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Volumetric Processes:

Absorption


Scattering


Transmittance


Phase Functions

Volumetric Rendering Equation

Volumetric Path Tracing

Woodcock Tracking
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Brassai (Gyula Halasz) 1899-1984

Fog
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Aerial View

Gurprit Singh
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Snow

Gurprit Singh
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6 Harry Potter/Warner Brothers

Fire
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7 Corona Renderer / Chaos Czech a.s. / Chaos Group

Surface or Volume?
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8 lisamission.org

Universe

https://www.elisascience.org/articles/lisa-mission/lisa-technology/electromagnetic-universe-and-cosmic-landscape
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Defining Participating Media
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Media properties are modeled as a probabilistic process 

No need to consider individual interactions with particles (won't fit in the memory)
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Defining Participating Media

Homoegeneous media:

- Infinite or bounded by a simple surface or simple shape
Krivanek et al. [2014]
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Defining Participating Media
Heterogeneous media (spatially varying coefficients):

Disney/Pixar
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Defining Participating Media
Heterogeneous media (spatially varying coefficients):

- Procedurally e.g. using a noise function

- Simulation + volume discretization, e.g., voxel grid

Disney/Pixar
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Radiance is the main quantity we are interested in for rendering.
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Li(x, ~!) = Lo(y,�~!)

y = r(x, ~!)

ray tracing function
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Radiance

In participating media, radiance may change along rays 

between surfaces 

13

x

~!

Li(x, ~!) = Lo(y,�~!)

y = r(x, ~!)

ray tracing function

y
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Volumetric Scattering Processes
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EmissionScatteringAbsorption

Slide after Jan Novak
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dA

How much light is gained or lost during the travel  
through this differential beam due to the interactions with the medium?

z

Finite distance Beam

18
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Differential Beam
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dzdA

x
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dzdA

x ~!

outgoing 
radiance

L(x, ~!)
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dzdA

x ~!

outgoing 
radiance

L(x, ~!)

dL(x, ~!)

dz
= ��aL(x, ~!)
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Absorption
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dzdA

x ~!

outgoing 
radiance

L(x, ~!)

�a : absorption coefficient m�1

dL(x, ~!)

dz
= ��aL(x, ~!)
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Absorption
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Absorption described by  
medium's absorption cross-section �adzdA

x ~!

outgoing 
radiance

L(x, ~!)
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Absorption described by  
medium's absorption cross-section �adzdA

x ~!

outgoing 
radiance

L(x, ~!)

�a 2 [0,1)
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Absorption
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Absorption described by  
medium's absorption cross-section �a

It is the probability density that light is absorbed  
per unit distance travelled in the medium

It can vary as a position and direction 

�a 2 [0,1)

dzdA

x ~!

outgoing 
radiance

L(x, ~!)
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dz

L(x, ~!)

x ~!
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Out-Scattering
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dz
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Out-Scattering
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dz

L(x, ~!)

dL(x, ~!)

dz
= ��sL(x, ~!)

x ~!
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Out-Scattering

24

�s : scattering coefficient

dz

L(x, ~!)

dL(x, ~!)

dz
= ��sL(x, ~!)

The probability of an out-scattering event occurring per unit distance is given by the scattering coefficient

x ~!
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Total reduction in radiance:
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Total reduction in radiance:

Out-scattering
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Total reduction in radiance:

AbsorptionOut-scattering
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Attenuation / Extinction
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�s : scattering coefficient

�a : absorption coefficient
Total reduction in radiance:

AbsorptionOut-scattering
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Attenuation / Extinction
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�s : scattering coefficient

�a : absorption coefficient
�t(x, ~!) = �a(x, ~!) + �s(x, ~!)

�t : extinction coefficient

AbsorptionOut-scattering

Total reduction in radiance:
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Albedo
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�s : scattering coefficient

�t : extinction coefficient

↵(x) =
�s(x)

�a(x) + �s(x)

�s(x)

�t(x)
=
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�s(x)

�t(x)
=
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�t : extinction coefficient

↵(x) =
�s(x)

�a(x) + �s(x)

�s(x)

�t(x)
=
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Albedo
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�s : scattering coefficient

�t : extinction coefficient

The albedo is always between 0 and 1

It describes the probability of scattering (versus absorption) at a scattering event

↵(x) =
�s(x)

�t(x)
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Mean-free path
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�t : extinction coefficient

Mean free path gives the average distance travelled by the ray before interacting with a particle

1

�t
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In-Scattering
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dL(x, ~!)

dz
= �s(x)Ls(x, ~!)

dz

x ~!
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In-Scattering

30

dL(x, ~!)

dz
= �s(x)Ls(x, ~!)

: scattering coefficient�s(x)

dz

x ~!
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In-Scattering
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Ls(x, ~!) =

Z

S2

fp(~!, ~!
0)L(x, ~!0)d~!0

In-scattered radiance

dL(x, ~!)

dz
= �s(x)Ls(x, ~!)

: scattering coefficient�s(x)

dz

x ~!
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dz

Emitted radiance does not depend on the incoming  lightLi
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x ~!

dL(x, ~!)

dz
= �a(x)Le(x, ~!)

dz

Emitted radiance does not depend on the incoming  lightLi
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x ~!

dL(x, ~!)

dz
= �a(x)Le(x, ~!)

Le(x, ~!) : emitted radiance
dz

Emitted radiance does not depend on the incoming  lightLi
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Emission
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x ~!

dL(x, ~!)

dz
= �a(x)Le(x, ~!)

Le(x, ~!) : emitted radiance
dz

Emitted radiance does not depend on the incoming  lightLi

*sometimes modeled without the 
 absorption coefficient term
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Emission
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x ~!

dL(x, ~!)

dz
= �a(x)Le(x, ~!)

Le(x, ~!) : emitted radiance
dz

Emitted radiance does not depend on the incoming  lightLi

*sometimes modeled without the 
 absorption coefficient term

Here we made a choice to represent differential output radiance as a product 
 of emitted radiance and absorption coefficient. 



Realistic Image Synthesis SS2020

Radiative Transfer Equation

32



Realistic Image Synthesis SS2020

Radiative Transfer Equation (RTE)

33

In-scattering Emission
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Radiative Transfer Equation (RTE)
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Out-scattering Absorption

In-scattering Emission
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Radiative Transfer Equation (RTE)
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Out-scattering Absorption

EmissionIn-scattering

Losses

Gains

dL(x, ~!)

dz
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Radiative Transfer Equation (RTE)
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Out-scattering Absorption

EmissionIn-scattering

Losses

Gains

��s(x)L(x, ~!) ��a(x)L(x, ~!)

�a(x)Le(x, ~!)�s(x)Ls(x, ~!)

dL(x, ~!)

dz
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Radiative Transfer Equation (RTE)
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��s(x)L(x, ~!)��a(x)L(x, ~!)
dL(x, ~!)

dz
�a(x)Le(x, ~!)�s(x)Ls(x, ~!)+ +

EmissionIn-scattering

Out-scattering Absorption



Realistic Image Synthesis SS2020

Radiative Transfer Equation (RTE)
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��s(x)L(x, ~!)��a(x)L(x, ~!)
dL(x, ~!)

dz
�a(x)Le(x, ~!)�s(x)Ls(x, ~!)+ +

EmissionIn-scattering

Out-scattering Absorption

�t(x, ~!) = �a(x, ~!) + �s(x, ~!)
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Radiative Transfer Equation (RTE)
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��t(x)L(x, ~!) �a(x)Le(x, ~!)�s(x)Ls(x, ~!)
dL(x, ~!)

dz
= + +

Attenuation

EmissionIn-scattering
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Radiative Transfer Equation (RTE)
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��t(x)L(x, ~!) �a(x)Le(x, ~!)�s(x)Ls(x, ~!)
dL(x, ~!)

dz
= + +

Attenuation

EmissionIn-scattering

What about a beam with finite-length   ?z
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Extinction Along a Finite Beam
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��t(x)L(x, ~!)
dL(x, ~!)

dz
=



Realistic Image Synthesis SS2020

Extinction Along a Finite Beam
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��t(x)L(x, ~!)
dL(x, ~!)

dz
=

dL(x, ~!)

L(x, ~!)
= ��t(x)dz // Integrate along beam from 0 to z
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Extinction Along a Finite Beam
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��t(x)L(x, ~!)
dL(x, ~!)

dz
=

dL(x, ~!)

L(x, ~!)
= ��t(x)dz

loge Lz � loge L0 = ��t(x)z

// Integrate along beam from 0 to z
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Extinction Along a Finite Beam

40

loge

✓
Lz

L0

◆
= ��tz // Exponentiate

��t(x)L(x, ~!)
dL(x, ~!)

dz
=

dL(x, ~!)

L(x, ~!)
= ��t(x)dz

loge Lz � loge L0 = ��t(x)z

// Integrate along beam from 0 to z
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Extinction Along a Finite Beam
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loge

✓
Lz

L0

◆
= ��tz

Lz

L0
= e��tz

// Exponentiate

��t(x)L(x, ~!)
dL(x, ~!)

dz
=

dL(x, ~!)

L(x, ~!)
= ��t(x)dz

loge Lz � loge L0 = ��t(x)z

// Integrate along beam from 0 to z
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Lz

L0
= e��tz

The fraction refers to as the transmittance

Think of this as fractional visibility loss between two points 

z

L0 Lz
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Lz

L0
= e��tz

The fraction refers to as the transmittance

Think of this as fractional visibility loss between two points 

z

L0 Lz

Radiance at distance 0
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Beer-Lambert Law
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Lz

L0
= e��tz

The fraction refers to as the transmittance

Think of this as fractional visibility loss between two points 

z

L0 Lz

Radiance at distance 0

Radiance at distance z

Expresses the remaining radiance after traveling a finite distance  through the  
medium with constant extinction coefficient
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�t : extinction coefficient

yLo(x, ~!)

zx
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�t : extinction coefficient

yLo(x, ~!)

Radiance at y

x
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�t : extinction coefficient

yLo(x, ~!)

Radiance at y

Tr(x ! x0)Lo(x, ~!)x
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Beam Transmittance
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�t : extinction coefficient

yLo(x, ~!)

Radiance at y

Tr(x ! x0)Lo(x, ~!)

Tr(x ! y) = e�
R ||x�y||
0 �t(t)dt

x
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Beam Transmittance
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�t : extinction coefficient

y

Radiance at 

Tr(x ! x0)Lo(x, ~!)

Lo(x, ~!)

x

Tr(x ! y) = e�
R ||x�y||
0 �t(t)dt y
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Beam Transmittance
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�t : extinction coefficient

yLo(x, ~!)

x

Tr(x ! y) = e�
R ||x�y||
0 �t(t)dt
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�t : extinction coefficient

x00
Lo(x, ~!)

x
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�t : extinction coefficient

x0 x00(

Tr(x ! x0)

(

Tr(x
0 ! x00)

Lo(x, ~!)

x
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Beam Transmittance: Multiplicative
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�t : extinction coefficient

x0 x00(

Tr(x ! x0)

(

Tr(x
0 ! x00)

Tr(x ! x00) = Tr(x ! x0)Tr(x
0 ! x00)

Lo(x, ~!)

x
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Beam Transmittance
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In Homogeneous medium is a constant:�t

Tr(x ! y) = e��t||x�y||

Tr(x ! y) = e�
R ||x�y||
0 �t(t)dt

In Heterogeneous medium (spatially varying�t ):
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Optical thickness

Beam Transmittance

48

In Homogeneous medium is a constant:�t

Tr(x ! y) = e��t||x�y||

Tr(x ! y) = e�
R ||x�y||
0 �t(t)dt

In Heterogeneous medium (spatially varying�t ):
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Radiative Transfer Equation (RTE)

49

��t(x)L(x, ~!) �a(x)Le(x, ~!)�s(x)Ls(x, ~!)
dL(x, ~!)

dz
= + +

Attenuation

EmissionIn-scattering
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Radiative Transfer Equation (RTE)
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��t(x)L(x, ~!) �a(x)Le(x, ~!)�s(x)Ls(x, ~!)
dL(x, ~!)

dz
= + +

Attenuation

EmissionIn-scattering

What about a beam with finite-length   ?z
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Volumetric Rendering Equation
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L(x, ~!) = Tr(x,xz)L(xz, ~!)

xz

x~!

Tr(x,xz)
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Volumetric Rendering Equation
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L(x, ~!) = Tr(x,xz)L(xz, ~!)

x~!

Tr(x,xz)

Reduced (background) surface radiance

xz
L(xz, ~!)
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Volumetric Rendering Equation
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L(x, ~!) = Tr(x,xz)L(xz, ~!)

x~!

Tr(x,xt)

+

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

Accumulated emitted radiance

xz
Le(xt, ~!)

xt
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Volumetric Rendering Equation
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L(x, ~!) = Tr(x,xz)L(xz, ~!)

x~!

Tr(x,xt)

+

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

xz

Ls(xt, ~!)

xt

+

Z z

0
Tr(x,xt)�s(xt)Ls(xt, ~!)dt

Accumulated in-scattered radiance
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Volumetric Rendering Equation
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L(x, ~!) = Tr(x,xz)L(xz, ~!)

x~!

Tr(x,xt)

+

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

xz xt

+

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt
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Volumetric Rendering Equation
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L(x, ~!) = Tr(x,xz)L(xz, ~!)

+

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

+

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt
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Scattering in Media

56
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It describes the angular distribution of scattered radiation at a point;

It is the volumetric analog to the BSDF, but it is different from the BSDF.

It has a normalization constant:
Z

S2

fp(~!, ~!
0)d~!0 = 1 8~!
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Phase Functions

57

It describes the angular distribution of scattered radiation at a point;

It is the volumetric analog to the BSDF, but it is different from the BSDF.

It has a normalization constant:
Z

S2

fp(~!, ~!
0)d~!0 = 1 8~!

This constraint means that phase functions actually define probability distributions  
for scattering in a particular direction.
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Phase Functions
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fp(~!o, ~!i) =
1

4⇡

Uniform scattering, analogous to Lambertian BRDF

Isotropic:



Realistic Image Synthesis SS2020

Phase Functions

59

~!

~!0

✓
�~! x
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Phase Functions
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~!

~!0

✓
�~! x

Quantifying anisotropy by

g =

Z

S2

fp(x, ~!, ~!
0) cos ✓d~!0
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Phase Functions
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~!

~!0

✓
�~! x

Quantifying anisotropy by

g =

Z

S2

fp(x, ~!, ~!
0) cos ✓d~!0

cos ✓ = �~! · ~!0

where

g is the asymmetry parameter
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Phase Functions

59

~!

~!0

✓
�~! x

Quantifying anisotropy by

g =

Z

S2

fp(x, ~!, ~!
0) cos ✓d~!0

cos ✓ = �~! · ~!0

where

g = 0

g > 0

g < 0

: isotropic scattering (on average)

: forward scattering 
: backward scattering 

g is the asymmetry parameter
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Henyey-Greenstein Phase Function

60

fp(✓) =
1

4⇡

1� g2

(1 + g2 + 2g(cos ✓))3/2 g 2 [�1, 1]
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Henyey-Greenstein Phase Function
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fp(✓) =
1

4⇡

1� g2

(1 + g2 + 2g(cos ✓))3/2 g 2 [�1, 1]

g = 0
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Henyey-Greenstein Phase Function
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g 2 [�1, 1]

g = 0 g > 0

fp(✓) =
1

4⇡

1� g2

(1 + g2 + 2g(cos ✓))3/2
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Henyey-Greenstein Phase Function
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g 2 [�1, 1]

g < 0 g = 0 g > 0

fp(✓) =
1

4⇡

1� g2

(1 + g2 + 2g(cos ✓))3/2
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Henyey-Greenstein Phase Function

g = 0g = �0.5 g = 0.8

fp(✓) =
1

4⇡

1� g2

(1 + g2 + 2g(cos ✓))3/2
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Henyey-Greenstein Phase Function

64

Strong forward scattering

Strong backward scattering

g = �0.7 g = 0.7

PBRTv3 [2016]
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Schlick's Phase Function

fp(✓) =
1

4⇡

1� k2

(1� k cos ✓)2

k = 1.55g � 0.55g3

Empirical Phase Function

Faster approximation to HG
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Schlick's Phase Function

g = �0.5 k = �0.706

Empirical Phase Function

Faster approximation to HG

g = 0 k = 0 g = 0.8 k = 0.96
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Rainbows
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Lorenz-Mie Scattering

For large-size particles (scatterers), we cannot ignore the wave nature of light

Solution to Maxwell's equations for scattering from many spherical dielectric particles

Explains many phenomena

Complicated: solution is an infinite analytic series
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Sphere diameter =1µm Sphere diameter =10µm Sphere diameter =100µm
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fhazy
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4⇡
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✓
1 + cos ✓
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◆8
!Hazy atmosphere
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Lorenz-Mie Approximations

fhazy
p (✓) =

1

4⇡

 
5 +

✓
1 + cos ✓

2

◆8
!

fmurky
p (✓) =

1

4⇡

 
17 +

✓
1 + cos ✓

2

◆32
!Hazy atmosphere Murky atmosphere
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Why is the Sky Blue?

Atmosphere

Earth
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Why is the Sunset Red?
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Why is the Sunset Red?

Atmosphere

Earth
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Rayleigh Scattering

forbes.com
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Rayleigh Scattering
Approximation of Lorenz-Mie for tiny particles (scatterers) that are typically smaller than 
1/10th the wavelength of visible light

Used for atmospheric scattering, gasses, transparent solids

Highly wavelength dependent
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Rayleigh Phase Function

fRayleigh
p (✓) =

3

16⇡

�
1 + cos2 ✓

�

Scattering at right angles is half as likely as scattering  
forward or backward
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Rayleigh Scattering

�Rayleigh
s (�, d, ⌘, ⇢) = ⇢

2⇡5d6

3�4

✓
⌘2 � 1

⌘2 + 2

◆2
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Rayleigh Scattering

�Rayleigh
s (�, d, ⌘, ⇢) = ⇢

2⇡5d6

3�4

✓
⌘2 � 1

⌘2 + 2

◆2

Wavelength
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Rayleigh Scattering

�Rayleigh
s (�, d, ⌘, ⇢) = ⇢

2⇡5d6

3�4

✓
⌘2 � 1

⌘2 + 2

◆2

Wavelength

Diameter of particles
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Rayleigh Scattering

�Rayleigh
s (�, d, ⌘, ⇢) = ⇢

2⇡5d6

3�4

✓
⌘2 � 1

⌘2 + 2

◆2

Wavelength

Diameter of particles

Index of refraction
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Rayleigh Scattering

�Rayleigh
s (�, d, ⌘, ⇢) = ⇢

2⇡5d6

3�4

✓
⌘2 � 1

⌘2 + 2

◆2

Wavelength

Diameter of particles

Index of refraction

Density of particles
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Isotropic

Ls(y,!) =

Z

S2

fp(!, !̄)L(y, !̄)d!̄

Henyey-Greenstein

Ls(y,!) =

Z
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Recap: Phase Functions

84

Isotropic

Ls(y,!) =

Z

S2

fp(!, !̄)L(y, !̄)d!̄

Henyey-Greenstein

Ls(y,!) =

Z

S2

fp(!, !̄)L(y, !̄)d!̄

Rayleigh

Ls(y,!) =

Z

S2

fp(!, !̄)L(y, !̄)d!̄

Lorenz-Mie
small particles

Ls(y,!) =

Z

S2

fp(!, !̄)L(y, !̄)d!̄

Lorenz-Mie
large particles

Ls(y,!) =

Z

S2

fp(!, !̄)L(y, !̄)d!̄
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85

Isotropic Medium
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Isotropic Medium
Isotropic phase function Anisotropic phase function
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Anisotropy: Phase Function vs. Medium

86

Isotropic Medium Anisotropic Medium
Isotropic phase function Anisotropic phase function

Slide after Jan Novak
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Recap: Media Properties

87

�a(x)

�s(x)

fp(x, ~!, ~!
0)

Given:
Absorption coefficient

Scattering coefficient

Phase function

[m�1]

[sr�1]

[m�1]
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Recap: Media Properties

88

�a(x)

�s(x)

fp(x, ~!, ~!
0)

�t(x) = �a(x) + �s(x)

↵(x) = �s(x)/�t(x)

1/�t(x)

Tr(x,y) = e�
R ||x�y||
0 �t(t)dt

Given:

Derived:

Absorption coefficient

Scattering coefficient

Phase function

Extinction coefficient

Albedo

Mean-free path

Transmittance

[m�1]

[sr�1]

[None]

[m�1]

[None]

[m�1]

[m]
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For Homogeneous Isotropic Medium

89

Given:

Derived:

Absorption coefficient

Scattering coefficient

Phase function

Extinction coefficient

Albedo

Mean-free path

Transmittance

[m�1]

[sr�1]

[None]

[m�1]

[None]

[m�1]

[m]

�a

�s

�t = �a + �s

↵ = �s/�t

1/�t

Tr(x,y) = e��t||x�y||

1

4⇡
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Solving the 
Volumetric Rendering Equation

90
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Complexity

91

Homogeneous vs. Heterogeneous

Scattering
- none
- fake
- single scattering
- multiple scattering
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Volumetric Rendering Equation

92

L(x, ~!) = Tr(x,xz)L(xz, ~!)

+

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

+

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt
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Volumetric Rendering Equation

93

L(x, ~!) = Tr(x,xz)L(xz, ~!)

+

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

+

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Attenuated background radiance
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Volumetric Rendering Equation

94

L(x, ~!) = Tr(x,xz)L(xz, ~!)

+

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

+

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Accumulated emitted radiance

Attenuated background radiance
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Volumetric Rendering Equation

95

L(x, ~!) = Tr(x,xz)L(xz, ~!)

+

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

+

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Accumulated emitted radiance

Attenuated background radiance

Accumulated in-scattered radiance
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Heterogeneous/Homogeneous media
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Homogeneous media
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Heterogeneous media Homogeneous media
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Participating Media: Heterogeneous

99

~!

x

xs
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Participating Media: Heterogeneous

99

~!

x

xs

L(x, ~!) =

Z s

0
Tr(x $ xt)�s(xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)
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Participating Media: Heterogeneous

99

~!

x

xs

L(x, ~!) =

Z s

0
Tr(x $ xt)�s(xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)
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100

~!

x

xs

Participating Media: Homogeneous

L(x, ~!) =

Z s

0
Tr(x $ xt)�s(xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)
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100

~!

x

xs

L(x, ~!) = �s

Z s

0
Tr(x $ xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)

Participating Media: Homogeneous

L(x, ~!) =

Z s

0
Tr(x $ xt)�s(xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)
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101

~!

x

xs

L(x, ~!) = �s

Z s

0
Tr(x $ xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)

Participating Media: Homogeneous

L(x, ~!) =

Z s

0
Tr(x $ xt)�s(xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)



Realistic Image Synthesis SS2020

102

~!

x

xs

L(x, ~!) = �s

Z s

0
Tr(x $ xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)

L(x, ~!) =

Z s

0
Tr(x $ xt)�s(xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)

L(x, ~!) = �s

Z s

0
e�t�tLi(xt, ~!)dt+ e�s�tL(xs, ~!)

Participating Media: Homogeneous
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102

~!

x

xs

L(x, ~!) = �s

Z s

0
Tr(x $ xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)

L(x, ~!) =

Z s

0
Tr(x $ xt)�s(xt)Li(xt, ~!)dt+ Tr(x $ xs)L(xs, ~!)

L(x, ~!) = �s

Z s

0
e�t�tLi(xt, ~!)dt+ e�s�tL(xs, ~!)

Participating Media: Homogeneous
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~!

x

xs

Participating Media: Homogeneous

L(x, ~!) = �s

Z s

0
e�t�tLi(xt, ~!)dt+ e�s�tL(xs, ~!)
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~!

x

xs

L(x, ~!) = �s

Z s

0
e�t�tLi(xt, ~!)dt+ e�s�tL(xs, ~!)

Homogeneous Ambient Media



Realistic Image Synthesis SS2020

105

Homogeneous Ambient Media

L(x, ~!) = �s

Z s

0
e�t�tLi(xt, ~!)dt+ e�s�tL(xs, ~!)

Assume in-scattered radiance is an ambient constant
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106

Homogeneous Ambient Media

L(x, ~!) = �s

Z s

0
e�t�tLi(xt, ~!)dt+ e�s�tL(xs, ~!)

Assume in-scattered radiance is an ambient constant

L(x, ~!) = �sLi

Z s

0
e�t�tdt+ e�s�tL(xs, ~!)
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Homogeneous Ambient Media

L(x, ~!) = �s

Z s

0
e�t�tLi(xt, ~!)dt+ e�s�tL(xs, ~!)

Assume in-scattered radiance is an ambient constant

L(x, ~!) = �sLi

Z s

0
e�t�tdt+ e�s�tL(xs, ~!)
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Homogeneous Ambient Media

L(x, ~!) = �s

Z s

0
e�t�tLi(xt, ~!)dt+ e�s�tL(xs, ~!)

Assume in-scattered radiance is an ambient constant

L(x, ~!) = �sLi

Z s

0
e�t�tdt+ e�s�tL(xs, ~!)

L(x, ~!) = �sLi
1� e�s�t

�t
+ e�s�tL(xs, ~!)
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Homogeneous Ambient Media

L(x, ~!) = �s

Z s

0
e�t�tLi(xt, ~!)dt+ e�s�tL(xs, ~!)

Assume in-scattered radiance is an ambient constant

L(x, ~!) = �sLi

Z s

0
e�t�tdt+ e�s�tL(xs, ~!)

L(x, ~!) = �sLi
1� e�s�t

�t
+ e�s�tL(xs, ~!)

L(x, ~!) = lerp

✓
�s

�t
Li, L(xs, ~!), e

�s�t

◆
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Homogeneous Ambient Media

Fog Clear Day
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Fog
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Volumetric Rendering Equation

113

L(x, ~!) = Tr(x,xz)L(xz, ~!)

+

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

+

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Accumulated in-scattered radiance
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In-scattered Radiance

L(x,!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt
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115

In-scattered Radiance

L(x,!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt
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115

In-scattered Radiance

L(x,!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Ls(x,!) =

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt
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In-scattered Radiance

L(x,!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Ls(x,!) =

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Single scattering arrives directly from a light source (direct illumination)Li
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115

In-scattered Radiance

L(x,!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Ls(x,!) =

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Single scattering arrives directly from a light source (direct illumination)Li

Li(x, ~!) = Tr(x, r(x, ~!))Le(r(x, ~!),�~!)
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In-scattered Radiance

L(x,!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Ls(x,!) =

Z

S2

fp(xt, ~!
0, ~!)Li(xt, ~!

0)d!0dt

Single scattering arrives directly from a light source (direct illumination)Li

Li(x, ~!) = Tr(x, r(x, ~!))Le(r(x, ~!),�~!)

Multiple scattering
arrives through multiple bounces (indirect illumination)
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116

Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt
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116

Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

~!
~!0

xt

xe

x
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Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

Le(x,�~!0)

~!
~!0

xt

xe

x



Realistic Image Synthesis SS2020

117

Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

~!
~!0

xt

xe

x T r
(x t,

x e
)

Le(x,�~!0)
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Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

~!
~!0

xt

xe

x T r
(x t,

x e
)

Le(x,�~!0)
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Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

~!
~!0

xt

xe

x T r
(x t,

x e
)

�s(xt)

Le(x,�~!0)
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Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

~!
~!0

xt

xe

x T r
(x t,

x e
)

�s(xt)Tr(x,xt)

Le(x,�~!0)
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Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

~!
~!0

xt

xe

x

Le(x,�~!0)
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Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

~!

~!0

xt

xe

x

Le(x,�~!0)
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Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

xe

x

Le(x,�~!0)
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Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt
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Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

Semi-analytic solutions
Sun et al. [2005]

Pegoraro et al. [2009, 2010]
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Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

Semi-analytic solutions
Sun et al. [2005]

Pegoraro et al. [2009, 2010]

Numerical solutions

Ray marching

Equiangular sampling
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Analytic Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

Assumptions:
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L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

Assumptions:

Homogeneous
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Z z

0
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Z

S2

fp(x, ~!, ~!
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Homogeneous
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L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

Assumptions:

Homogeneous

Point or spot light

Relatively simple phase function
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Analytic Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

Assumptions:

Homogeneous

Point or spot light

Relatively simple phase function

No occlusion
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Analytic Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

Assumptions:

Homogeneous

Point or spot light

Relatively simple phase function
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Analytic Single Scattering

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)

Z

S2

fp(x, ~!, ~!
0)Tr(xt,xe)Le(xe,�~!)d~!0dt

Assumptions:

Homogeneous

Point or spot light

Relatively simple phase function

No occlusion

L(x, ~!) =
�

4⇡

1

4⇡

Z z

0
e��t||x,xt|| e

��t||xt,xp||

e��t||xt,xp||2
dt
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OpenGL Fog
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Analytic Single Scattering
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Analytic Single Scattering
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Analytic Single Scattering

No shadows, implementation nightmare, computationally intensive,...

Let's try brute force!
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Ray Marching

L(x, ~!) =

Z z

0
Tr(x,xt)�s(xt)Ls(xt, ~!)dt

Approximate with Riemann summation

x
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Ray Marching

L(x, ~!) ⇡
NX

k=0

Tr(x,xt,k)�s(xt,k)Ls(xt,k, ~!)�t

x
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Ray Marching

L(x, ~!) ⇡
NX

k=0

Tr(x,xt,k)�s(xt,k)Ls(xt,k, ~!)�t
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Ray Marching

L(x, ~!) ⇡
NX

k=0

Tr(x,xt,k)�s(xt,k)Ls(xt,k, ~!)�t

xt,k

x
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Ray Marching

x

L(x, ~!) ⇡
NX

k=0

Tr(x,xt,k)�s(xt,k)Ls(xt,k, ~!)�t

xt,k

�s(xt,k)
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Ray Marching

x

L(x, ~!) ⇡
NX

k=0

Tr(x,xt,k)�s(xt,k)Ls(xt,k, ~!)�t

xt,k

Tr(x,xt,k)

Homogeneous volume: Tr(x,xt,k) = e��t||x,xt,k||
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Ray Marching

x

L(x, ~!) ⇡
NX

k=0

Tr(x,xt,k)�s(xt,k)Ls(xt,k, ~!)�t

xt,k

Tr(x,xt,k�1)

Heterogeneous volume: Tr(x,xt,k) = Tr(x,xt,k�1)e
��t(xt,k)�t

e��t(xt,k)�t

Assume constant extinction  
along each segment
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Ray Marching

x

L(x, ~!) ⇡
NX

k=0

Tr(x,xt,k)�s(xt,k)Ls(xt,k, ~!)�t

xt,k

Ls(xt,k, ~!)
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Ray Marching

x

Ls(xt, ~!) =

Z

S2

fp(xt, ~!, ~!
0)Li(xt, ~!

0)d~!0
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Ray Marching

x

Ls(xt, ~!) ⇡
1

M

MX

j=1

fp(xt, ~!, ~!0
j)Li(xt, ~!0

j)

p(~!0
j)
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Ray Marching

x

Ls(xt, ~!) ⇡
1

M

MX

j=1

fp(xt, ~!, ~!0
j)Li(xt, ~!0

j)

p(~!0
j)
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Ray Marching

x

Ls(xt, ~!) ⇡
1

M

MX

j=1

fp(xt, ~!, ~!0
j)Li(xt, ~!0

j)

p(~!0
j)

xe

T r
(x
t,
x e
)
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Ray Marching

x

Ls(xt, ~!) ⇡
1

M

MX

j=1

fp(xt, ~!, ~!0
j)Li(xt, ~!0

j)

p(~!0
j)

xe

T r
(x
t,
x e
)

Another ray marching needed to estimate  
the transmittance along the connection ray  

(in the heterogeneous media)
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Ray Marching in Heterogeneous Media

x

xe

Marching towards the light source

- Connections are expensive, many, and uniformly distributed along the primary ray 
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Decoupled Transmittance and in-scattering

x

1. Ray march and cache transmittance

- Choose step-size w.r.t. frequency content to accurately capture variations
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x

1. Ray march and cache transmittance

- Choose step-size w.r.t. frequency content to accurately capture variations

Tr(x,xt)

Piecewise approximation  
of transmittance

Decoupled Transmittance and in-scattering
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x

2. Estimate in-scattering using MC integration

- Distribute samples proportional to (part of) the integrand

Decoupled Transmittance and in-scattering
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x

2. Estimate in-scattering using MC integration

- Distribute samples proportional to (part of) the integrand

p(xt) / Tr(x,xt)

Decoupled Transmittance and in-scattering
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x

2. Estimate in-scattering using MC integration

- Distribute samples proportional to (part of) the integrand

p(xt) / Tr(x,xt)

Decoupled Transmittance and in-scattering
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x

2. Estimate in-scattering using MC integration

- Distribute samples proportional to (part of) the integrand

p(xt) / Tr(x,xt)

Decoupled Transmittance and in-scattering
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x

2. Estimate in-scattering using MC integration

- Distribute samples proportional to (part of) the integrand

Decoupled Transmittance and in-scattering

p(xt) /
1

d2
: distance to lightd
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x

2. Estimate in-scattering using MC integration

- Distribute samples proportional to (part of) the integrand

Decoupled Transmittance and in-scattering

p(xt) /
1

d2
: distance to lightd
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x

2. Estimate in-scattering using MC integration

- Distribute samples proportional to (part of) the integrand

Decoupled Transmittance and in-scattering

p(xt) /
1

d2
: distance to lightd
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x

2. Estimate in-scattering using MC integration

- Distribute samples proportional to (part of) the integrand

Decoupled Transmittance and in-scattering

p(xt) /
1

d2
: distance to lightd
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x

2. Estimate in-scattering using MC integration

- Distribute samples proportional to (part of) the integrand

Decoupled Transmittance and in-scattering

p(xt) /
1

d2
: distance to lightd

Equiangular sampling 
Kulla and Fajardo [2012]
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Ray Marching Equi-angular sampling

Decoupled Transmittance and in-scattering



Realistic Image Synthesis SS2020

Volumetric Path Tracing

155

Motivation

Same as with path tracing: avoid the exponential growth
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Volumetric Path Tracing
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Motivation

Same as with path tracing: avoid the exponential growth

Paths can:

Reflect / Refract off surfaces

Scatter inside a volume
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L(x, ~!)

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

+

Z z

0
Tr(x,xt)�s(xt)Ls(xt,!)dt

z

zx

Tr(x,xz)L(xz, ~!)

=
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Volumetric Rendering Equation

158

L(x, ~!) Accumulated emitted radiance

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

+

Z z

0
Tr(x,xt)�s(xt)Ls(xt,!)dt

z

zx

Tr(x,xz)L(xz, ~!)

=
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Volumetric Rendering Equation

158

L(x, ~!) Accumulated emitted radiance

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

Accumulated in-scattered radiance+

Z z

0
Tr(x,xt)�s(xt)Ls(xt,!)dt

z

zx

Tr(x,xz)L(xz, ~!)

=
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Volumetric Rendering Equation

158

L(x, ~!) Accumulated emitted radiance

Z z

0
Tr(x,xt)�a(xt)Le(xt, ~!)dt

Accumulated in-scattered radiance+

Z z

0
Tr(x,xt)�s(xt)Ls(xt,!)dt

z

zx

Attenuated background radianceTr(x,xz)L(xz, ~!)

=
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Volumetric Rendering Equation
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L(x, ~!) =

Z z

0
Tr(x,xt)

h
�a(xt)Le(xt, ~!) + �s(xt)Ls(xt, ~!)

i
dt

+Tr(x,xz)L(xz, ~!)

z

zx

Accumulated emitted + in-scattered radiance

Attenuated background radiance
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L(x, ~!) =

Z z

0
Tr(x,xt)

h
�a(xt)Le(xt, ~!) + �s(xt)Ls(xt, ~!)

i
dt

+Tr(x,xz)L(xz, ~!)

Volumetric Rendering Equation
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hL(x, ~!)i = Tr(x,xt)

p(t)

h
�a(xt)Le(xt, ~!) + �s(xt)Ls(xt, ~!)

i

+
Tr(x,xz)

P (z)
L(xz, ~!)
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hL(x, ~!)i = Tr(x,xt)

p(t)

h
�a(xt)Le(xt, ~!) + �s(xt)Ls(xt, ~!)

i

+
Tr(x,xz)

P (z)
L(xz, ~!)

p(t)

P (z)

t

z

Probability density of distance

Probability of exceeding distance
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+
Tr(x,xz)

P (z)
L(xz, ~!)

p(t)

P (z)

p(~!i)

hL(x, ~!)i = Tr(x,xt)

p(t)


�a(xt)Le(xt, ~!) + �s(xt)

fp(x, ~!, ~!i)L(xt, ~!)

p(~!i)

�

Probability density of distance

Probability of exceeding distance

Probability density of direction ~!i

t

z
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1. Sample distance to next interaction

2. Scatter in the volume or bounce off a surface

x
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2. Scatter in the volume or bounce off a surface
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1. Sample distance to next interaction

2. Scatter in the volume or bounce off a surface
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Volumetric Path Tracing

165

1. Sample distance to next interaction

2. Scatter in the volume or bounce off a surface

xsx
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xs

Volumetric Path Tracing with NEE

x
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Isotropic: 

Henyey-Greenstein:
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Sampling the Phase Function
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Isotropic: Uniform sphere sampling

Henyey-Greenstein:
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Sampling the Phase Function

167

Isotropic: Uniform sphere sampling

Henyey-Greenstein: Using the inversion method we can derive

cos ✓ =
1

2g

 
1 + g2 �

✓
1� g2

1� g + 2g⇠1

◆2
!

� = 2⇡⇠2

PDF is the value of the HG  phase function
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Free-path or free-flight distance:  

- Distance to the next interaction in the medium

- Dense media (e.g. milk): short mean-free path

- Thin media (e.g. atmosphere): long mean-free path
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Free-path Sampling

169

Free-path or free-flight distance:  

- Distance to the next interaction in the medium

- Dense media (e.g. milk): short mean-free path

- Thin media (e.g. atmosphere): long mean-free path

Ideally, we want to sample according to (part of) of the integrand:

p(xt|(x, ~!)) / Tr(x,xt)
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Free-path Sampling

169

Free-path or free-flight distance:  

- Distance to the next interaction in the medium

- Dense media (e.g. milk): short mean-free path

- Thin media (e.g. atmosphere): long mean-free path

Ideally, we want to sample according to (part of) of the integrand:

p(xt|(x, ~!)) / Tr(x,xt)

p(t) / Tr(t)

simplified notation
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Homogeneous media: Tr(t) = e��tt
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PDF: p(t) / e��tt

p(t) =
e��tt
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��tt

Tr(t) = e��tt
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Free-path Sampling

170

Homogeneous media: 

PDF: p(t) / e��tt

p(t) =
e��tt

R1
0 e��tsds

= �te
��tt

P (t) =

Z t

0
e��tsds = 1� e��ttCDF: 

Tr(t) = e��tt
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Free-path Sampling

170

Homogeneous media: 

PDF: p(t) / e��tt

p(t) =
e��tt

R1
0 e��tsds

= �te
��tt

P (t) =

Z t

0
e��tsds = 1� e��ttCDF: 

P�1(⇠) = � loge(1� ⇠)

�t
Inverted CDF: 

Tr(t) = e��tt
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

t
xtx
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Generate a random number ⇠

t
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Sample distance

Generate a random number ⇠

t
xtx
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Free-path Sampling

171

Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Sample distance t = � loge(1� ⇠)

�t

Generate a random number ⇠

t
xtx
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Sample distance

Compute PDF

t = � loge(1� ⇠)

�t

Generate a random number ⇠

t
xtx
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Sample distance

Compute PDF

t = � loge(1� ⇠)

�t

Generate a random number ⇠

p(t) = �te
��tt

t
xtx
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Generate a random number 

Sample distance

Compute PDF

t = � loge(1� ⇠)

�t

⇠

p(t) = �te
��tt

xt

xs

x
Surface hit before reaching t
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Generate a random number 

Sample distance

Compute PDF

t = � loge(1� ⇠)

�t

⇠

p(t) = �te
��tt

xt

xs

x
s

Surface hit before reaching t
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Generate a random number 

Sample distance

Compute PDF

t = � loge(1� ⇠)

�t

⇠

p(t) = �te
��tt

xt

xs

x
s

Surface hit before reaching t
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Generate a random number 

Sample distance

Compute PDF

t = � loge(1� ⇠)

�t

⇠

p(t) = �te
��tt

xt

xs

x
s

Surface hit before reaching t

= s
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Generate a random number 

Sample distance

Compute PDF

t = � loge(1� ⇠)

�t

⇠

p(t) = �te
��tt

xt

xs

x
s

Surface hit before reaching t

= s
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Generate a random number 

Sample distance

Compute PDF

t = � loge(1� ⇠)

�t

⇠

p(t) = �te
��tt

xt

xs

x
s

Surface hit before reaching t

= s

= e��ts
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Homogeneous media: 

Recipe: 

Tr(t) = e��tt

Generate a random number 

Sample distance

Compute PDF

t = � loge(1� ⇠)

�t

⇠

p(t) = �te
��tt

xt

xs

x
s

Surface hit before reaching t

= s

= e��ts

Note: This is now a probability, 
not a probability density
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Tr(t) = e
R t
0 ��t(s)dsHeterogeneous medium:
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Tr(t) = e
R t
0 ��t(s)dsHeterogeneous medium:

- Closed form solutions exist but for only simple media

e.g., linearly or exponentially varying extinction
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Free-path Sampling
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Tr(t) = e
R t
0 ��t(s)dsHeterogeneous medium:

- Closed form solutions exist but for only simple media

e.g., linearly or exponentially varying extinction

- Other solutions:

• Regular tracking (3D DDA)

• Ray marching

• Delta tracking
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How to sample the flight distance to the next interaction? 
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175

How to sample the flight distance to the next interaction? 

T (t) = e�
R t
0 µt(s)ds = P (X > t)

Random variable representing flight distance

T (t) = e�
R t
0 µt(s)ds = P (X > t)
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Free-path Sampling

175

How to sample the flight distance to the next interaction? 

T (t) = e�
R t
0 µt(s)ds = P (X > t)

P (X  t) = F (t)

Random variable representing flight distance

CDFT (t) = e�
R t
0 µt(s)ds = P (X > t)
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How to sample the flight distance to the next interaction? 

T (t) = e�
R t
0 µt(s)ds = P (X > t)

P (X  t) = F (t)

Random variable representing flight distance

CDF

Partition of unity

T (t) = e�
R t
0 µt(s)ds = P (X > t)
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How to sample the flight distance to the next interaction? 

T (t) = e�
R t
0 µt(s)ds = P (X > t)

P (X  t) = F (t)

Random variable representing flight distance

CDF

Partition of unity

Recipe for generating samples

T (t) = e�
R t
0 µt(s)ds = P (X > t)

F (t) = 1� T (t)F (t) = 1� T (t)
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F (t) = 1� T (t)F (t) = 1� T (t) = 1� e�⌧(t)F (t) = 1� T (t)

Cumulative distribution function (CDF)
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p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)

Probability density function (PDF)

p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)

F (t) = 1� T (t)F (t) = 1� T (t) = 1� e�⌧(t)F (t) = 1� T (t)

Cumulative distribution function (CDF)
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p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)

Probability density function (PDF)

p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)

Inverted cumulative distr. function (CDF-1)

⇠ = 1� e�⌧(t)

⌧(t) = ln(1� ⇠)
Z t

0
µt(s)ds = ln(1� ⇠)

Solve for t

F (t) = 1� T (t)F (t) = 1� T (t) = 1� e�⌧(t)F (t) = 1� T (t)

Cumulative distribution function (CDF)
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p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)

Probability density function (PDF)

p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)

Inverted cumulative distr. function (CDF-1)

⇠ = 1� e�⌧(t)

⌧(t) = ln(1� ⇠)
Z t

0
µt(s)ds = ln(1� ⇠)

Solve for t
⇠ = 1� e�⌧(t)

⌧(t) = � ln(1� ⇠)
Z t

0
µt(s)ds = � ln(1� ⇠)

F (t) = 1� T (t)F (t) = 1� T (t) = 1� e�⌧(t)F (t) = 1� T (t)

Cumulative distribution function (CDF)
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p(t) =
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Realistic Image Synthesis SS2020

Regular Tracking (Semi-Analytic)

179

For piecewise-simple (e.g. piecewise-constant), summation replaces integration
⇠ = 1� e�⌧(t)
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Find the collision distance approximately
⇠ = 1� e�⌧(t)
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Z t

0
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kX
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General volume

Ignored thin 
features = bias
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collision  
LHS=RHSStart
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Ray marching:

1) Draw a random number 
2) While LHS < RHS 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   in the last segment analytically

t = �
ln(1� ⇠)
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‣ Efficient & simple,  
limited to few volumes 

‣ Simple volumes 
(e.g. homogeneous)

‣ Unbiased

‣ Iterative, inefficient if 
free paths cross many 
boundaries

‣ Piecewise-simple 
volumes

‣ Unbiased

‣ Iterative, inaccurate (or 
inefficient) for media 
with high frequencies

‣ Any volume  

‣ Biased

ANALYTIC CDF-1 REGULAR TRACKING RAY MARCHING

Common approach: sample optical thickness, find corresponding distance
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a.k.a. Woodcock tracking, pseudo scattering, hole tracking, null-collision method,…
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Add FICTITIOUS MATTER to homogenize heterogeneous extinction

‣ albedo

‣ phase function

↵(x) = 1

fp(!, !̄) = �(! � !̄)

Fictitious particle

Incident light Outgoing light
Presence of fictitious matter
does not impact light transport
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Volume bounds

Real 
medium

Majorant µ̄ = µt(x) + µn(x)µ̄ = µt(x) + µn(x)

Fictitious 
medium

µ̄ = µt(x) + µn(x)
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Sampled free path

Pn(x) =
µn(x)
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µ̄ = µt(x) + µn(x)

µt(x)

Majorant
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Tight majorant = GOOD
(few rejected collisions)

Sampled free path
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Loose majorant = BAD
(many expensive rejected 

Sampled free path
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