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Many-core hardware is everywhere – but programming it is still hard

Many-Core Dilemma
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Still State-of-the-Art …
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What can we do?

Challenges: Productivity, portability, and performance.

Manual tuning
rewrite code yourself
Annotations
use the compiler to rewrite code
Program generation
use a script to write code
Meta programming
write program to rewrite program
Domain-specific languages
write compiler to rewrite program
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The Vision

Single high-level representation of our algorithms
Simple transformations to wide range of target hardware architectures

First step: RTfact [HPG’08]
Use of C++ Template Metaprogramming
Great performance (-10%) – but largely unusable due to template syntax

AnyDSL: New compiler technology, enabling arbitrary Domain-Specific Libraries (DSLs) 
High-level algorithms + HW mapping of used abstractions + cross-layer specialization
Computer Vision: 10x shorter code, 25-50% faster than OpenCV on GPU & CPU
Ray Tracing: First cross-platform algorithm, beating best code on CPUs & GPUs
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AnyDSL: Overview
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High-Level Program Representation

Uses functional Continuation Passing Style (CPS) and graph-based structure
All language constructs as higher-order functions
Structure well suited for transformations using “lambda mangling”
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Compiler Framework

Impala language (Rust dialect)
Functional & imperative language

Thorin compiler [GPCE’15, OOPSLA’18]
Higher-order functional IR [CGO’15]

Special optimization passes
No overhead during runtime

Region Vectorizer [PLDI’18]
LLVM-based back ends

Full compiler optimization passes
Multi-target code generation

NVVM/NVPTX, AMDGPU
CPUs, GPUs, FPGAs, SX-Aurora, …
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AnyDSL Key Feature: Partial Evaluation (in a Nutshell)

Normal program execution Execution with program specialization
PE as part of normal compilation process!!
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Impala: A Base Language for DSL Embedding

Impala is an imperative & functional language
A dialect of Rust (https://rust-lang.org)
Specialization when instantiating @-annotated functions [OOPSLA’18]
Partial evaluation executes all possible instructions at compile time

fn @(?n) dot(n: int,
u: &[float],
v: &[float]
) -> float {

let mut sum = 0.0f;

for i in unroll(0, n) {
sum += u(i)*v(i);

}

sum
}

// specialization at call-site
result = dot(3, a, b);

// specialized code for dot-call
result = 0;
result += a(0)*b(0);
result += a(1)*b(1);
result += a(2)*b(2);
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Case Study: Image Processing
[GPCE’15, OOPSLA’18]

Stincilla – A DSL for Stencil Codes
https://github.com/AnyDSL/stincilla

12



Application developer: Simply wants to use a DSL
Example: Image processing, specifically Gaussian blur
Using OpenCV as reference

fn main() -> () {
let img = read_image(“lena.pgm”);
let result = gaussian_blur(img);
show_image(result);

}

Sample DSL: Stencil Codes in Impala
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Higher level domain-specific code: DSL implementation
Gaussian blur implementation using generic apply_convolution
iterate function iterates over image (provided by machine expert)

fn @gaussian_blur(img: Img) -> Img {
let mut out = Img { data:   ~[img.width*img.height:float],

width:  img.width,
height: img.height };

let filter = [[0.057118f, 0.124758f, 0.057118f],
[0.124758f, 0.272496f, 0.124758f],
[0.057118f, 0.124758f, 0.057118f]];

for x, y in iterate(out) {
out.data(x, y) = apply_convolution(x, y, img, filter);

}

out
}

Sample DSL: Stencil Codes in Impala
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Higher level domain-specific code: DSL implementation
for syntax: syntactic sugar for lambda function as last argument

fn @gaussian_blur(img: Img) -> Img {
let mut out = Img { data:   ~[img.width*img.height:float],

width:  img.width,
height: img.height };

let filter = [[0.057118f, 0.124758f, 0.057118f],
[0.124758f, 0.272496f, 0.124758f],
[0.057118f, 0.124758f, 0.057118f]];

iterate(out, |x, y| -> () {
out.data(x, y) = apply_convolution(x, y, img, filter);

});

out
}

Sample DSL: Stencil Codes in Impala
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fn @apply_convolution(x: int, y: int,
img: Img,
filter: [float]
) -> float {

let mut sum = 0.0f;
let half = filter.size / 2;

for j in unroll(-half, half+1) {
for i in unroll(-half, half+1) {
sum += img.data(x+i, y+j) * filter(i, j);

}
}

sum
}

Domain-specific code: DSL implementation for image processing
Generic function that applies a given stencil to a single pixel
Partial evaluation

Unrolls stencil
Propagates constants
Inlines function calls

Sample DSL: Stencil Codes in Impala
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fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
for y in range(0, img.height) {
for x in range(0, img.width) {
body(x, y);

}   
}

}

Mapping to Target Hardware: CPU

Scheduling & mapping provided by machine expert
Simple sequential code on a CPU
body gets inlined through specialization at higher level
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Scheduling & mapping provided by machine expert 
CPU code using parallelization and vectorization (e.g. AVX)
parallel is provided by the compiler, maps to TBB or C++11 threads
vectorize is provided by the compiler, uses region vectorization

Mapping to Target Hardware: CPU with Optimization
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fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
let thread_number = 4;
let vector_length = 8;
for y in parallel(thread_number, 0, img.height) {
for x in range_step(0, img.width, vector_length) {
for lane in vectorize(vector_length) {
body(x + lane, y);

}
}

}
}



Mapping to Target Hardware: GPU

Scheduling & mapping provided by machine expert
Exposed NVVM (CUDA) code generation
Last argument of nvvm is function we generate NVVM code for

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
let grid  = (img.width, img.height, 1);
let block = (32, 4, 1);

with nvvm(grid, block) {
let x = nvvm_tid_x() + nvvm_ntid_x() * nvvm_ctaid_x();
let y = nvvm_tid_y() + nvvm_ntid_y() * nvvm_ctaid_y();
body(x, y);

}
}
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Exploiting Boundary Handling (1)

Boundary handling
Evaluated for all points
Unnecessary evaluation of conditionals

Specialized variants for different 
regions

Automatic generation of variants
 Partial evaluation
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Specialized implementation
Wrap memory access to image in an access() function

Distinction of variant via region variable (here only in horizontally)
Specialization discards unnecessary checks

fn @access(mut x: int, y: int,
img: Img,
region,
bh_lower: fn(int, int) -> int,
bh_upper: fn(int, int) -> int,
) -> float {

if region == left  { x = bh_lower(x, 0); }
if region == right { x = bh_upper(x, img.width); }
img(x, y)

}

Exploiting Boundary Handling (2)
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Exploiting Boundary Handling: CPU & AVX

Specialized implementation
outer_loop maps to parallel and inner_loop calls either range (CPU) or vectorize (AVX)
unroll triggers image region specialization
Speedup over OpenCV: 40% (Intel CPU, vectorized)
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fn @iterate(img: Img, body: fn(int, int, int) -> ()) -> () {
let offset = filter.size / 2;
//       left    right               center
let L = [0,      img.width - offset, offset];
let U = [offset, img.width,          img.width - offset];

for region in unroll(0, 3) {
for y in outer_loop(0, img.height) {
for x in inner_loop(L(region), U(region)) {
...
body(x, y, region);

}
}

}
}



Exploiting Boundary Handling: GPU

Specialized implementation
unroll triggers image region specialization
Generates multiple GPU kernels for each image region
Speedup over OpenCV: 25% (Intel GPU), 50% (AMD GPU), 45% (NVIDIA GPU)
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fn @iterate(img: Img, body: fn(int, int, int) -> ()) -> () {
let offset = filter.size / 2;
//       left    right               center
let L = [0,      img.width - offset, offset];
let U = [offset, img.width,          img.width - offset];

for region in unroll(0, 3) {
let grid = (U(region) - L(region), img.height, 1);
with nvvm(grid, (128, 1, 1)) {
...
body(L(region) + x, y, region);

}
}

}



Mapping to Target Hardware: FPGA (WIP)

Scheduling & mapping provided by machine expert
Exposed AOCL code generation via opencl
Exposed VHLS code generation via hls
Mapping for simple point operators

fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {
with opencl((1, 1, 1), (1, 1, 1)) {
for y in range(0, img.height) {
for x in range(0, img.width) {
body(x, y);

}
}

}
}
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Other Domains [OOPSLA‘18]
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Ray Tracing Genome Sequence AlignmentImage Processing

Ray Traversal
Embree: -15% to +13%

OptiX: -19% to -2%

SeqAn: -19% to -7%
NVBIO: -8% to -2% 

OpenCV: +45% to +50% (Blur)
Halide: +7% to +12 (Blur)

Halide: +37% to +44% (Harris Corner)



Separation of Concerns

Separation of concerns through code 
refinement

Higher-order functions
Partial evaluation
Triggered code generation
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Application developer

DSL developer

Machine expert
fn @iterate(img: Img, body: fn(int, int) -> ()) -> () {

let grid  = (img.width, img.height);
let block = (128, 1, 1);

with nvvm(grid, block) {
let x = nvvm_tid_x() + nvvm_ntid_x() + nvvm_ctaid_x();
let y = nvvm_tid_y() + nvvm_ntid_y() + nvvm_ctaid_y();
body(x, y);

}
}

fn @gaussian_blur(img: Img) -> Img {
let filter = /* ... */; let mut out = Img { /* ... */ };

for x, y in iterate(out) {
out(x, y) = apply(x, y, img, filter);

}
out

}

fn main() {
let result = gaussian_blur(img);

}



Case Study: Ray Tracing [SIGGRAPH’19]

Rodent: Generating Renderers without
Writing a Generator

https://github.com/AnyDSL/rodent
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Rodent: Renderer + Traversal Library

Renderer-generating library:
Generate renderer that is optimized/specialized 
for a given input scene (or a class of scenes)

Generic, high-level, textbook code for
Shaders, lights, geometry, integrator, …

No low-level aspects
Strategy, scheduling, data layout, …

Separate mapping for each hardware
3D scenes are converted into code

E.g. from within Blender via exporter
Code triggers code generation
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Features

OptiX (NVIDIA)
NVIDIA GPU only
Generates megakernel (MK)
Not easy to extend (closed source)

Embree + ispc (Intel)
amd64 only
Low-level, write-only code
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Rodent
NVIDIA & AMD GPUs
Megakernel & wavefront (WF)
Open source

amd64 & ARM support
High-level, textbook style code



Test Scenes
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Performance Results

Cross-layer specialization (traversal + shading)
~20% speedup vs. no specialization

Optimal scheduling for each device
Megakernel vs. wavefront
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Code Complexity

Halstead’s complexity measures
Reusable renderer core
More accurate than LoC
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Polyvariant and nested vectorization
Reusable code across architectures
Change vector width within vectorized 
region (e.g. hybrid traversal)



Scene Statistics: Compile Time & Shader Fusion 

Megakernel only: shader fusion
#initial  #unique  #fused

Living room: 19  16  6
Bathroom: 16  15  5
Dining room: 58  51  28
Kitchen: 129  95  19
Staircase: 31  27  11
Bedroom: 41  38  13
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Compilation times



Thank you for your attention.
Questions?



Case Study: Collision Avoidance &
Crash Impact Point Optimization [GTC’16,IV’19]

Joint Project with Audi and THI
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Prediction Approach to Environment Analysis

Objects are described by their physical 
properties
Movement is sampled and extrapolated
All object hypotheses are combined with 
each other
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Performance Results

Collision Avoidance
8.6 million hypotheses combinations 
per collision object

Scenario: 3 collision object + EGO vehicle
26 million hypotheses combinations

Crash Impact Point Optimization
0.9 million hypotheses combinations 
per collision object

Scenario: 2 critical objects + EGO vehicle
1.8 million hypotheses combinations
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Lang HW Time
MatLab Intel Core i5 6 min
AnyDSL Tegra X1 CPU 2 s
AnyDSL Tegra X1 GPU 36 ms
AnyDSL Drive PX2 GPU 15 ms

Lang HW Time
MatLab Intel Core i5 16.5 s
AnyDSL Tegra X1 CPU 0.3 s
AnyDSL Tegra X1 GPU 8 ms
AnyDSL Drive PX2 GPU 12 ms



Case Study: DreamSpace EU Project
High Quality Rendering of Virtual Production Scenes
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Key Achievements

Goals:
High quality, global illumination rendering for real-time use
With quality allowing creative use already during onset work
Fully integrated into the Dreamspace ecosystem

Technology Developments:
Improve and use of novel compiler framework (AnyDSL)
Optimize core ray traversal and intersection engine
Design a scalable, high-performance rendering architecture
Create real-time distribution framework
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Conclusion

AnyDSL Framework
High-level, higher-order functional program representation
Novel code-refinement concept
Control over partial evaluation, vectorization, target code-generation

Sample high-performance, domain-specific libraries (DSLs)
Stincilla: Stencil codes, image processing
RaTrace: Ray traversal kernels
Rodent: Renderer generator
AnySeq: Genome sequence alignment
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Future Work

Other high-performance libraries
Deep learning
Computer vision pipelines
Simulation, string matching, …

Hardware synthesis as a backend
Very promising results with FPGAs!
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Overview

Traditional
Renderer

Scene Picture
What this talk is about

• Generating renderers from high-level, textbook-like code
• Specialized/optimized for a scene type
• High-performance: Up to 40%/20% faster than OptiX/Embree+ispc
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Rendering

Traditional
Renderer

Picture

Compile

Interpret

Shaders

Others 

Scene
In a traditional renderer

• Shaders are compiled by a (shader) compiler
• Standard compiler optimizations

• Rest of the scene is interpreted during rendering
• if/else branches (e.g. for renderer config/options)
• Virtual function calls (e.g. for geometry types)
• ...
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Rendering

Specialized
Renderer

Picture

Compile

Scene
In Rodent

• We compile the entire scene into a renderer
• We only use the scene type, not the actual scene data

• No benefit from knowing e.g. the position of triangle 544
• We use Partial Evaluation

• To avoid writing a Renderer Generator
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Traditional Execution vs. Partial Evaluation

Traditional
Renderer

Scene Picture
Traditional program execution
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Traditional Execution vs. Partial Evaluation

High-level
Rendering

Code

Partial Evaluation
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Traditional Execution vs. Partial Evaluation
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Code

Picture

Partial
Evaluator

Scene data Specialized
Renderer

Scene type

}Rodent

Partial Evaluation
3



AnyDSL

• This work leverages the AnyDSL compiler framework
• https://github.com/AnyDSL

• Provides user-guided Partial Evaluation
• High-performance code generation using LLVM
• Can target/optimize for CPUs or GPUs

• Intel/AMD/NVIDIA/ARM/...
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Rendering Library Design

• High-level, textbook-like
• In the spirit of PBRT

• Descriptive and modular
• Separate the algorithm (”what”) from the schedule/hardware mapping (”how”)

• High-performance
• Different hardware mappings
• CPUs/GPUs have different execution models
• Need efficient and flexible abstractions
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The ”What”



BSDF

struct Bsdf {
// Evaluation of the function given a pair of directions
eval: fn (Vec3, Vec3) -> Color,

// Probability density function used during sampling
pdf: fn (Vec3, Vec3) -> f32,

// Samples a direction (importance sampled according to this BSDF)
sample: fn (Vec3) -> BsdfSample,

}
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Example: Diffuse BSDF

fn @make_diffuse_bsdf(surf: SurfaceElement, kd: Color) -> Bsdf {
Bsdf {
eval: @ |in_dir, out_dir| kd * (1.0f / pi),
pdf: @|in_dir, out_dir|
cosine_hemisphere_pdf(positive_cos(in_dir, surf.normal)),

sample: @ |out_dir| {
let sample = sample_cosine_hemisphere(rand(), rand());
let color = kd * (1.0f / pi);
make_bsdf_sample(surf, sample, color)

}
}

}

• @ triggers partial evaluation/specializes the function
• Replaces the function by its contents at the call site to allow optimizations
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Rendering Building Blocks

Defining a scene with Rodent

• BSDFs:
let diff = make_diffuse_bsdf(kd);
let spec = make_phong_bsdf(ns, ks);
let bsdf = make_mix_bsdf(spec, diff, k);

• Light sources, textures, geometric objects, ...
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Rendering Building Blocks

Defining a scene with Rodent

• BSDFs:
let diff = make_diffuse_bsdf(kd);
let spec = make_phong_bsdf(ns, ks);
let bsdf = make_mix_bsdf(spec, diff, k);

• Light sources, textures, geometric objects, ...
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Rodent is a Scene Description Language

let renderer = make_path_tracing_renderer(/* ... */);
let geometry = make_tri_mesh_geometry(/* ... */);

let tex = make_image_texture(/* ... */);

let shader = |ray, hit, surface| {
let uv = surface.attribute(0).as_vec2;
make_diffuse_bsdf(surface, tex(uv1));

};

let scene = make_scene(geometry, /* ... */);

BSDF DSL + Light DSL + Geometry DSL + ... = Scene language embedded in AnyDSL
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Abstracting the Rendering Process

Emit

Trace

Surface Emission

Trace Shadow

Bounce

Next Sample

Emit Shadow Ray

Continue

Terminate

No intersection

Skip

struct Tracer {
on_emit: OnEmitFn,
on_hit: OnHitFn,
on_shadow: OnShadowFn,
on_bounce: OnBounceFn,

}

• Can also be used for bidir. algorithms

• Green nodes: the algorithm
What should be computed

• Blue nodes: the schedule
How it should be computed

10



The ”How”



Mapping Renderers to Hardware

• The Device contains hardware-specific routines:
struct Device {
trace: fn (Scene, Tracer) -> (),
/* ... */

}

• Schedule renderers differently depending on the platform
• Wavefront: Batches (larger than SIMD width) of rays together
• Megakernel: Large compute kernel, one ray at a time (used in OptiX)

• Rodent implements 3 devices:
1. CPU: Wavefront
2. GPU: Megakernel
3. GPU: Wavefront
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Wavefront Devices

On CPUs

• Processes a small (∼1000 rays) batch of rays together
• Maximize cache efficiency

• Sort rays by shader and process contiguous ranges
• Uses vectorization and specialization , simplified:

for shader in unro l l ( 0 , scene . num_shaders ) {
// Get the range of rays for th i s shader
l e t ( begin , end ) = ray_range_by_shader ( shader ) ;
for i in vec tor i ze ( vector_width , begin , end ) {
// Scalar code using on_hit ( ) , on_shadow ( ) , . . .
// => automatical ly vec tor i zed

}
}
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Wavefront Devices

On CPUs

• Processes a small (∼1000 rays) batch of rays together
• Maximize cache efficiency

• Sort rays by shader and process contiguous ranges
• Uses vectorization and specialization , simplified:

for shader in unro l l ( 0 , scene . num_shaders ) {
// Get the range of rays for th i s shader
l e t ( begin , end ) = ray_range_by_shader ( shader ) ;
for i in vec tor i ze ( vector_width , begin , end ) {
// Scalar code using on_hit ( ) , on_shadow ( ) , . . .
// => automatical ly vec tor i zed

}
}

i∊unroll(0,3)
j∊vectorize(w,begin(i),end(i))

j0∊vectorize(w,begin(0),end(0))
j1∊vectorize(w,begin(1),end(1))
j2∊vectorize(w,begin(2),end(2))

⬇
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Wavefront Devices

On GPUs

• Processes a larger (∼1M rays) batch of rays
• Maximize parallelism

• Sort rays by shader and process contiguous ranges
• Generates one kernel per shader, with specialization , simplified:

for shader in unro l l ( 0 , scene . num_shaders ) {
// Get the range of rays for th i s shader
l e t ( begin , end ) = ray_range_by_shader ( shader ) ;
l e t gr id = ( round_up ( end − begin , b lock_s ize ) , 1 , 1 ) ;
l e t block = ( block_size , 1 , 1 ) ;
with work_item in cuda ( grid , block ) {
// Use on_hit ( ) , on_shadow ( ) , . . .

}
}
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Wavefront Devices

On GPUs

• Processes a larger (∼1M rays) batch of rays
• Maximize parallelism

• Sort rays by shader and process contiguous ranges
• Generates one kernel per shader, with specialization , simplified:

for shader in unro l l ( 0 , scene . num_shaders ) {
// Get the range of rays for th i s shader
l e t ( begin , end ) = ray_range_by_shader ( shader ) ;
l e t gr id = ( round_up ( end − begin , b lock_s ize ) , 1 , 1 ) ;
l e t block = ( block_size , 1 , 1 ) ;
with work_item in cuda ( grid , block ) {
// Use on_hit ( ) , on_shadow ( ) , . . .

}
}

i∊unroll(0,3)
cuda(grid(i),block(i))

⬇

cuda(grid(0),block(0))
cuda(grid(1),block(1))
cuda(grid(2),block(2))
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Megakernel GPU Device

• Rays are local to the current execution thread
• Rendering loop inside the kernel, simplified:
fn trace(scene: Scene, tracer: Tracer) -> () {
with work_item in cuda(grid, block) {
let (x, y) = (work_item.gidx(), work_item.gidy());
let (ray, state) = tracer.on_emit(x, y);
let mut terminated = false;
while !terminated {
// Trace + use on_hit(), on_shadow(), ...

}
}

}
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Evaluation

• Versus high-performance, state-of-the-art frameworks:
• Embree + ispc: only for x86/amd64
• OptiX: only for CUDA hardware

• Built custom, simple renderers based on those frameworks
• Following documentation
• Only implemented features required to render the test scenes

• Measured:
• Performance
• Code complexity

• Workflow: Convert scene to AnyDSL⇒ compile⇒ render
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Scenes

786k tris./ 13 mats. 1.231M tris./14 mats. 545k tris./35 mats.

718k tris./44 mats. 612k tris./61 mats. 263k tris./23 mats.

Scenes by Wig42, nacimus, SlykDrako, MaTTeSr, Jay-Artist, licensed under CC-BY 3.0/CC0 1.0. See paper for details.
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Results: Performance
CPU (Intel™ i7 6700K) GPU (NVIDIA™ Titan X) GPU (AMD™ R9 Nano)

Scene Rodent2 Embree Rodent1 Rodent2 OptiX Rodent1 Rodent2

Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.87 35.11
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 35.32 (+42%) 20.64 14.95 27.31
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88 (+29%) 27.72 19.25 32.90
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 40.37 (+29%) 28.58 16.22 30.83
Kitchen 6.64 (+12%) 5.92 22.73 (+ 2%) 32.09 (+31%) 22.22 16.68 28.13
Staircase 4.86 (+ 8%) 4.48 20.00 (+18%) 27.53 (+39%) 16.89 11.74 22.21

(1) Megakernel, (2) Wavefront

• Between +1− 23% vs. Embree
• Around 60− 70% of the time tracing rays
• Traversal algorithms in Embree are already specialized
• Rodent’s shading alone is around 2× faster than with ispc

• Between +2− 31% vs OptiX (Megakernel)
• Between +29− 42% vs OptiX (Wavefront)

• Wavefront scales better with shader complexity
• Not limited by register pressure
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Results: Code Complexity
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Conclusion

Rodent generates high-performance renderers without writing a generator

• Defines textbook-like, generic algorithms
• Provides tailored hardware schedules for different CPUs and GPUs
• Specializes code according to the scene via AnyDSL
• Runs up to 40% faster than state-of-the-art
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Questions?
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Results: Impact of Specialization

base T A T + A

100

1,000

43.9 45.8

217.5 225.5
305.3

729.7
1,112 1,160

M
ra
ys
/s

CPU
GPU

• Base: No specialization
• T: Specialize the interface (shader←→ texturing function)
• A: Specialize the interface (shader←→ mesh attribute)
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Specialization: Caveats

• Specialization may lead to increased compilation times
• Specializing to much may increase register pressure

• Dangerous for the megakernel device
• Not a problem for the wavefront device

• Rodent fuses simple/similar shaders together
• Only for the megarkernel device
• Mitigates problems of divergence and reg. pressure
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Results: Compilation Times
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Improving Compilation Times

• The more there is to specialize, the slower
• Compiler itself is not particularly optimized for speed
• Parts of the renderer can be pre-compiled
• Does not need to know everything in the scene

• The less is known the less specialization will happen
• Automatically done by the compiler thanks to annotations
• Can be exploited to make compilation faster
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