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The previous presentations in this course demonstrated the robustness of photon mapping
under various difficult lighting conditions. In this talk, | will show how photon mapping can
be combined with bidirectional path tracing — another very robust rendering algorithm — to
handle complex light transport even more efficiently.



Bidirectional path tracing (30'min)

Bidirectional path tracing is one of the most versatile light transport simulation algorithms
available today. It can robustly handle a wide range of illumination and scene
configurations, but is notoriously inefficient for specular-diffuse-specular light interactions,
which occur e.g. when a caustic is seen through a reflection/refraction.



Stochastic progressive photon mabpmg 30" min)!

On the other hand, photon mapping (PM) is well known for its efficient handling of
caustics. Recently, Hachisuka and Jensen [2009] showed a progressive variant of PM that
converges to the correct solution with a fixed memory footprint. Their stochastic
progressive photon mapping (PPM) algorithm captures the reflected caustics in our scene
quite well. However, it has hard time handling the strong distant indirect illumination
coming from the part of the scene behind the camera.



Combined algorithm™(30"min)

By using multiple importance sampling to combine estimators from bidirectional path
tracing and photon mapping, the algorithm | will talk about today automatically finds a
good mixture of techniques for each individual light transport path, and produces a clean
image in the same amount of time.
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Let us start by reviewing how bidirectional path tracing (BPT) and photon mapping (PM)
sample light transport paths that connect the light sources to the camera:

[CLICK] The techniques BPT employs can be roughly categorized to unidirectional sampling
(US) and vertex connection (VC). [CLICK] US constructs a path by starting either from a light
source or the camera and tracing a random walk in the scene until termination. [CLICK] On
the other hand, VC traces one subpath from a light source and another one from the
camera, [CLICK] and then completes a full path by connecting their endpoints.

[CLICK] In contrast, PM first traces a number of light subpaths and stores their vertices,
a.k.a. photons. [CLICK] It then traces subpaths from the camera and computes the outgoing
radiance at the hit points using density estimation by looking up nearby photons.
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» BPT & PM: different solutions to the same problem
» If we ignore bias in PM

» Want to combine
> Best of both
> Automatically

Problem: Different mathematical frameworks
» BPT: Monte Carlo integration
> PM: Density estimation

$A2013.SIGGRAPH.ORG SPONSORED BY €@ €

We see that bidirectional path tracing (BPT) and photon mapping (PM) are different
solutions to the same problem. That is, if we ignore the bias introduced by PM.
Furthermore, the previous comparison shows that BPT and PM complement each other in
terms of the light transport effects they can efficiently handle.

It is thus logical to want to combine these two methods. Ideally, we want an automatic
combination that preserves the qualities of each. Interestingly, even though both methods
have been published over 15 years ago, neither a rigorous analysis of their relative
performance nor an efficient combination had been shown until very recently. The reason
for this is that BPT and PM have originally been defined in different theoretical frameworks
— BPT as a standard Monte Carlo estimator to the path integral, and PM as an outgoing
radiance estimator based on photon density estimation.
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Problem: Different mathematical frameworks

Solution: Cast both in the same framework
» Path integral framework [Veach 1997]

» Multiple importance sampling

> New insight
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The first step toward combining these two methods is to cast them in the same
mathematical framework. We choose Veach’s path integral framework where BPT is
already naturally defined. This framework formulates the problem of computing the value
of a pixel ‘j” as an integral over the energy contribution of all light transport paths from the
light sources to the camera. An estimator for this value is obtained by sampling one such
random path and dividing its contribution by the path pdf. Different path sampling
techniques result in different path pdfs, and BPT uses multiple importance sampling to
efficiently combine the resulting estimators.

Later on, we will see that casting both methods in the same path integral framework will
also provide a basis for reasoning about the relative efficiency of BPT and PM.
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» Multiple importance sampling [Veach and Guibas 1995]
> Balance heuristic for n techniques
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» Need to:
1) Find a common definition of a path
» In a common space
2) Derive path probability density function (pdf)
> With common units
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Multiple importance sampling (MIS) combines the estimators corresponding to different
path sampling techniques by assigning each estimator a weight that is a function of the
actual sampled path. The balance heuristic makes this weight proportional to the path pdf.

In order to combine BPT and PM using MIS, we need two things. First, we have to find a
common definition of the light transport paths sampled by both methods. Recall that
photon mapping has been originally defined as an outgoing radiance estimator, without
explicit distinction between individual full light transport paths constructed with each
photon subpath.

Second, we need to derive the probability density function (pdf) for sampling these paths.
In order to apply the balance heuristic in a meaningful way, the pdfs corresponding to the
path sampling techniques in both methods should have the same units. This means that
the paths need to reside in the same space, i.e. have the same number of vertices.
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To find a common definition of a path, let us follow the sampling procedures used in BPT
and PM. We start by tracing two independent subpaths, one from a light source and
another one from the camera.



® Light vertex
® Camera vertex
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Bidirectional path tracing
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Now let us see how BPT and PM complete a full path.
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Given these two subpaths, BPT places a shadow connection between their endpoints.
[CLICK] Photon mapping, on the other hand, extends the light subpath by sampling one
more vertex from X;, and then concatenates the subpaths only if the photon hit-point x5
lies within a distance r from X,.

The resulting full path in PM has one more vertex than the corresponding BPT path.
Thus, they reside in different path spaces and their pdfs also have different units.
Two recent works on combining PM and BPT have approached this problem in different
ways.

11
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Hachisuka et al. [2012] consider an extension of BPT that samples paths in the higher-
dimensional space of PM.

12
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This is done by considering a random perturbation of vertex X, in an r-neighborhood that
yields a new vertex X;. This vertex is then connected to X;. With this modification, both
algorithms sample paths in the same higher-dimensional space. In the case of
unidirectional sampling, the camera subpath tracing continues from X5.

[CLICK] The path pdf of the extended vertex connection technique is the product of the

pdfs of the individual vertices, where the pdf of X is %, as it is sampled uniformly in a
nwr=

circle with a radius r. [CLICK] The pdf of the corresponding photon mapping technique is
the product of the vertex pdfs, which are given by the random walk sampling procedure.

13
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In contrast, the vertex merging interpretation of Georgiev et al. [2012] considers [CLICK]
the last step in photon mapping as establishing a regular vertex connection
between x; and x,, but conditioning its acceptance on the random event that a
vertex X, sampled from x; lands within a distance 7 to X,. This probabilistic
acceptance is simply a Russian roulette decision. The full path pdf is then the
product of the subpath pdf multiplied by the probability of sampling the point x5
within a distance r of X,. This acceptance probability is equal to the integral of the
PDF of x; over the r-neighborhood of x;.

[CLICK] Under the assumptions that the surface around x; is locally flat, i.e. that the
r-neighborhood is a disk, and that the density of X5 is constant inside this disc, the
integral can be well approximated by the PDF of the actual point x5 we have
sampled, multiplied by the disc area mr?. [CLICK] This technique is called vertex
merging, as it can be intuitively thought to weld the endpoints of the two subpaths
if they lie close to each other.

Now that we have common definitions of the paths and their corresponding pdfs in
both BPT and PM, we can use the balance heuristic to compute path weights that
account for all possible ways to sample the same path in both algorithms. [CLICK]
Note that the only difference in the path pdfs given by the two different
interpretations is the 72 factor in the vertex merging, which appears as a

14



denominator in the extended vertex connection of Hachisuka et al. [2012].
Interestingly, both interpretations result in the same path weights when the path
pdfs are plugged into the balance heuristic formula.

14
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Having formulated photon mapping as a path sampling technique, we can put it side by
side with the techniques in BPT. There are two ways to sample a length-4 path
unidirectionally, and four ways to sample it via vertex connection. Photon mapping adds
five new ways to sample the path, corresponding to merging at the five individual path
vertices. In practice, we can avoid merging at the light source and the camera, as directly
evaluating emission and sensitivity is usually cheap.

With so many ways to sample the same light transport path, an interesting question arises:

which technique is the most efficient for which types of paths? In the following discussion,
we will use the vertex merging interpretation to argue about the relative efficiency of BPT

and PM.

15
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Let us first take a look at specular-diffuse-specular (SDS) paths. Here, BPT can only rely on
unidirectional sampling: it traces a path from the camera hoping to randomly hit the light
source. With vertex merging, we can trace one light and one camera subpath, and merge
their endpoints on the diffuse surface.

[CLICK] It can be shown that if the light source and the merging disk have the same area A4,
then unidirectional sampling and vertex merging sample paths with roughly the same
probability density. This means that we should expect the two techniques to perform
similarly in terms of rendering quality.

[CLICK] We render these two images progressively, sampling one full path per pixel per
iteration. For the left image we trace paths from the camera until termination or hitting the
light. For image on the right, we trace subpaths from both ends, and concatenate them if

their endpoints if they lie within a distance r = /A /1 from each other. Both images look
equally noisy, even with 10,000 paths per pixel. This confirms that the path sampling
technique used in photon mapping is not intrinsically more robust for SDS paths than
unidirectional sampling.

[CLICK] However, the strength of photon mapping is computational efficiency — we can very
efficiently reuse the light subpaths traced for all pixels at the cost of a single range search
query. This allows us to quickly construct orders of magnitude more light transport
estimators from the same sampling data, with a minimal computational overhead, resulting

16



in a substantial quality improvement.

[CLICK] For all these three images we have traced roughly the same number of rays, and the
only difference between the one in the center and the one on the right is that the for right
image we have enabled path reuse, by storing, and looking up, the light subpath vertices in a
photon map at every rendering iteration.

16
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Now let us look at another extreme example — diffuse illumination. Note that vertex
connection (VC) constructs the edge between X; and X, deterministically, while
unidirectional sampling (US) and vertex merging (VM) both rely on random sampling.

Once again, it can be shown that if the light source and the merging disk have the same
area, then US and VM sample this path with roughly the same probability density.

[CLICK] For the specific case shown on this slide, this density is about 100,000 lower than
that of VC. This demonstrates that VM is not an intrinsically more robust sampling
technique than VC either. This is not surprising — if we recall the expression for the VM path
PDF, we see that it can only be lower than that of the corresponding VC technique, as their
only difference is the probability factor in the VM PDF, which is necessarily in the range

[0; 1]. Still, by reusing paths across pixels, photon mapping gains a lot of efficiency over
unidirectional sampling.

All these insights emerge from the reformulation of photon mapping as a path sampling
technique.

17
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Stage 1: Light sub-path sampling

a) Trace sub-paths b) Connect to eye c) Build search structure

Stage 2: Eye sub-path sampling

a) Vertex connection b) Vertex merging c) Continue sub-path

Even more importantly, we now have the necessary ingredients for combining photon
mapping and bidirectional path tracing into one unified algorithm. The vertex merging path
PDFs tell us how to weight all sampling techniques in multiple importance sampling, and
the insights from the previous two slides command to strive for path reuse.

The combined algorithm operates in two stages.

1. Inthe first stage, we
a) [CLICK] trace the light subpaths for all pixels,
b) [CLICK] connect them to the camera, and
c) [CLICK] store them in a range search acceleration data structure (e.g. a kd-tree
or a hashed grid).

2. [CLICK] In the second stage, we trace a camera subpath for every pixel.

a) [CLICK] Each sampled vertex on this path is connected to a light source (a.k.a.
next event estimation), connected to the vertices of the light subpath
corresponding to that pixel, and

b) [CLICK] merged with the vertices of all light subpaths.

c) [CLICK] We then sample the next vertex and do the same.

In a progressive rendering setup, we perform these steps at each rendering iteration,
reducing the vertex merging radius.

18



Bidirectional path tracing (30 min)

Let us now see how this combined algorithm stacks up against bidirectional path tracing
and stochastic progressive photon mapping on a number of scenes with complex
illumination.
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Stochastic progressive photon mapping (30 min)
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Combined algorithm (30'min)

21



Here, we visualize the relative contributions of BPT and PM techniques to the combined
image from the previous slide. This directly corresponds to the weights that the combined
algorithm assigned to these techniques.
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Combingd algosiihm (30 min)
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Relative technique contributions
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Relative technmiguecontributions
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» No merging for
» Direct illumination
> Directly visible caustics

» Memory efficiency
Heavyweight light vertices
» Hit point data, BSDF parameters, ...
Reorganize computations
» Classic BPT (one light & eye path at a time)
» Store compact photons
» Merge at next iteration

| will now discuss some good practices for the practical implementation of the combined
algorithm in a production renderer.

We can practically always skip vertex merging (VM) for direct illumination and directly
visible caustics, as vertex connection usually performs better. Doing this also avoids the
correlated noise and bias inherent to VM.

The combined algorithm has the problem that its memory footprint can be much larger
than that of (progressive) photon mapping. This comes from using the stored light vertices
not only for merging, but for connection as well. We need to store hit point data with these
vertices, which includes coordinate frame, BSDF structure, and possibly other data, making
the vertex footprint as large as 1KB in some cases. This results in 1GB of storage for 1
million vertices. For the progressive variant of the combined algorithm, we can dramatically
reduce this footprint by rearranging its computations. We follow the classical BPT
implementation, where for each pixel we trace one light subpath and one camera subpath.
After performing the vertex connections, we store the light subpath vertices in the
acceleration structure. These vertices will then be used for merging at the next rendering
iteration, while the camera subpath vertices for the current iteration are merged with the
light vertices from the previous iteration. This allows us to safely strip the hit point data off
the light vertices before storing them in the structure, as they will be only used for merging.
And just like in photon mapping, for merging we only need to keep around a small amount
of vertex data, i.e. position, direction, and throughput.

31
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» Merging radius
» Compute from pixel footprint (ray differentials)
» Don’t reduce (or use @ = 0.75)

» MIS weights: efficient accumulation during sub-path sampling

The progressive combined algorithm has two parameters: the initial merging radius r and
its reduction rate a (see “Progressive Photon Mapping” [Hachisuka et al. 2008]). We can
often afford to use a much smaller radius than in PPM, as VCM mixes a large number of
path sampling techniques, and VM is mostly used for caustics. An automatic and robust
way to compute a good merging radius for each camera path is to derive it from the pixel
footprint, which is given by the ray differentials that most renderers already implement and
use for texture filtering. As for the reduction parameter «, | recommend using @ = 0.75,
which is a provably good value (see VCM paper [Georgiev et al. 2012]),
Alternatively, we can also opt to not reduce the radius altogether (i.e. setting a =
1), especially when using ray differentials which give a small enough radius to
mostly avoid noticeable correlated noise and bias.

Efficient MIS weight computation is another important practical aspect of the
combined algorithms, and fortunately there exists a scheme for cumulative
computation of weight data during the subpath random walks. This scheme is
discussed in length in the technical report cited on the next slide.
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» A path space extension for robust light transport simulation
[Hachisuka et al. 2012]

» Paper, supplemental analysis [http./cs.au.dk/~toshiya/]

» Light transport simulation with vertex connection & merging
[Georgiev et al. 2012]

> Paper, tech. report, image comparisons [http:/iwww.iliyan.com]
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» Two approaches
» Same result

» Error convergence

BPT.
PPM:

Combined: O(N~"-

» Remaining challenges

Two independent groups of researchers have taken different approaches on efficiently
combining BPT and PM. The result of both these efforts is the same algorithm, which
importantly also inherits the higher asymptotic error convergence rate of BPT, meaning that
it approaches the correct solution faster than PPM as we spend more computational effort
(i.e. sample more paths). The asymptotic analysis can be found in the VCM paper [Georgiev
et al. 2012].

[CLICK] Even though VCM is a step forward in Monte Carlo rendering and has proven very
useful in practice, it doesn’t come without limitations. Specifically, it cannot handle more
efficiently those types of light transport paths that are difficult for both BPT and PM to
sample. [CLICK] A prominent example are caustics falling on a glossy surface. [CLICK] And
on this kitchen scene, even though VCM brings practical improvement over BPT, there is
still a lot to be desired from the caustics.

34
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If you want to try this algorithm yourself, we have released a reference open source
implementation in the SmallVCM renderer.

A number of companies have also announced integration of the algorithm in the upcoming
releases of their commercial renderers. One example is Pixar’s Photorealistic RenderMan
v19, and Chaos Group have already shown first images from V-Ray 3.0. The algorithm is
also already implemented in the public Alpha release of Corona renderer.
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Gulfstream interior

Using recent global illumination techniques, it is possible to
render realistic images as shown here.



Global lllumination Algorithms

® Biased methods
Irradiance Caching [Ward 88]
Photon Mapping [Jensen 95]
Density Estimation [Shirley 95]
Instant Radiosity [Keller 97]
Lightcuts [Walter 05]

Global illumination techniques are typically based on
Monte Carlo method, which are further classified into
unbiased methods and biased methods. Biased methods
are often faster than unbiased methods, and widely used
In many rendering systems. However, images rendered by
biased methods contain systematic errors associated with
each algorithm.,



Global lllumination Algorithms

® Unbiased methods
Path Tracing [Kajiya 86]

Bidirectional Path Tracing [Lafortune 93][Veach
95]

Light Tracing [Dutré93]
Metropolis Light Transport [Veach 97]

Unbiased methods can compute correct images, in the
sense that, it gives the correct solution to the rendering
equation on average. If we need a very accurate image,
we usually choose an unbiased method because the result
can be arbitrarily accurate just by increasing the number of
samples. Given all the algorithms, it is natural to think that
global illumination is a solved problem. We claim that this
IS not true.



LDE Path

Let’s consider this scene to highlight why we claim global
illumination is not solved. This path is called LDE path,
where L is a light source, D is a diffuse reflection, and E is
the viewer. If we see a diffuse object directly illuminated by
a point light source, it is easy to construct a path of light.



LSDSE Path

However, just by adding a refractive object on top of the
diffuse object, it is no longer easy to construct a light path.
The path which connects between the light source and the
viewer refracts at the boundary of the refractive object,
which is now called LSDSE path where S is a specular
refraction. In order to construct a path, we need to find a
point on the diffuse object that connects the viewer and the
light source after refractions. If the light is a point light
source, then it is in fact impossible to compute this path
with any unbiased method.



You might think it is a rare case, but we see this type of
illumination very often in our daily life. For example, let’s
take a look at this simple photograph of a store window.
Since the window causes specular refractions and the
sunlight is coming through the window, everything you see
through the window contains an SDS path.



The bottom of a swimming pool is another example of SDS
paths, where it is illuminated by light coming through the
water surface, and we see that above the water surface.



This is a picture of an ordinary bathroom. Almost
everything you see in the mirror is a SDS path. The reason
Is that a glass casing of light bulb causes specular
refraction before illuminating any diffuse surface.

Therefore, what we see in the mirror is dominated by SDS
paths.



If you want to be extremely precise, you would need to
consider that the lens of our eyes or camera and the glass
casing around a light bulb, which ultimately create SDS
paths everywhere. | hope you are convinced that it is
iImportant to handle SDS paths in global illumination.



Progressive Photon Mapping

First algorithm for computing all types of
light transport with arbitrary accuracy

Our progressive photon mapping is the first method for
computing all types of light transport, including SDS paths,
with arbitrary accuracy.



Progressive Photon Mapping

® New formulation of photon mapping

Robust for any light path including SDS
path

Arbitrary accuracy using finite memory

New progressive radiance estimation
algorithm

Easy to implement

To be more precise, our progressive photon mapping is a
new formulation of photon mapping. Our method is robust
for any light path including SDS path. We can compute
Images with arbitrary accuracy just by increasing the
number of photons without storing all the photons. To do
this, we introduce a new progressive radiance estimation
algorithm, which is easy to implement.



Photon Mapping

Since our method is based on photon mapping, let’s for a
moment look at the standard photon mapping.



Photon Mapping

® 2 pass method
® 1st pass: photon tracing

® 2nd pass: rendering using the photon map

Photon mapping is a two pass method. In the first pass,

photons are emitted from light sources and interactions of
photons with surfaces are stored as a photon map. In the
second pass, an image is rendered using the photon map

from the first pass.



Photon Mapping - 1st Pass

Let’s look at this example scene, where there is a glass
ball, diffuse walls, and the light source at the top.



Photon Mapping - 1st Pass

In the first pass of photon mapping, we trace photons from
the light source, and store the intersections with diffuse
surfaces as a photon map.



Photon Mapping - 2nd Pass

In the second pass, we trace rays from the eyes,



Photon Mapping - 2nd Pass

In the second pass, we trace rays from the eyes,



Photon Mapping - 2nd Pass

and estimate the resulting radiance by finding nearby
photons around each intersection point of eye ray.



Radiance Estimate

We use this equation to estimate radiance, where K is the
number of nearby photons around x, f ris a BRDF, phi_p
Is flux (or power) of each photon, and r is the search radius
of all the nearby photons. Note that this equation is an
approximation of the correct radiance using K photons.



Convergence of Photon
Mapping

10k photons 100k photons 1M photons 10M photons

Although photon mapping is a biased method, it is a
consistent method. It means is that the image rendered by

photon mapping converges to the correct solution by
increasing the number of photons.



Convergence of Photon
Mapping
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® Converges to the correct solution with
an infinite number of photons

® Requires infinite density of photons

To be more precise, radiance computed from nearby
photons converges to the correct solution of the rendering
equation, if we use an infinite number of photons within an
infinitely small search radius. Unfortunately this is not

practical since it would require an infinite amount of
memory.



Multiple Photon Maps

Average images with different photon maps

Combine results from several photon maps
[Christensen 2004]

Give a smoother but incorrect result
that lacks fine-scale details

Instead of using single photon map with a large number of
photons, one can think of combining results from several
photon maps with a small number of photons, to increase
the total number of photons. The simplest method would
be to take the average of images rendered by different
photon maps. Christensen presented a more sophisticated
method to combine several photon maps. These methods
give a smoother result, but details of lighting would be
missing if they are not captured by individual photon map.
In other words, the result does not converge to the correct
solution even if an infinite number of photons is used.



Progressive Photon

Mapping

In contrast, progressive photon mapping converges to the
correct solution, and | will now describe how this is
achieved.



Progressive Photon Mapping

® Multi-pass method

® Initial pass:
points generation for radiance estimates

® Refinement pass:
® photon tracing

® progressive radiance estimate

Progressive photon mapping is a multi-pass method. In the
Initial pass, we generate points where we want to estimate
radiance, which is usually done by ray tracing. In the
succeeding refinement passes, we trace photons exactly in
the same way as the standard photon mapping. We then
apply a new progressive radiance estimate to compute
radiance at each point.



Key Idea

® Progressive radiance estimation
® New density estimation algorithm

® Converges to the correct value

The key idea of progressive photon mapping is in
progressive radiance estimation. It is based on a new
density estimation algorithm where the result converges to
the correct value after an infinite number of refinement
passes.



Progressive Radiance

In progressive radiance estimate, we estimate radiance at
a specific point using an iterative approach.

In the first pass, we have N_0 photons within a disc of
radius R_0, and we compute radiance using this equation.

In the second pass, we accumulate more photons and
refine the estimated radiance.

We keep repeating this process to obtain more accurate
radiance estimates.



Progressive Radiance
Estimate

In order to achieve convergence to the correct value after
an infinite number of refinement passes, we refine the
estimate of radiance iteratively. After each iteration, the
search radius should decrease and the number of nearby
photons should increase to ensure convergence. | will now
describe how this can be done.



Progressive Radiance
Estimate

® Assume the density of photons is
uniform within the disc

Assume we have a point with N_i photons and we would
like to add the contribution from M_i new nearby photons.
Our goal is to obtain N_i+1 photons within a disc of radius
R_i+1 under the conditions | showed before. If we assume
that the density of photons within the disc is uniform, we
can express the density before and after the iteration as
shown in this slide.



Progressive Radiance
Estimate

® Keep a fraction a of newly added photons M;

N;+M;  Njp
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To ensure that the number of photons is increasing, we
accumulate a fraction alpha of the new nearby photons.



Progressive Radiance
Estimate

® Solve the quadratic equation for Ri+1

N;+-M; _ Nit1
TFR?;z

Nit1 = N; + aM;

We then combine these two equations to obtain a
guadratic equation of the new radius,



Progressive Radiance
Estimate

® Solve the quadratic equation for Ri+1

N;+-M; _ Nit1
TFR?;z

Nit1 = N; + aM;

and solve this equation to get the new radius R_i+1. We
use a similar approach to accumulate the flux associated
with a point.



Progressive Radiance
Estimate

; N; + aM;
SRR gDy it L
radalus 2 i i

accumulated N; + oM;
flux S LN T
N;

radiance [ =L
TR;

In summary, we store the number of nearby photons, the
search radius, the accumulated flux at each point, and
simply update the values using these equations after each

iteration.



Progressive Photon Mapping - Initial Pass

To summarize the overall algorithm, let’'s go back to the
same example as we have seen in the standard photon

mapping.



Progressive Photon Mapping - Initial Pass

In the initial pass of progressive photon mapping, we
generate points where we want to estimate radiance by
tracing rays from the viewer. This process is very similar to
the second pass of the standard photon mapping except
we now store information of each point.



Progressive Photon Mapping - Initial Pass

After the first iteration, each point is assigned an initial
search radius.



Progressive Photon Mapping - 1st Refinement
Pass

/;
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In each refinement pass, we first trace photons in the
same way as the standard photon mapping. We then find
photons within the radius of each point.



Progressive Photon Mapping - 1st Refinement
Pass
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Based on the nearby photons we update the statistics of
each point. This includes reducing the radius as shown on
the slide.



Progressive Photon Mapping - 1st Refinement
Pass

N —

We then discard all photons and prepare for the next
iteration.



Progressive Photon Mapping - 2nd Refinement
Pass

The succeeding refinement passes proceed exactly in the
same way,



Progressive Photon Mapping - 2nd Refinement

but we use updated radii and statistics.



Progressive Photon Mapping -
Rendering

Finally, we can render the image at any iteration by
estimating the radiance at each point.



Results

Now, | am going to talk about our results.



Convergence (100k photons)

First | will show how images rendered by our method
converges to the correct solution. This image is rendered
using one hundred thousand photons.



Convergence (400k photons)

as you increase the number of photons, thereby adding
more refinement passes,



Convergence (1.6M photons)

we can obtain more details and smoother result. Note that
even with a relatively low number of photons,



Convergence (6.4M photons)

the image already gives us an idea of the illumination in
the scene.



Convergence (25.6M photons)

and finally this image is rendered using about twenty-five
million photons in total. Note the absence of bright noisy
pixels in the image sequence just shown.



Robustness
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® Progressive photon mapping avoids the
singularity since no lighting is sampled
explicitly

The reason for this is that progressive photon mapping
avoids the singularity in the geometry term of the rendering
equation by not sampling the light sources explicitly.



Statistics on Points

Let’s look at how the radius and the number photons
change at different points on the scene. We plot graphs of
the radius, the number of nearby photon, and the
estimated radiance on the different point shown in here.



Number of Local Photons

Point A —
Point B
i Point C

500 1000 1500 2000
Number of Iterations

This graph shows the change of the number of photons
within the radius of each point. As can be seen, the
number of photons increases monotonically as we
increase the number of iterations.



Point A —
Point B

0.03125 ¢

0.015625l

10 100 1000
Number of Iterations

This graph shows the change of the radius. Note that the
radius is monotonically decreasing as the number of
iterations increase.



Error of Estimate

Point A —
Point B
Point C

500 1000 1500
Number of Iterations

This graph shows the error of the radiance estimate. As
can be seen, the radiance estimate converges to the
correct solution.



Implementation

Use the same ray tracing core

Path Tracing with shadow rays [Kajiya 86] (PT)
Bidirectional Path Tracing [Veach 95] (BDPT)

Metropolis Light Transport [Veach 97][Kelemen 02]
(MLT)

Photon Mapping [Jensen 95] (PM)

To compare our method with existing methods, we
Implemented these algorithms using the same ray tracing
core.



Torus in Cube - Reference (Path
Tracing)

51500 samples
91 hours

First we rendered a torus embedded in a transparent cube
illuminated by sunlight. Note that all illumination on the
torus is caustic and we see the torus though specular
transmission of the cube, which is a SDS path. This is the
reference solution with 91 hours of rendering using path

tracing.



Torus in Cube - Path Tracing

1050 samples
2 hours

If we just use 2 hours with path tracing, the image looks
very noisy.



Torus in Cube - Bidirectional Path
Tracing

550 samples
2 hours

Bidirectional path tracing gives less noisy results especially
for the caustics caused by the transparent cube, but the
torus is still significantly noisy.



Torus in Cube - Metropolis Light
Transport

359 mutations
2 hours

Metropolis Light Transport does not really work well either
In this scene, but it just gives us a different type of artifact.



Torus in Cube - Progressive Photon
Mapping

52M photons
2 hours

In the same rendering time, our method can handle
illumination on the torus very robustly as well as caustics
by the cube.



Bathroom - Path Tracing

 samples
16 hours

This bathroom scene shows an example of realistic lighting
design. In this scene, there are two spherical light sources
enclosed by glass casing, which is similar to a typical
lighting fixture. Note that reflection on the mirror causes
SDS paths. Path tracing results in noisy image because
almost everything is illuminated by caustics in this scene.



Bathroom - Bidirectional Path Tracing

66 samples
16 hours

S sz

Bidirectional path tracing gives you much better result in
the same rendering time. However, note that the reflection
of the light on the mirror is missing.



Bathroom - Metropolis Light Transport

66 mutations &
16 hours

Metropolis Light Transport can capture some of reflections
on the mirror, but the results looks still very noisy.



Bathroom - Photon Mapping

AL ] d fi j

20M photons
1 hour

Here we used standard photon mapping. The number of
photons is as large as we can use in 1GB of memory.
Since the number of photons is limited by the amount of
memory, the rendering time is actually faster. However the
Image looks blotchy because the number of photons is not
enough to get rid of the noise. This means that the quality
of the image is bounded by the available amount of
memory.



Bathroom - Progressive Photon
Mappi

1

612M photons
16 hour

S -]

With Progressive Photon Mapping, we can use 612 million
photons, which is equivalent to 30GB of photons without
consuming that amount of memory. The image accurately
captures the reflection in the mirror, as well as all other fine
scale illumination details.



Glass Desk Lamp

BDPT \Y
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840 samples 80 samples 82 mutations 165M photons
22 hours 22 hours 22 hours 22 hours

Finally, we rendered a glass desk lamp to show the
robustness of our method. The results using existing
methods are either too noisy, or they cannot handle the
refraction through the lamp. Only progressive photon
mapping is able to render this scene without noise.




Conclusion

® New formulation of photon mapping

Robust for any light path including SDS
path

Arbitrary accuracy using finite memory

New progressive density estimation
algorithm

Easy to implement

In conclusion, we have presented a new formulation of
photon mapping, called progressive photon mapping. Our
algorithm is robust and it can compute all types of light
transport with arbitrary accuracy using a finite amount of
memory. To achieve this, we have introduced a new
progressive density estimation algorithm, which is easy to
Implement. We believe that our method has a lot of
interesting future work,



Future Work

How many photons are enough?

but the most significant question we hope to answer is
‘how many photons are enough for a given error criterion?’
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Desk Lamp - Progressive Photon
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165M photons
22 hours

Our method is the only method that can robustly handle
this difficult, yet simple illumination setting. We believe that
our method is a robust alternative to render accurate
Images over existing unbiased Monte Carlo method.



Progressive Radiance
Estimate

Computes radiance at a given point with
arbitrary accuracy

Progressively accumulates photon statistics
within a disc around the point

The goal of progressive photon mapping is to compute
radiance at a given point with arbitrary accuracy. We
achieve this by progressively accumulating photon
statistics at



Measurement Point

® Place to “measure” radiance

® Each measurement point has:
® Radius
® Nearby photon count
® Accumulated flux

® Pixel position

Measurement points generated in the first pass are places
to measure radiance. Generating measurement points is
typically done by ray tracing for rendering images. Each
measurement point stores radius to search nearby
photons, the number of nearby photons, accumulated flux
of nearby photons and its pixel position.



Convergence of Photon
Mapping

To be more concrete, radiance computed from neighboring
photons converges to the correct value based on the
rendering equation if we use an infinite number of photons.
Of course, directly utilizing this property is not practical
because an infinite number of photons requires infinite
amount of memory to store.



Future Work

Application to participating media
Application to subsurface scattering
Spectrum sampling

Adaptive photon tracing

GPU implementation

Automatic parameter tuning




Radiance Estimate

® Radiance can be estimated at any step

Since flux and radius is available in every refinement, we
can estimate radiance to show intermediate images to
user. The equation to compute is exactly the same as
standard photon mapping, except it uses accumulated, but
unnormalized photon flux, which needs to be divided by
the number of emitted photons so far over all refinement
passes.



Consistency in Standard PM

® The number of nearby photons (NF)
should be infinitely large

® Radius (r) should be infinitely small

In order to describe how we update statistics on each
measurement point, let me recap the consistency of the
standard photon mapping. This equation basically says,
photon mapping will give us correct radiance if the number
of nearby photons is infinitely large and the radius that
contains nearby photons is infinitely small.



Progressive Radiance
Estimate

® Suppose you ha®dp photonslits  with
flux

°l 1
N

Flux

In order to understand how this can be achieved, let’s look
a single measurement point in more details. Suppose that
you already have NO photons within the radius of RO with

tauO as flux.



Progressive Radiance
Estimate

® FoundM; new photond?y witlia, flux

°l 1
N

Flux

Now, say we find MO new photons by shooting photons in
this iteration.



Progressive Radiance
Estimate

® FoundM; new photond?y witlia, flux

Since every photon is in the radius, we can simply
accumulate flux and the number of local photons.



Progressive Radiance
Estimate

® Reduce radius td?; such that N still increases

What we really want to do is to determine new radius R1,
which is smaller than RO. R1 also needs to keep the
number of photons N increasing as well as flux. In other
words, we need to have non-zero gain in the number of
photons and flux even after the reduction of radius.



However, there is a type of path which is problematic. In
order to see such example, let’s look at this simple scene,
where a point light is illuminating a diffuse object. To
compute the contribution from the light source to the eyes,



we shoot a ray from the eyes,



Let’s modify the scene slightly by adding a refractive object
on top of the diffuse object. In order to compute the
contribution from the light source to the eyes,



we first shoot a ray from the eyes as before. The only
difference is that we need to take into account the specular

refraction, which is denoted by S. So far, the computation
Is still as easy as before.



However, if we try to connect D with the light source by
shooting a ray toward the light source, it could miss the
light source because of the specular refraction.



Consistency of Photon
Mapping







Realistic Light Source in Computer
Graphics

Metal tube

Light
o

Let’s see if we can use this kind of realistic light sources in
rendering. In this test scene, there is two small spherical
light enclosed by a metal tube capped with lens which is
similar to a real world light sourcel have shown before.
Note that everything will be illuminated light coming
through lens, which is caustic



Path Tracing

If you render this scene with path tracing, this is what you
get. Image is very noisy because everything is illuminated
by caustics and path tracing is not especially robust for
rendering caustics.



Bidirectional Path Tracing

If you use bidirectional path tracing, it looks much better
than path tracing. However, note that reflection on the
mirror balls and refraction through the glass ball is very
dark. This is because they are specular reflection or
refraction of caustics, which is extremely difficult handle
with any unbiased Monte Carlo ray tracing algorithm.



Metropolis Light Transport

This is also the case even with Metropolis Light Transport
which is considered to be the most robust algorithm to
handle difficult lighting. Path in Metropolis Light Transport
stacks reflection and refraction on the balls which caused
bright spot noise.



Photon Mapping

If we allow some bias in rendering, Photon Mapping can
robustly render this type of illumination. However, Photon
Mapping runs out all memory before obtaining noise-free
results because we need to store all the photons. Note that
we have to directly visualize photon map in this scene
because everything is caustic.



Progressive Photon Mapping

If you use our method, you can finally render this simple,
yet difficult scene accurately and robustly. | will describe
how this can be done in this talk.



Consistency in Standard PM

® The number of nearby photons (NF)
should be infinitely large

® Radius (r) should be infinitely small

Since flux and radius is available in every refinement, we
can estimate radiance to show intermediate results to user.
The equation to compute is exactly the same as standard
photon mapping, except it uses accumulated, but
unnormalized photon flux, which needs to be divided by
the number of emitted photons so far over all refinement
passes.



Consistency in PPM

Nit1 = N; + oM,
N;; —I—O{Af[z
N; + M;

® The number of nearby photons (Ni)
should be infinitely large

® Radius (Ri) should be infinitely small

| will not describe the derivation in this talk, but it turns out
that we just need to use these relatively simple equation to
update statistics on each measurement point. Alpha here
Is the parameter chosen by user. All we need to do is to
update the number of photons, radius and flux using these
equations in each iteration.



Consistency in PPM

N;; + O{Af[z

N; + M;

® The number of nearby photons (Ni)
should be infinitely large

® Radius (Ri) should be infinitely small

| will not describe the derivation in this talk, but it turns out
that we just need to use these relatively simple equation to
update statistics on each measurement point. Alpha here
Is the parameter chosen by user. All we need to do is to
update the number of photons, radius and flux using these
equations in each iteration.



Consistency in PPM

Niy1 = N; + aM; lim N; = oo

22— 00

N;; + O{Af[z ]

® The number of nearby photons (Ni)
should be infinitely large

® Radius (Ri) should be infinitely small

| will not describe the derivation in this talk, but it turns out
that we just need to use these relatively simple equation to
update statistics on each measurement point. Alpha here
Is the parameter chosen by user. All we need to do is to
update the number of photons, radius and flux using these
equations in each iteration.






Progressive Photon Mapping:
A Probabilistic Approach

Claude Knaus and Matthias Zwicker

University of Bern
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Thank you for the introduction.




Overview

Photon Mapping: biased
Progressive Photon Mapping: unbiased in limit

Our probabilistic approach
% More elegant
% Easier to implement
% More general

This talk consists of two parts. In the first
part, we will review photon mapping and its
problem of being biased, which means that
there is a consistent error in the rendered
Image. This problem has been solved
recently by progressive photon mapping,
which is unbiased in the limit. In the second
part, we propose an alternative, a
probabilistic approach to progressive photon
mapping, which is more elegant, easier to
Implement, and also more general.




Realistic Rendering

—
Rendering
m Equation
N A (\

Realistic rendering is based on Kajiya’s
rendering equation. The rendering
equation involves an integral, which is
usually numerically solved using Monte
Carlo integration.




Realistic Rendering

|/
Monte Carlo
Integration
@&

Methods using Monte Carlo integration
sum over randomly sampled light
paths. The most commonly used
methods exploiting Monte Carlo
iIntegration to solve the rendering
equation are




Unbiased Methods

Path Bi-Directional Metropolis
Tracing Path Tracing Light Transport

path tracing, bi-directional path tracing,
and metropolis light transport. These
are unbiased methods.
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Unbiased methods have difficulties with
rendering scenes which include so-
called specular-diffuse-specular light
paths. Such scenes are typical for
realistic light settings, where the light
source is not directly visible, but
covered behind a refracting surface like
a lens or reflected by a mirror.



~ Path Tracing

et

If we were to render such a scene using
path tracing, we would see almost
nothing. This is because the specular-
diffuse-specular paths are sampled
with probability close to 0.



This is the same scene rendered using
photon mapping. Arguably, there is
much less noise.



Photon Mapping

Trace Photons |

Trace Eye Rays

What makes photon mapping so good in rendering such scenes?
Photon Mapping is a biased method. While unbiased methods
sample entire paths from sensor to light, photon mapping samples
partial paths. In a first step, it samples paths emitted from the light
source and caches them as photons in a spatial data structure,
the photon map. In the second step it samples paths from the eye
and connects them to the previously cached light paths. It is this
caching and reusing of light paths which makes photon mapping
efficient.




- Radiance Estimation

® ~—— Photons

The partial paths are connected by so called
radiance estimation. It involves the use of a
kernel, which has a certain radius.
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Ground Truth Photon Mapping

It is this radius which is the source of to
the biggest critique of photon mapping,
that it is biased.

Radiance estimation involves a
convolution or interpolation, which
often introduces blurriness, and
therefore there is a consistent error,
which is called bias.



Ground Truth Photon Mapping

It is this radius which is the source of to
the biggest critique of photon mapping,
that it is biased.

Radiance estimation involves a
convolution or interpolation, which
introduces blurriness, and therefore
there is a consistent error, which is
called bias.



Here is another image of the bias, shown as
the difference between the two previous
iImages.



Memory Bottleneck

\I/

Although photon mapping is biased, it is still a
consistent method, which means that with an
infinite number of samples, the bias vanishes and
the resulting image is the correct. But here lies
the practical problem of photon mapping: since
the photons representing the light paths must be
cached between the two stages, the quality of the
image is limited by the available memory.




Progressive Photon Mapping
Hachisuka et al. (2008)

Progressive Photon Mapping

Toshiya Hachisuka Shinji Ogaki Henrik Wann Jensen
UC San Diego The Universi  Nottingham UC San Diego

In 2008, Hachisuka et al. have solved
this memory bottleneck with
progressive photon mapping. The idea
of progressive photon mapping is to
update incrementally a sequence of
photon mapping results using a limited
number of photons at a time.




Progressive Photon Mapping

_Trace Eye Rays |

Trace Photons

Reduce Radius

Image

Progressive photon mapping is an
iterative method. Before the iteration,
eye rays are traced and stored in
locations. Then, for every iteration, new
(independent) photons are traced.
Finally, the most important step, is
when the kernel radius is reduced; and
then a new iteration begins.




Radius Reduction

o Iteration 1 ol o

The key of progressive photon mapping
Is to reduce the kernel radius in every
iteration, such that the bias vanishes.




Radius Reduction

- Iteration 2




Radius Reduction

Iteration 3




Locations with Statistics

d; flux

Ii kernel radius

It does this by using statistics which are
stored in every location of radiance
estimation, namely the number of
collected photons, the flux, and the
kernel radius.




Radius Reduction

1 _ Ni+aM;

r.2 N—|—M

/ # Currently collected photons

# totally collected photons

The exact radius reduction from
iteration i to i + 1 is calculated using
this update rule, which involves the use
of these local statistics, such as the
number of collected photons.




Stochastic PPM

Hachisuka & Jensen (2009)
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% Glossy reflections
% Depth of field
% Motion blur

In 2009, in a follow up work, Hachisuka
and Jensen have generalized the method
to stochastic progressive photon mapping.
It includes additional effects like glossy
reflections, depth of field, and motion blur.




Stochastic PPM

Trace Eye Rays

Trace Photons

Reduce Radius
*

Image

The main change of stochastic progressive
photon mapping is that instead of tracing

eye rays once, the rays are traced in every
iteration.




Stochastic PPM

|/
Trace Eye Rays

Trace Photons

Reduce Radius
*

Image

The main change to progressive photon
mapping is that instead of tracing eye rays
once, they are traced in every iteration.




Great, but ...

While progressive photon mapping is
great, we wanted to make a step back
and look at it from a different
perspective.



Our Probabilistic Approach

® New derivation using probabilistic perspective
® No local statistics

® Parallelization

® Convergence analysis

® Arbitrary radiance estimation kernels

® Easy to generalize

We found a new derivation of progressive
photon mapping which does not require
local statistics and is trivial to parallelize.
We also provide convergence analysis.
Furthermore, our reformulation of
progressive photon mapping generalizes to
arbitrary radiance estimation kernels. And
finally, it is easy to generalize to other
radiance estimates like volumetric photon
mapping and the recent work of beam
radiance estimates.




Radiance Estimation

# Stored

/ Photons
N

# Emitted Kernel with Photon Photon
Photons Radius r Position Power

Let us start with a probabilistic analysis
of the radiance estimation. A radiance
estimate is a Monte Carlo integral. N_e
Is the number of emitted photons. N_s
Is the number of stored photons. k_r is
a kernel with radius r. x_i is the position
of the photon and gamma_i is the
power of the photon, already pre-
multiplied with the BRDF, which
amounts to the reflected radiance.
Since a Monte Carlo integral is a




stochastic method, we can look at the
statistics of radiance estimation.



Namely, the noise and the bias. It turns out
that the noise of the radiance estimate is
Inverse proportional to the squared radius.
Intuitively, it is clear that increasing the
radius has the effect of averaging over
more photons, and will therefore reduce
the noise.

The bias, on the other hand, is proportional
to the squared radius. In this case,
Increasing the radius will include more
features like caustics, and therefore will
Increase the bias. Note that the bias only




vanishes if the radius is 0. For any fixed
radius, there is this classic trade-off where
we can only achieve smoothness or

unbiasedness but not both at the same
time.



Averaged Image Averaged Radiance Estimate

Following the idea of the original progressive photon
mapping, we would like to split up the rendering into
multiple iterations in order to remove the memory
bottleneck. The easiest way to combine the iterations
is to average the images. We show in the paper that
the averaged image converges if the averaged
radiance estimates converge. Let’s see what happens
if we average the radiance estimate over many
iterations.




Averaged Radiance Estimates

Noise Bias
f A

Noise per iteration Bias per iteration
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While the noise per iteration remains
constant, the noise of the average will
vanish with 1/N and the averaged
iImage becomes smoother. This is great
-- but how about the bias? The bias per
iteration remains constant, and
unfortunately, the bias of the averaged
radiance estimate remains constant as
well. This is not surprising, because we
are simply averaging images, and this
will reduce the noise, but not the bias.




Averaging + Radius Reduction

Noise Bias
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The only way to reduce the bias of the
average is by reducing the kernel
radius. If the radius is continuously
reduced, not only the bias per iteration,
but also the the bias of the average
vanishes. But, if we reduce the radius,
as we have seen before, the noise per
iteration will increase. The trick of
progressive photon mapping is to let
the radius decrease slow enough such
that the noise of the averaged radiance




estimate still vanishes in the limit. To
summarize: we look for a radius
sequence which reduces slow enough
for both the noise and bias of the
average to vanish in the limit.



Radius Sequence

The radius sequence which allows us to
walk this fine line where both noise and
bias of averaged radiance estimates
vanish in the limit is given by this
formula. A detailed proof can be found
in our paper. Our proposed radius
sequence Is defined recursively. i is the
iteration number, and alpha is a
parameter which must be between 0O
and 1.




0.9

a

a=0.1
—

18 AR e nc pal e T S N

The parameter alpha controls how fast
the radius is reduced with the number
of iterations.




Asymptotic Convergence

Noise of average « 1/N* Bias of average  1/N!~“
=01 o= 0.9
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Using our proposed radius sequence,
we found the following asymptotic
convergence. The noise of the
averaged radiance estimate vanishes
proportionally to 1/N”alpha, where N is
the number of iterations. The bias of
the averaged radiance estimate
vanishes proportionally to 1/NA(1-
alpha). We can see here how alpha
controls the convergence speed of
noise and bias. A small alpha value like




the blue curve reduces the noise slowly,
but the bias will vanish quickly. A large
alpha on the other hand, the brown
curve, reduces the noise quickly, but the
bias will go down slowly.



Empirical Validation

Noise of average Bias of average
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We have also empirically verified this
asymptotic convergence. We see the
convergence for a sequence of
radiance estimates taken in the
previous scene. Here the solid lines are
the measured noise and bias for two
different alpha values. The dotted lines
are the asymptotic curves.




PPM Radius Update Rule
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Local Statistics

Our Radius Sequence

1 4 o
)

Our radius sequence is similar to the

radius update rule proposed by

Hachisuka et al., but with the important
difference that it is entirely independent
of local statistics such as collected
number of photons, or local photon
density. In fact, we show in the paper
that, for locally constant photon
density, the radius sequence is the
same as the one from Hachisuka et al.




Radius Sequence (Explicit)

Reference Radius

2
el

|

Beta Function

Instead of using a recursive formula, our radius
sequence can also be written explicitly. r_1 is the
initial reference radius which anchors the sequence.
And B stands for the the Euler Beta function which
is related the binomial coefficients.




Our Algorithm

Photon Mapper

'_Trace Photons |
Trace Eye Rays

Average Images

!i Trace Eye Ray i\

Estimate Radiance

Using this formula, we propose the following
algorithm. Our algorithm is a simple loop
over a number of photon mapping iterations.
The only specialty here is how we determine
the kernel radius. In every iteration, just as Iin
standard photon mapping, we perform the
first pass by tracing photons and storing
them in a photon map. Then in the second
pass, for every traced eye ray, we determine
a reference radius, and compute the radius
of the current iteration using the explicit
formula just shown before. This radius is




then used to estimate the radiance with a
range query.



[7" = 1’1 Global Reference Radius

Photon Mapper
[ 1+
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L Black Box
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Average Images

There are different strategies to define
the reference radius. The simplest
solution is to define this reference
radius globally. In this case, the
Implementation becomes much
simpler; we can factor out the entire
radius sequence and pass it as a
parameter to the photon mapper,
effectively treating it as a black box.
Simultaneously, our progressive photon
mapping algorithm collapses to a




script.
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In the original progressive photon
mapping, the iterations were dependent
on each other, because local statistics
had to be carried over from one
iteration to the next. Our iterations, on
the other hand, are independent of any
statistics and can therefore be
executed in parallel.
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o O PBRT
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PBRT 1000

As a proof of concept, we have written
a script to drive PBRT as a black box
and to execute on a cluster. Every
PBRT instance was fed with a radius
from our radius sequence. The resulting

Images were then averaged on a single
machine.




Image 100 Image 1000

Here we see the results. As expected,
the rendered images are noisier when
the kernel radius is smaller.



But let’s see what happens when we
average over the images. Here, we see
just the first image. Now, the first 10
Images averaged; already much less
noise. Now, averaged over first 100
images. And finally, over 1000 images
without visible noise or bias.



Stochastic PPM Our method 20x Difference

Quality-wise, our method stands on
equal foot with traditional progressive
photon mapping. Here we used a
global reference radius for both
methods. The difference between using
traditional progressive photon mapping
and our method is only in the noise.
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Performance is also the same. We
compare three reference radius
strategies, global radius, k-nearest-
neighbors, and ray differentials. In all
cases, the difference in rendering time
IS negligible. This is not so surprising
since the overhead for both methods is
minimal.




Arbitrary Kernels

Gaussian SIGGRAPH

Our reformulation of progressive
photon mapping is more general. We
can use arbitrary kernels for radiance
estimation. Let’s see what happens if
we use the right most kernel.



Here, we use only one thousand
photons per iteration to show the
kernel. Well, even in this case, after
many iterations, we observe that the
iImage sequence converges.



Stochastic Effects

Just like stochastic PPM, our method
includes stochastic effects as well. We
demonstrate here depth of field and
glossy surfaces.




Participating Media
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Last not least, our derivation of radius
seguence and analysis extends to
participating media as well. In
volumetric photon mapping, the
radiance is not defined on surfaces, but
In volume. The kernel used for radiance
estimate becomes therefore three
dimensional.




Participating Media

Following our analysis, we only have to
replace in the radius sequence the
exponents of the radii with 3, allowing
us to integrate over a three dimensional

domain.




1 iteration
2 million photons

Here is a an example. This is a cornell
box filled with water. At the beginning,
with only 2 million photons, we only see
noise.



10 iterations

20 million photons

But if we shoot enough photons



100 iterations

200 million photons

we start seeing god rays.



1000 iterations
2 billion photons

And eventually, after 1000 iterations
and 2 billion photons, sharp caustics
appear and the noise is gone.



Conclusions

® Probabilistic analysis

® Asymptotic convergence
® No local statistics

® Parallelization

¢ Arbitrary kernels

® Participating media

Let me review our results. We provided
a probabillistic analysis and asymptotic
convergence of progressive photon
mapping. Most importantly, it leads to
simpler implementations, which in the
simplest case amounts to writing a
script and using a standard photon
mapper as a black box. Our method
has the advantage of being
parallelizable allowing the use of
clusters. Furthermore, our reformulation




generalizes progressive photon
mapping to arbitrary kernels.

And finally, our method trivially extends
to other radiance estimates like
volumetric radiance estimates and beam
radiance estimates.
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