Realistic Image Synthesis

Bidirectional Path Tracing & Reciprocity

Philipp Slusallek
Karol Myszkowski
Gurprit Singh
Path Sampling Techniques

- **a) Unidirectional (eye tracing)**

 $$(0, k + 1)$$

- **b) Next event (eye tracing)**

 $$(1, k)$$

- **c) Next event (light tracing)**

 $$(k, 1)$$

- **d) Many-light rendering**

 $$(k - 1, 2)$$

- **e) Bidirectional path tracing**

 $$(s, t)$$

- **Different techniques of sampling paths from both sides**

 - Numbers in parenthesis are # of vertices traced from light/camera, resp.
 - See later, for Many-Light methods (Virtual Point Light (VPL) methods)
Results from Different Techniques

a) Unidirectional (eye tracing)
b) Unidirectional + next event
c) Next event (light tracing)

• Results from tracing 40 paths per pixel
Results from Different Techniques

- Results from tracing 40 paths per pixel
 - f): „Problem of insufficient techniques“ for sampling SDS paths
BIDIRECTIONAL PATH TRACING
Light & Path Tracing

• **Problem:**
 – Probability of hitting the camera from the light sources is almost zero
 – Probability of hitting the light source is often also very small
 • Next Event Estimator: Try to find a direct connections
 – Non-optimal (e.g. on mirror surface)
 – Ignores secondary light sources (e.g. via mirror, at caustics)

• **Approaches:**
 – Bidirectional Path Tracing
 • Combination of eye and light paths
 • Weighted MC sampling for best results
 • Includes Vertex Connection and Merging (VCM, later)
 – Metropolis-Sampling [Veach´1997] (see later)
 • Random variation and mutations of bidirectional paths
 • Very well suited for very complex light paths
 • Unbiased but relatively complex algorithms
 • Uneven convergence
Bidirectional Path-Tracing

- **Idea: Combine Paths from Both Sides**
 - Generate path from the light sources and the camera
 - Connect paths deterministically (every pair of two hit points)
 - Different probabilities of generating paths
 - Compute weighted sum of contributions (→ MIS)

- **References:**
 - Lafortune et al., Bidirectional Path-Tracing, [CompuGraphics`93]
 - Veach, Guibas, Bidirectional Estimators for LightTransport, [EGRW´94, Siggraph´95]
Solving the Rendering Equation

- **Von Neumann Expansion of Measurement Equation**

\[
I_p = \int_{S \times S} L_e(x \to x') G(x \to x') W_p(x \to x') dA(x) dA(x') + \\
+ \int_{S \times S \times S} L_e(x \to x') G(x \to x') f_r(x \to x' \to x'') G(x' \to x''') W_p(x') \\
\to x''') dA(x) dA(x') dA(x''') + \ldots \quad \text{with } G(x, y) = V(x, y) \frac{\cos \theta_x \cos \theta_y}{\|x - y\|^2}
\]

- Independent estimation of all paths with fixed lengths
- Bidirectional generation of paths
- Weighted MC integration for each term (MIS)
- More efficient by reusing costly paths (i.e. visibility samples) multiple times
- Typically: One pair of paths per pixel sample
Bidirectional Path-Tracing

• Notation
Bidirectional Path-Tracing

- **Generating Light Paths (example)**
 - On the light source

 \[
p(x, \Theta_x) = \frac{L_e(x, \Theta_x) \| \Theta_x \cdot N_x \|}{\Phi}
\]

 \[
\Phi = \int \int L_e(x, \Theta_x) \| \Theta_x \cdot N_x \| d\Theta_x dA_x
\]

- **Generating Eye Paths (example)**
 - On the eye/camera (via point in the scene)

 \[
p(y, \Theta_y) = \frac{g(y, \Theta_y)W(y, \Theta_y) \| \Theta_y \cdot N_y \|}{G}
\]

 \[
G = \int \int g(y, \Theta_y)W(y, \Theta_y) \| \Theta_y \cdot N_y \| d\Theta_y dA_y
\]

 - \(g() \): 1, if point is visible in this direction
Bidirectional Path-Tracing

- **Extension of Paths at Hit Points**
 - Identical for both directions
 - Reciprocity of BRDF under reflection (but be careful with refraction!)
 - Use whatever BRDF sampling technique suits best
 - But must be a joint probability (conditioned on the previous point)
 - This does include uniform probability on any surface
 - (But not a point generated from some other point, e.g. due to occl.)
 - E.g.

\[
p(\Theta) = f_r (\Theta_{x_i}, x_{i+1}, \Theta) \parallel \Theta_{x_{i+1}} \cdot N_{x_{i+1}}
\]
Bidirectional Probabilities

- Probabilities of Paths π in Bidirectional Path Tracing
 - Different locations of *vertex connections* (see VCM later)
 - k: length of paths (# of transports or segments)
 - m: # of vertices generated from light source ($0 \leq m \leq k + 1$)
 - 0: None
 - 1: Vertex on light source
 - 2: Vertex on light source and directional sample
 - Etc.
 - Similar for paths from the eye
 - $p_{k,m}(\pi)$: Probability to choose path π with method (k,m)
Mathematical Formulation

- Rendering Equation with Area Parametrization

\[L(p_1 \rightarrow p_0) = L_e(p_1 \rightarrow p_0) + \int_A L_e(p_2 \rightarrow p_1) f(p_2 \rightarrow p_1 \rightarrow p_0) G(p_2 \rightarrow p_1) dA(p_2) + \int_A \int_A L_e(p_3 \rightarrow p_2) f(p_3 \rightarrow p_2 \rightarrow p_1) G(p_3 \rightarrow p_2) f(p_2 \rightarrow p_1 \rightarrow p_0) G(p_2 \rightarrow p_1) dA(p_3) dA(p_2) + \cdots \]

with \[G(p_2 \rightarrow p_1) = \frac{V(p_1, p_2) \cos(\theta_{p_1}) \cos(\theta_{p_2})}{|p_2 - p_1|^2} \]
Mathematical Formulation

• **Path Formulation** (π_i: Path of length i)

 - $L(p_1 \rightarrow p_0) = \sum_{i=1}^{\infty} L(\pi_i(p_1, p_0)) = \sum_{i=1}^{\infty} L(\pi_i)$

 - $L(\pi_i) = \int_A \int_A \cdots \int_A L_e(p_i \rightarrow p_{i-1}) G(p_{j+1} \rightarrow p_j) f(p_{j+1} \rightarrow p_j \rightarrow p_{j-1}) dA(p_2) \cdots dA(p_i)$

 - There are i integrals here

• **Connection Throughput** $T(\pi)$ of a path π

 - $T(\pi_i) = \prod_{j=1}^{i-1} G(p_{j+1} \rightarrow p_j) f(p_{j+1} \rightarrow p_j \rightarrow p_{j-1})$

 - $L(\pi_i) = \int_A \int_A \cdots \int_A L_e(p_i \rightarrow p_{i-1}) T(\pi_i) dA(p_2) \cdots dA(p_i)$

• **With Measurement**

 - $I = \int_A \int_{A_{\text{pixel}}} L(p_1 \rightarrow p_0) G(p_1 \rightarrow p_0) W(p_1 \rightarrow p_0) dA(p_0) dA(p_1)$

 - $I = \sum_i \int_A \int_A \cdots \int_A L_e(p_i \rightarrow p_{i-1}) T(\pi_i) G(p_1 \rightarrow p_0) W(p_1 \rightarrow p_0) dA(p_0) \cdots dA(p_i)$

 - There are i integrals here
Mathematical Formulation

• Path Tracing with Russian Roulette
 \[L(p_1 \rightarrow p_0) = \sum_{i=1}^{\infty} L(\pi_i) = \frac{1}{q_2} \sum_{i=2}^{\infty} L(\pi_i) \]
 – Continuation of path with probability \(q_2 \)
 – And similar for higher path lengths

• How to choose sample points
 – Whatever works, e.g.
 • Area (uniform):
 \((p_A(p_i) = 1/\sum_j A_j) \)
 • Solid angle, depending on direction from previous sample:
 \((p_A = p_\omega \cos \theta_i / r^2) \)
 • Any other joint probability that integrates to one over all surfaces and is non-zero where there could be a contribution
 • Must be a conditional probability, based on the previous point

• Splitting of BRDFs or Emissions
 – Make sure all path are accounted for !
 – Make sure no path is counted multiple times, either !
Example

- Light tracing (one eye ray, 1st generation only)
Example

- Standard MC Path Tracing (same number of paths)
Example

• Contribution of Different Paths

[Not shown: direct connection eye to light + all from light]

One reflection
One step from the eye (plus direct connection to light)

Two reflections
l: Two steps from the eye
r: One step from the eye, one step from light source

Three reflections
l: Three steps from the eye
m: Two steps from the eye, one from light source
r: One step from the eye, two from the light sources
Bidirectional Path-Tracing

- **Combination of Estimators**
 - Every option of generating a specific path π defines its own estimator with given $p_{k,m}(\pi)$
 - Weighted MC sampling provides new combined estimator of a bidirectionally generated path

\[
C = \sum_{i=1}^{N_e} \sum_{j=1}^{N_l} w_{ij} \langle C_{ij} \rangle
\]

- N_e: # reflections on eye paths
- N_l: # reflections on light paths
- w_{ij}: weights for combination
Combination of Estimators

• **Example:**
 - Four paths between LS and eye
 - Weighted with three estimators
 • A, B, C
 - Selection with maximum heuristics
 • Choose $p_X(\pi)$ maximum
 - Area of rectangles is constant across A, B, C
 • $f/p \cdot p$
 - Width corresponds to $p_X(\pi)$
Implementation

Example: Maximums Heuristics

\[
S = 0 \\
P = \text{GenerateBiDirPaths}() \\
\text{for light_segs} = 0 \text{ to } P.\text{max_light_segments} \\
\quad \text{for eye_segs} = 0 \text{ to } P.\text{max_eye_segments} \\
\quad SP = \text{ChooseSubPath}(P, \text{eye_segs}, \text{light_segs}) \\
\quad // Compute best estimator (Max-Heuristics) \\
\quad p = 0; \text{segments} = \text{eye_segs} + \text{light_segs}; \\
\quad // Iterate over different estimators: \\
\quad // assuming j segments generated \\
\quad // from camera \\
\quad \text{for estimator} = 0 \text{ to } \text{segments} \\
\quad \quad p_t = \text{Probability}(SP, \text{estimator}) \\
\quad \quad \text{if } (p_t > p) \quad p = p_t \\
\quad S = S + SP.f/p \\
\text{return } S
\]
Example

Bidirectional Path Tracing

Path Tracing
Contributions of Different Paths

More camera segments

$\mathbf{p}_{2,x}$

$\mathbf{p}_{3,x}$

$\mathbf{p}_{4,x}$

$\mathbf{p}_{5,x}$

More light segments (right: $n-1$)
Comparison w/ Path Tracing

- **Brute Force Method**
 - Only use $p_{n,0}$ method to generate paths
 - No points sampled from light source
 - Highly inefficient:
 - Probability of hitting the light is almost zero
 - Especially for point lights :-)

- **Path Tracing with Direct Lighting Optimization**
 - Aka. Next Event Estimation
 - Use $p_{n,0}$ and $p_{n,1}$ paths only
 - Path from the eye/camera plus direct connection to point sampled on light source

- **More costly**
 - As more paths and estimators need to be evaluated
 - Often pays off for complex lighting situation (less for simple ones)
NON-SYMMETRIC SCATTERING IN LIGHT TRANSPORT ALGORITHMS
Use of Shading Normals

- **Shading Normals**
 - It is common to shade with respect to arbitrary normals
 - E.g. specified as normals at each triangle vertex
 - Allow many neat tricks
 - Smooth surface even though real surface is tessellated
 - Bump mapping, normal mapping, ...

- **Problem**
 - Use of shading normals θ' is generally not energy conserving

\[
L_r = \int_{\Omega_+} f_r(\omega_o, x, \omega_i) \cos \theta_i \, d\omega_i \\
= \int_{\Omega_+} f_r'(\omega_o, x, \omega_i) \left(\frac{\cos \theta_i'}{\cos \theta_i} \right) \cos \theta_i \, d\omega_i
\]

 - Can “generate” energy
Use of Shading Normals

- **Energy “Generator”**
 - Light is received by an apparently small surface \rightarrow some density

- And emitted from an apparently much larger one, w/ same density
Use of Shading Normals

Correct results

Wrong results
Use of Shading Normals

• Solution
 – Unfortunately there seems to be no good solution to the problem
 – Except not using shading normals :-(
 • Or making them differ as little as possible from geometric normals
Power versus Radiance

- **Light tracing and Refraction**
 - Distribution of “photons” carrying a certain energy/power
 - Power/energy does not change when photon is refracted

- **Ray Tracing and Refraction**
 - Consider
 - uniform illumination
 - a point below a refracting surface
 - If no light is absorbed at the surface then the same power comes through a smaller solid angle → increased radiance

\[L_t = \frac{\eta_i^2}{\eta_i^2} L_i \]
Power versus Radiance

Correct image rendered with particle tracing

Incorrect image rendered assuming the BRDF is symmetric also for refraction