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Overview

 Today
— Density estimation background
— Density estimation methods
— Global illumination algorithms based on density estimation
— Photon mapping

* Next lecture
— Advanced photon mapping
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Reading Materials: Density Estimation

Basic:

« B.J. Walter, Density Estimation Techniques for Global
lllumination, PhD thesis, Cornell University, 1998

« P. Dutre, P. Bekaert, and K. Bala, Advanced Global
llHlumination, AK Peters 2003

Advanced:

« B.W. Silverman, Density Estimation for Statistics and
Data analysis, Chapman and Hall, 1986

« M.P.Wand and M.C. Jones, Kernel Smoothing,
Chapman and Hall, 1995
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Reading Materia: Photon Mapping

Basic:

« H.W. Jensen, Realistic Image Synthesis Using Photon
Mapping, A K Peters, 2001

« Siggraph Asia 2013 course: State of the Art in Photon

Density Estimation,
— http://users-cs.au.dk/toshiya/starpm2013a/

Advanced:

« H.W.Jensen et al., A Practical Guide to Global
lllumination using Photon Mapping, Siggraph 2002,
Course #43

 G.J. Ward and Rob Shakespeare, Rendering with
Radiance, Morgan Kaufman, 1988
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Photon Transport Simulation

* Instead of simulating the exact system, an analog
system which is easier to simulate can be used
— must retain all the important characteristics of the original

system.

 Photons used in global illumination algorithms
are simplified analogs of photons (light particles)
In physics.

« The simplified photon characteristics
— emitted by light sources and carry some energy,

— travel in space obeying geometrical optics laws,

— traced in space until they are completely absorbed due to
reflections and refractions.

« Time factor is ignored
— It Is assumed that photons are moving instantaneously.
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Global lllumination via Density Estimation

« A typical algorithm consists of three consecutive phases:
1 photon tracing (continuous random walk)
2 lighting reconstruction via density estimation,
3 lighting storage and rendering.
 The lighting function is available implicitly as the density of
photons hitting points
— Reconstructing illumination out of collected photons is a density estimation
problem.
« Various techniques are used to store/display lighting:

— illumination maps (textures), meshing, or a direct density estimation at
chosen sample points.

particle

: * meshing
tracing

The surfaces in the room are depicted “unfolded” in the three figures on the right.

estimation




Random Walks

continuous vs. Discrete Random Walks
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Solves integral equations: Solves linear systems:
radiosity or rendering equations discretization error propagation
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Light Source Sampling

Sample point on light source with probability
proportional to self-emitted radiosity:

S(x) = E(X)/®
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Making the First Transition (1)

* No absorption at the origin

« Sample direction
according to directional
distribution of self-emitted
radiance.

Diffuse emission: pdf is
cos(0,)/n
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Making the First Transition (2)

« Shoot ray along
sampled
direction.

« Geometric
density factor:

cos(0y) / r4,,
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Making the First Transition (3)

* Full transition
density T(x,y) Is
product:

cos(6,)cos(8,) / (nr,,)
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Further Transitions

1. Absorption /
survival test
according to
albedo p(Y)

Full transition

T(x.y) -P(Y)
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Further Transitions (2)

2. Sample direction
according to brdf
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Further Transitions (3)

3. Shoot ray
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Further Transitions (4)

 Full transition
density:
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Once More ...

1. Absorption /
survival test
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2. Sample direction
according to brdf
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3. Shoot ray
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e Full transition
density
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And Yet Once More

1. Absorption /
survival test

Realistic Image Synthesis SS20 — Density Estimation and Photon Mapping Philippe Bekaert



2. Sample
direction

according to
brdf
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3. Shoot ray
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e Full transition
density
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End of Game

1. Absorption
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Collision Density

* In general:

D(X) = S(X) + / D(Y)T(Y,X)dY

Path origins Visits to X
at X from elsewhere

« Random walk simulation yields points with density
which is solution of second kind Fredholm integral
equation
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Collision Density for Radiosity

« Radiosity integral equation:

cosf, cosf, .
B(a /B (y) 4 - “vis(y, z) p(x) dA,
T

Source density should be normalized,
S(x) = E(x)/®+, but we’re almost there!
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Collision Density for Radiosity

« Divide by total self-emitted power:

O

B(x) _

E(x)
By

_|_

J 5

B(y) cos#, cosf,

O

m

Irz

Y

vis(y, ) p(xz) dA,
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Collision Density for Radiosity

B(x) E(x) B(y) cos#, cosl, .
5. = . +-5‘ . — 2 vis(y, ) p(xz) dA,

Source
density S(x)
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Collision Density for Radiosity

B(x) |E(x) B(y)|cosb, cosl, .
— + *' —vis(y, z) p(x)|dA
g er | Js ®r | 7 r2, ( ( v

!

Source  Transition density T(y,x):

density S(x) 1. sample cosine
distributed direction at y

2. shoot ray; ray hits x
3. survival test at x
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Collision Density for Radiosity

« Collision density proportional to radiosity

B(x)| |E(x) B(y) |cosb, cosl, .
— + *' —vis(y, z) p(x)|dA
O er | Js ®r | r2, ( ( v

Source  Transition density T(y,x):

density S(x) 1. sample cosine
distributed direction at y

. shoot ray; ray hits x
. survival test at x

ID(x) = B(x)/dx | g
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Sampled Points

« 1,000 paths
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Sampled Points

« 10,000 paths
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Sampled Points

« 100,000 paths
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Sampled Points

« Collision density is related to radiosity!!
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Photon Tracing: Summary

For each photon repeat the following steps:

1 Choose probabilistically:

— the wavelength of the photon by sampling the emission
spectrum,

— the location of the photon on the emitter surface by sampling the
positional emission power distribution,

— the direction of propagation of the photon by sampling the
directional power distribution.

2 Assign the energy to the photon and trace it until it is
absorbed:

— find the first object hit by the photon (use ray tracing),

— decide on photon absorption or reflection by testing a random
number against surface albedo,

— 1If the photon is reflected:
 assign a reflected direction to the photon by sampling BRDF,
 update the outgoing photon flux and continue tracing the photon
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Handling Photon's Power

Left: Photon with the power 12 watts Right: the resulting power stored in
Is emitted by a patch on the floor the photon hit patches
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Russian Roulette

« Use the Russian roulette technique to avoid bias (systematic error)
In the solution. Perform test whether the photon survives with
the probability p or is absorbed (with the probability 1-p) and
modify photon energy as follows:

3

D

< _
L_)e<P ol
|otherwise 0

E(®) = Pr(absorption) -0+ Pr(survival)-% =(1-p)-0+ p% =0

- On average the photon has the right energy. Since the photon
energy is sampled in this procedure the solution variance
Increases (more noise) and converges to the correct solution as
enough photons are used.

« Example: Lambertian surface
— Draw a random number [0,1] from the uniform distribution and compare
with the albedo of surface hit by the photon.
— If the photon “survives” the absorption test it is reflected and further
traced carrying the same power. @ P
Yo,
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Density Estimation

 As aresult of continuous random walk the lighting

function is known implicitly as the density of photon
collision points

 The lighting function in explicit form must be
reconstructed

— This is a classic density estimation problem where an estimate of

the probability density function is constructed from the observed
data points.

 Basic approaches to density estimation

— Parametric: a family of distributions is known and only predefined

parameters must be found, e.g. mean y and variance o? for the
normal distribution.

— Nonparametric: less rigid assumptions
« This is the case for the global illumination problem
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Density Estimation Methods

 Histograms:

— A domain is subdivided into bins (buckets) in which the number of
photons and/or their accumulated energy is stored.

Naive estimator:

— Counts the number of collisions in a bin centered at point x.

Kernel estimators:

— The density is estimated as spatially spread energy distributions
around each photon collision point.

Nearest neighbor methods:

— The density at a point x is estimated by dividing the number of the
nearest neighbor photons k (usually fixed) by the area of a region
centered at X, in which these photons are collected.

Orthogonal series estimators:

— Higher order basis functions are used for lighting reconstruction in
each bin (generalization of histograms)
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Density Estimation

 For simplicity let us consider 1D case.
« Notation:

f (x) and f(x):reconstructed pdf and its estimate at point x
X. :photon collision location
n:the number of photon collisions

K(X) : the kernel function
h:the kernel radius (called also bandwidth or smoothing parameter)

or the bin width for histogram estimators
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Histograms

N

or more general

f(x)= ihx(no. of X, In the same bin as x)
n

2y 1 _no.of X;inthe same bin as X

f(x) =

n : width of bin contaning X

. f(X) strongly depends on h, the choice of an origin
and orientation of the grid of bins

- The same distribution but
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Fig. 2.1 Histograms of eruption lengths of Old Faithful geyser.
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The Nailve Estimator
0.5 if |y|<1

w(y) = |
0 otherwise
Effectively, this measures
f(x) — iZ”:W(X - X ) the number of photons falling
~ nh 1 h into the interval [x-h, x+h]
0.6['
jumps at points g
X; +/-h §0_4_
0.2F
0 : - 2 . ; )
0 1 2 3 4 5 6

Eruption length (min)

Fig. 2.3 Naive estimate constructed from Old Faithful geyser data, h = 0.25.
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The Kernel Estimator

e Generalization of the naive estimator

TK(x)dx =1

n

f(x>=n—1hz K(X‘hxi)

. f(X)inherits all the continuity and differentiability
properties of the kernel K (usually a symmetric pdf)

« Well studied mathematically

* For afixed h might have tendency to excessive
smoothing f (x)regions with dense photon collisions X.
and leaving out visible noise in regions with low
density of X
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The Kernel Estimator

At first the kernel function is chosen (usually smooth and easy to
compute functions are used). Then the kernel radius h (the extent

of the kernel support) is decided. It can be done globally for the whole
surface or locally based on complexity of lighting distribution.

Finally, the kernel function is centered at every photon location, and

the photon energy is splatted (distributed) according to the kernel shape.
The final lighting is estimated by summing splatted energy from all

photons.

1.75¢
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0.75 ¢
05}
0.25¢
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The Kernel Estimator

Density estimate
o o
RN o

o
~n
T

0 1 2 3 4 5 6
Eruption length (min)

Fig. 2.8 Kernel estimate for Old Faithful geyser data, window width 0.25.
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Bandwidth Sensitivity

« Original bimodal density

distribution
04r
flx)
0.2+
93.0 -210 -1J.O 0 1.l0 2.10 . 3'.0

« Left: Kernel estimates for
200 simulated data points
drawn from this bimodal
density for kernel widths
(a) 0.1, (b) 0.3, and (c) 0.6.
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Fig. 2.6 Kernel estimates for 200 simulated data points drawn from a bimodal
density. Window widths: (a) 0.1; (b) 0.3; (c) 0.6.
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The Nearest Neighbor Method

Fx)= 2nd, (x)
where d, (x) issuch a distance that in the interval
[x—d,,x+d, ]k neareast collisions X. is located
d,(x) <d,(x) <...<d, (X)

« The amount of smoothing locally adapts to the density
of photon collisions X,

. Reconstructed f(X) is not a pdf since it does not
Integrate to unity (problems with energy conservation)

« The generalized k-th nearest neighbor estimate

> X—X,
T =14 (x)Z (a0’

Realistic Image Synthesis SS20 — Density Estimation and Photon Mapping Karol Myszkowski



The Nearest Neighbor Method
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Fig. 2.10 Nearest neighbour estimate for Old Faithful geyser data, k = 20.
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Generalization to Higher Dimensions

« All discussed methods have similar properties when
higher dimensional density estimation is considered

« 2D is considered in the global illumination computation
— Histograms

 (x) = 1 no. of X; inthe same bin as x
n area of bin contaning x

— Kernel methods

TK(x)dx =1

0= Y KE(x-X)}
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Histogram Method

 Break surfaces in small elements. Count photons
hitting each element:

 (x) = 1 no. of X; inthe same bin as x
n area of bin contaning x
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Histogram Method
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Orthogonal Series Density Estimation

 Linear, bi-linear, quadratic, cubic, ... approximations

f (x) can be reconstructed using K
orthonormal basis functions y, (X) :

f(x)= 3 £, (X)

o Whtorwu

with the projection coefficients f,: oo™ TTunwT WLy L
fv — HZWV (Xl)
i=1

p=V

Lo VX, (A =0, = 0 otherwise
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Orthogonal Series
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Kernel Density Estimation

« Place finite-width density kernel at each sample point

0= Y KE(x-X)}
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Cylindrical Kernel
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Gaussian Kernel
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Comparison of Density Estimation Methods

 Problems with energy conservation
— Nearest neighbor method

« Discontinuities in reconstructed density
— Histogram, naive, and nearest neighbor methods

« Complexity as a function of the photon number n
— 0O(n)
« Histogram - fast
» Naive and kernel estimators — average
— O(n logn)
» Nearest neighbor method — slow
« Adaptability to local density fluctuations
— Histogram, naive and kernel estimators — poor
— Nearest neighbor method — good

Realistic Image Synthesis SS20 — Density Estimation and Photon Mapping Karol Myszkowski



Bias and Random Error

 The error between the illumination function f(x) and its
estimate f (x) can be expressed as:

p(x) = ()= f(x)= f(x)- E(f(’t))+E(f(1)) f(x)
f;%m ¢ (x)

random

F ) =Bl 23 KXy 2 L g g 228y 2 kY
Ef(x)—E{nh;K( - )}—nhZ [K( }—th( —)f (y)dy

=1

 The bias Is a smoothed version of the true density f
» Bias = convolution of f with the kernel K scaled by the kernel size h

f (x) =smoothed version of true density + random error

« The bias does not depend directly on the number of
photons

» Blas cannot be eliminated just by shooting more photons!
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Bias and Random Error
1 2

Noise ~—2 Bias ~7T
nr

r2 r2

Realistic Image Synthesis SS20 — Density Estimation and Photon Mapping Claude Knaus



Optimal Kernel

 The optimal kernel can be found by minimizing
noise&bias
— Epanechnikov

4\/_ 1——t) for |t|<+/5

« Even simple kernels such as gaussian or cylindrical
lead to only small increase of density estimation error.
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Density Estimation in Global lllumination

Main problems:

* The parameters of density estimation are
usually decided globally for the whole scene or
surfaces
— This may result in uncontrolled smoothing/noise for

complex illumination patterns.

* Local estimate of the lighting reconstruction
error would be useful to find optimal
bandwidth for a given scene region.
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Adaptive vs. Fixed Bandwidth h

Adaptive  &,4,,,  Fixed g

Photons/
h ..u.

N u.u.
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Adaptive vs. Fixed Bandwidth h

Adaptive g Fixed g

adapt

Photons/
texel
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Bias Compensation for the Nearest Neighbor Method

« Algorithm

— For each point X perform estimate of illumination f(x,l),..., f(x, N..)
for the number of nearest photons ranging from 1,..., N,
— Compute the expected value and variance of f(x,j) using some weighting

function w(j) Nirip

HLE OGN )= 2 w(i)-f (x, ])

G20 (X, Np )] = L £ 206 N )= 2L F (%, N,)]

— Recursively split the interval [N, Npayd @t Nig=(Nmax Nimin)/2 and decide

which interval to choose based on a density estimate: eroin bensity Esimate Noise Distribution
1 T T T T

iy

Bk )
B T
g6 i

f(x,N_.)using N_., photons

e[ F (X, Ny )1= £ (%, Ny ) = 2L F (6, Np)]
with the probability p that ¢ is attributed to noise :

D= & [T (Npig)l/26° [ £ (x.Np )]

Probability

e
o

o
@

o
T

o
b

55'

i

0
0015 0

Density estimate

o

-0.005

Deviation

L |
4] 0.005 001 0.015

Gaussian ——

where based on the central limit theorem pis the likelihood that & is due to noise
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procedure biascomp(X.min. max)
Npin = min
fV’n(‘x = mdax

gather N, photons

for j =1 to Nj;, do
partition(/, 7 + 1. Npyax)
get irradiance estimate f (X, j) for j closest photons
include f(X. j) in average u

end for

evaluate &2

while \mm < i max do

A’mid = ( min mar) 7

partltlon(i\mm '\mtd \max)
get irradiance estimate j (X, Npia) for Npiq closest photons
€= 1 (T Nmi;)! ) ,171
p =exp(—€~ /26~ ')
if random £ € [0, 1] < p then {e probably noise, recurse in [Npiz.Numax, }
include f(T ,,,,d) in average u
update 6-
Mnin — Afmid
else {& probably bias, recurse in [Nin.Nmid| }
fvmar == fVmid
end if
end while

return f(¥.Nypid.
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Bias Compensation for the Nearest Neighbor Method

Bias Case Study: Highlight Cross-5Section
14

— 2500 phm:'jns i ‘. | | |
B 50--2500 photong ; i
.. ]

- a2

Irradiance [meE]
oo

04 03 02 -01
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Bias Compensation for the Nearest Neighbor Method

Bias compensation with
adaptive bandwidth for
50-5,000 nearest photons

Fixed bandwidth for
5,000 nearest photons

Realistic Image Synthesis SS20 — Density Estimation and Photon Mapping Roland Schregle



Bias Compensation for the Nearest Neighbor Method

S e S

Fixed bandwidth with Fixed bandwidth with Adaptive bandwidth with
50 nearest photons 500 nearest photons 50-500 nearest photons
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Bias Compensation for the Nearest Neighbor Method

Fixed bandwidth with Fixed bandwidth with Adaptive bandwidth with
50 nearest photons 2,000 nearest photons  50-2,000 nearest photons

Realistic Image Synthesis SS20 — Density Estimation and Photon Mapping Roland Schregle



Photon Mapping: Motivation

 Designed as an alternative for finite element
radiosity and density estimation methods that
require scene meshing
— Moderate memory requirements
— Handling all types of geometry, e.g., fractal surfaces
— Adaptability to local lighting distribution in the scene

« Efficiency in combating perceivable noise

Inherent for Monte Carlo ray tracing methods
— At expense of user controlled bias in the solution

« Simulation of all global illumination effects
— Consistent estimator of the rendering equation

E{X}= j but  lim E{X} - j
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Photon Mapping: Two-pass Method

 Photon tracing
— Similar to other density estimation techniques
— Photon hit points registered in the photon map data structure

— Projection maps — maps of geometry as seen from the light source
are used to guide photons towards the scene

 Rendering
— Distribution ray tracing used for rendering

— Lighting function reconstructed at ray-object intersection points
using the photon map data structure

» Photon density estimation using the nearest neighbor method

Realistic Image Synthesis SS20 — Density Estimation and Photon Mapping



Photon Tracing

 Photon registration only for diffuse and glossy
surfaces

« Specular component reconstructed explicitly during

rendering
— too many photons would be required to reconstruct specular lighting
based on the photon map

« Two photon maps
— Global map

« Low resolution,
* Rendered indirectly, through final gathering procedure §

— Caustic map
» High resolution
» Rendered directly
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Caustic Photon Map

* Projection maps also used to reinforce shooting more
photons towards specular surfaces

« This will not work for caustics resulting from strong

secondary light sources

Global photon map Caustic photon map
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Photon-map Data Structure

* Problem:
— efficient searching for nearest neighbor photons in the 3D space

« Data structure choice: kd-tree
— Each node contains a photon and pointers to two subtrees
» Pointers to subtrees are not necessary for heap data structure
— Element i has children 2i and 2i+1
— For a photon map with n photons
» The worst case searching time for one photon is O(log n) for a balanced tree

and O(n) for an unbalanced tree ‘ ‘
« The average search time for k photons is O(k + log n) PN
 Photon representation (20 bytes) ®
struct photon { ® ®
float Xx,y,z; // position: 3 x 32 bit floats —@

char power|[4]; // stored in Ward’s shared exponent RGB-format
char phi, theta; // compressed incident direction
short flags; // used in kd-tree

« Ward’s format may lead to ~0.5% bias (empty diffuse sphere test)
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Density Estimation

Derivation

L (X,@,)= jf (@, % o,)L(X,® )cos8. dow. =

J‘fr(Qii)_(1Q0) d (D(X’QI) COS@I da)i ~
dw,dAcos b,
Zf (@, % w,) 22e % 2)
e

Henrik Wann Jensen
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Bias Types

S vayd

< ~

Kernel support A %
- _ [ T

Proximity Boundary Topological Occlusmn

* Proximity Bias: Blurred details in reconstructed lighting
» Filtering with weights increasing for closer photons can help

« Boundary Bias: Overestimated area results in darkening near edges
« Topological Bias: Underestimated area results in excessive radiance estimate

* QOcclusion Bias: Light leaks
« Only photons hitting surfaces with similar normals should be considered
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Direct Visualization of the Caustic Map

Caustic on a glossy surface (340,000 photons)
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Direct Visualization of the Caustic Map

HENRIK UANN DENSEN 13%S
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Direct Visualization of the Global Map

« 200,000 photons in the photon map

 Radiance estimate using:
50 nearest photons 500 nearest photons
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Practical Rendering Algorithm (1)

« Global photon map contains all illumination types
— Direct illumination + indirect illumination + caustics

« Caustic photon map contains just caustics

Global photon map Caustic photon map
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Practical Rendering Algorithm (2)

xb/
e
1
1

1) Direct lighting computation

Ees Global
photon

map\

3) Caustic computation

Bt
Ray
tracing

N\

2) Mirror reflection
_:C:;.:_

O

4) Indirect lighting through final gathering
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Practical Rendering Algorithm (3)

Reflection Equation Decomposition
fr (Qii)_(igo) — fr,spec (Qi’)_(’Qo)_l_ f

L (X’ Qi ) — I—direct (X’ Qi )+ Lcaustic (X’ Qi )+ I—indirect (X’ Qi )

(@, %, @,)

r,diffuse

L (X, @)= _[f (@;,% @, )L(X, )cosb, dow, =

1) J f (a)u_ _o)Ldlrect (, )COS@i dwi +
Q+
2) : fr,spec (Q| y X5 Qo)(Lcaustic (X’ ; )+ I—indirect (X’ @ )) COsS Qi da)i T
Q+
3) : r,diffuse (a)l ! X w )Lcaustic (X,Qi)COS ei da)i +
Q,
4) _[ fr,diffuse (a)l’_ _o)Llndlrect ()7( a) )COSH da)
Q+
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Results

200,000 and 50,000 photons in the global and caustic maps

» s

"‘—-‘

Ray traced image Full global illumination
(direct lighting only)
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Results: Fractal Box
200,000 and 50,000 photons in the global and caustic maps
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Results: Box with Water

500,000 photons in both the global and caustic maps,
100 nearest photons used in the radiance estimate
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Results

The natural lighting (skylight and sunlight) simulation at
various lighting conditions
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Final Gathering

* Final gathering performed for each pixel representing
Lambertian surfaces is very costly

— 200 - 5,000 sample rays must be considered

— Samples are stratified over the hemisphere
272'72’/2

j jL(x 0, $)cos Osin Hd9d¢~—zz L6, 4.)
m=0 n=0
M where M e N are the number of strata and
6_ =arcsin ‘/m;gi and ¢ =2x n-e,
M N

 Radiance values collected by sample rays obtained
directly from the global photon map

— Problem: for points located near some other objects, e.g., in the
room corner, very similar density estimates would be obtained due
to a very small distance — secondary final gather is needed for such
points.
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Final Gathering: Indirect Lighting Sampling

(a) hemispherical fisheye view (b) incoming radiance samples

Figure 2.3: (a) A hemispherical fisheye view of a conference room scene from a point on the floor.
(b) Incoming radiance samples generated by our stratified sampling strategy. The light sources appear
dark in (b) since direct light emission from the intersected objects is ignored in indirect illumination
sampling. (Images courtesy of Greg Ward.)
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Irradiance Caching

e Observation:
— Indirect lighting computed using final gathering usually changes
slowly (caustics are processed separately)
 |dea:

— Final gathering results can be cached (in some 3D data structure,
e.g., octree) and re-used for neighboring pixels

Algﬂrithm Laz],r irradiance evaluation used in irradiance caching.

function IrradianceCaching(p, n)

if one or more irradiance values can be used for interpolation at p then
return irradiance interpolated from the cached values.

else
Compute new irradiance value and gradients by hemisphere sampling.
Store the value with gradients as a new record in the cache.
return the new irradiance value.

end if

end function
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Irradiance Caching

* Irradiance change estimate:
— E(x;,n;): iIrradiance at point x, with normal ».

Error estimate: s(x,n) = E (x.) iw+\/7—2ﬁ-ﬁ
’ ) E A - I

T R

— R;: harmonic mean distance at x;
1 : :
R = where r,, | —distance to the nearest object
| . m=0 n=0 mn Z”(“ H)E(‘{)
* lrradiance mterpolatlon: E(x.iiy~ 2t
o ZM.}(A n)
X r'.wr-::-ln
1
w.(x,n)=
ERE
—+\1l-nen
R
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lrradiance Cache Positions

* Final gathering: 1,000 sample rays
« Irradiance cache: w> 10
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lrradiance Cache Positions

* Final gathering: 1,000 sample rays
« Irradiance cache: w> 20
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Irradiance Cache Gradients

rotational gradient  translational gradient

fffffffffffffffffffffff l |

ﬁ.

Yw®)| E + Gixi)V,E + (P -P)VE
S L] ;

EP) =

* Weights w;(P) the same as in no gradient case

« Gradients modify E;, used for interpolation
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Irradiance Cache Gradients

Irradiance Interpolation Error
X=6.875

10

Relative Error (%)

-10

Y Position
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Irradiance Cache Data Structure

struct indirect_irradiance_value {

float
float
float
COLOR
float
float

P[3];
N[3];
R;

E;
dP[3];
dN[3];

/*
/*
/~k
/*
/*
/*

position in space */

normal direction */

validity radius */

computed irradiance value */
gradient wrt. position */
gradient wrt. direction */
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Irradiance Caching Example
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Irradiance Caching Example
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Optimizations

« Faster final gathering
— Precomputed irradiance stored at photon locations

— Only the nearest photon must be found instead of density
estimation computation

— Reported speedup up 6-10 times

 Photon density control in the map

— In bright regions with slowly changing illumination the power of
redundant photons is distributed to their neighbors

— Photon number reduced 2-4 times for the same image quality

 Photon stratification
— Deterministic quasi-Monte Carlo (QMC) sequences are used

— Low discrepancy: try to maximize the local distance between
photon paths (multi-dimensional stratification)

— For caustics QMC sequences may add some noticeable patterns
 Importance sampling: BRDF and incoming flux
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Optimizations

« Avoiding energy overestimation
— Gather one extra photon and compute the average distances of the
two furthest photons
— The extra photon (located beyond this average distance) is
discarded in density estimation
— Without this optimization energy overestimation of 1% and higher
was observed for analytical tests (e.g., empty diffuse sphere).

 Be careful with your choice of random number

generator because it may lead to some bias too

— System V-style drand48 () performed slightly better than
erand48 () and much better than BSD-style random () .

Realistic Image Synthesis SS20 — Density Estimation and Photon Mapping



Industrial Products

— Brazil Rendering System (www.splutterfish.com)

Image Courtesy of Paul Sherstobitoff
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http://www.splutterfish.com/

Industrial Products

— finalRender (www.finalrender.com)

Image CourtesigrCebas
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http://www.finalrender.com/

Industrial Products

— Mental Ray (www.mentalray.com)

Image Courtesy of Prodeep Ghosh
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http://www.mentalray.com/

Industrial Products

— Photorealistic RenderMan (www.pixar.com)
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http://www.pixar.com/

Industrial Products

— Softimage|XSI (www.softimage.com)

- g8y

L0 TiNg

"_Q"‘
7 e

Image Courtesy of Softimage
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http://www.softimage.com/

Industrial Products

— VirtuaLight (www.3dvirtualight.com)

Image Courtesy of Virtuaout
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http://www.3dvirtualight.com/

Industrial Products

— VRay (www.vrayrender.com)
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http://www.vrayrender.com/
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