial Evaluation
3

Traditional Execution vs. Partial Evaluation

High-level
Rendering

Code

Scene type

}Rodent

Partial Evaluation
3

Traditional Execution vs. Partial Evaluation

High-level
Rendering

Code

Partial
Evaluator

Scene type

}Rodent

Partial Evaluation
3

Traditional Execution vs. Partial Evaluation

High-level
Rendering

Code

Partial
Evaluator

Specialized
Renderer

Scene type

}Rodent

Partial Evaluation
3

Traditional Execution vs. Partial Evaluation

High-level
Rendering

Code

Partial
Evaluator

Scene data Specialized
Renderer

Scene type

}Rodent

Partial Evaluation
3

Traditional Execution vs. Partial Evaluation

High-level
Rendering

Code

Picture

Partial
Evaluator

Scene data Specialized
Renderer

Scene type

}Rodent

Partial Evaluation
3

AnyDSL

• This work leverages the AnyDSL compiler framework
• https://github.com/AnyDSL

• Provides user-guided Partial Evaluation
• High-performance code generation using LLVM
• Can target/optimize for CPUs or GPUs

• Intel/AMD/NVIDIA/ARM/...

4

Rendering Library Design

• High-level, textbook-like
• In the spirit of PBRT

• Descriptive and modular
• Separate the algorithm (”what”) from the schedule/hardware mapping (”how”)

• High-performance
• Different hardware mappings
• CPUs/GPUs have different execution models
• Need efficient and flexible abstractions

5

The ”What”

BSDF

struct Bsdf {
// Evaluation of the function given a pair of directions
eval: fn (Vec3, Vec3) -> Color,

// Probability density function used during sampling
pdf: fn (Vec3, Vec3) -> f32,

// Samples a direction (importance sampled according to this BSDF)
sample: fn (Vec3) -> BsdfSample,

}

6

Example: Diffuse BSDF

fn @make_diffuse_bsdf(surf: SurfaceElement, kd: Color) -> Bsdf {
Bsdf {
eval: @ |in_dir, out_dir| kd * (1.0f / pi),
pdf: @|in_dir, out_dir|
cosine_hemisphere_pdf(positive_cos(in_dir, surf.normal)),

sample: @ |out_dir| {
let sample = sample_cosine_hemisphere(rand(), rand());
let color = kd * (1.0f / pi);
make_bsdf_sample(surf, sample, color)

}
}

}

• @ triggers partial evaluation/specializes the function
• Replaces the function by its contents at the call site to allow optimizations

7

Rendering Building Blocks

Defining a scene with Rodent

• BSDFs:
let diff = make_diffuse_bsdf(kd);
let spec = make_phong_bsdf(ns, ks);
let bsdf = make_mix_bsdf(spec, diff, k);

• Light sources, textures, geometric objects, ...

8

Rendering Building Blocks

Defining a scene with Rodent

• BSDFs:
let diff = make_diffuse_bsdf(kd);
let spec = make_phong_bsdf(ns, ks);
let bsdf = make_mix_bsdf(spec, diff, k);

• Light sources, textures, geometric objects, ...

8

Rodent is a Scene Description Language

let renderer = make_path_tracing_renderer(/* ... */);
let geometry = make_tri_mesh_geometry(/* ... */);

let tex = make_image_texture(/* ... */);

let shader = |ray, hit, surface| {
let uv = surface.attribute(0).as_vec2;
make_diffuse_bsdf(surface, tex(uv1));

};

let scene = make_scene(geometry, /* ... */);

BSDF DSL + Light DSL + Geometry DSL + ... = Scene language embedded in AnyDSL

9

Abstracting the Rendering Process

Emit

Trace

Surface Emission

Trace Shadow

Bounce

Next Sample

Emit Shadow Ray

Continue

Terminate

No intersection

Skip

struct Tracer {
on_emit: OnEmitFn,
on_hit: OnHitFn,
on_shadow: OnShadowFn,
on_bounce: OnBounceFn,

}

• Can also be used for bidir. algorithms

• Green nodes: the algorithm
What should be computed

• Blue nodes: the schedule
How it should be computed

10

The ”How”

Mapping Renderers to Hardware

• The Device contains hardware-specific routines:
struct Device {
trace: fn (Scene, Tracer) -> (),
/* ... */

}

• Schedule renderers differently depending on the platform
• Wavefront: Batches (larger than SIMD width) of rays together
• Megakernel: Large compute kernel, one ray at a time (used in OptiX)

• Rodent implements 3 devices:
1. CPU: Wavefront
2. GPU: Megakernel
3. GPU: Wavefront

11

Wavefront Devices

On CPUs

• Processes a small (∼1000 rays) batch of rays together
• Maximize cache efficiency

• Sort rays by shader and process contiguous ranges
• Uses vectorization and specialization , simplified:

for shader in unro l l (0 , scene . num_shaders) {
// Get the range of rays for th i s shader
l e t (begin , end) = ray_range_by_shader (shader) ;
for i in vec tor i ze (vector_width , begin , end) {
// Scalar code using on_hit () , on_shadow () , . . .
// => automatical ly vec tor i zed

}
}

12

Wavefront Devices

On CPUs

• Processes a small (∼1000 rays) batch of rays together
• Maximize cache efficiency

• Sort rays by shader and process contiguous ranges
• Uses vectorization and specialization , simplified:

for shader in unro l l (0 , scene . num_shaders) {
// Get the range of rays for th i s shader
l e t (begin , end) = ray_range_by_shader (shader) ;
for i in vec tor i ze (vector_width , begin , end) {
// Scalar code using on_hit () , on_shadow () , . . .
// => automatical ly vec tor i zed

}
}

i∊unroll(0,3)
j∊vectorize(w,begin(i),end(i))

j0∊vectorize(w,begin(0),end(0))
j1∊vectorize(w,begin(1),end(1))
j2∊vectorize(w,begin(2),end(2))

⬇

12

Wavefront Devices

On GPUs

• Processes a larger (∼1M rays) batch of rays
• Maximize parallelism

• Sort rays by shader and process contiguous ranges
• Generates one kernel per shader, with specialization , simplified:

for shader in unro l l (0 , scene . num_shaders) {
// Get the range of rays for th i s shader
l e t (begin , end) = ray_range_by_shader (shader) ;
l e t gr id = (round_up (end − begin , b lock_s ize) , 1 , 1) ;
l e t block = (block_size , 1 , 1) ;
with work_item in cuda (grid , block) {
// Use on_hit () , on_shadow () , . . .

}
}

12

Wavefront Devices

On GPUs

• Processes a larger (∼1M rays) batch of rays
• Maximize parallelism

• Sort rays by shader and process contiguous ranges
• Generates one kernel per shader, with specialization , simplified:

for shader in unro l l (0 , scene . num_shaders) {
// Get the range of rays for th i s shader
l e t (begin , end) = ray_range_by_shader (shader) ;
l e t gr id = (round_up (end − begin , b lock_s ize) , 1 , 1) ;
l e t block = (block_size , 1 , 1) ;
with work_item in cuda (grid , block) {
// Use on_hit () , on_shadow () , . . .

}
}

i∊unroll(0,3)
cuda(grid(i),block(i))

⬇

cuda(grid(0),block(0))
cuda(grid(1),block(1))
cuda(grid(2),block(2))

12

Megakernel GPU Device

• Rays are local to the current execution thread
• Rendering loop inside the kernel, simplified:
fn trace(scene: Scene, tracer: Tracer) -> () {
with work_item in cuda(grid, block) {
let (x, y) = (work_item.gidx(), work_item.gidy());
let (ray, state) = tracer.on_emit(x, y);
let mut terminated = false;
while !terminated {
// Trace + use on_hit(), on_shadow(), ...

}
}

}

13

Evaluation

• Versus high-performance, state-of-the-art frameworks:
• Embree + ispc: only for x86/amd64
• OptiX: only for CUDA hardware

• Built custom, simple renderers based on those frameworks
• Following documentation
• Only implemented features required to render the test scenes

• Measured:
• Performance
• Code complexity

• Workflow: Convert scene to AnyDSL⇒ compile⇒ render

14

Scenes

786k tris./ 13 mats. 1.231M tris./14 mats. 545k tris./35 mats.

718k tris./44 mats. 612k tris./61 mats. 263k tris./23 mats.

Scenes by Wig42, nacimus, SlykDrako, MaTTeSr, Jay-Artist, licensed under CC-BY 3.0/CC0 1.0. See paper for details.

15

Results: Performance
CPU (Intel™ i7 6700K) GPU (NVIDIA™ Titan X) GPU (AMD™ R9 Nano)

Scene Rodent2 Embree Rodent1 Rodent2 OptiX Rodent1 Rodent2

Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.87 35.11
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 35.32 (+42%) 20.64 14.95 27.31
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88 (+29%) 27.72 19.25 32.90
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 40.37 (+29%) 28.58 16.22 30.83
Kitchen 6.64 (+12%) 5.92 22.73 (+ 2%) 32.09 (+31%) 22.22 16.68 28.13
Staircase 4.86 (+ 8%) 4.48 20.00 (+18%) 27.53 (+39%) 16.89 11.74 22.21

(1) Megakernel, (2) Wavefront

• Between +1− 23% vs. Embree
• Around 60− 70% of the time tracing rays
• Traversal algorithms in Embree are already specialized
• Rodent’s shading alone is around 2× faster than with ispc

• Between +2− 31% vs OptiX (Megakernel)
• Between +29− 42% vs OptiX (Wavefront)

• Wavefront scales better with shader complexity
• Not limited by register pressure

16

Results: Performance
CPU (Intel™ i7 6700K) GPU (NVIDIA™ Titan X) GPU (AMD™ R9 Nano)

Scene Rodent2 Embree Rodent1 Rodent2 OptiX Rodent1 Rodent2

Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.87 35.11
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 35.32 (+42%) 20.64 14.95 27.31
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88 (+29%) 27.72 19.25 32.90
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 40.37 (+29%) 28.58 16.22 30.83
Kitchen 6.64 (+12%) 5.92 22.73 (+ 2%) 32.09 (+31%) 22.22 16.68 28.13
Staircase 4.86 (+ 8%) 4.48 20.00 (+18%) 27.53 (+39%) 16.89 11.74 22.21

(1) Megakernel, (2) Wavefront
• Between +1− 23% vs. Embree

• Around 60− 70% of the time tracing rays
• Traversal algorithms in Embree are already specialized
• Rodent’s shading alone is around 2× faster than with ispc

• Between +2− 31% vs OptiX (Megakernel)
• Between +29− 42% vs OptiX (Wavefront)

• Wavefront scales better with shader complexity
• Not limited by register pressure

16

Results: Performance
CPU (Intel™ i7 6700K) GPU (NVIDIA™ Titan X) GPU (AMD™ R9 Nano)

Scene Rodent2 Embree Rodent1 Rodent2 OptiX Rodent1 Rodent2

Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.87 35.11
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 35.32 (+42%) 20.64 14.95 27.31
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88 (+29%) 27.72 19.25 32.90
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 40.37 (+29%) 28.58 16.22 30.83
Kitchen 6.64 (+12%) 5.92 22.73 (+ 2%) 32.09 (+31%) 22.22 16.68 28.13
Staircase 4.86 (+ 8%) 4.48 20.00 (+18%) 27.53 (+39%) 16.89 11.74 22.21

(1) Megakernel, (2) Wavefront
• Between +1− 23% vs. Embree

• Around 60− 70% of the time tracing rays
• Traversal algorithms in Embree are already specialized
• Rodent’s shading alone is around 2× faster than with ispc

• Between +2− 31% vs OptiX (Megakernel)

• Between +29− 42% vs OptiX (Wavefront)
• Wavefront scales better with shader complexity
• Not limited by register pressure

16

Results: Performance
CPU (Intel™ i7 6700K) GPU (NVIDIA™ Titan X) GPU (AMD™ R9 Nano)

Scene Rodent2 Embree Rodent1 Rodent2 OptiX Rodent1 Rodent2

Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.87 35.11
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 35.32 (+42%) 20.64 14.95 27.31
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88 (+29%) 27.72 19.25 32.90
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 40.37 (+29%) 28.58 16.22 30.83
Kitchen 6.64 (+12%) 5.92 22.73 (+ 2%) 32.09 (+31%) 22.22 16.68 28.13
Staircase 4.86 (+ 8%) 4.48 20.00 (+18%) 27.53 (+39%) 16.89 11.74 22.21

(1) Megakernel, (2) Wavefront
• Between +1− 23% vs. Embree

• Around 60− 70% of the time tracing rays
• Traversal algorithms in Embree are already specialized
• Rodent’s shading alone is around 2× faster than with ispc

• Between +2− 31% vs OptiX (Megakernel)
• Between +29− 42% vs OptiX (Wavefront)

• Wavefront scales better with shader complexity
• Not limited by register pressure 16

Results: Code Complexity

Rodent Embree+ispc
0

2

4

6

8

10
Ha
ls
te
ad

Ef
fo
rt

.10
6

Core
CPU

• Embree: only on x86/amd64
• Rodent: also on ARM

+ other LLVM targets (RISC-V?)

Rodent OptiX
0

2

4

6

8

10

Ha
ls
te
ad

Ef
fo
rt

.10
6

Core
GPU

• OptiX: only Megakernel, only CUDA hw.
• Rodent: also on AMD™ GPUs

+ other LLVM targets (Intel™ GPU?)
17

Conclusion

Rodent generates high-performance renderers without writing a generator

• Defines textbook-like, generic algorithms
• Provides tailored hardware schedules for different CPUs and GPUs
• Specializes code according to the scene via AnyDSL
• Runs up to 40% faster than state-of-the-art

18

Questions?

High-level
Rendering

Code

Picture

Partial
Evaluator

Scene data Specialized
Renderer

Scene type

}Rodent

https://github.com/AnyDSL/rodent

19

Results: Impact of Specialization

base T A T + A

100

1,000

43.9 45.8

217.5 225.5
305.3

729.7
1,112 1,160

M
ra
ys
/s

CPU
GPU

• Base: No specialization
• T: Specialize the interface (shader←→ texturing function)
• A: Specialize the interface (shader←→ mesh attribute)

20

Specialization: Caveats

• Specialization may lead to increased compilation times
• Specializing to much may increase register pressure

• Dangerous for the megakernel device
• Not a problem for the wavefront device

• Rodent fuses simple/similar shaders together
• Only for the megarkernel device
• Mitigates problems of divergence and reg. pressure

21

Results: Compilation Times

Liv
ing
Ro
om

Ba
thr
oo
m

Be
dro
om

Din
ing
Ro
om

Kit
ch
en

Sta
irc
ase

0

20

40

60

80

100

120

14 18

48

87

112

33

5 6
17

30
41

11
2 2 3

9 5 4

Co
m
pi
la
tio
n
Ti
m
e
(s
)

CPU
GPU (Wavefront)
GPU (Megakernel)

22

Improving Compilation Times

• The more there is to specialize, the slower
• Compiler itself is not particularly optimized for speed
• Parts of the renderer can be pre-compiled
• Does not need to know everything in the scene

• The less is known the less specialization will happen
• Automatically done by the compiler thanks to annotations
• Can be exploited to make compilation faster

23

	12-AnyDSL
	AnyDSL: A Partial Evaluation Framework for Programming High-Performance Libraries
	Many-Core Dilemma
	Still State-of-the-Art …
	What can we do?
	The Vision
	AnyDSL: Overview
	High-Level Program Representation
	Compiler Framework
	AnyDSL Key Feature: Partial Evaluation (in a Nutshell)
	Impala: A Base Language for DSL Embedding
	Slide Number 13
	Sample DSL: Stencil Codes in Impala
	Sample DSL: Stencil Codes in Impala
	Sample DSL: Stencil Codes in Impala
	Sample DSL: Stencil Codes in Impala
	Mapping to Target Hardware: CPU
	Mapping to Target Hardware: CPU with Optimization
	Mapping to Target Hardware: GPU
	Exploiting Boundary Handling (1)
	Exploiting Boundary Handling (2)
	Exploiting Boundary Handling: CPU & AVX
	Exploiting Boundary Handling: GPU
	Mapping to Target Hardware: FPGA (WIP)
	 Other Domains [OOPSLA‘18]
	Separation of Concerns
	Slide Number 32
	Rodent: Renderer + Traversal Library
	Features
	Test Scenes
	Performance Results
	Code Complexity
	Scene Statistics: Compile Time & Shader Fusion
	Thank you for your attention.�Questions?
	Slide Number 40
	Prediction Approach to Environment Analysis
	Performance Results
	Slide Number 43
	Key Achievements
	Conclusion
	Future Work

	12-Rodent-Siggraph-2019-final

