

Path Tracing & Microfacet BSDFs Gurprit Singh

۲

Realistic Image Synthesis SS2020

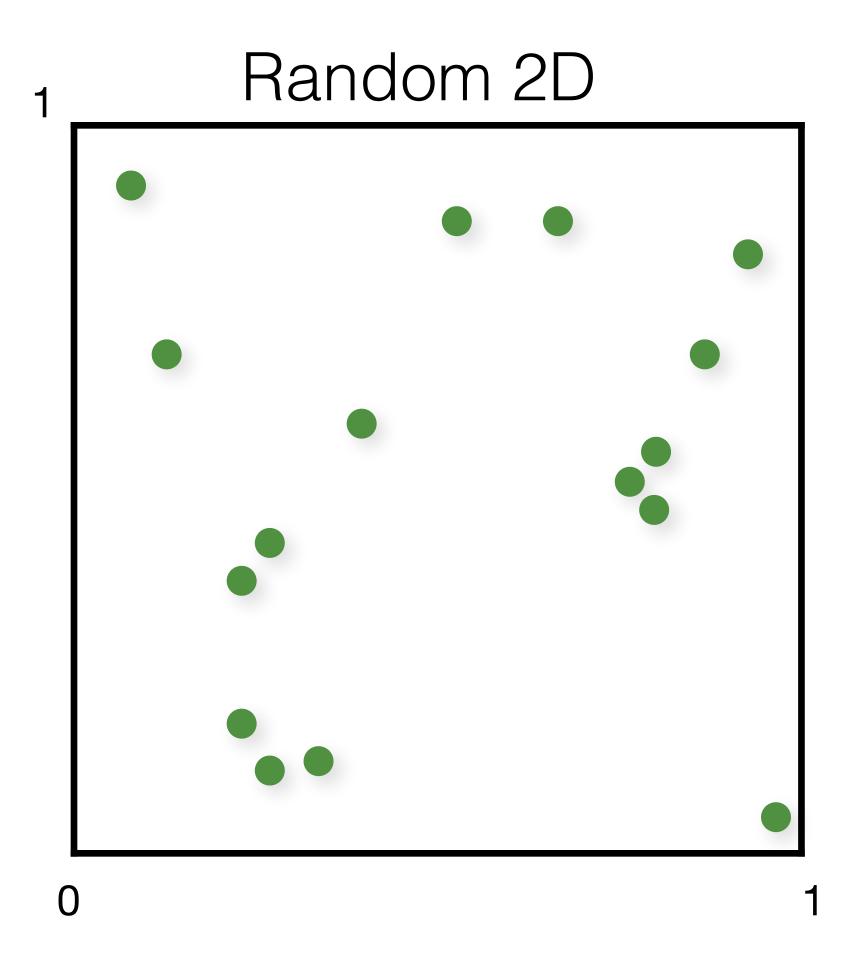
Variance Reduction Techniques

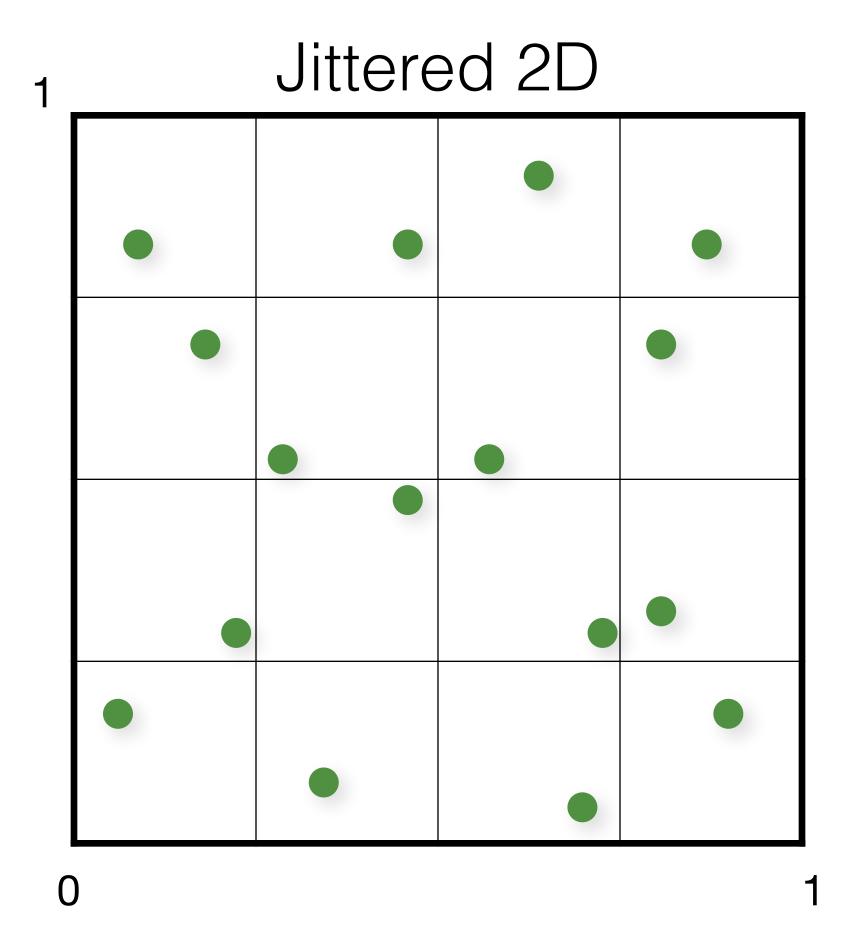
- Correlated Sampling
- Importance Sampling
- Perceptual Error Distribution

Realistic Image Synthesis SS2020

Correlated Sampling: Jittered Sampling

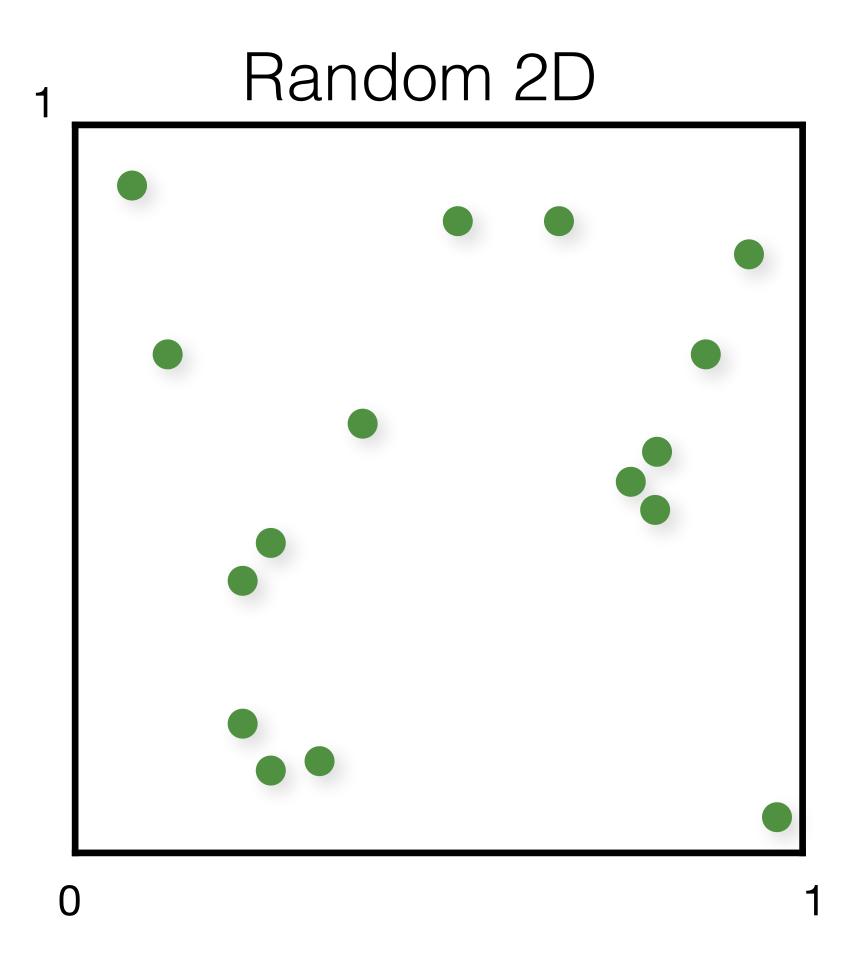
Variance reduction: Stratified Sampling





Realistic Image Synthesis SS2020

Variance reduction: Stratified Sampling

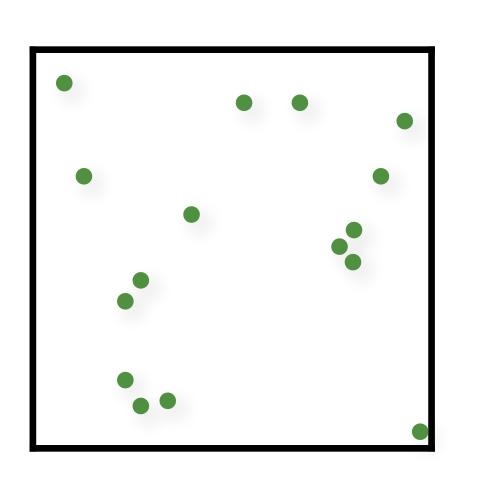


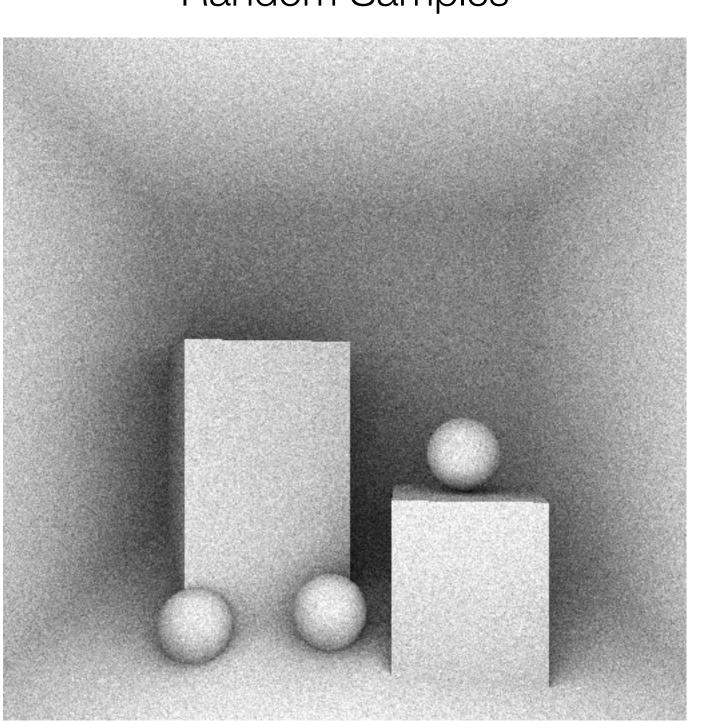


Realistic Image Synthesis SS2020

Random vs. Stratified Sampling

Random Samples



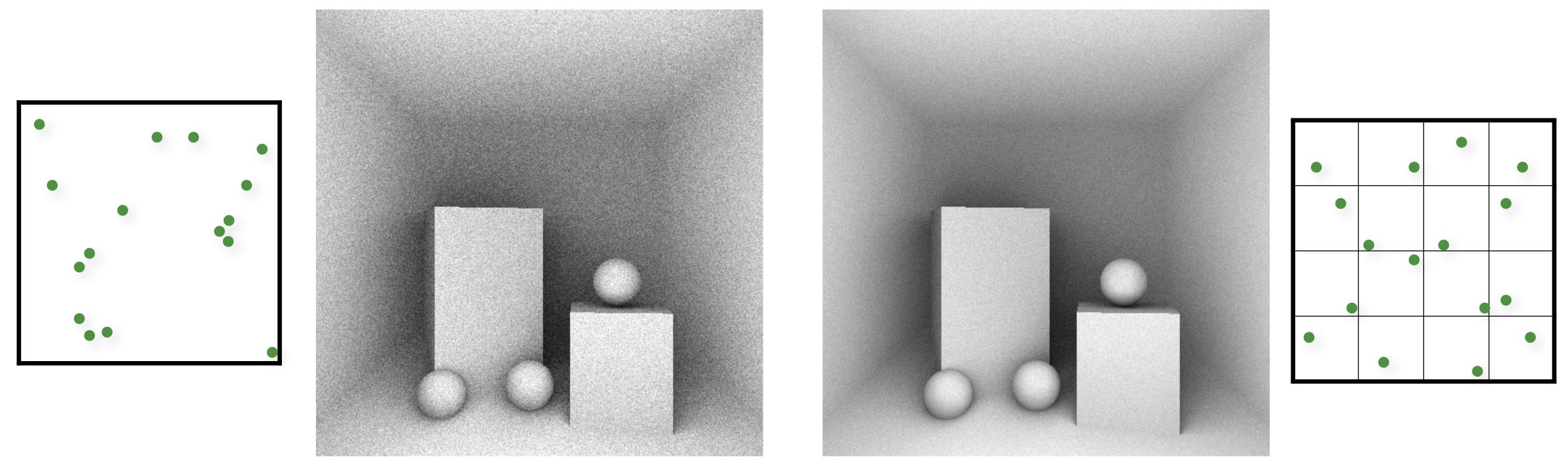


7

Realistic Image Synthesis SS2020

Random vs. Stratified Sampling

Random Samples

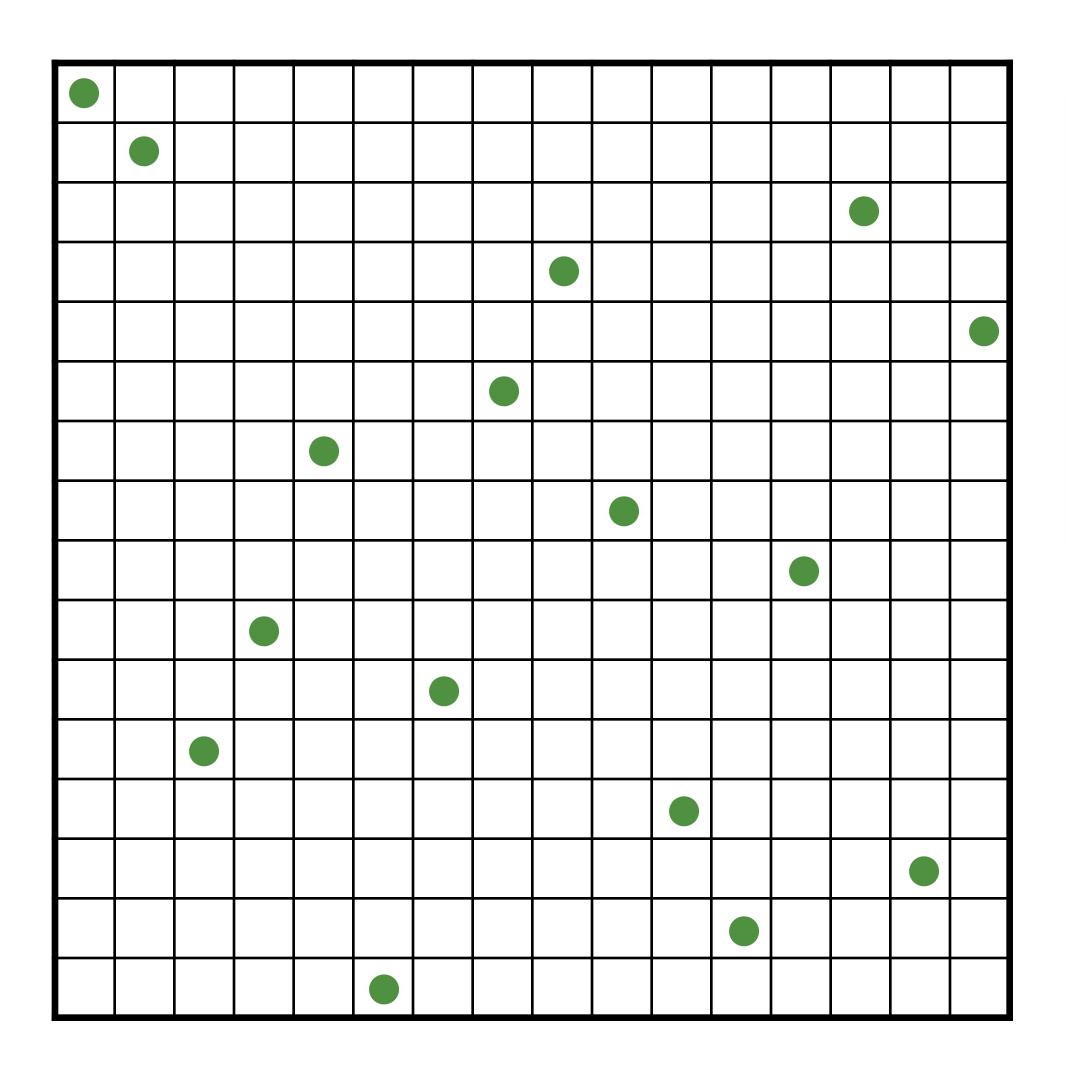


Stratified sampling suffers from the curse of dimensionality

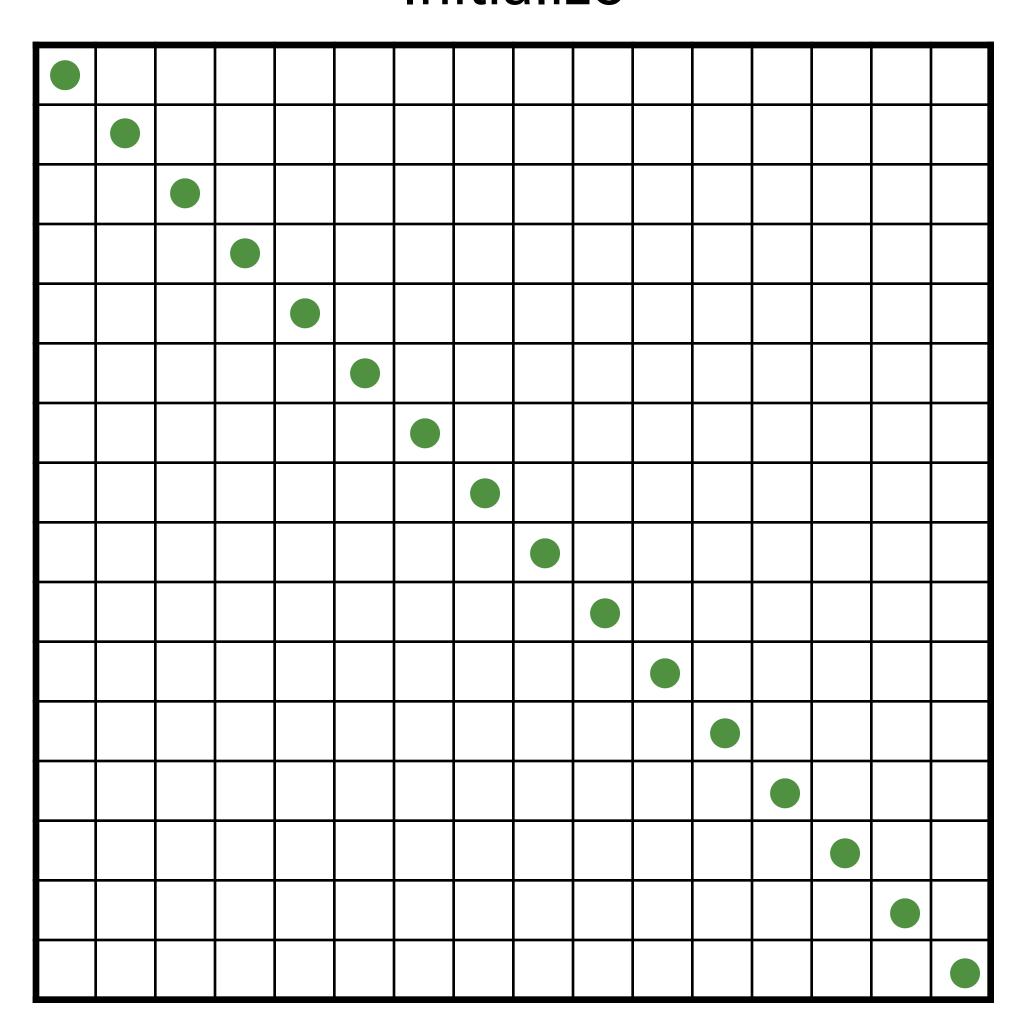
Jittered Samples

N = 64 spp

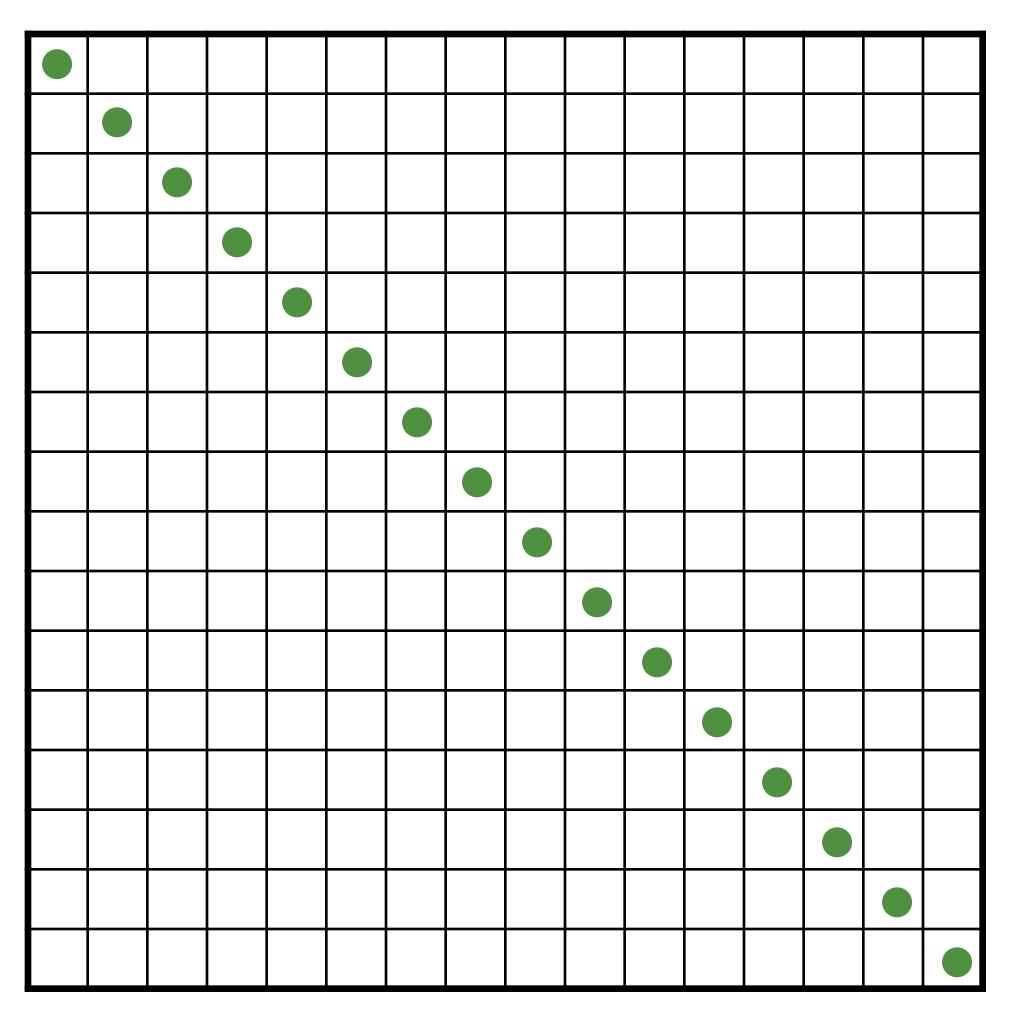
Correlated Sampling: Latin Hypercube Sampling



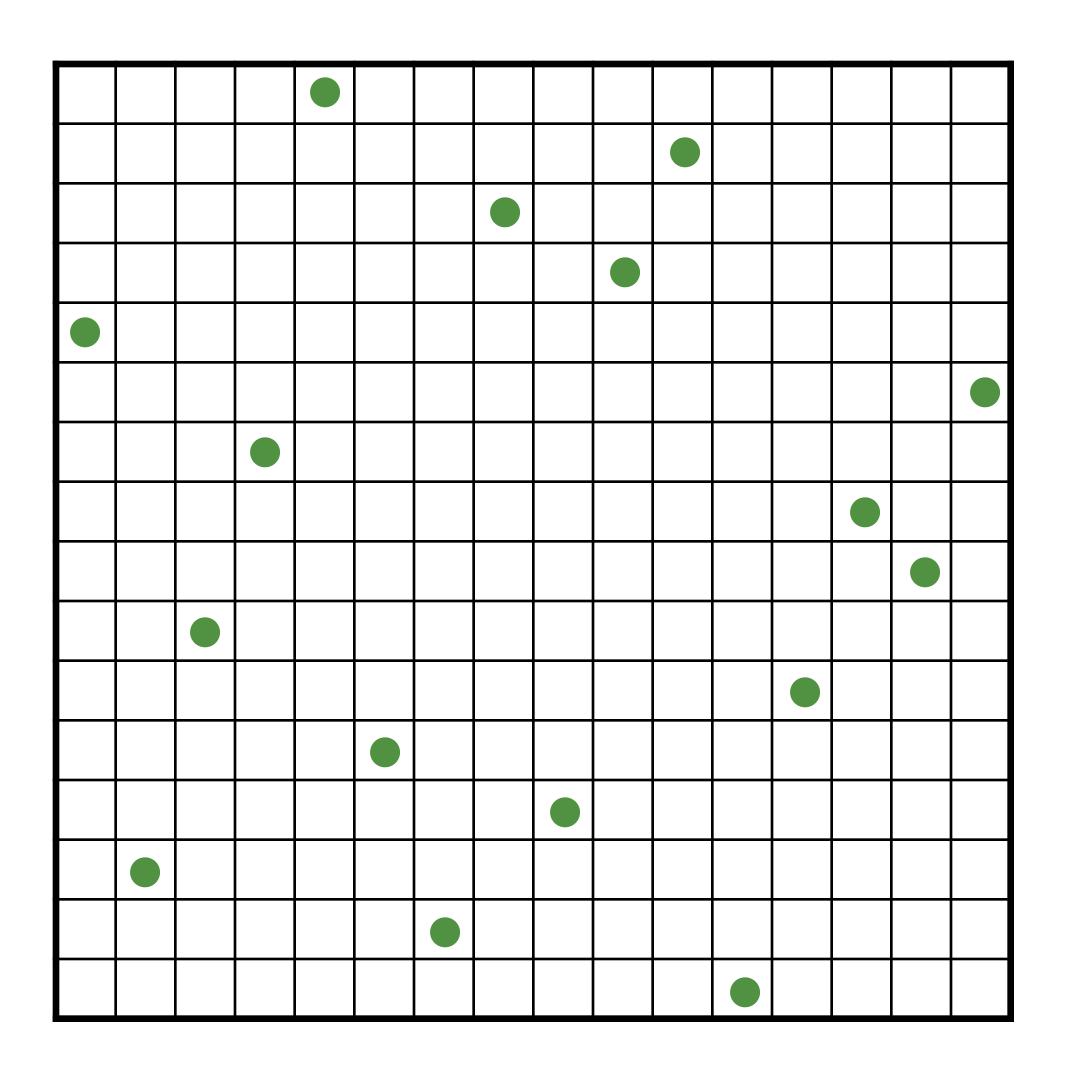
Realistic Image Synthesis SS2020



Realistic Image Synthesis SS2020

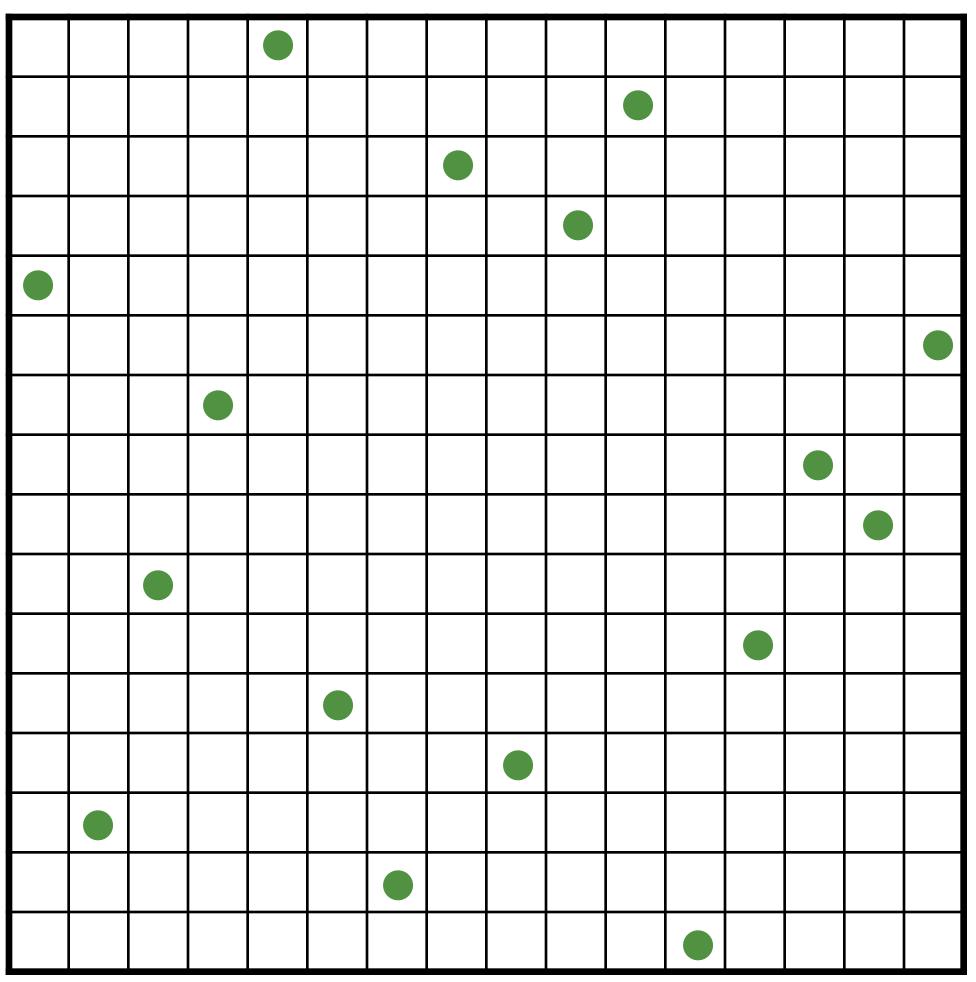


Realistic Image Synthesis SS2020

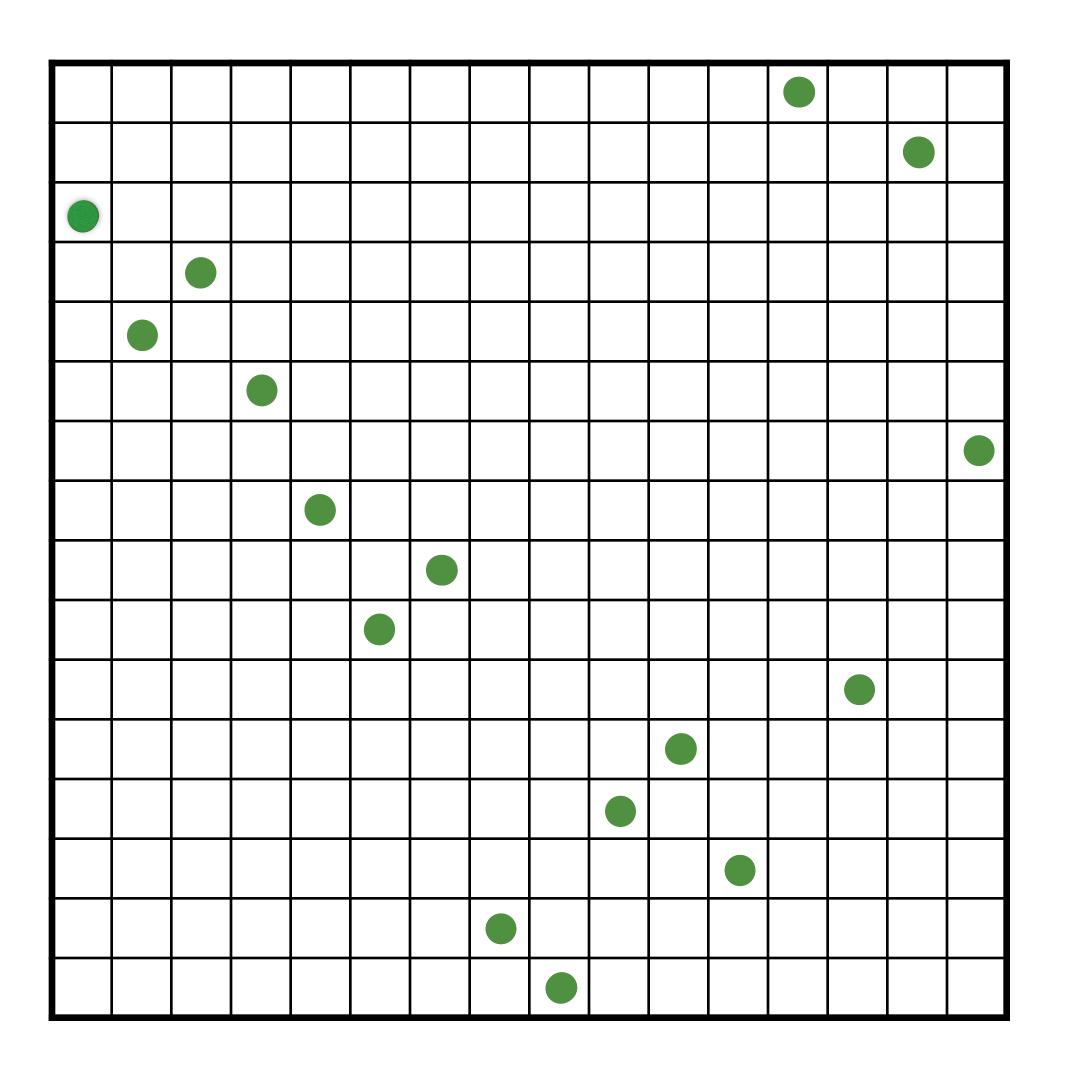


Realistic Image Synthesis SS2020

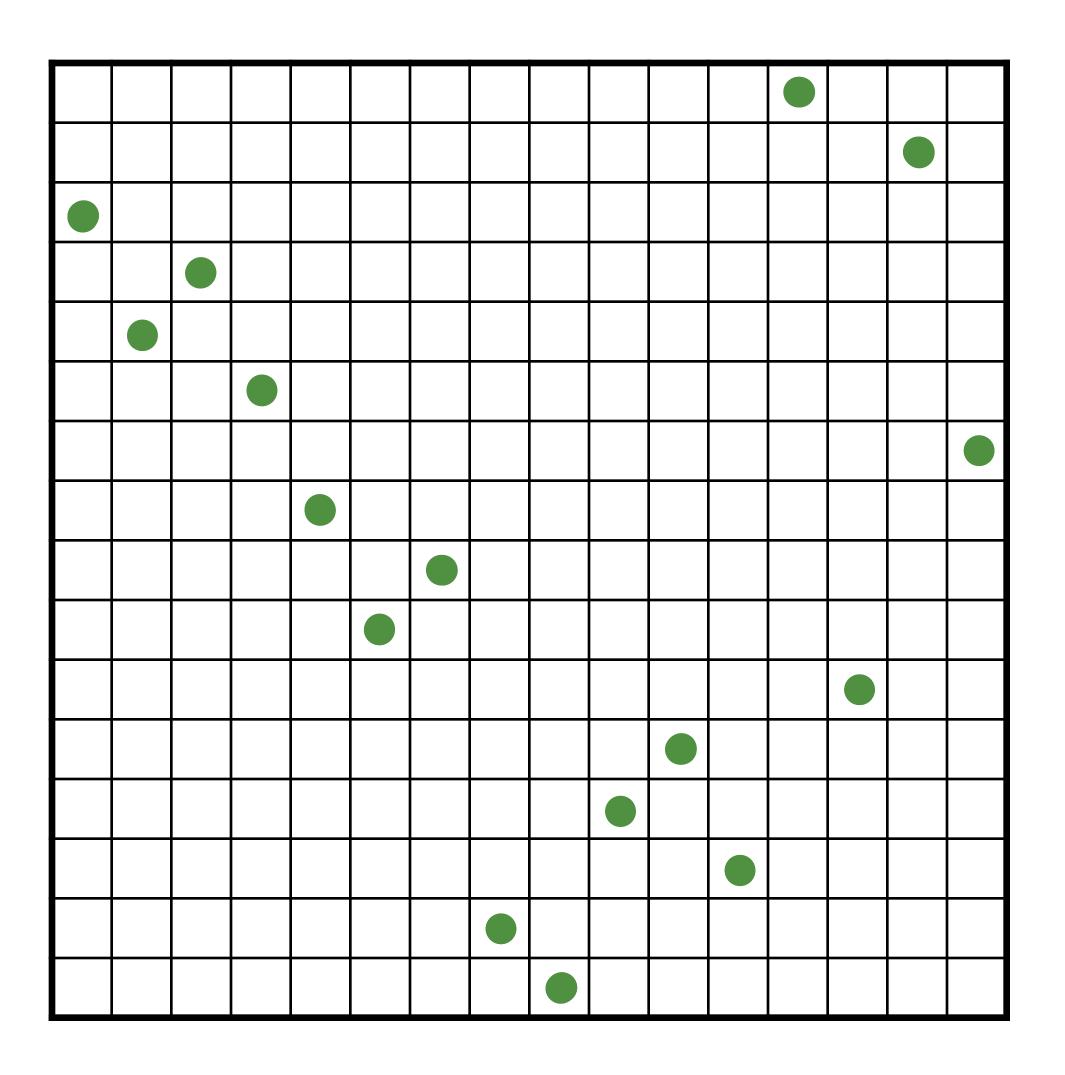
Latin Hypercube Sampler (N-rooks) Shuffle columns



Realistic Image Synthesis SS2020

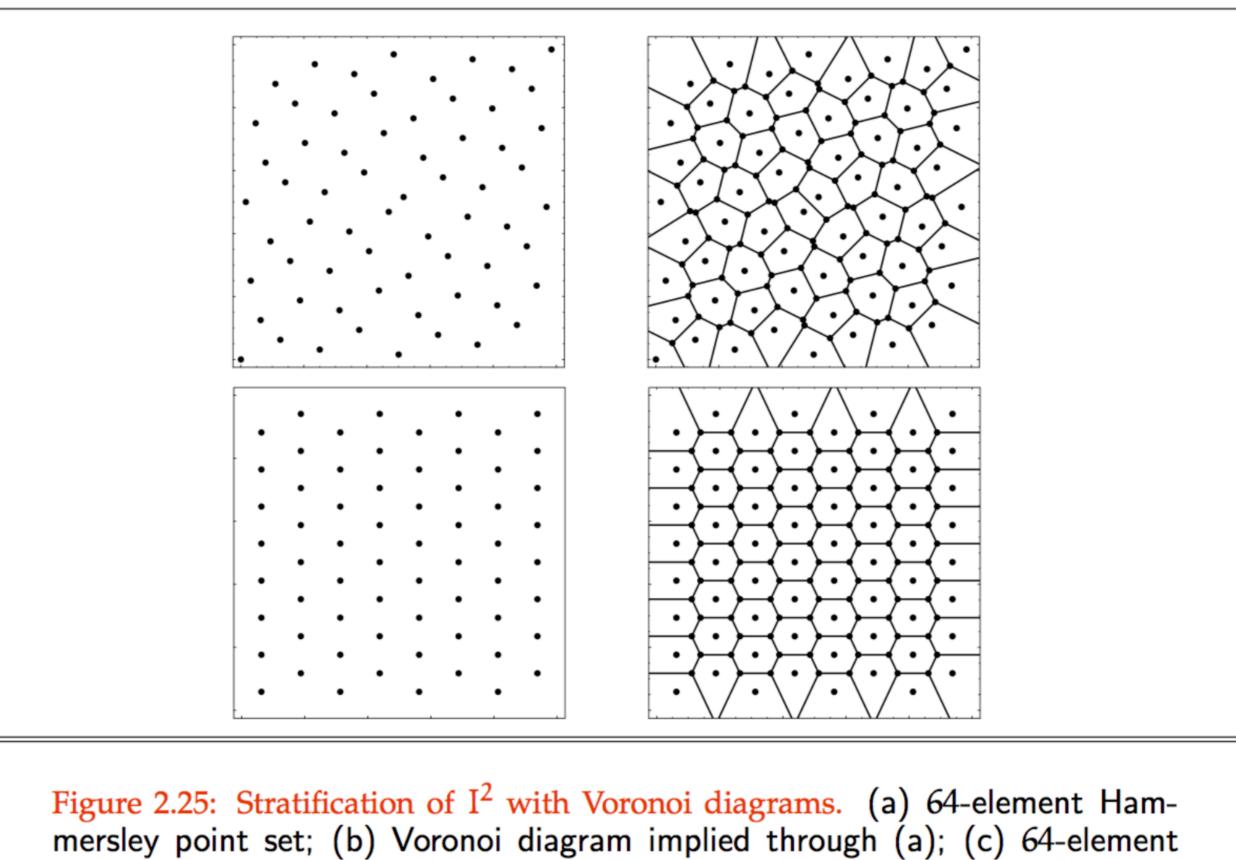


Realistic Image Synthesis SS2020



Realistic Image Synthesis SS2020

Variants of stratified sampling



hexagonal grid; (d) Voronoi diagram implied through (c).

Slide from Philipp Slusallek

Correlated Sampling: Quasi-Monte Carlo Integration

Realistic Image Synthesis SS2020

Quasi-Monte Carlo Integration

- Monte Carlo integration suffers, apart from the slow convergence rate, from the are possible
- random samples
- there are no samples at all, which can increases the error
- many locations if samples are clumped

disadvantages that only probabilistic statements on convergence and error boundaries

The success of any Monte Carlo procedure stands or falls with the quality of these

• If the distribution of the sample points is not uniform then there are large regions where

• Closely related to this is the fact that a smooth function is evaluated at unnecessary



Quasi-Monte Carlo Integration

- Deterministic generation of samples, while making sure uniform distributions
- Based on number-theoretic approaches
- Samples with good uniform properties can be generated in very high dimensions.
- Sample generation is pretty fast: (almost) no pre-processing

Quasi-Monte Carlo Integration

- Low discrepancy sequences
 - Halton and Hammerslay sequences
 - Scrambled sequences
- Discrepancy

Realistic Image Synthesis SS2020

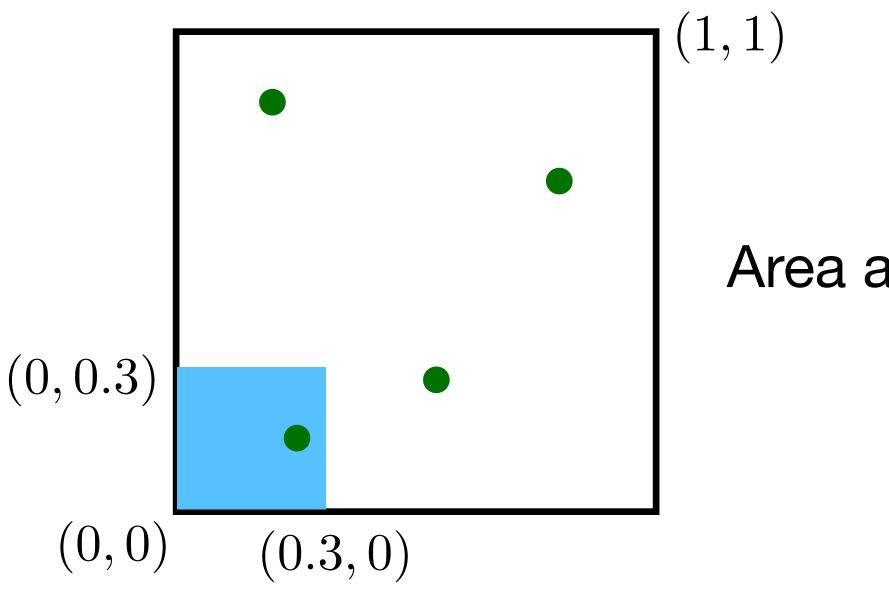
Discrepancy: Basic idea

distribution

• The concept of discrepancy can be viewed as a quantitative measure for the deviation of a given point set from a uniform

Discrepancy: Basic idea

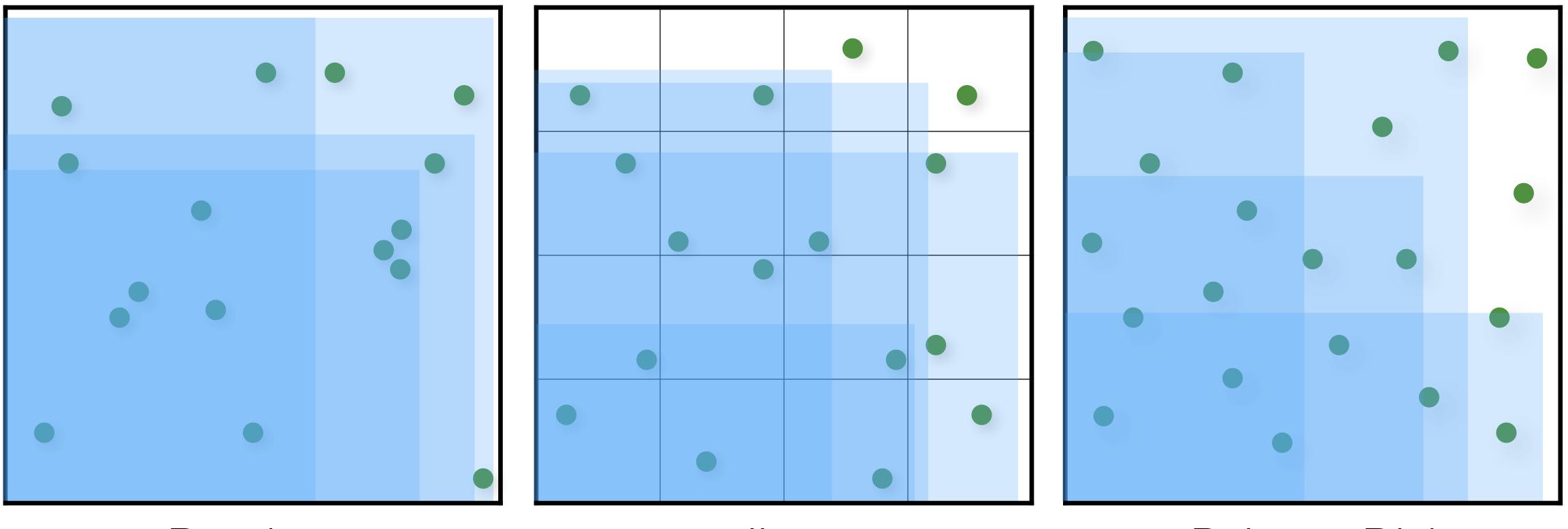
distribution



• The concept of discrepancy can be viewed as a quantitative measure for the deviation of a given point set from a uniform

> Area of the blue box: 0.09 Area associated to each sample: 0.25 Discrepancy: 0.25 - 0.09 = 0.16

Spatial Statistics: Discrepancy



Random

Jitter

Poisson Disk

Discrepancy = BoxArea - FractionSamples

Star Discrepancy

Radical Inverse

Any integer can be represented in the form:

$$n = \sum_{i=1}^{\infty} d_i b^{i-1}$$

Realistic Image Synthesis SS2020

Techniques based on a construction called as radical inverse

n	Binary	$\Phi_b(n)$
1	1	
2	01	
3	11	
4	001	
5	101	

Radical Inverse

Any integer can be represented in the form:

$$n = \sum_{i=1}^{\infty} d_i b^{i-1}$$

Radical inverse:

$$\Phi_b(n) = 0.d_1d_2...d_m$$

Techniques based on a construction called as radical inverse

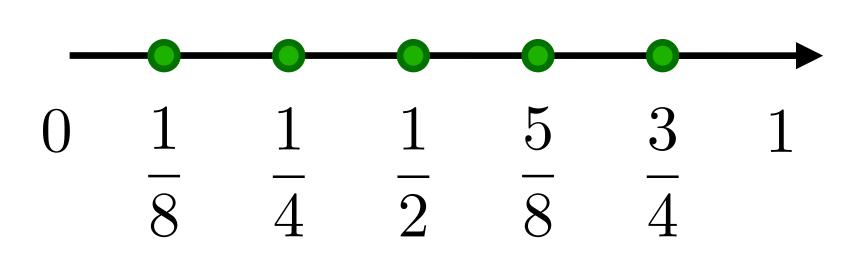
n	Binary	$\Phi_b(n)$
1	1	0.1
2	01	0.01
3	11	0.11
4	001	0.001
5	101	0.101

Realistic Image Synthesis SS2020

Radical Inverse

Radical inverse:

$$\Phi_b(n) = 0.d_1d_2...d_m$$



Techniques based on a construction called as radical inverse

n	Binary	$\Phi_b(n)$
1	1	0.1 = 1/2
2	01	0.01 = 1/4
3	11	0.11 = 3/4
4	001	0.001 = 1/
5	101	0.101 = 5/

Realistic Image Synthesis SS2020

Halton and Hammerslay Sequence

Radical inverse: $\Phi_b(n) = 0.d_1d_2...d_m$

Techniques based on a construction called as radical inverse

- Halton Sequence: For n-dimensional sequence, we use different base b for each dimension
 - $x_i = (\Phi_2(i), \Phi_3(i), \Phi_5(i), \dots, \Phi_{p_n}(i))$

Halton and Hammerslay Sequence

Radical inverse: $\Phi_b(n) = 0.d_1d_2...d_m$

$$x_i = (\Phi_2(i), \Phi_3(i), \Phi_5(i), \dots, \Phi_{p_n}(i))$$

Hammerslay Sequence: All except the first dimension has co-prime bases

$$x_i = \left(\frac{i}{N}, \Phi_{b_1}(i), \Phi_{b_2}(i), \dots, \Phi_{b_n}(i)\right)$$

Techniques based on a construction called as radical inverse

Halton Sequence: For n-dimensional sequence, we use different base b for each dimension

Halton and Hammerslay Sequence

Techniques based on a construction called as radical inverse

Radical inverse: $\Phi_b(n) = 0.d_1d_2...d_m$

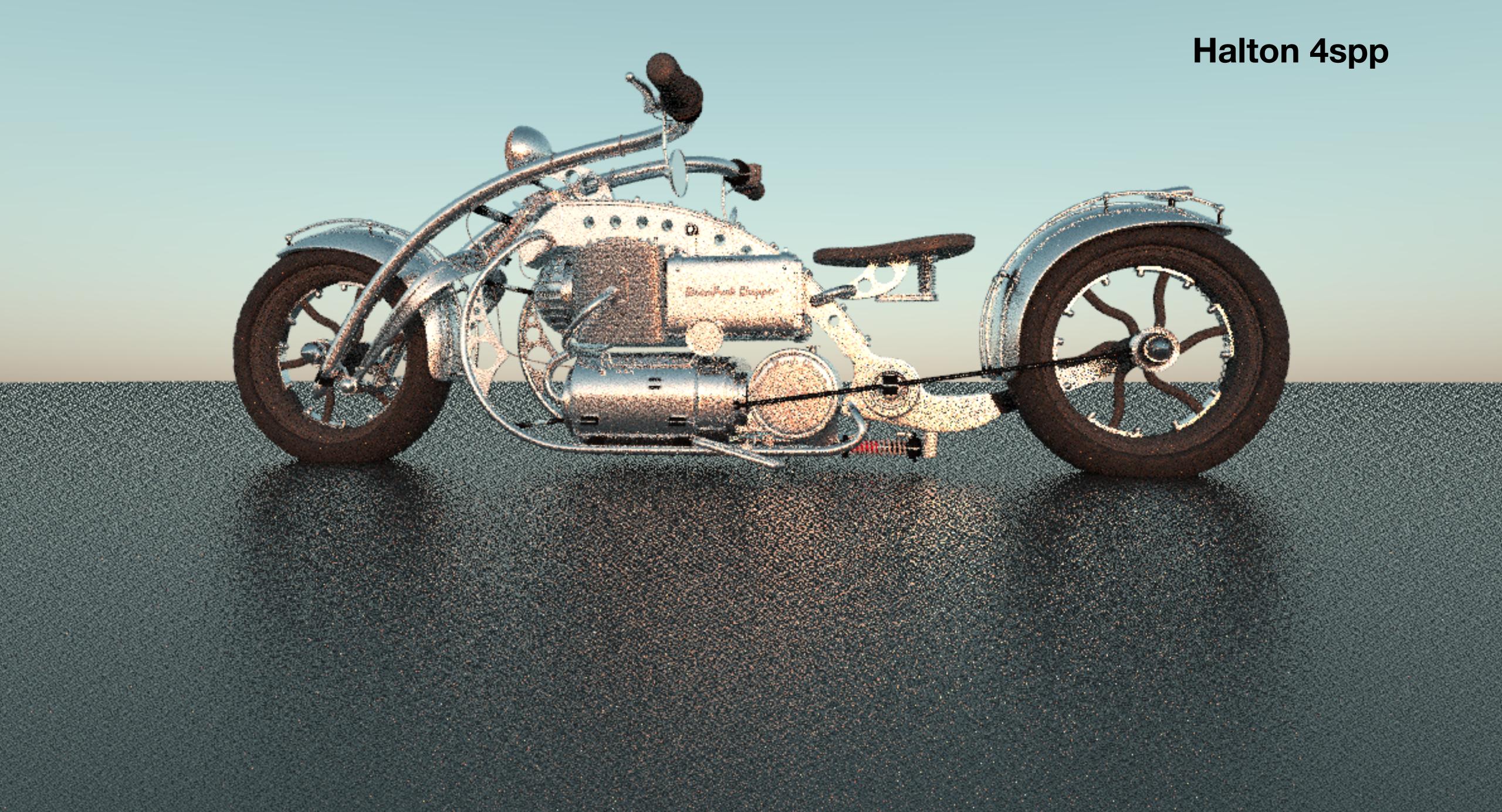
Halton Sequence:

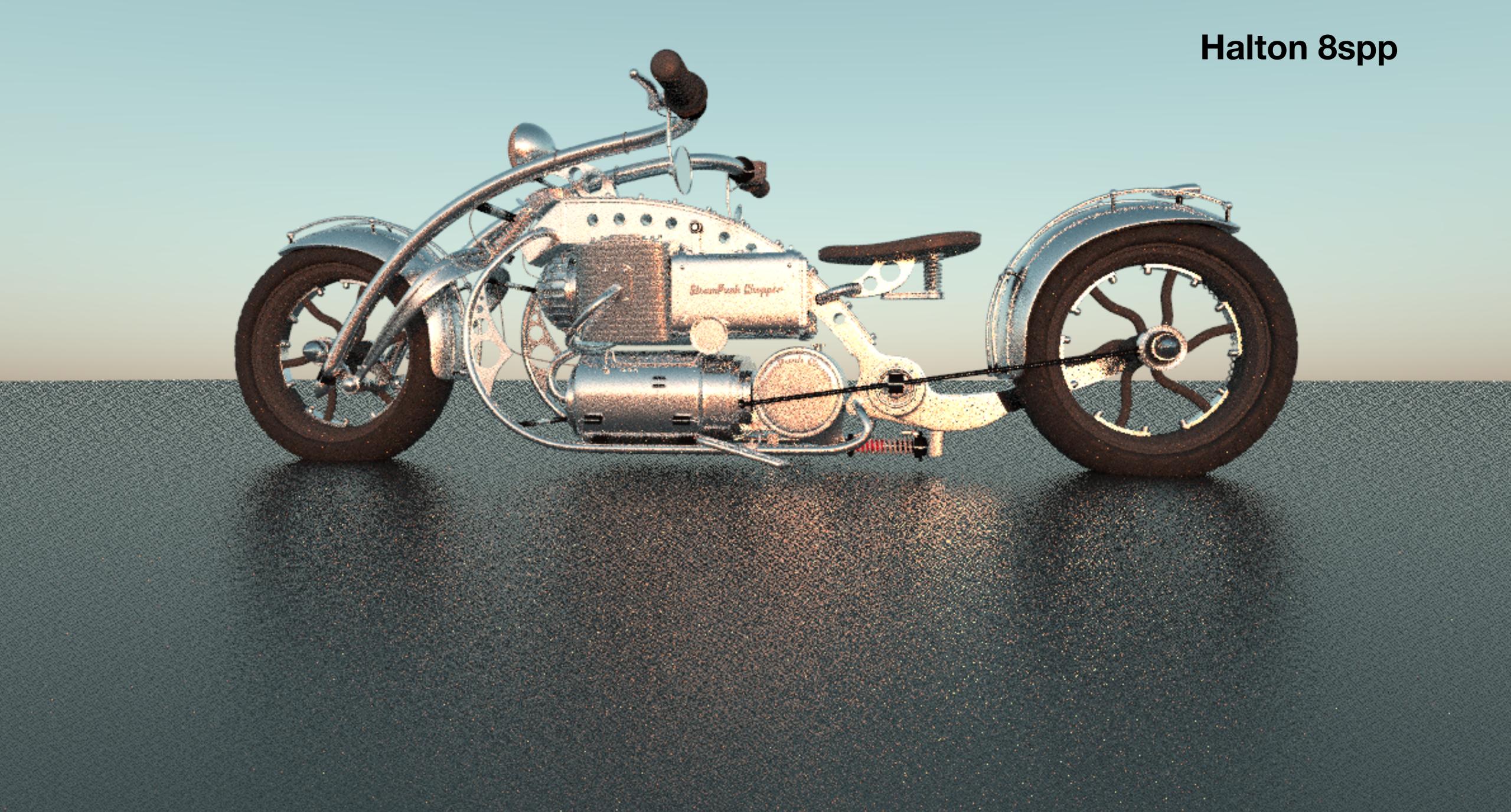
 $x_i = (\Phi_2(i), \Phi_3(i), \Phi_5(i), \dots, \Phi_{p_n}(i))$

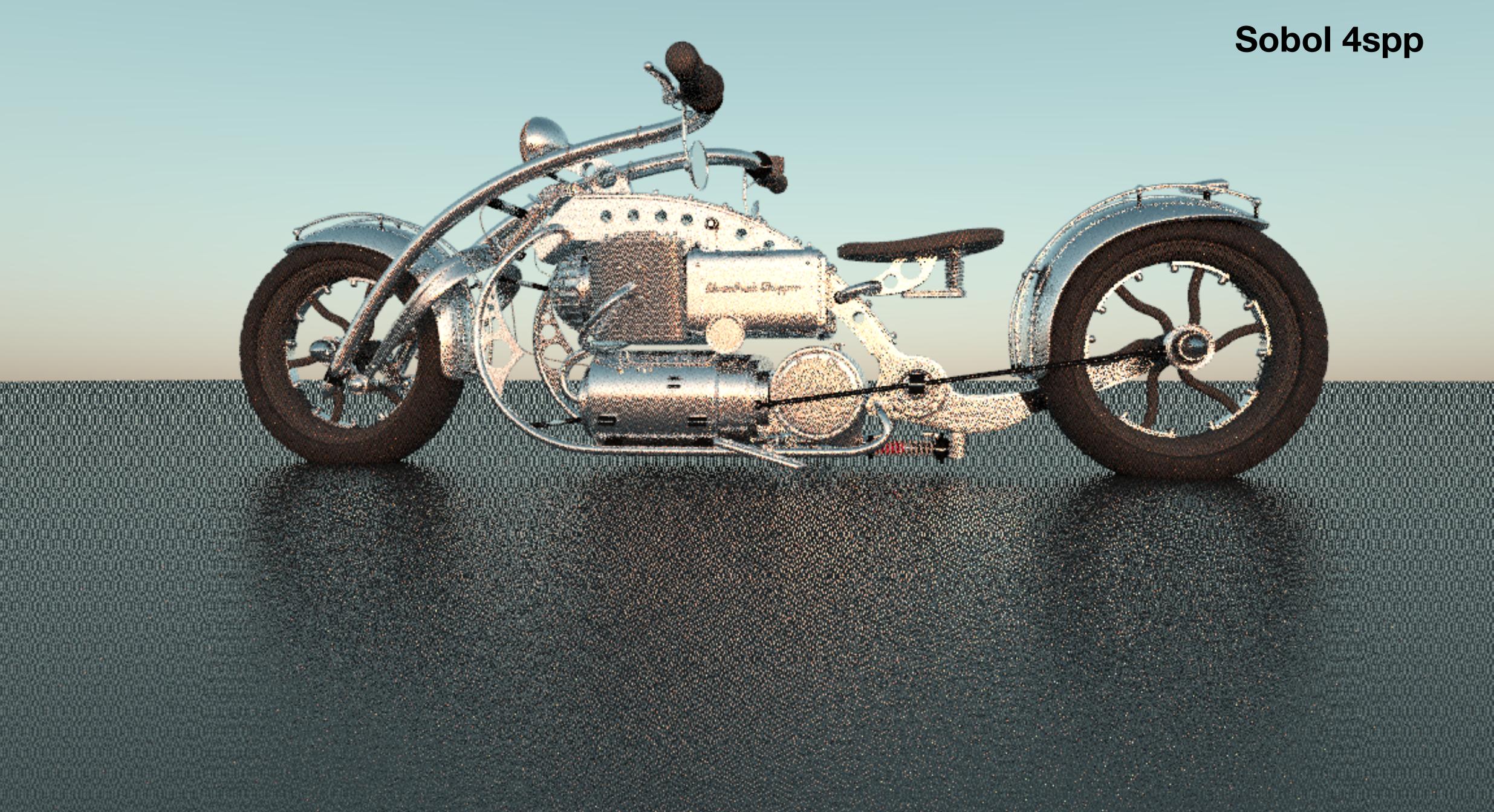
Hammerslay has slightly **lower** discrepancy than Halton

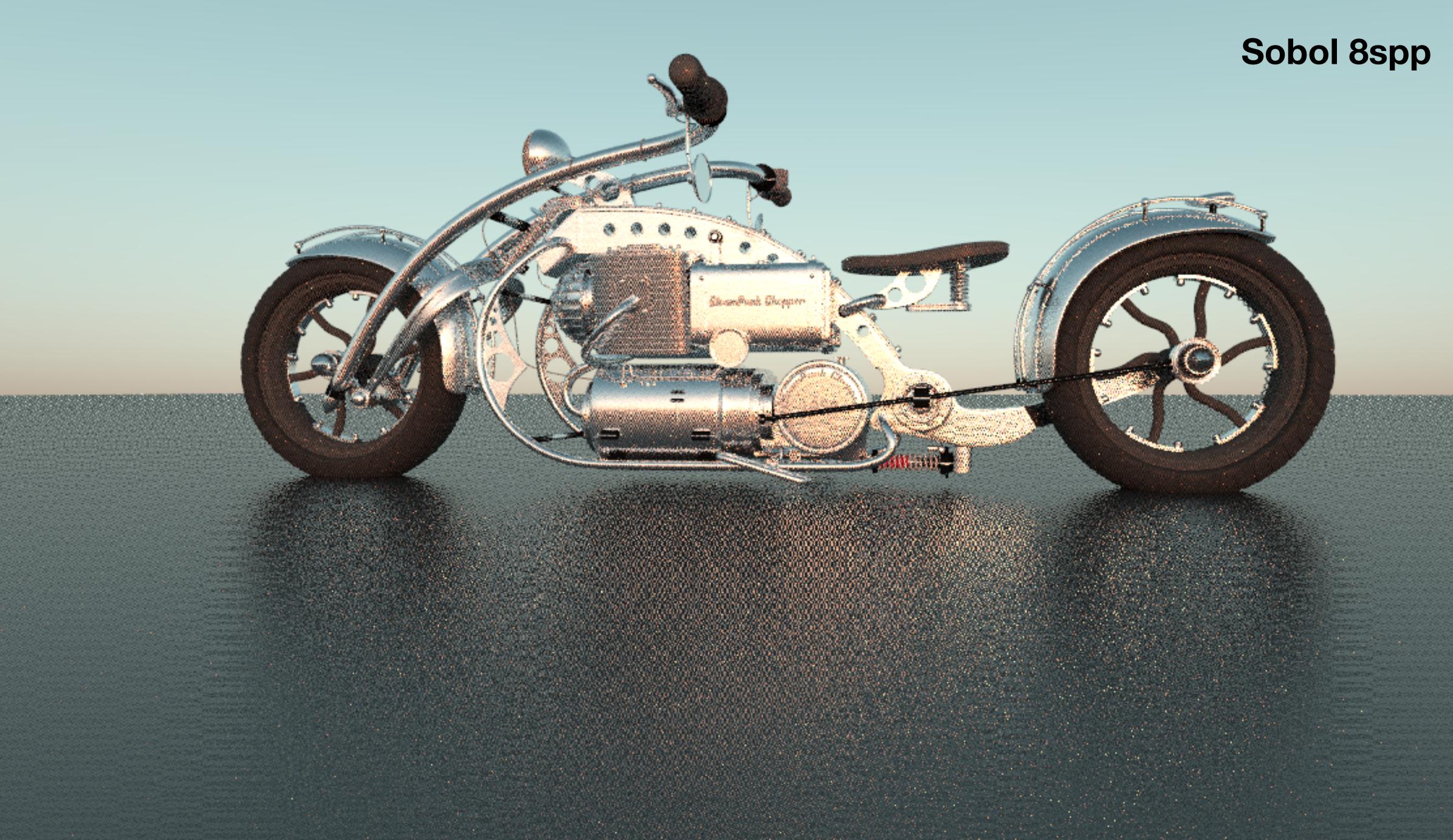
Hammerslay Sequence:

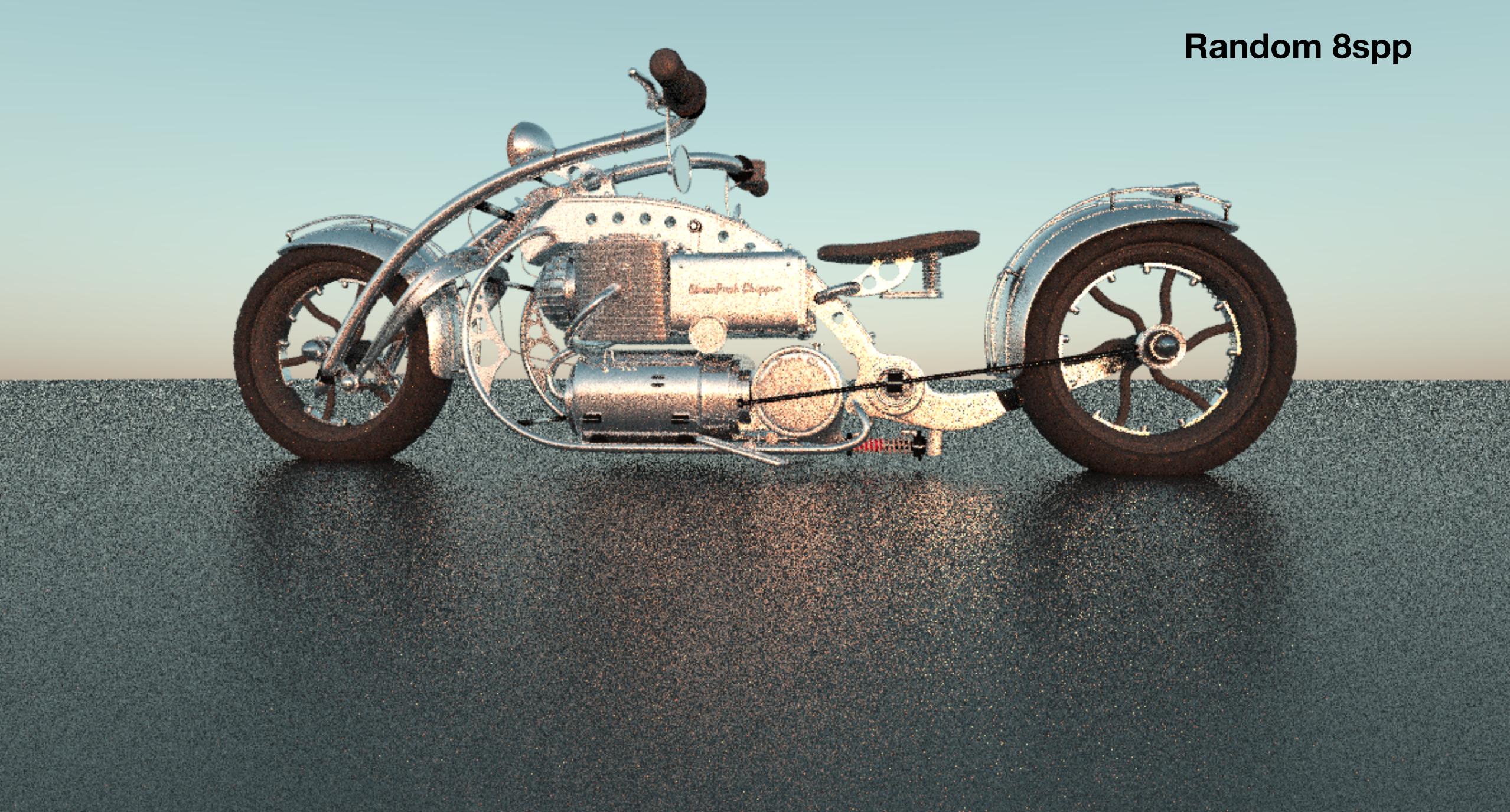
$$x_i = \left(\frac{i}{N}, \Phi_{b_1}(i), \Phi_{b_2}(i), \dots, \Phi_{b_n}(i)\right)$$











Visualizing samples

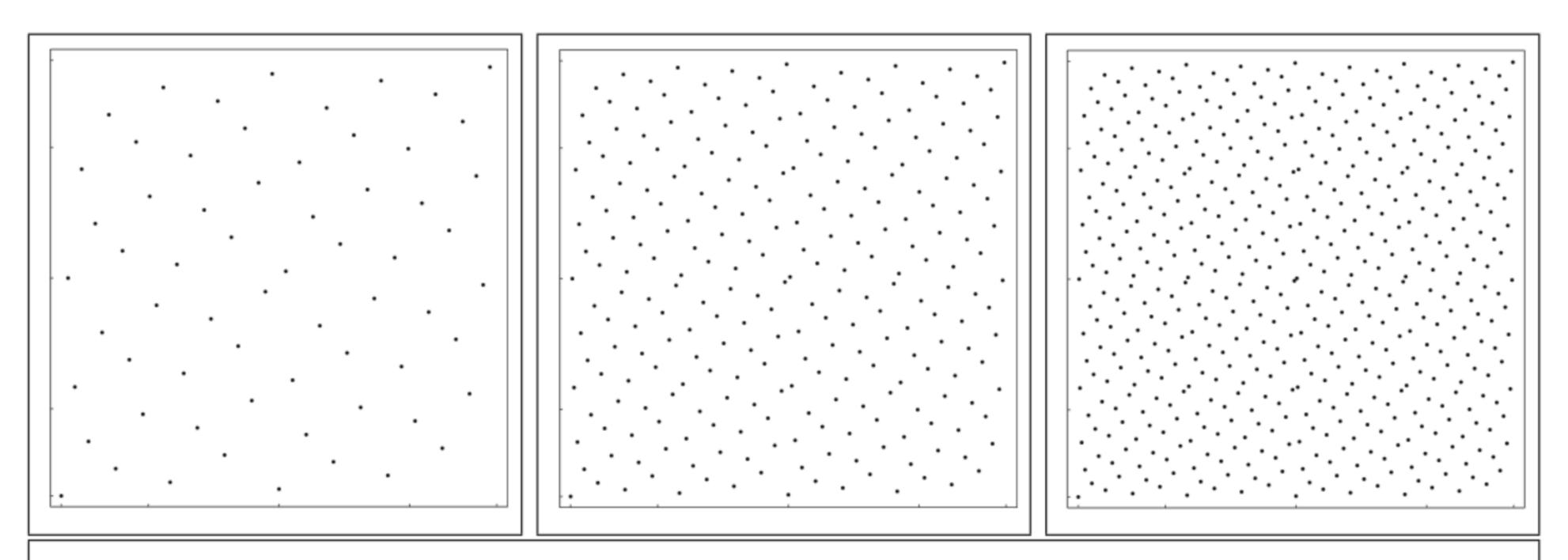


Figure 2.7: Hammersley Point Set on the 2D Plane. Three 2-dimensional Hammersley point sets $\mathbf{P}_{HAM}^2 = \left(\frac{i}{N}, \Phi_2(i)\right)_{i \in (0,...,N-1)}$ of sizes N = 64-element, N = 256-element and N = 512-element.

Slide from Philipp Slusallek

Visualizing samples

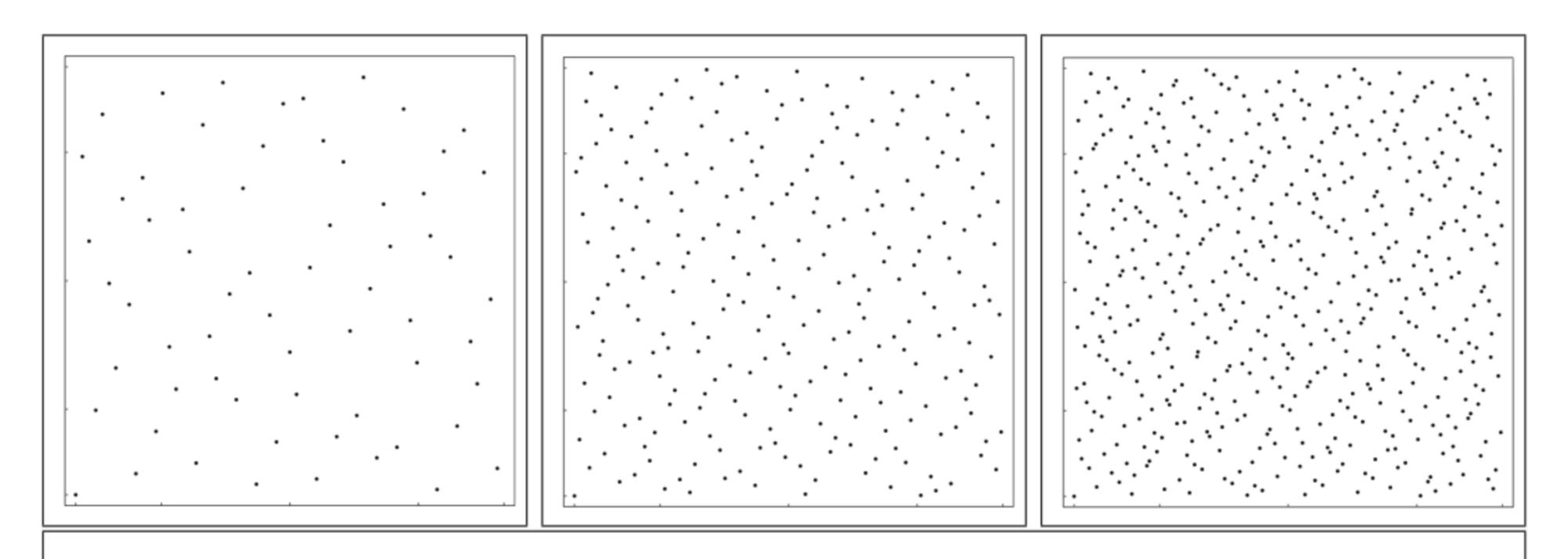
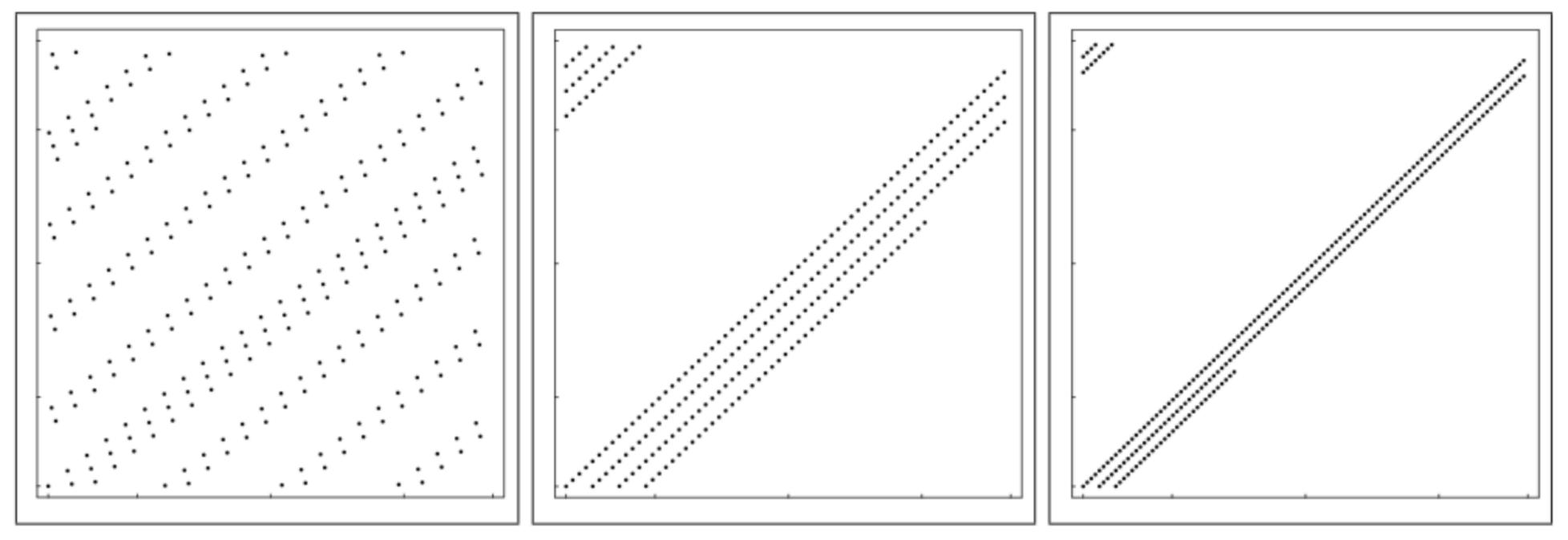


Figure 2.5: Halton sequence. The first 64, 256, and 512 points of the 2-dimensional Halton Sequence $\mathbf{P}_{HAL}^2 = (\Phi_2(i), \Phi_3(i))_{i \in \mathbb{N}_0}$.

Slide from Philipp Slusallek

Visualizing samples

Projection: (19,20) Projection: (9,10)

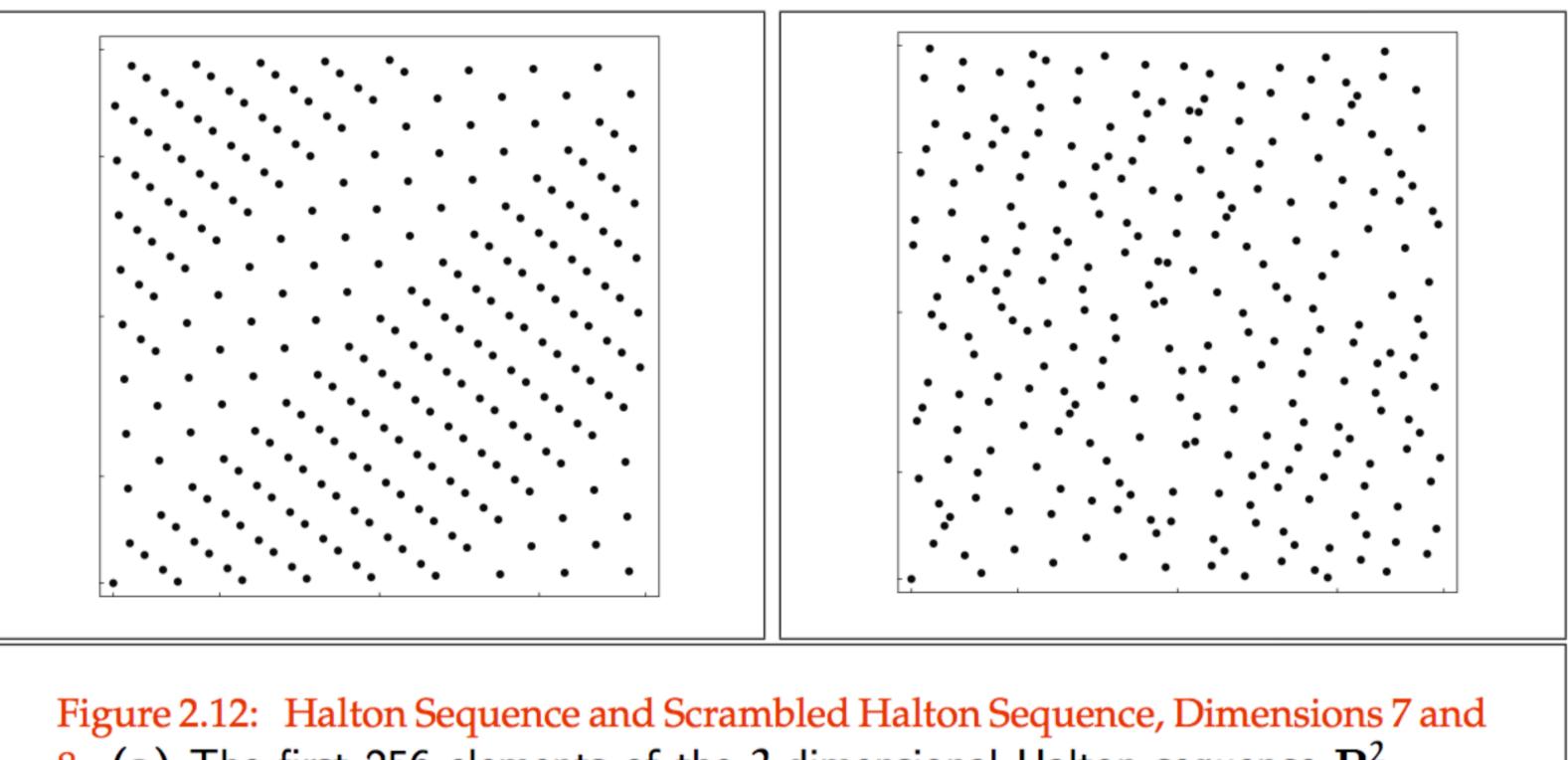


Projection: (29,30)

Halton Sequence

Slide from Philipp Slusallek

38



8. (a) The first 256 elements of the 2-dimensional Halton sequence $P_{HAL}^2 =$ $(\Phi_7(i), \Phi_8(i))$ and the scrambled versions of dimension 7 and 8 generated according to procedure of Faure.

Faure's permutation

Slide from Philipp Slusallek

Questions?

Gaussian Material Synthesis by Zsolnai-Feher, Wonka, Wimmer [SIGGRAPH 2018]

Importance Sampling

Realistic Image Synthesis SS2020

ω_{i}

Importance Sampling $L_o(p,\omega) = \int_{\mathcal{H}^2} f_r(x,\omega_0,\omega_i) L_i(x,\omega_i) |\cos\theta_i| d\omega_i$ What terms can we importance sample?

- BSDF

- Incident radiance
- cosine term

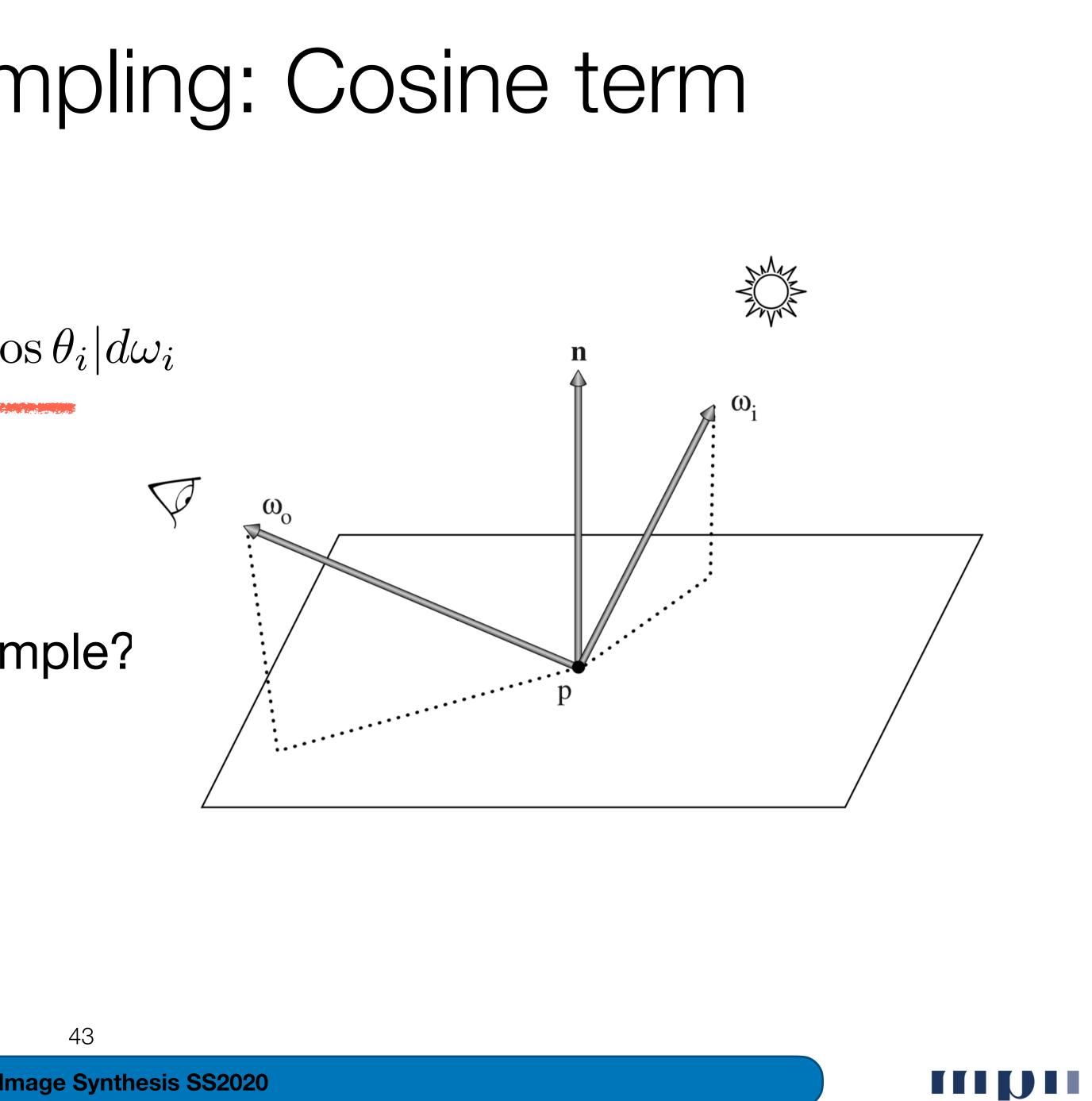
Realistic Image Synthesis SS2020

Importance Sampling: Cosine term

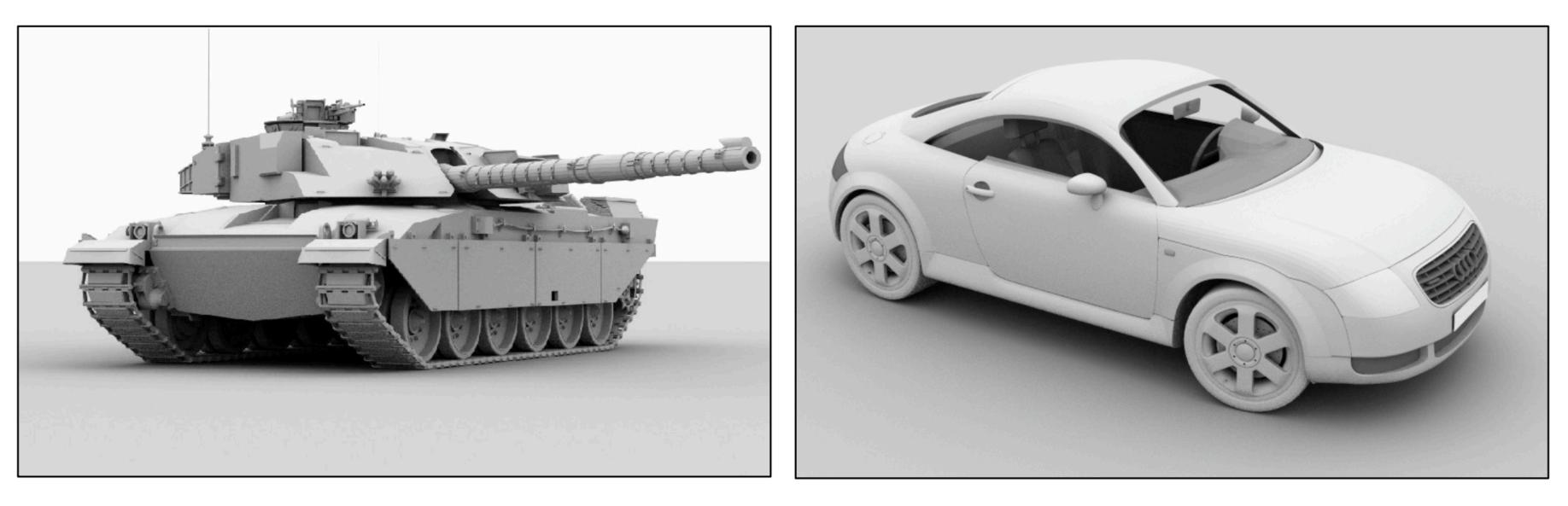
$$L_o(p,\omega) = \int_{\mathcal{H}^2} f_r(x,\omega_0,\omega_i) L_i(x,\omega_i) | \operatorname{control}(x,\omega_i) | \operatorname{control}(x,\omega$$

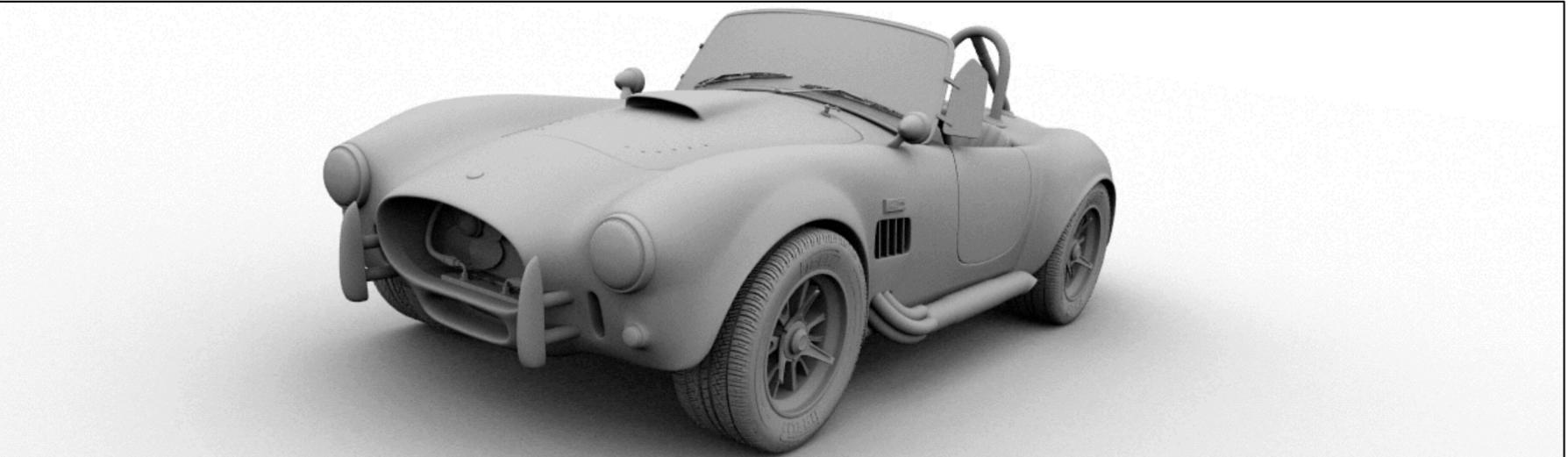
What terms can we importance sample?

- BSDF
- Incident radiance
- cosine term

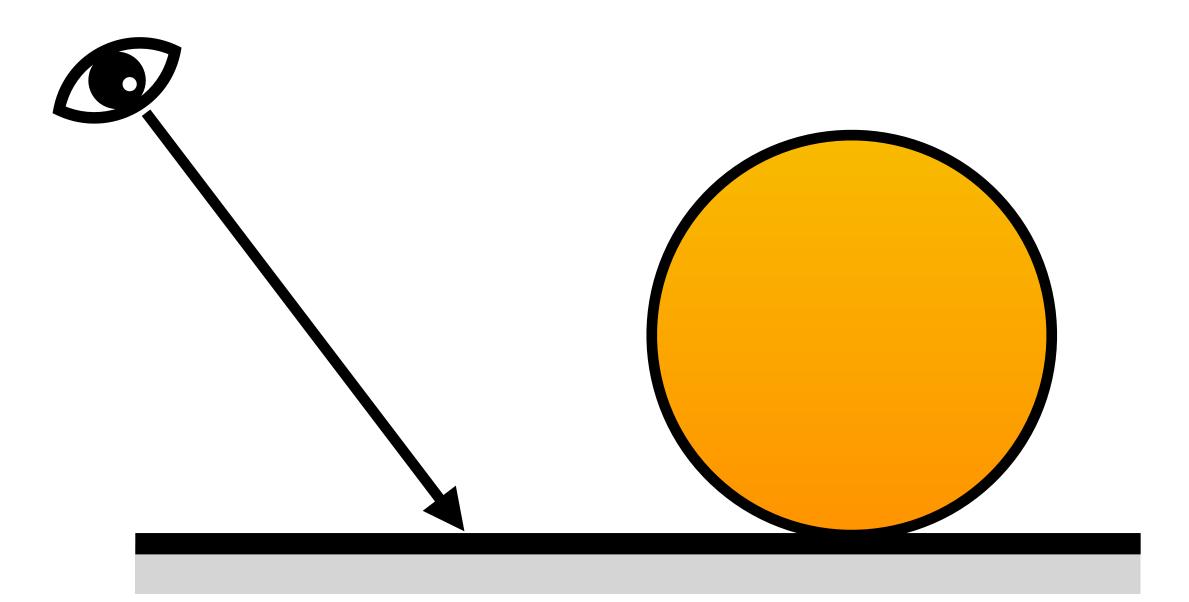


Realistic Image Synthesis SS2020





Realistic Image Synthesis SS2020

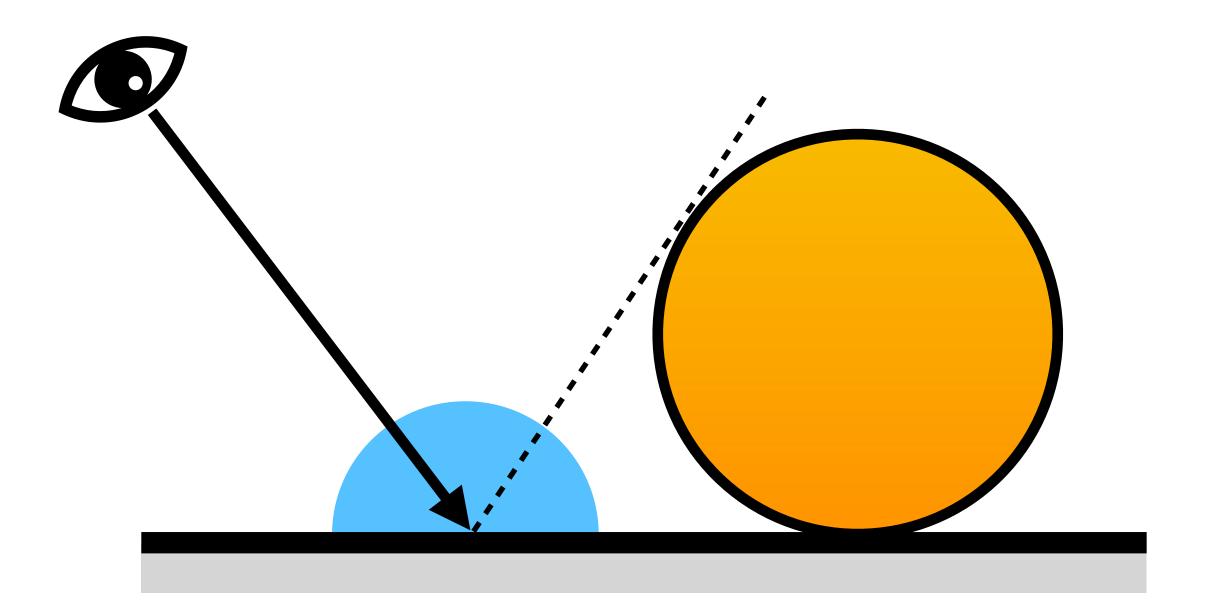


Realistic Image Synthesis SS2020

$$L_o(p,\omega) = \int_{\mathcal{H}^2} f_r(x,\omega_0,\omega_i) L_i(x,\omega_i) |\cos\theta_i| d\omega$$

$$L_o(p,\omega) = \frac{\rho}{\pi} \int_{\mathcal{H}^2} V(x,\omega_i) |\cos \theta_i| d\omega_i$$

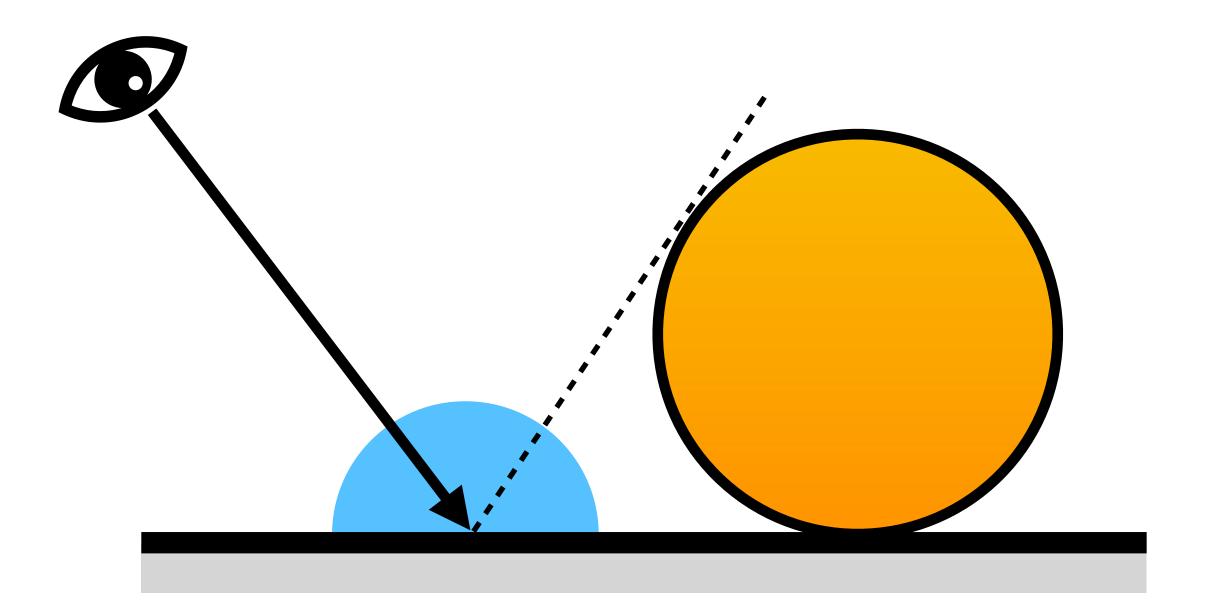
45



Realistic Image Synthesis SS2020

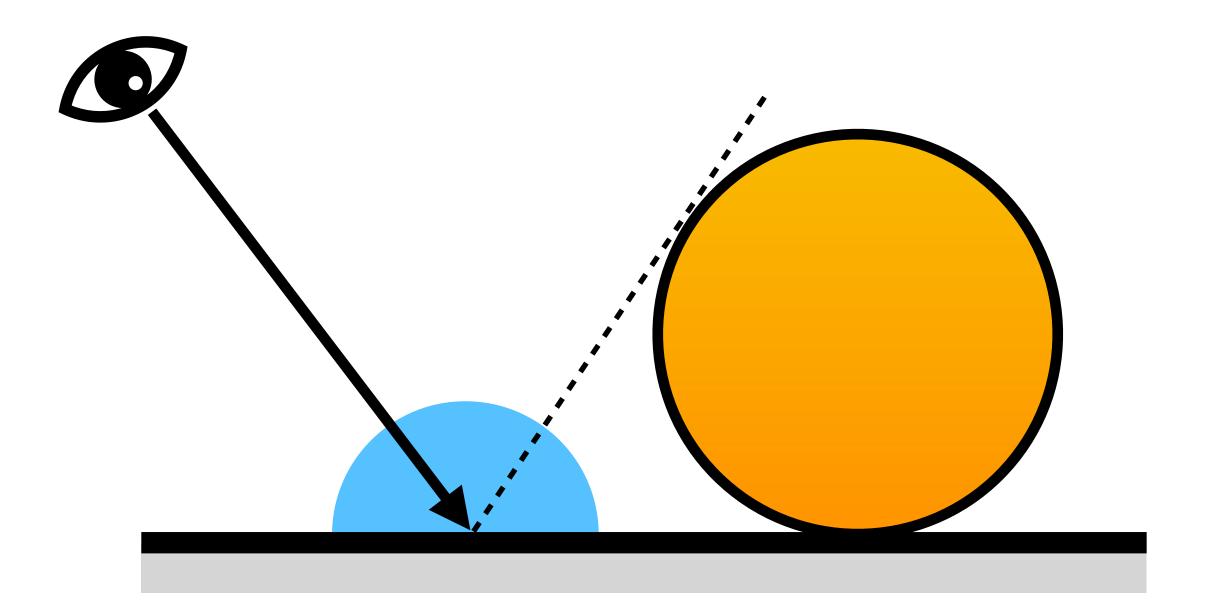
$L_o(p,\omega) = \frac{\rho}{\pi} \int_{\mathcal{H}^2} V(x,\omega_i) |\cos \theta_i| d\omega_i$

46



Realistic Image Synthesis SS2020

$$L_o(p,\omega) = \frac{\rho}{\pi} \int_{\mathcal{H}^2} V(x,\omega_i) |\cos\theta_i| d\omega_i$$
$$L_o(p,\omega) = \frac{\rho}{\pi} \frac{1}{N} \sum_{k=1}^N \frac{V(x,\omega_{i,k}) |\cos\theta_{i,k}|}{p(x,\omega_{i,k})}$$

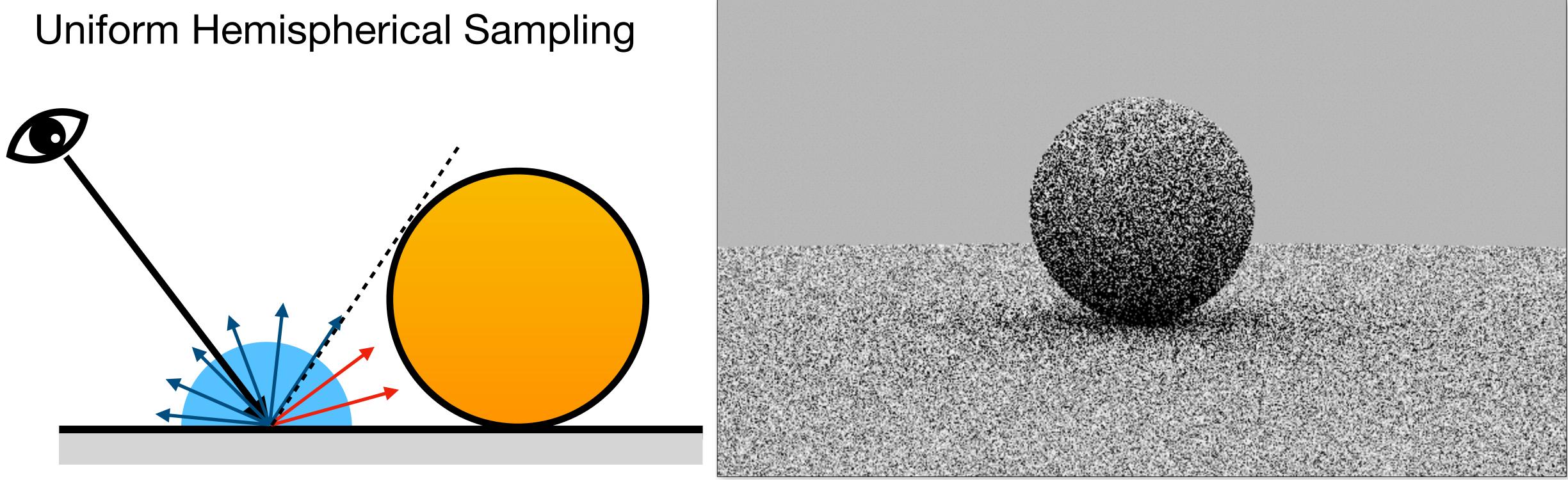


Realistic Image Synthesis SS2020

$$L_o(p,\omega) = \frac{\rho}{\pi} \frac{1}{N} \sum_{k=1}^N \frac{V(x,\omega_{i,k})|\cos\theta_{i,k}|}{p(x,\omega_{i,k})}$$

 $p(x,\omega_{i,k}) \propto ???$

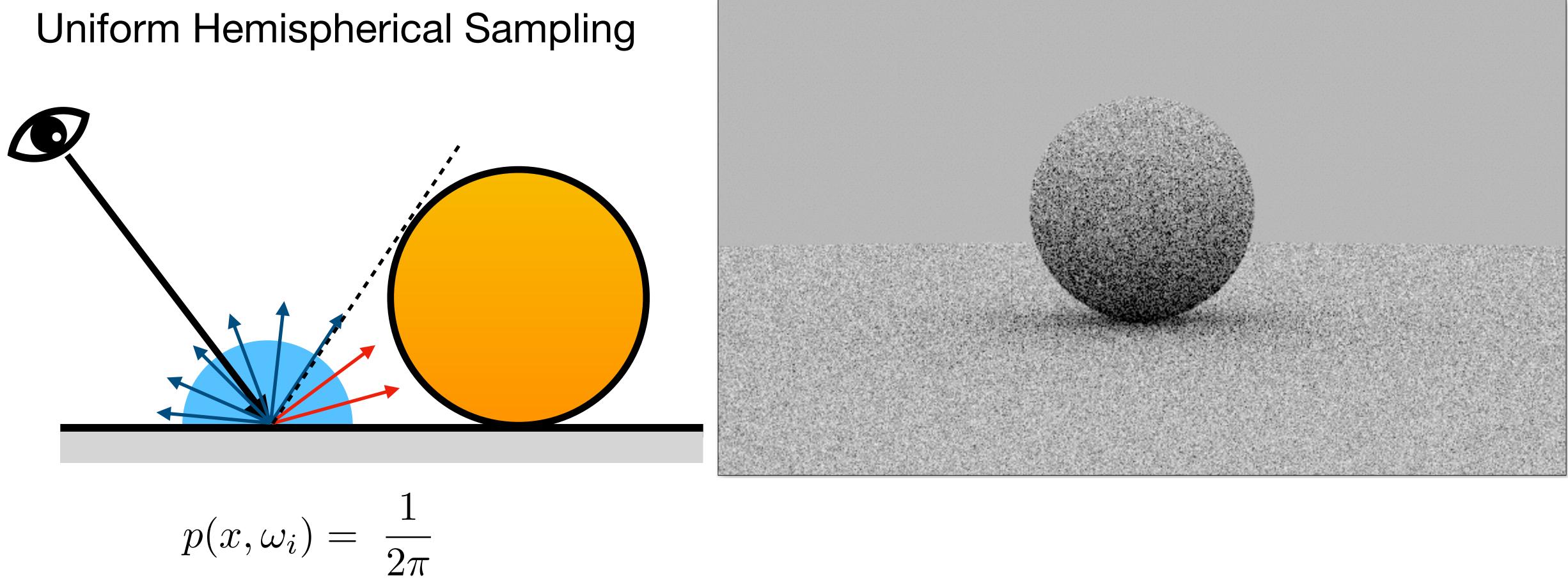
Hemispherical Sampling: Constant PDF



(1 Sample)

Realistic Image Synthesis SS2020

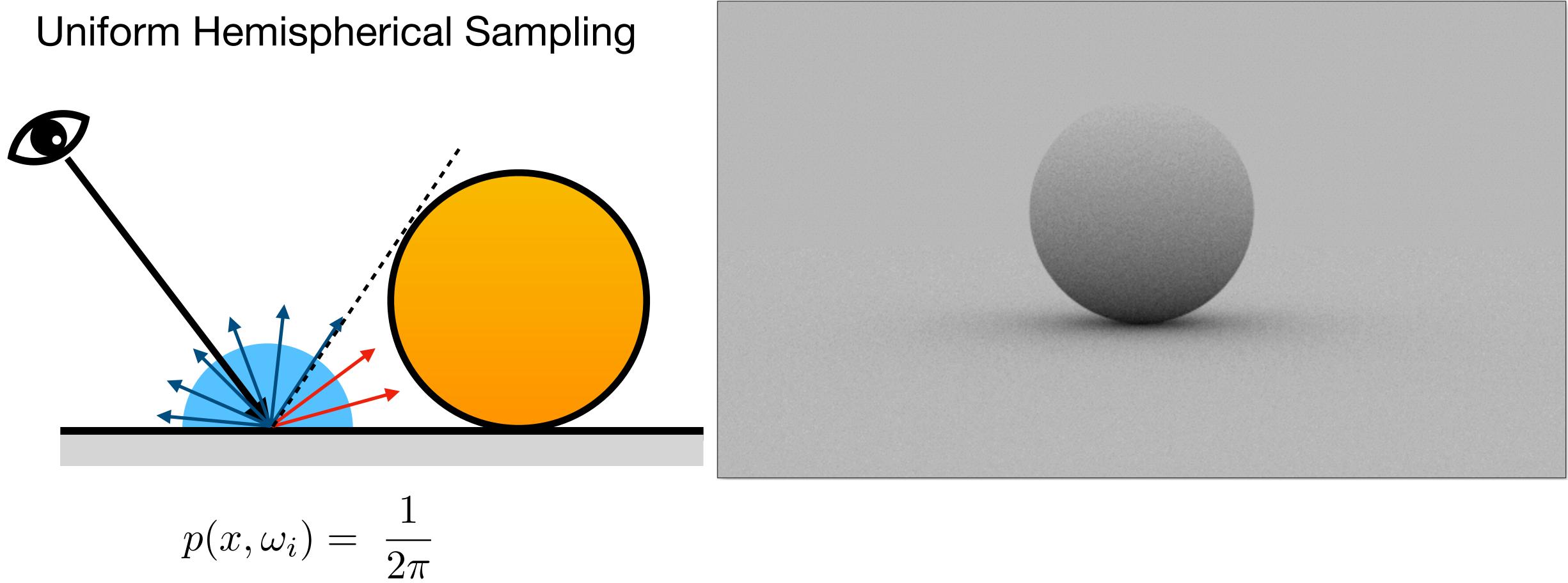
Hemispherical Sampling: Constant PDF



(4 Samples)

Realistic Image Synthesis SS2020

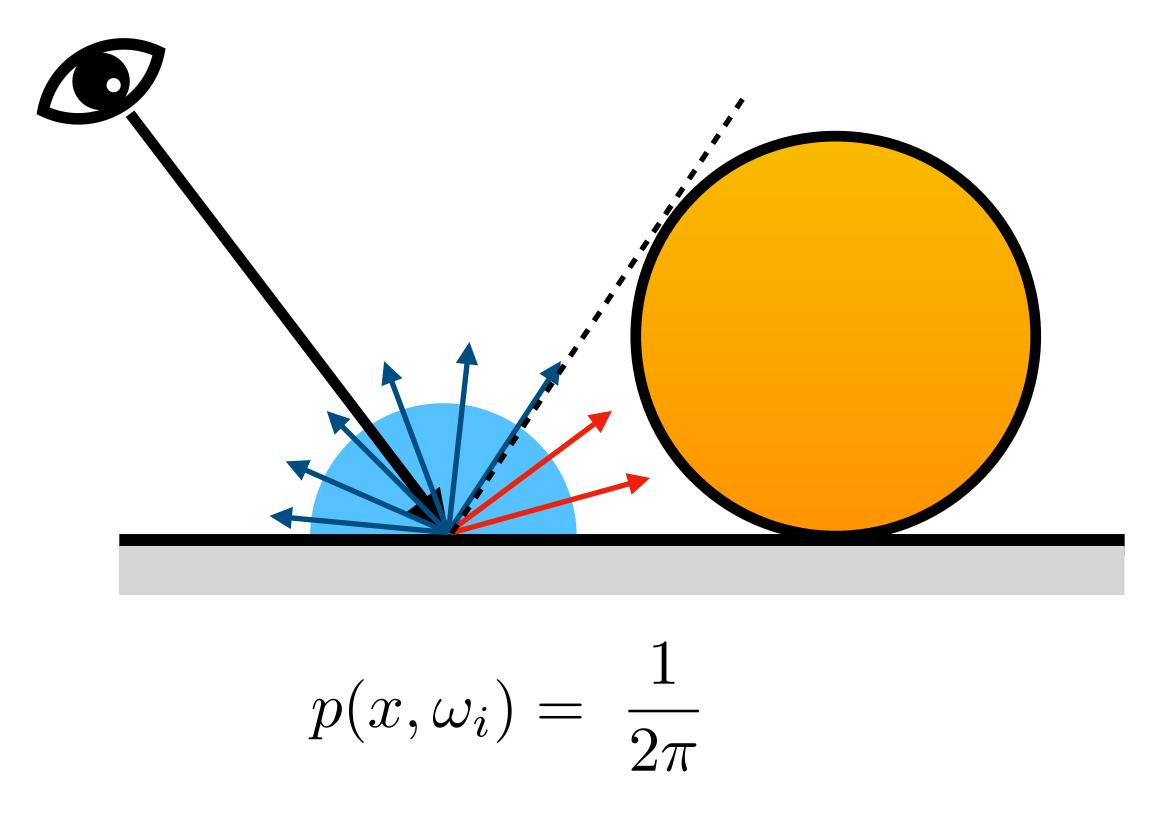
Hemispherical Sampling: Constant PDF



(256 Samples)

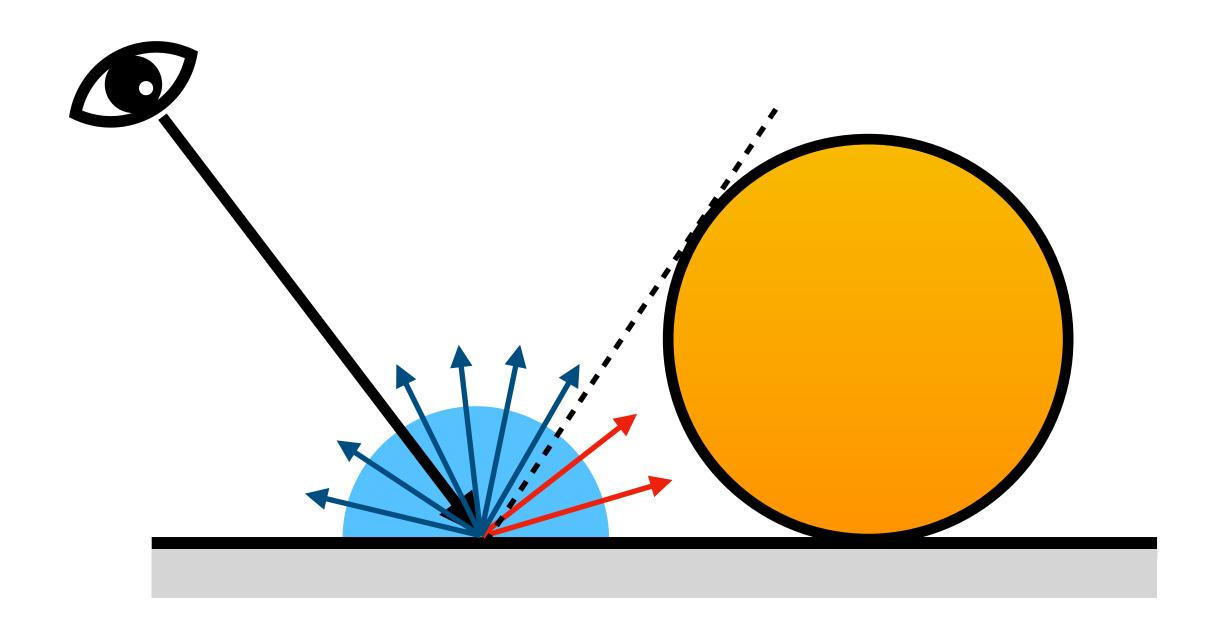
Importance Sampling: Cosine term

Uniform Hemispherical Sampling



Realistic Image Synthesis SS2020

Cosine-weighted Importance Sampling



 $p(x,\omega_i) = \cos\theta_i$

Uniform hemispherical 1 sample/pixel sampling

Cosine-weighted importance sampling

Slide from Wojciech Jarosz

Uniform hemispherical 4 sample/pixel sampling

Cosine-weighted importance sampling

Slide from Wojciech Jarosz

Uniform hemispherical 16 sample/pixel sampling

Cosine-weighted importance sampling

Slide from Wojciech Jarosz

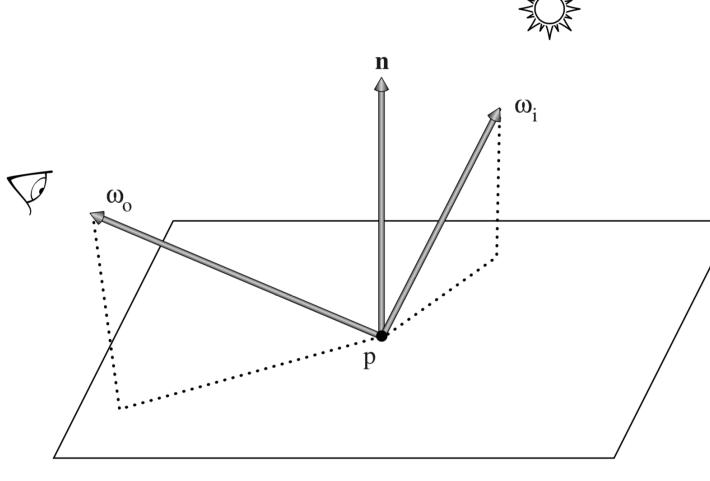
Importance Sampling: Incident Radiance

$$L_o(p,\omega) = \int_{\mathcal{H}^2} f(p,\omega_0,\omega_i) L_i(x,\omega_i) |\cos \theta_i| \cos \theta_i$$

What terms can we importance sample?

- BSDF
- Incident radiance
- cosine term

 $\cos \theta_i | d\omega_i |$



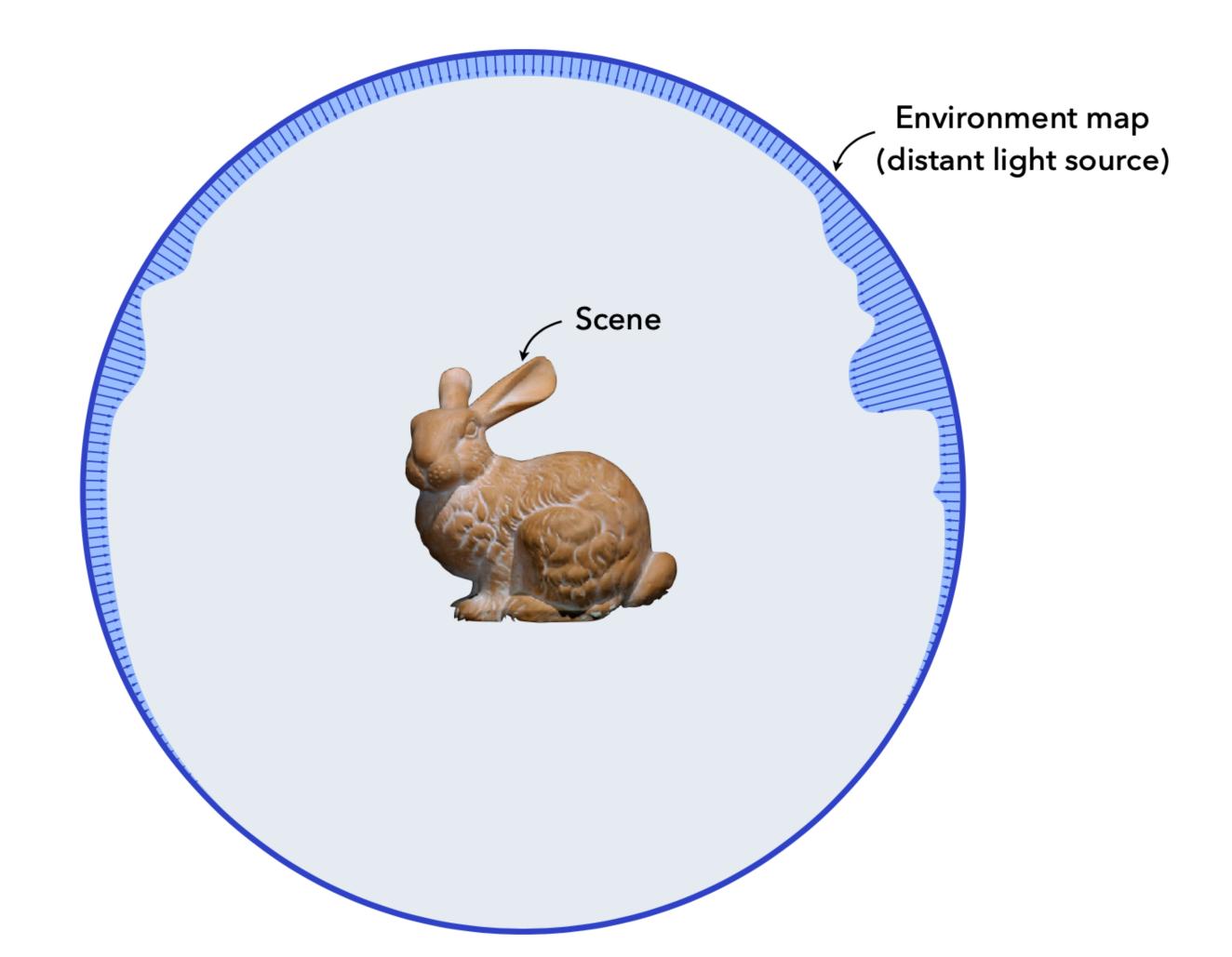
Realistic Image Synthesis SS2020

Example: Environment Lighting

Example: Environment Lighting

Realistic Image Synthesis SS2020

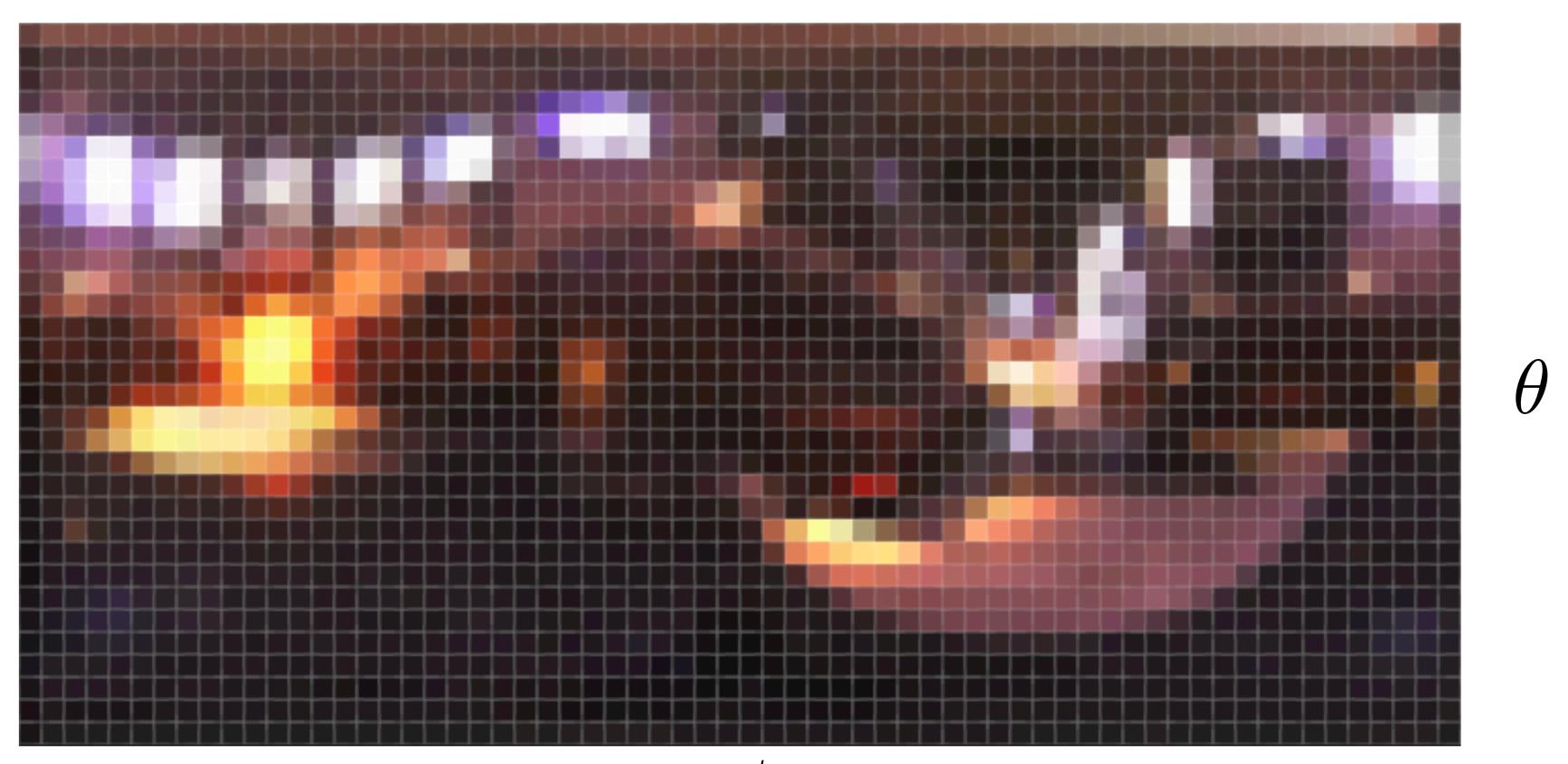
Environment Lighting



Realistic Image Synthesis SS2020

Slide after Wojciech Jarosz

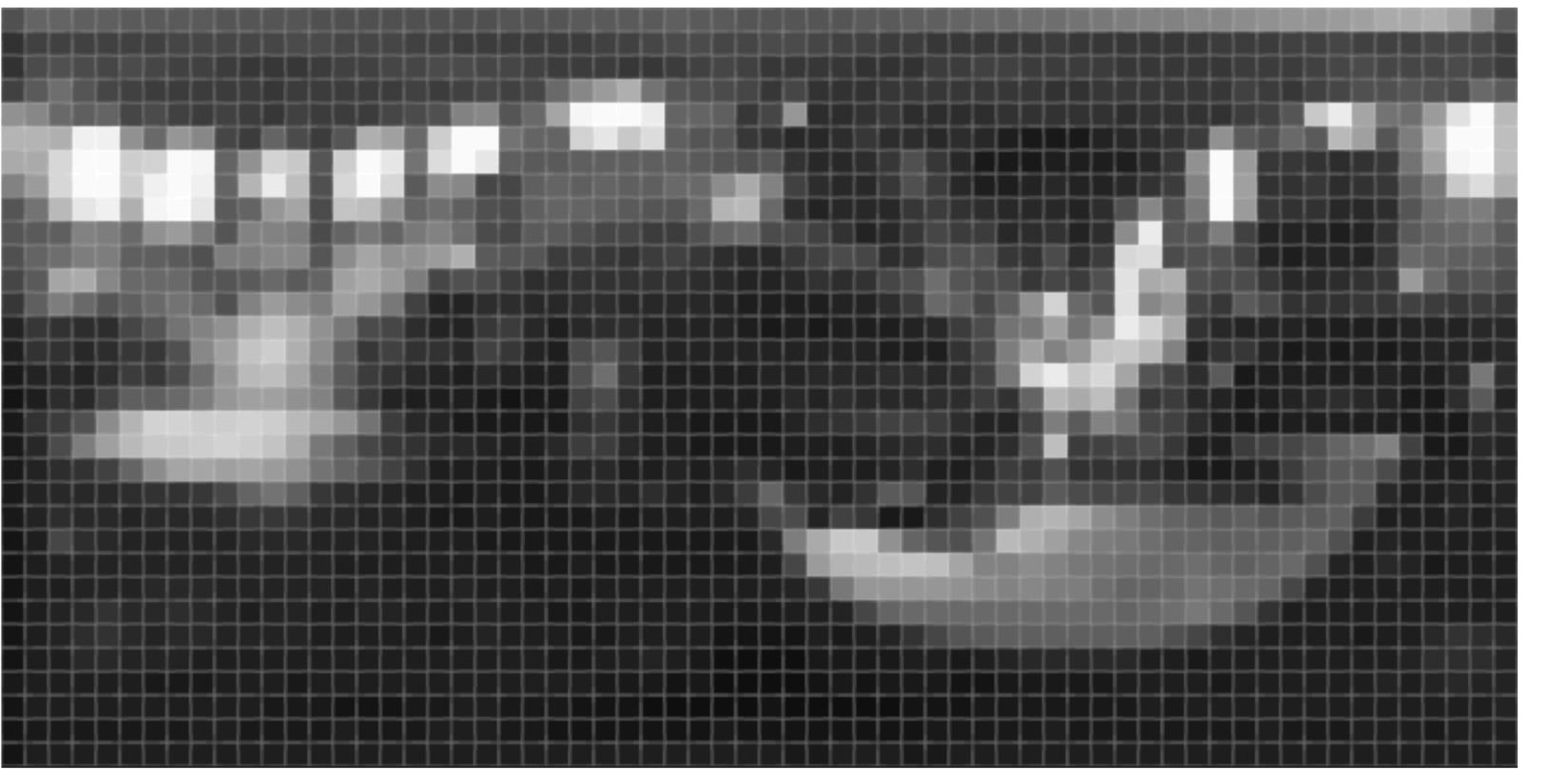
Importance function



Realistic Image Synthesis SS2020

Slide after Wojciech Jarosz

Importance function



Scalar version e.g., luminance channel only

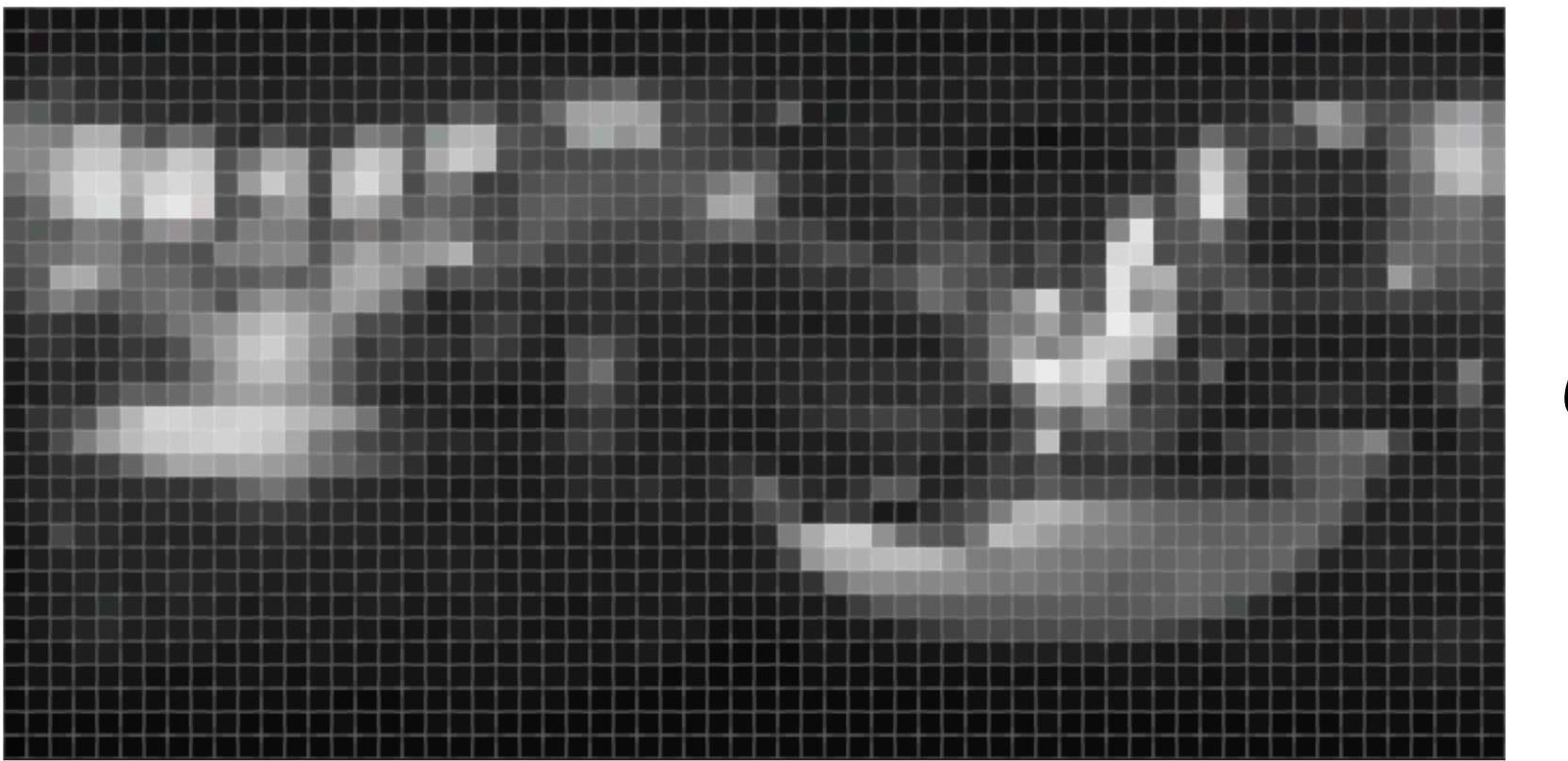
 θ

Slide after Wojciech Jarosz

Realistic Image Synthesis SS2020

Importance function: Scalar function

Multiplication with $\sin \theta$



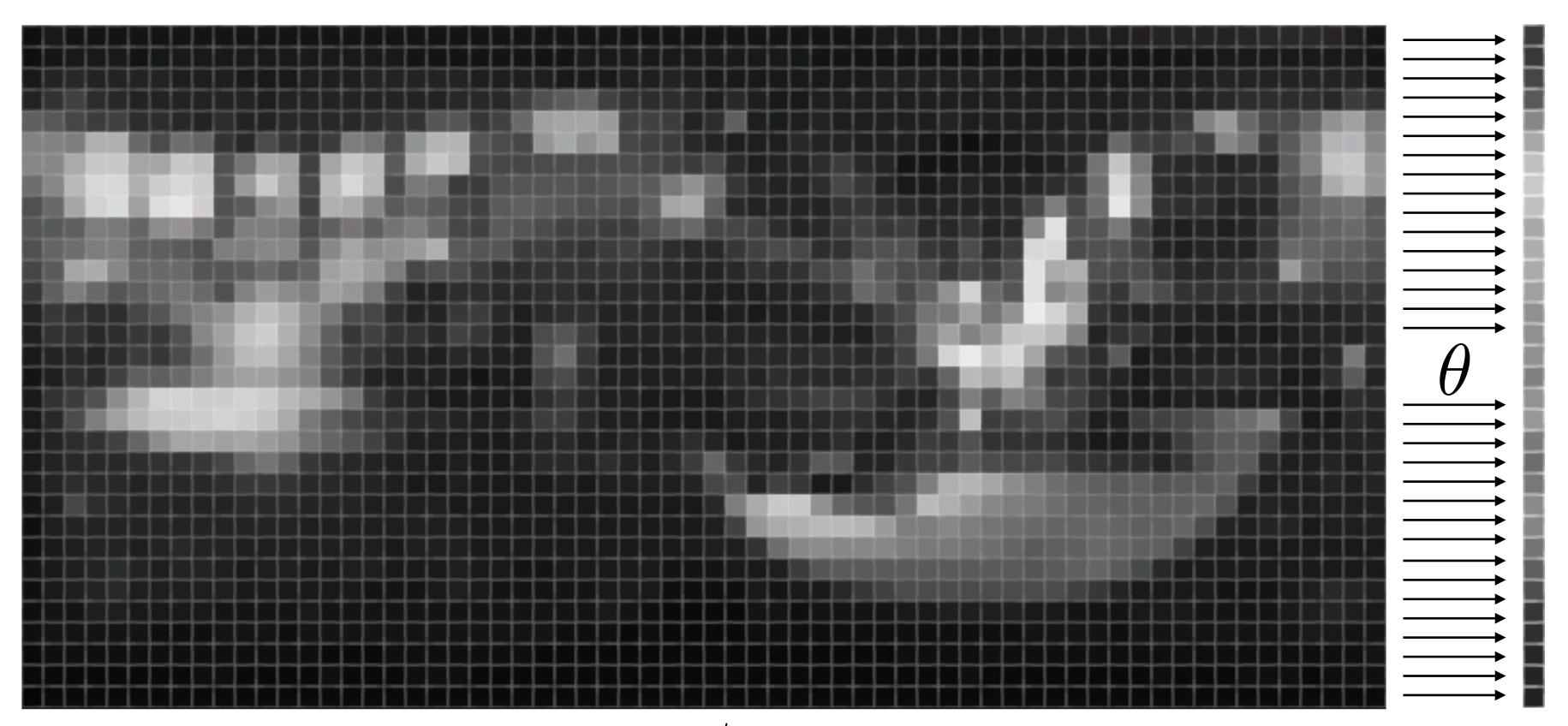
 θ

(\mathcal{V})

Slide after Wojciech Jarosz

Realistic Image Synthesis SS2020

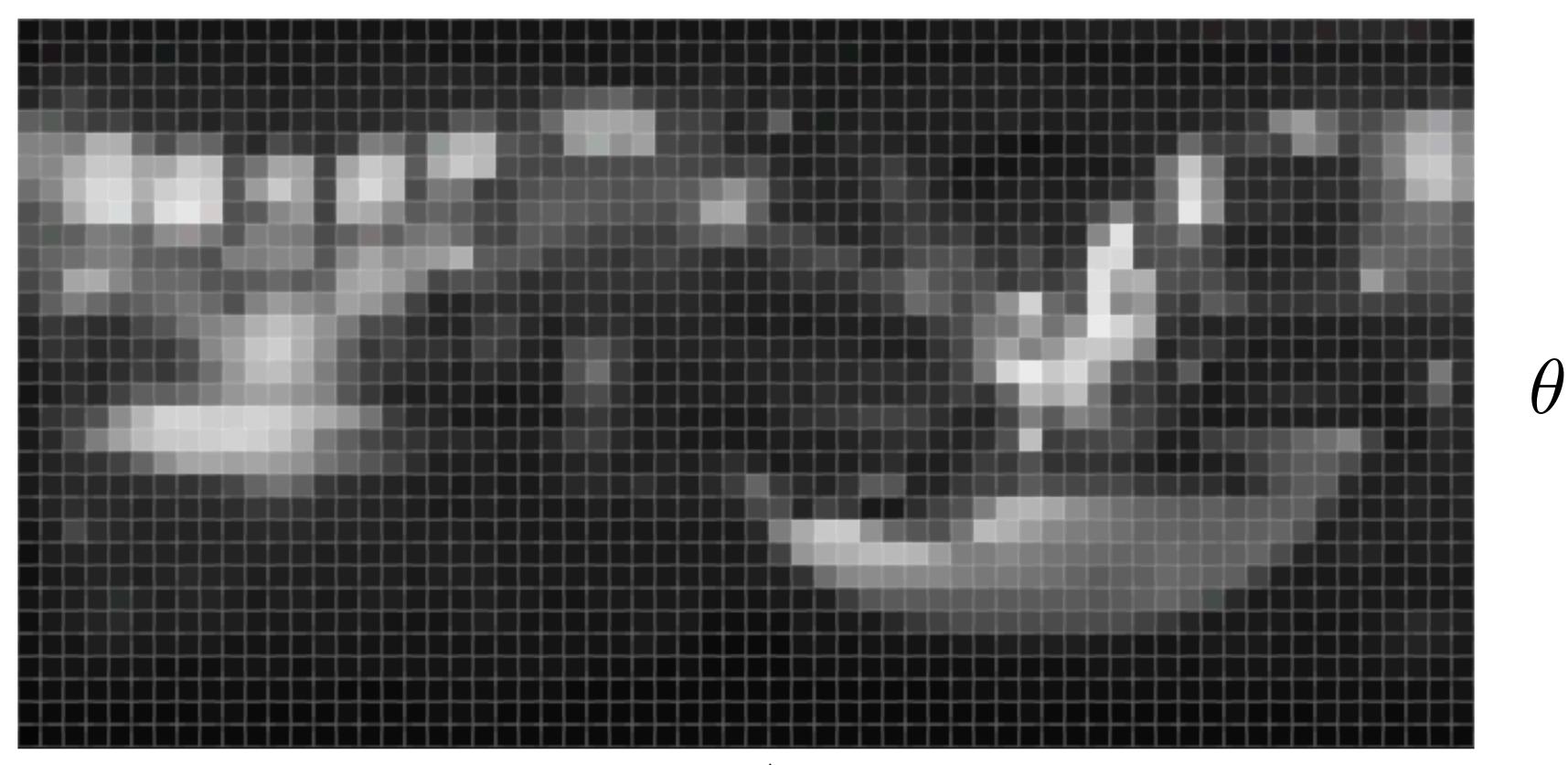
Importance function: Marginalization



Slide after Wojciech Jarosz

Importance function: Conditional PDFs

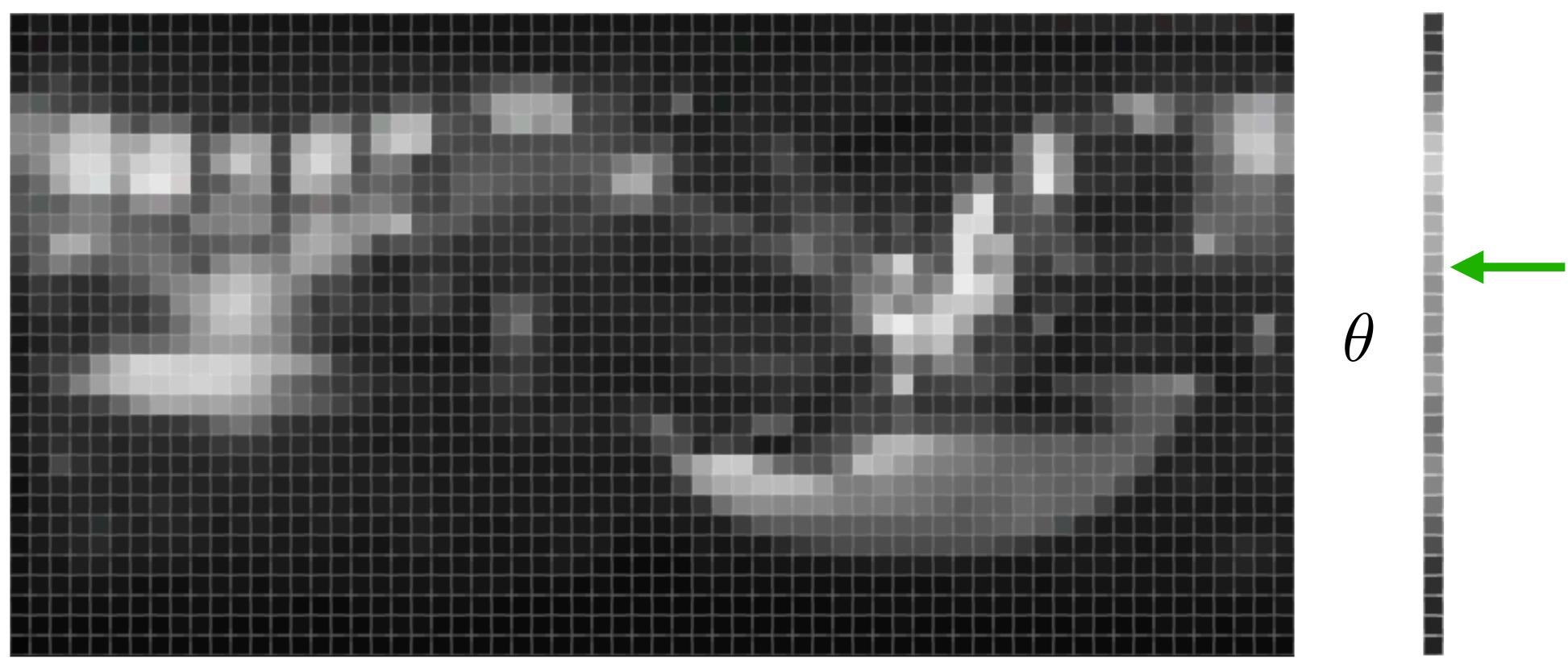
Once normalized, each row can serve as the conditional PDF



Slide after Wojciech Jarosz



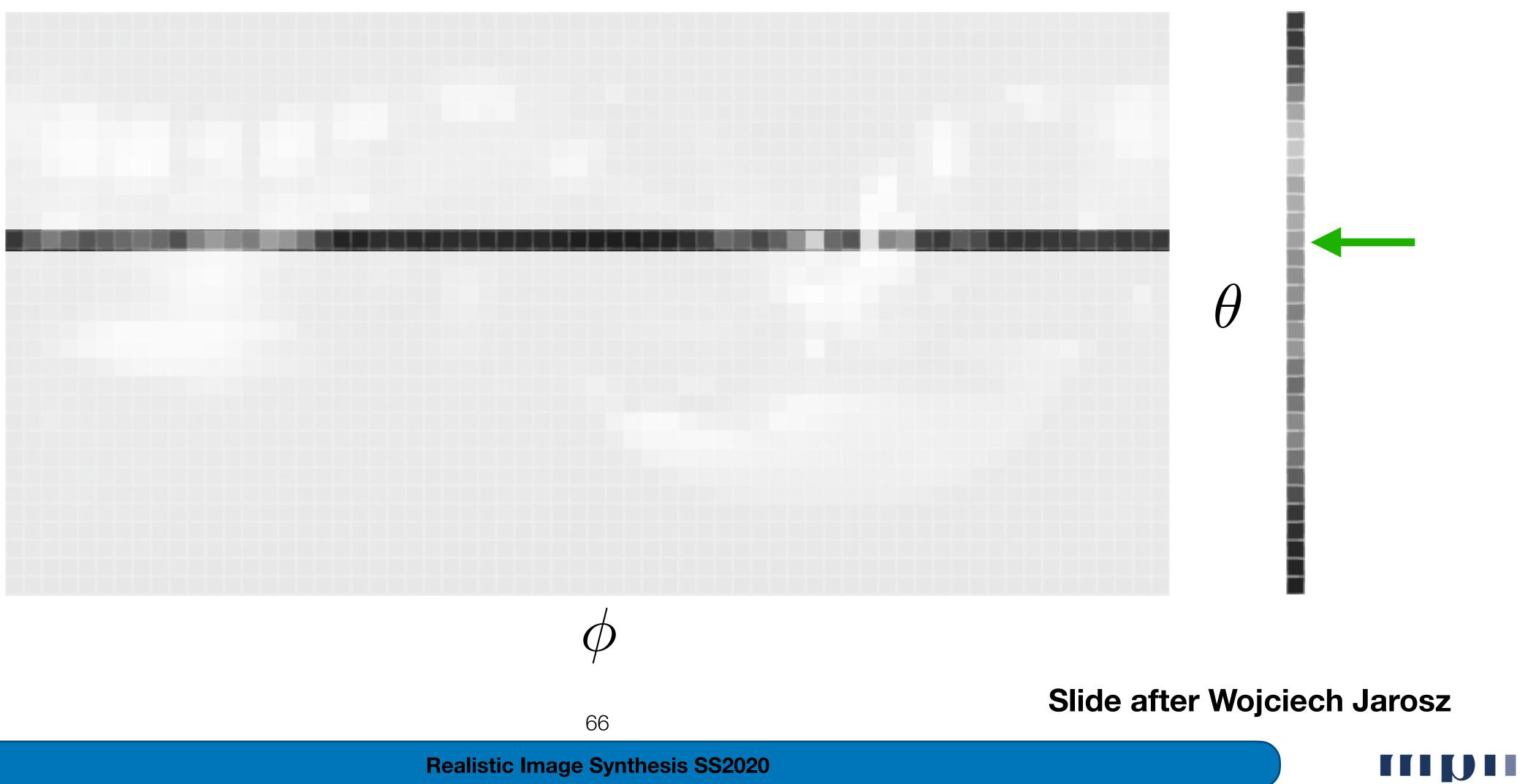
Importance function: Sampling



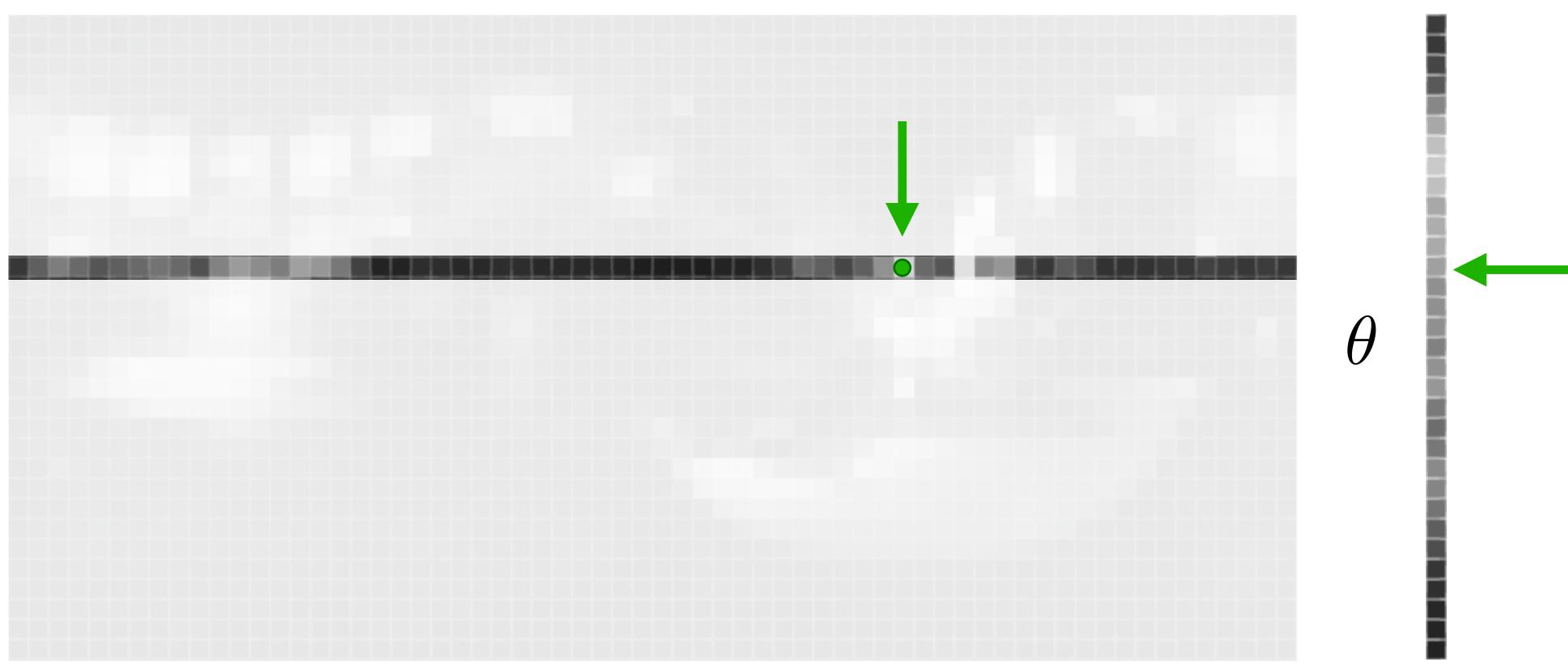
Slide after Wojciech Jarosz

Realistic Image Synthesis SS2020

Importance function: Sampling



Importance function: Sampling



$$\phi$$

67

Slide after Wojciech Jarosz

Realistic Image Synthesis SS2020

Importance Sampling

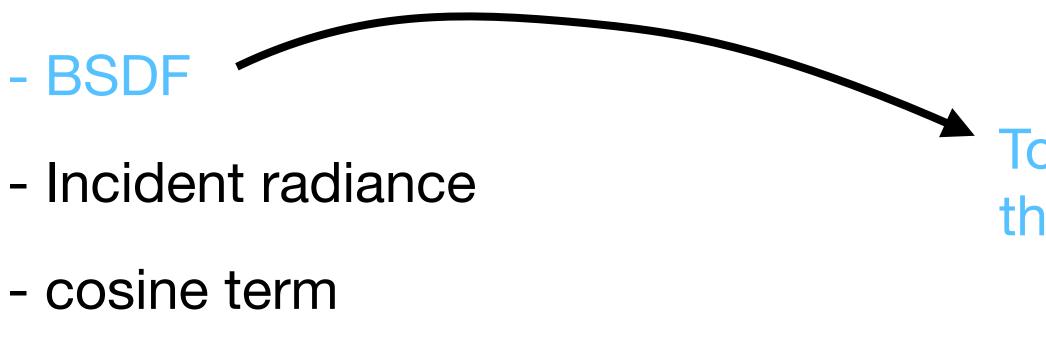
For more details, see PBRTv3: 13.2 and 13.6.7

Realistic Image Synthesis SS2020

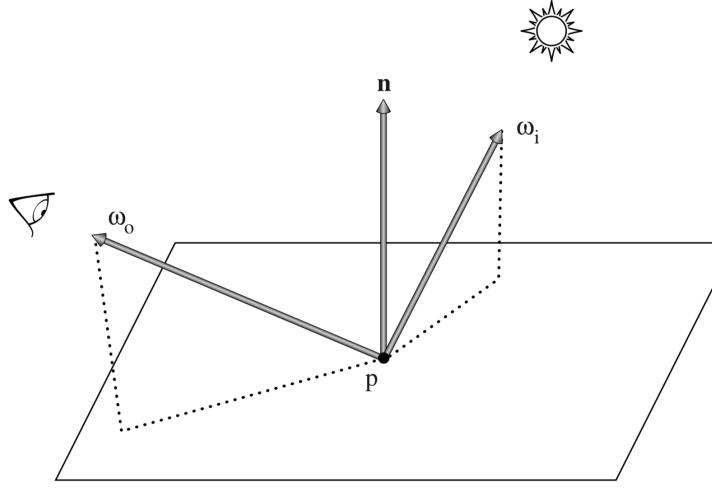
Importance Sampling

$$L_o(p,\omega) = \int_{\mathcal{H}^2} f(p,\omega_0,\omega_i) L_i(x,\omega_i) |\operatorname{co}_{\mathcal{H}^2} f(p,\omega_0,\omega_i) |\operatorname{co}_{\mathcal{H}^2}$$

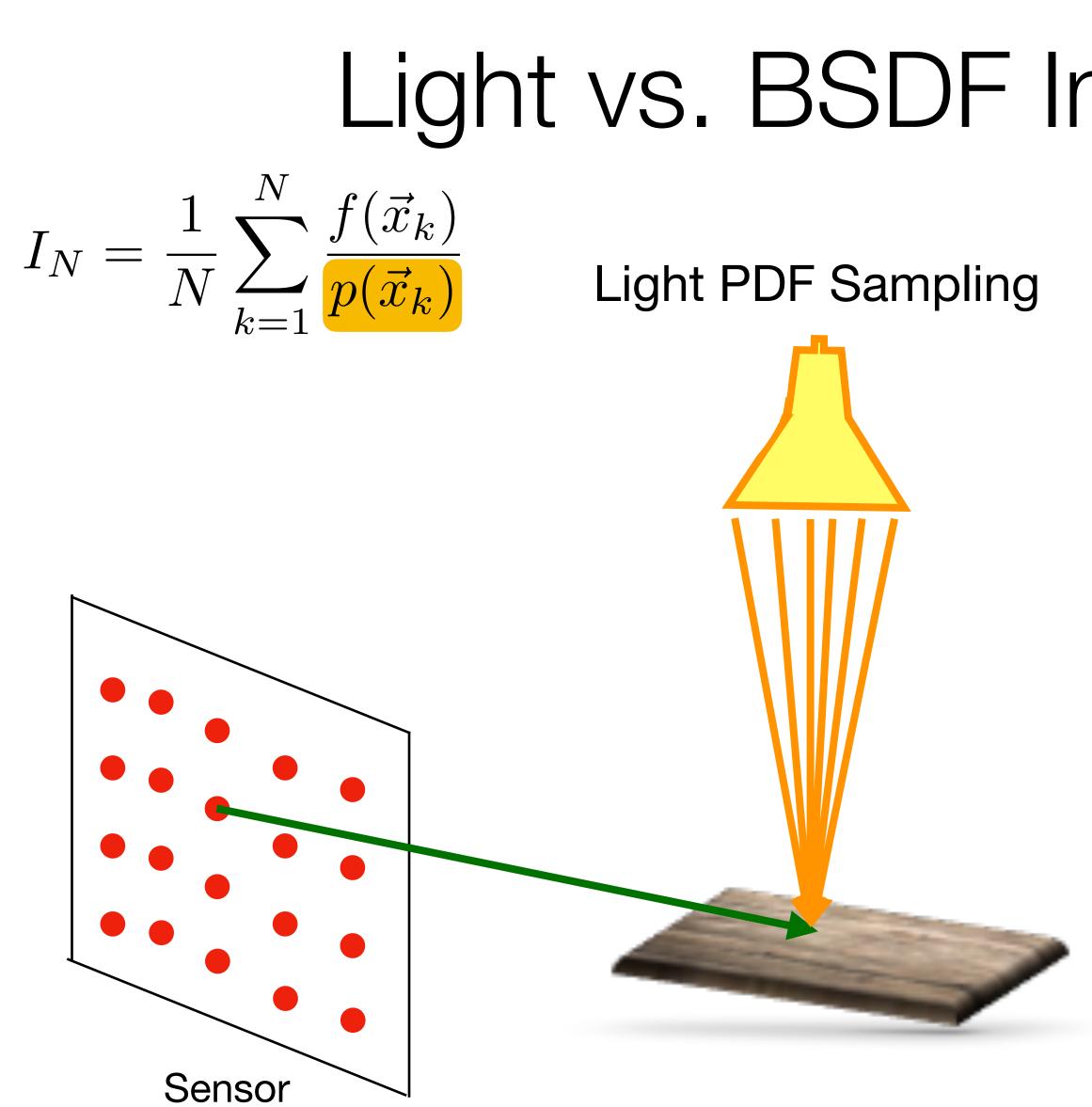
What terms can we importance sample?



 $\cos \theta_i | d\omega_i |$



To handle this, we will introduce Microfacet BSDF theory in the later part of the lecture.

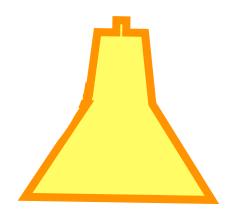


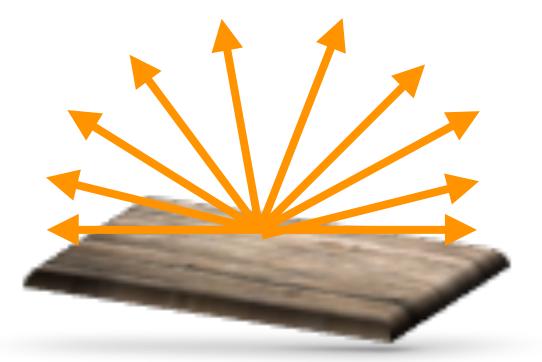
Light IS

Realistic Image Synthesis SS2020

Light vs. BSDF Importance Sampling

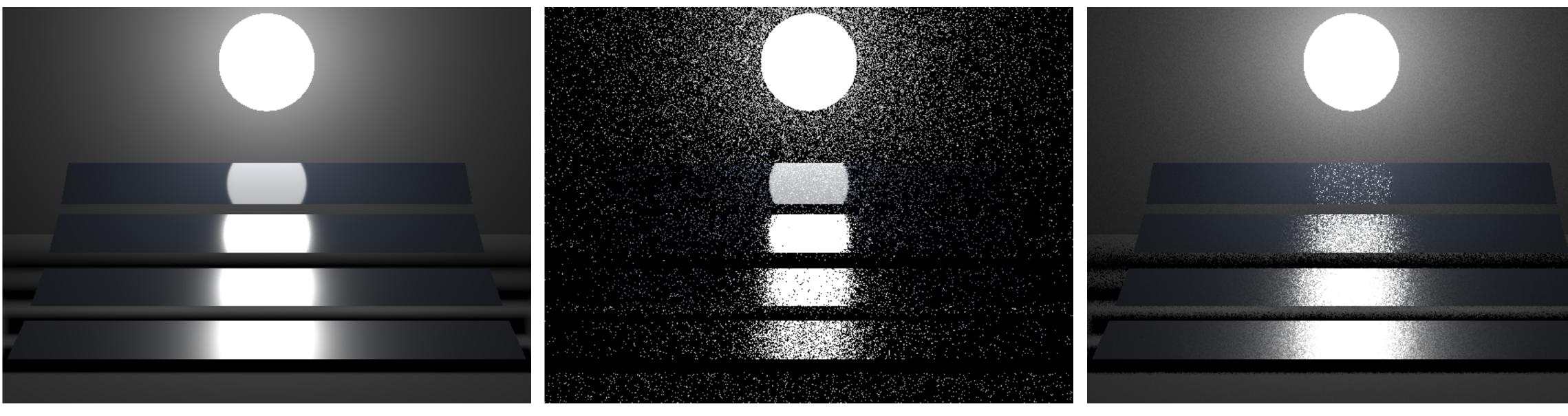
BSDF PDF Sampling





BSDF IS

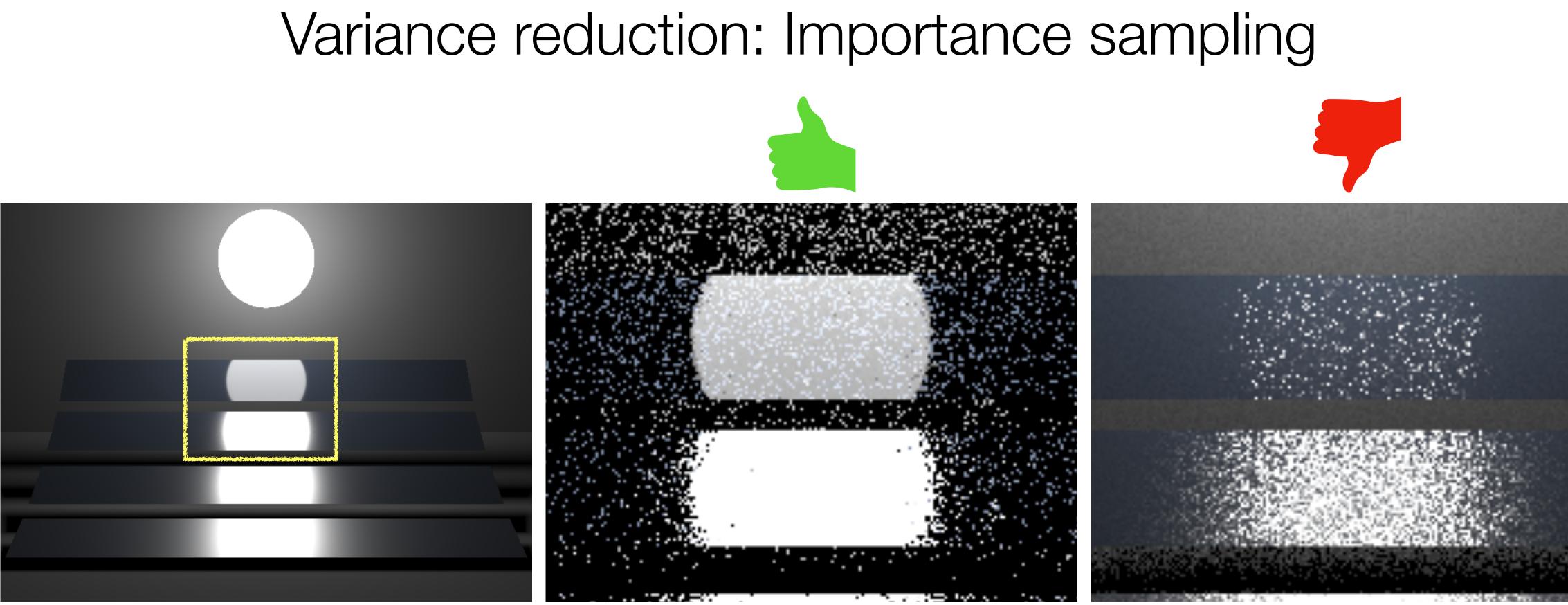
Variance reduction: Importance sampling



Reference image N = 1024 spp

BSDF importance sampling N = 4 spp

Light importance sampling N = 4 spp



Reference image N = 1024 spp

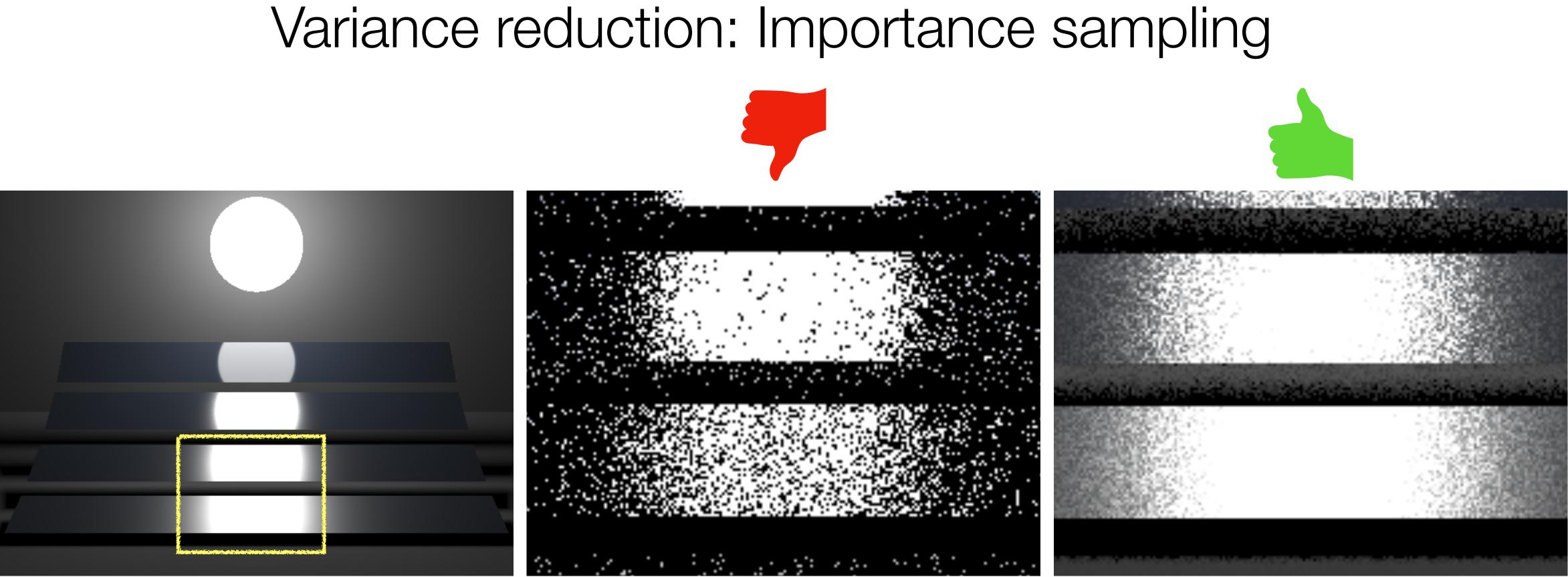
BSDF importance sampling

Light importance sampling

N = 4 spp

N = 4 spp

BSDF sampling is better in some regions



Reference image N = 1024 spp

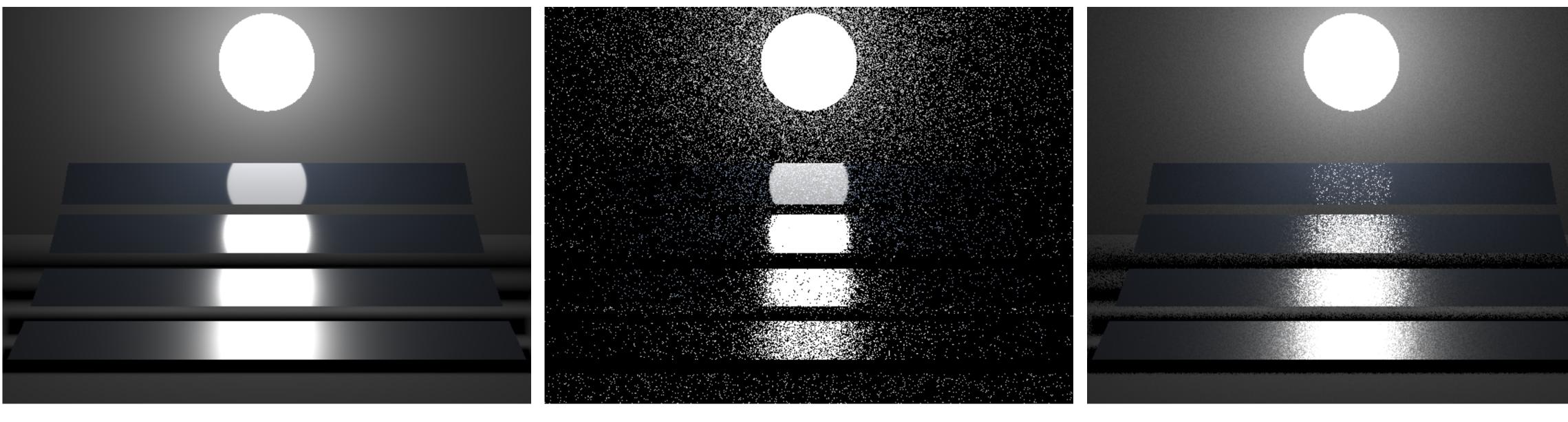
BSDF importance sampling N = 4 spp

Light importance sampling

N = 4 spp

Light sampling is better in other regions

Variance reduction: Importance sampling



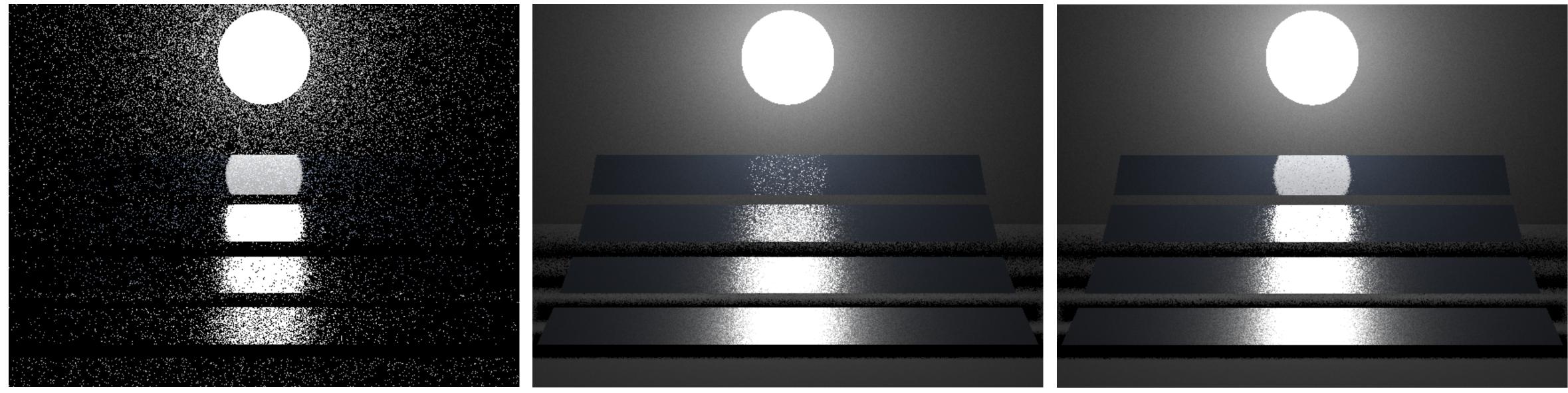
Reference image

Can we combine the benefits of different PDFs ? Yes!

BSDF importance sampling

Light importance sampling

Variance reduction: Importance sampling



BSDF importance sampling

Light importance sampling

Can we combine the benefits of different PDFs ? Yes!

Multiple Importance Sampling

Variance reduction: Multiple Importance sampling

Multiple Importance Sampling

 $I_N = rac{1}{r}$

 $p(x) \propto ???$

$$\mathbf{I}_N = \frac{1}{n_f} \sum_{i=1}^{n_f} \frac{f(X_i)g(X_i)w_f(X_i)}{p_f(X_i)} + \frac{1}{n_g} \sum_{j=1}^{n_g} \frac{f(Y_j)g(Y_j)w_g(Y_j)}{p_g(Y_j)}$$

$$\frac{1}{N} \sum_{i=1}^{N} \frac{f(x)g(x)}{p(x)}$$

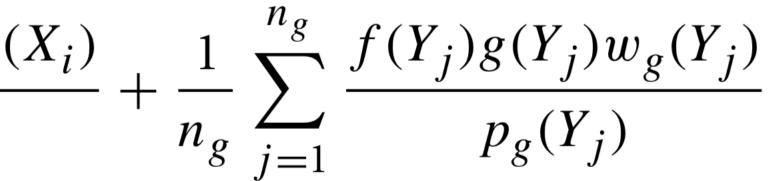
Variance reduction: Multiple Importance sampling

Multiple Importance Sampling

$$\mathbf{I}_{N} = \frac{1}{n_{f}} \sum_{i=1}^{n_{f}} \frac{f(X_{i})g(X_{i})w_{f}(X_{i})}{p_{f}(X_{i})}$$

Balance heuristic: $w_s(x) =$

Power heuristic: $w_s(x) =$



$$= \frac{n_s p_s(x)}{\sum_i n_i p_i(x)}$$

$$= \frac{(n_s p_s(x))^{\beta}}{\sum_i (n_i p_i(x))^{\beta}}$$

$$\beta = 2$$

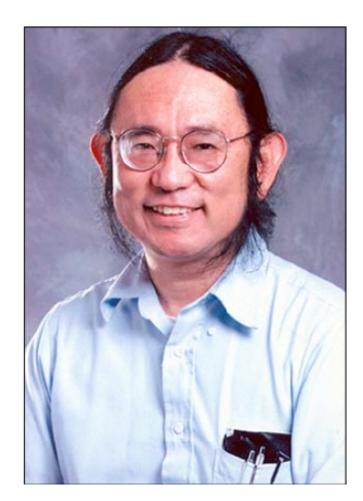
 $L_o(x,\omega_o) = L_e(x,\omega_o) + L_r(x,\omega_o)$

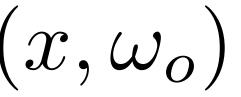
Outgoing

emitted

reflected

James Kajiya, The Rendering Equation, SIGGRAPH 1986





 $L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\mathcal{H}^2} f_r(x,\omega_0,\omega_i) L_i(x,\omega_i) |\cos\theta_i| d\omega_i$

Outgoing

emitted

Realistic Image Synthesis SS2020

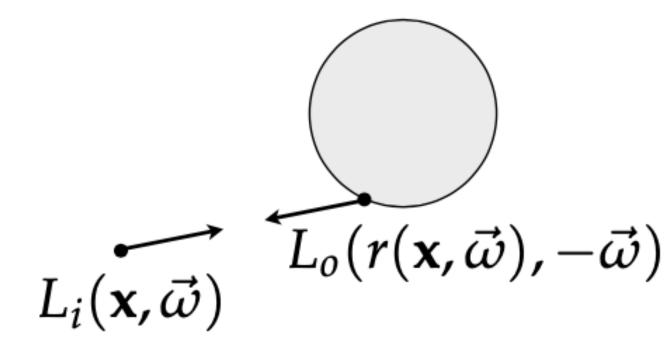
reflected

80

Rendering Equation: Light Transport

In vaccum, radiance is constant along rays

We can relate out-going radiance to the incoming radiance

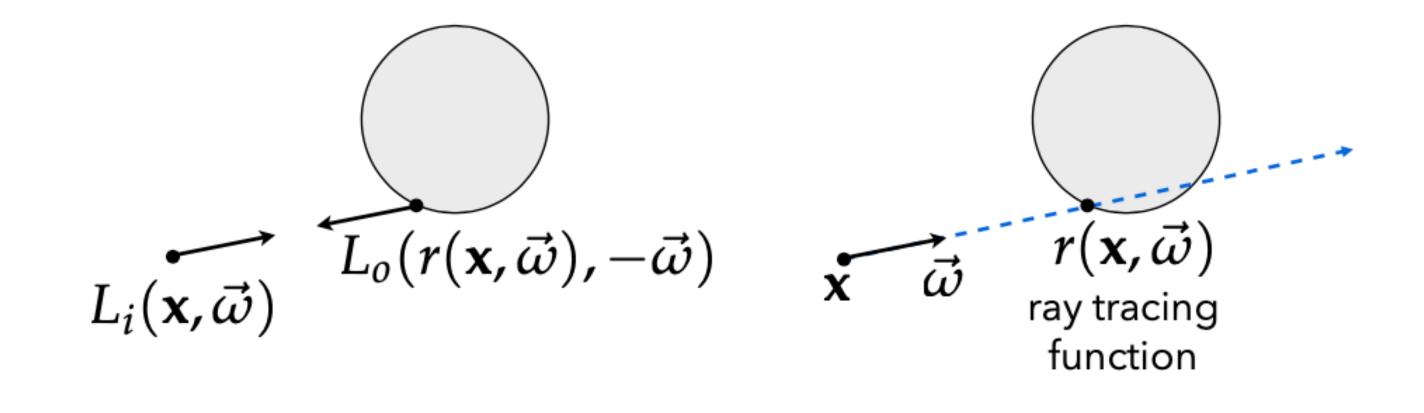


81

Rendering Equation: Light Transport

In vaccum, radiance is constant along rays

We can relate out-going radiance to the incoming radiance



 $L_o(x,\omega) = L_e(x,\omega) + \int_{\mathcal{H}^2} f(p,\omega',\omega) L_i(x,\omega) |\cos\theta'| d\omega'$

Realistic Image Synthesis SS2020

$$L(x,\omega) = L_e(x,\omega) + \int_{\mathcal{H}^2} f(x,\omega) dx$$

Only outgoing radiance on both sides

- we drop the "o" subscript

- Becomes Fredholm equation of the second kind (recursive)

ray tracing function ray tray tracing functing function ray tracing function ray tracing fu

Realistic Image Synthesis SS2020

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

Realistic Image Synthesis SS2020

85

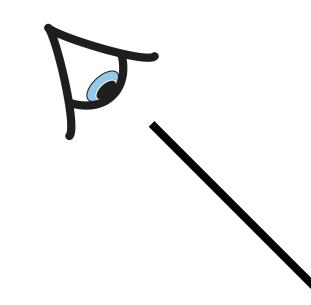
Rendering Equation $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

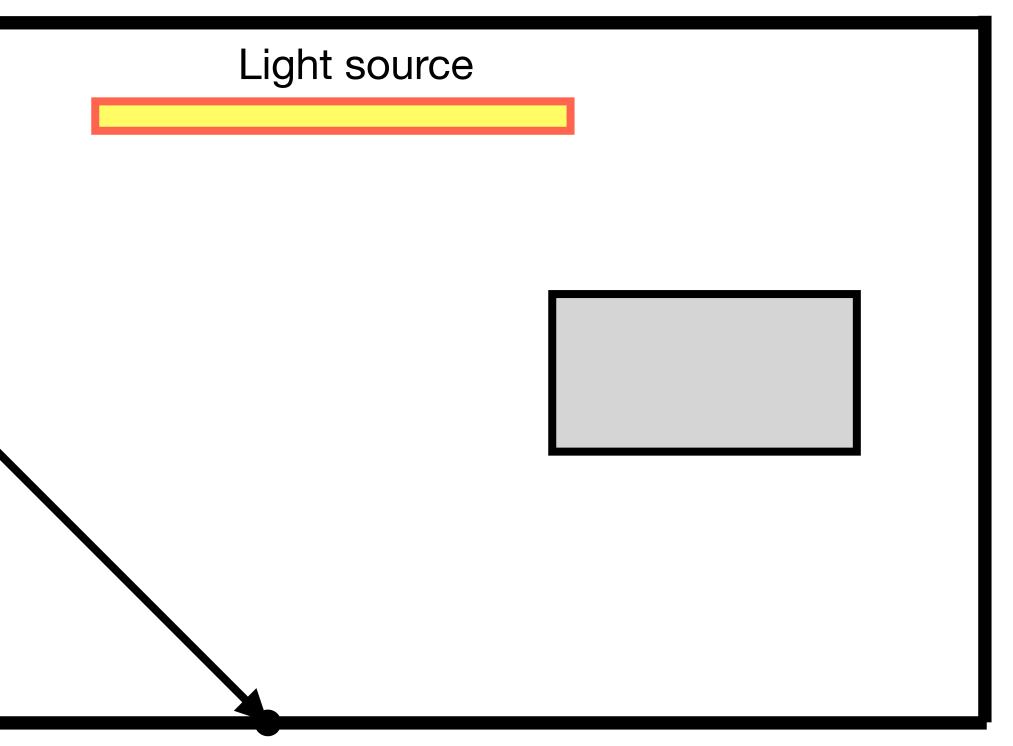
Realistic Image Synthesis SS2020

Light source

86

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$



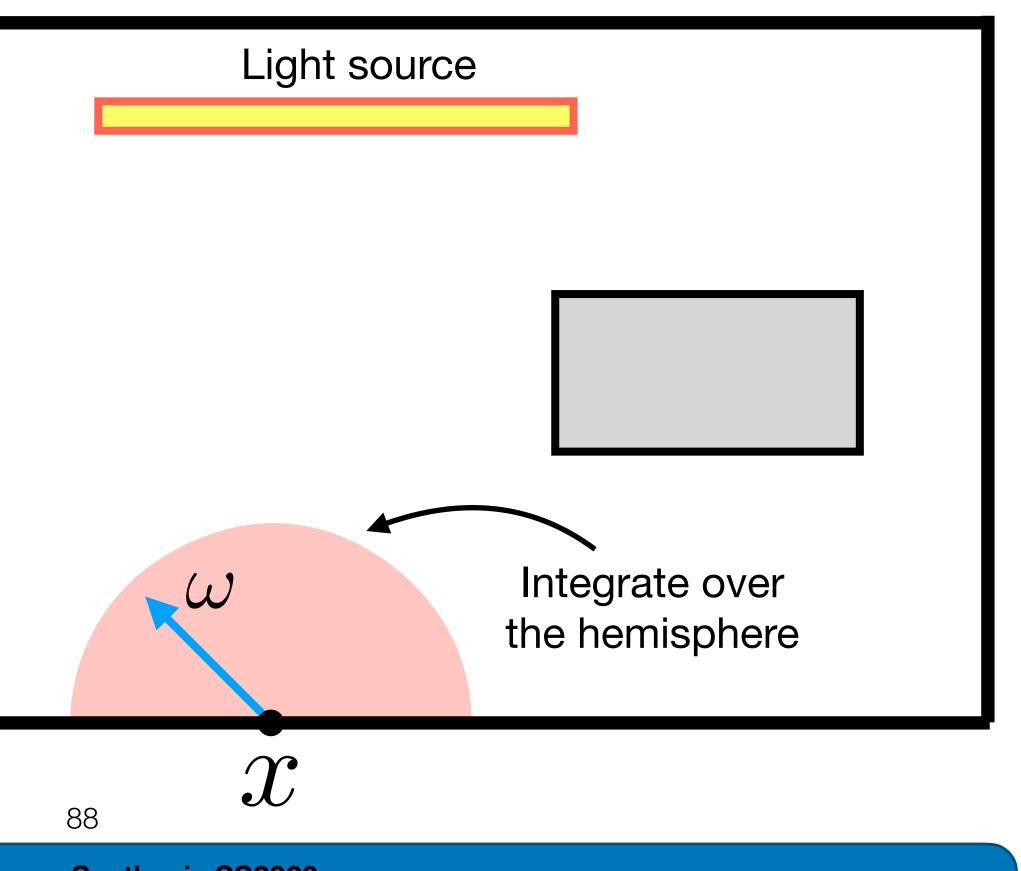


87

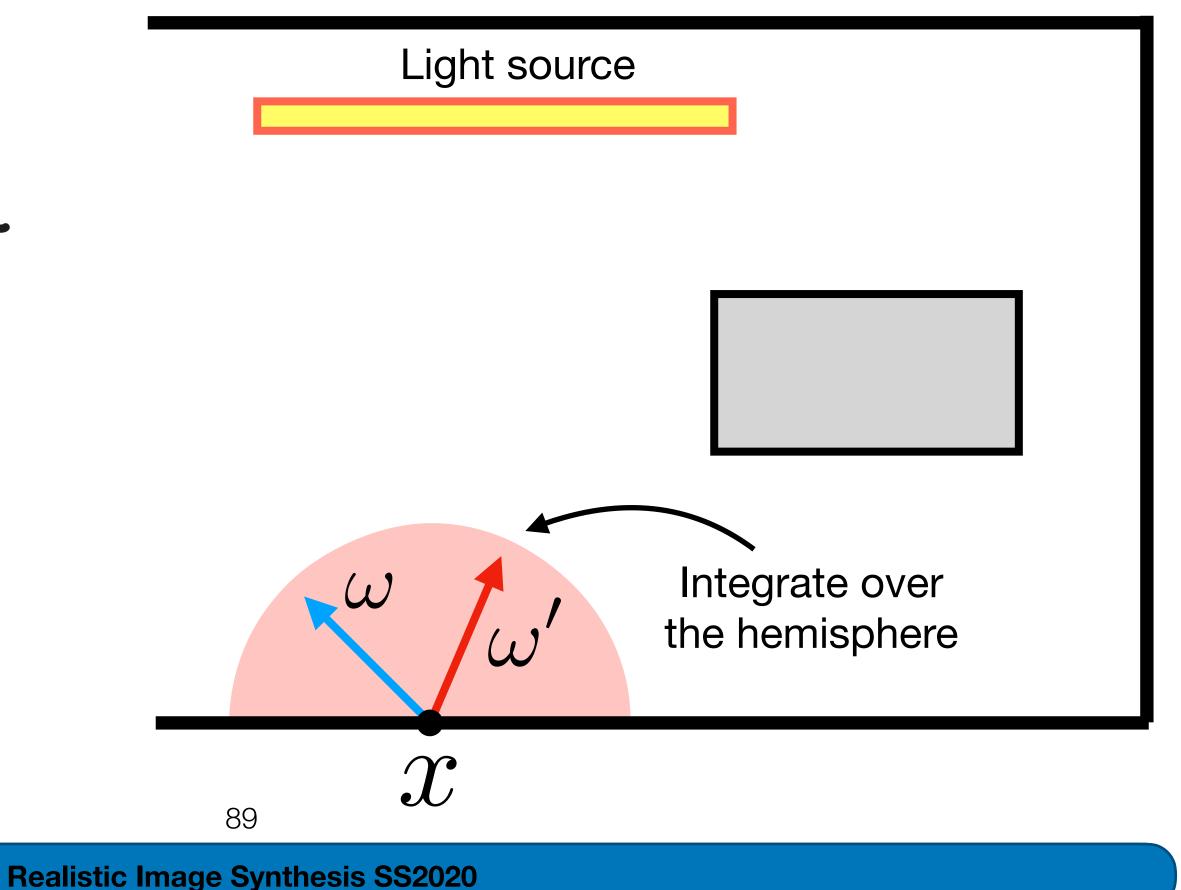
Realistic Image Synthesis SS2020

 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

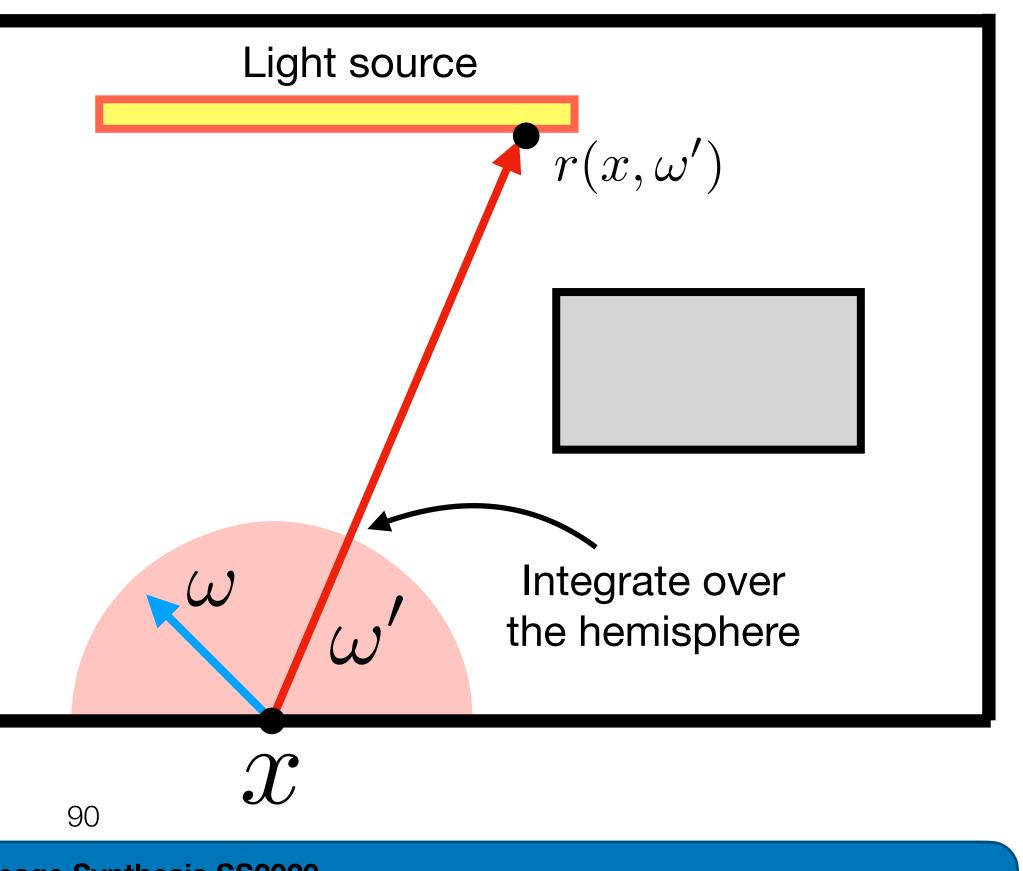
Realistic Image Synthesis SS2020



 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

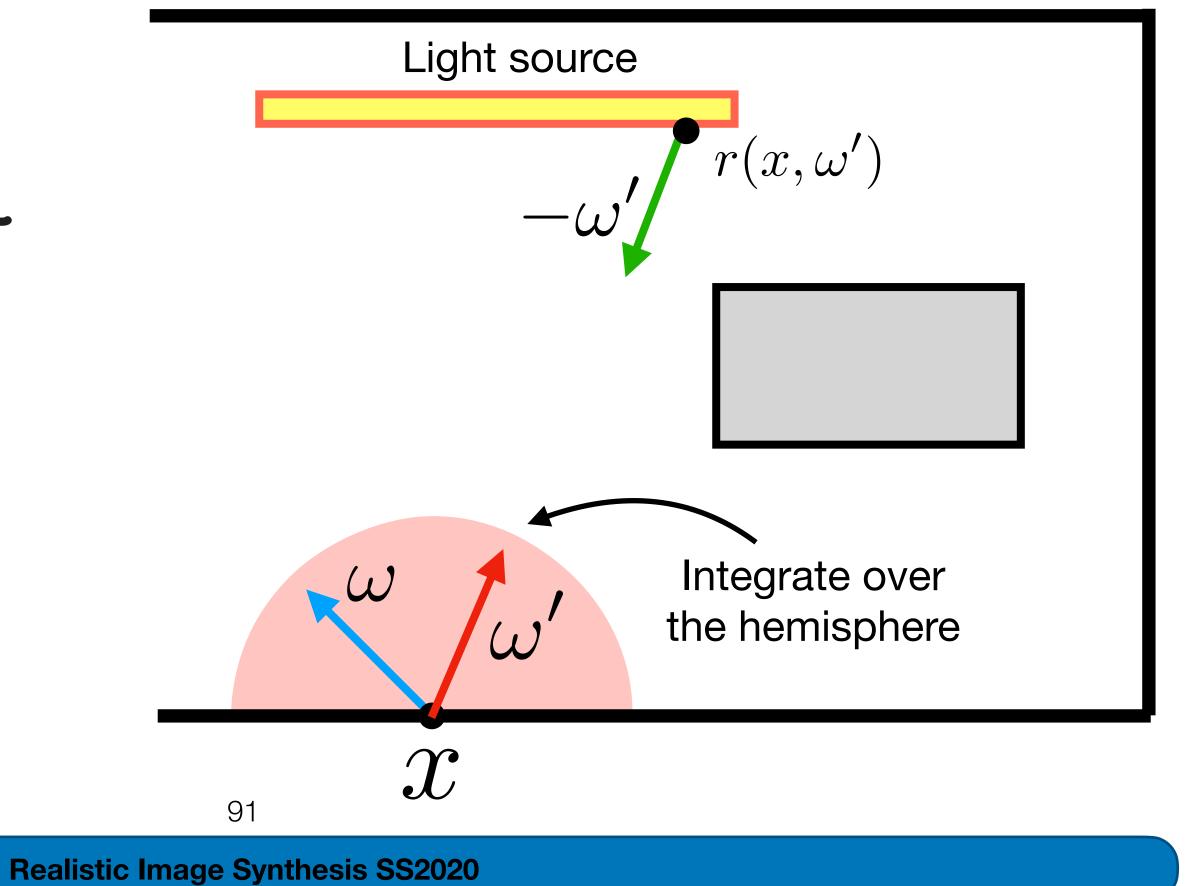


 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$



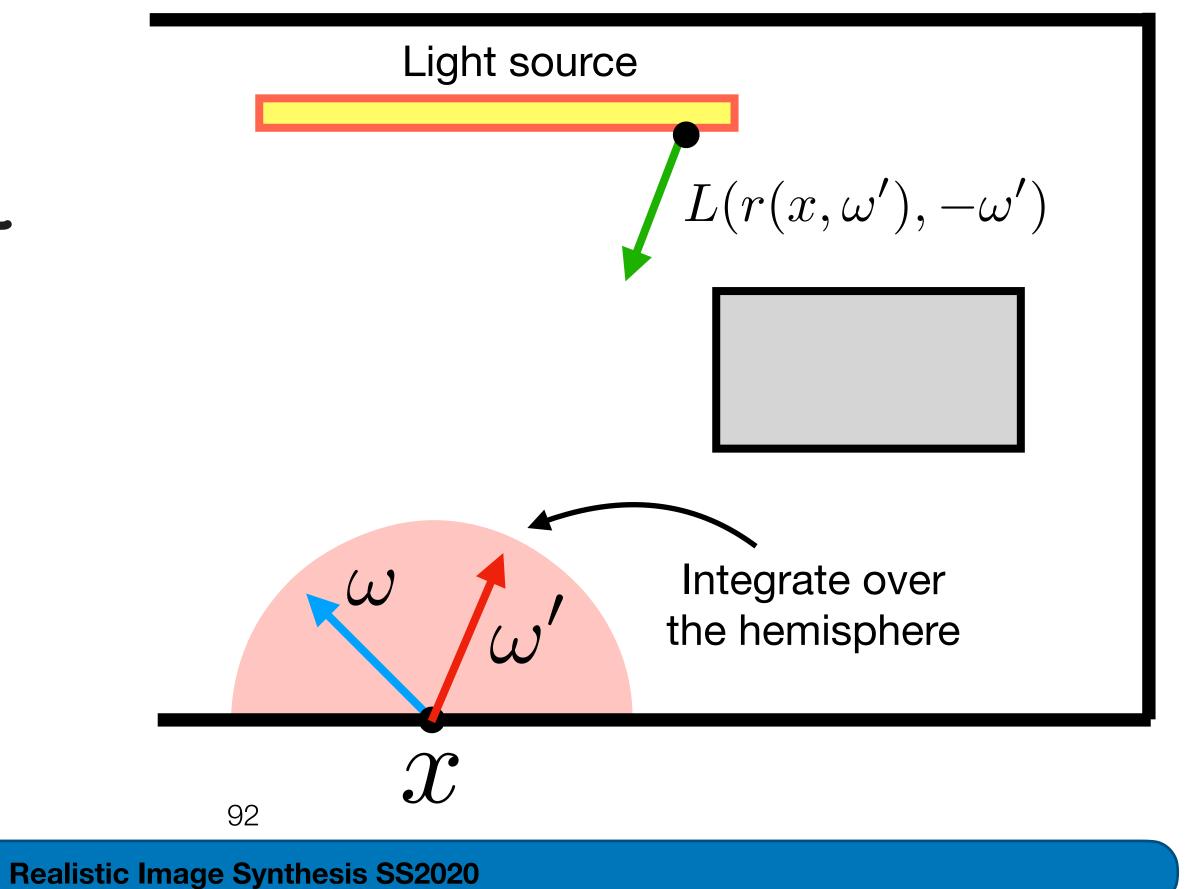
 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta' | d\vec{\omega}'$$



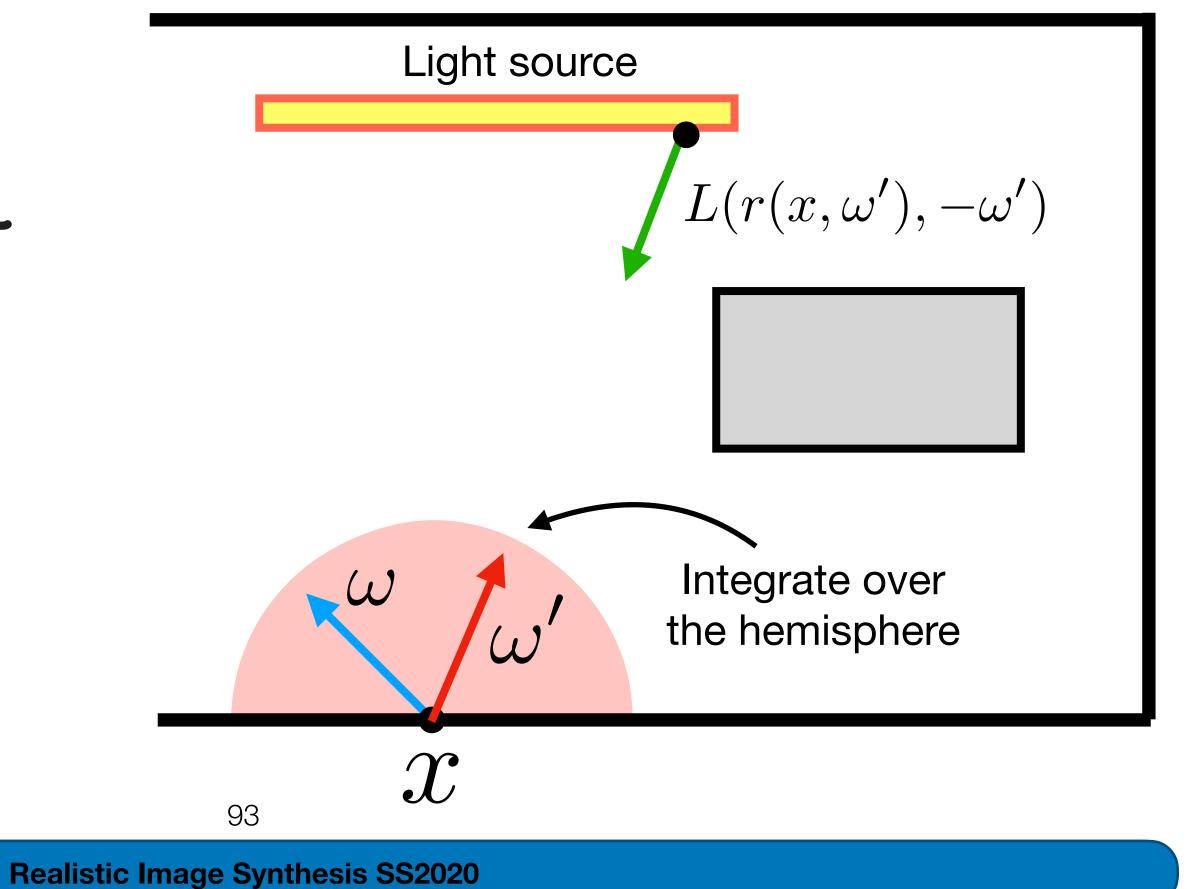
 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta'| d\vec{\omega}'$$



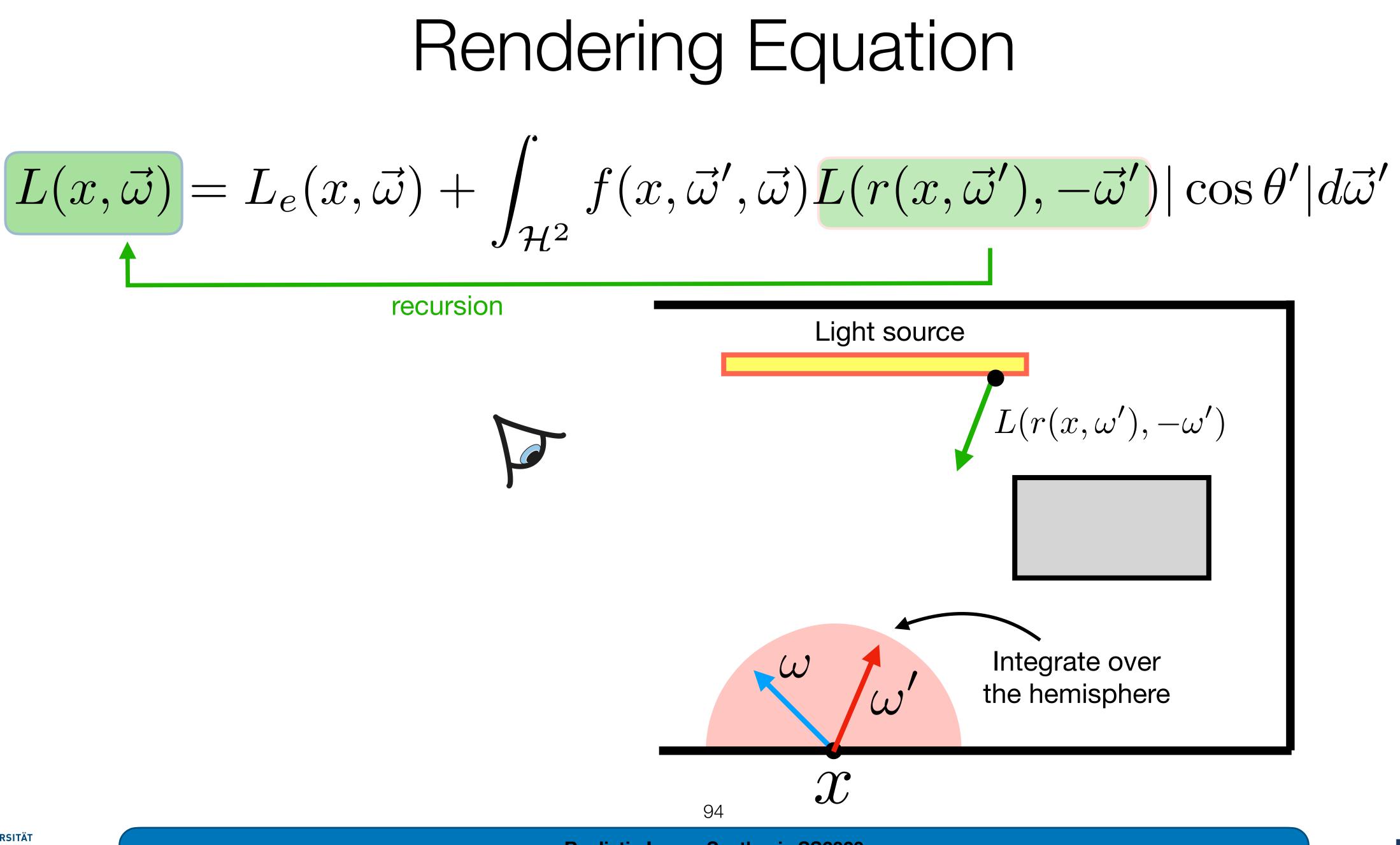
 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta'| d\vec{\omega}'$$



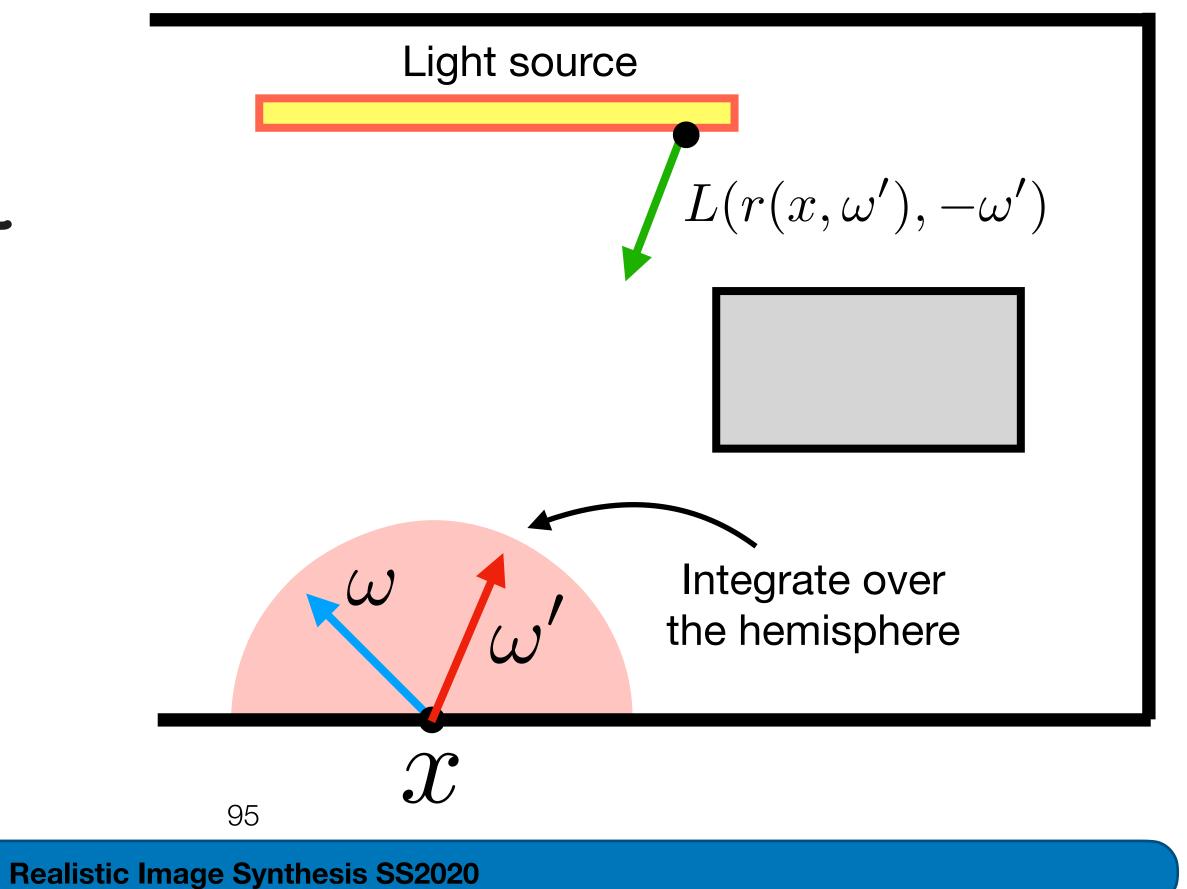
recursion

Realistic Image Synthesis SS2020



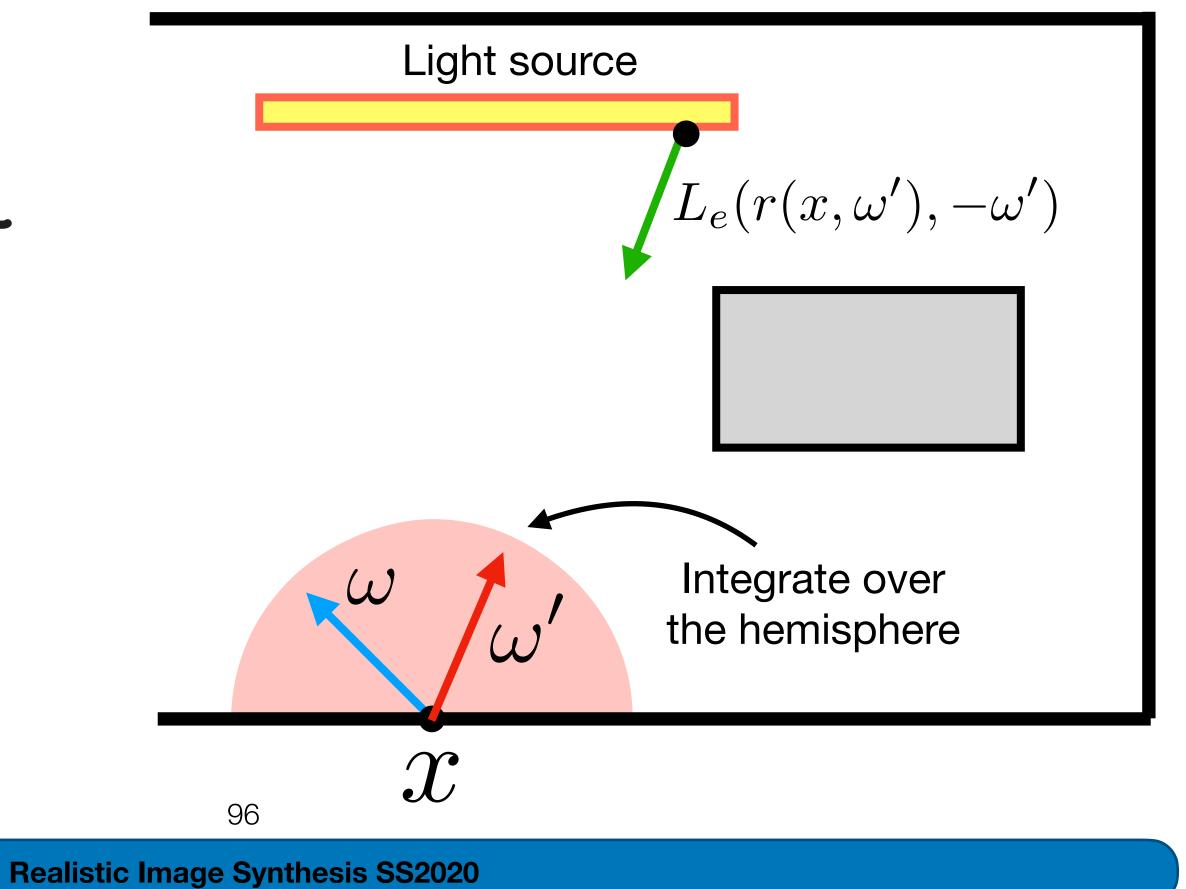
 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta'| d\vec{\omega}'$$

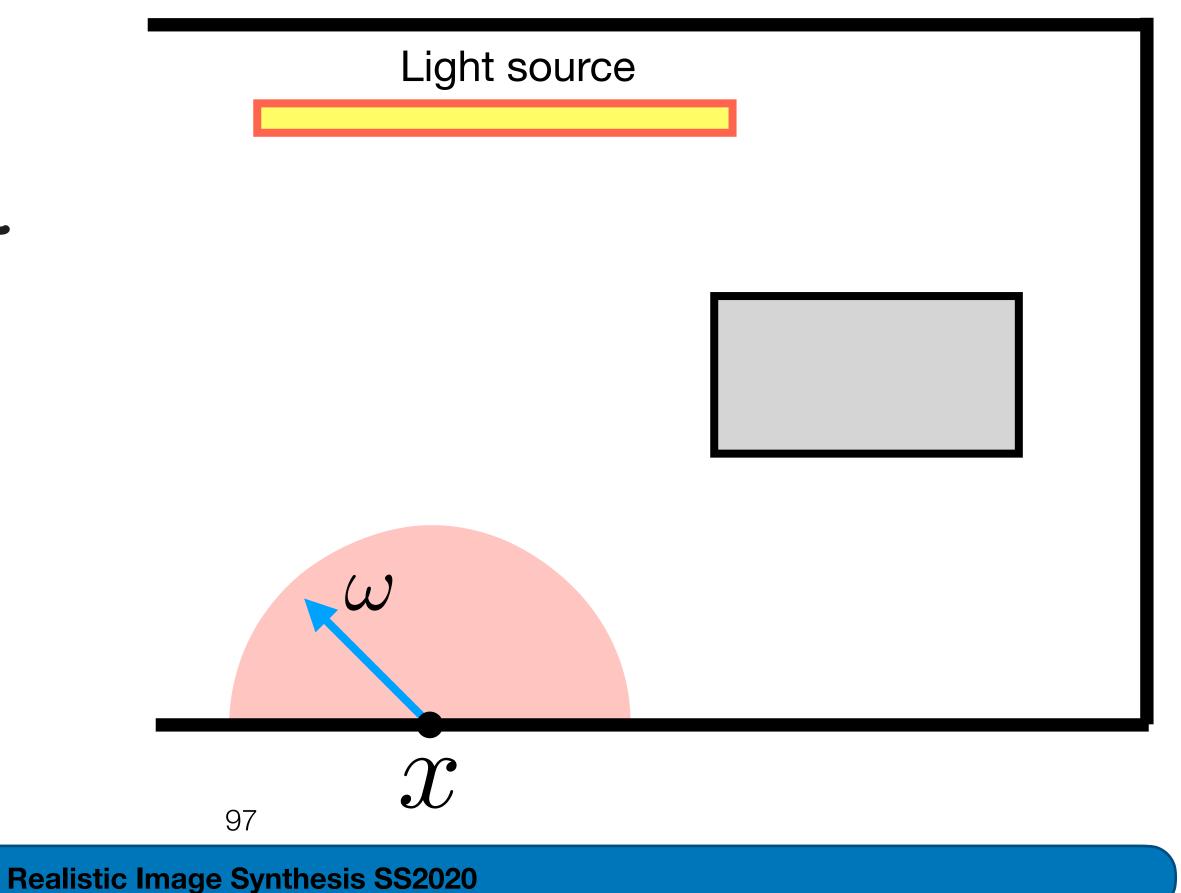


 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

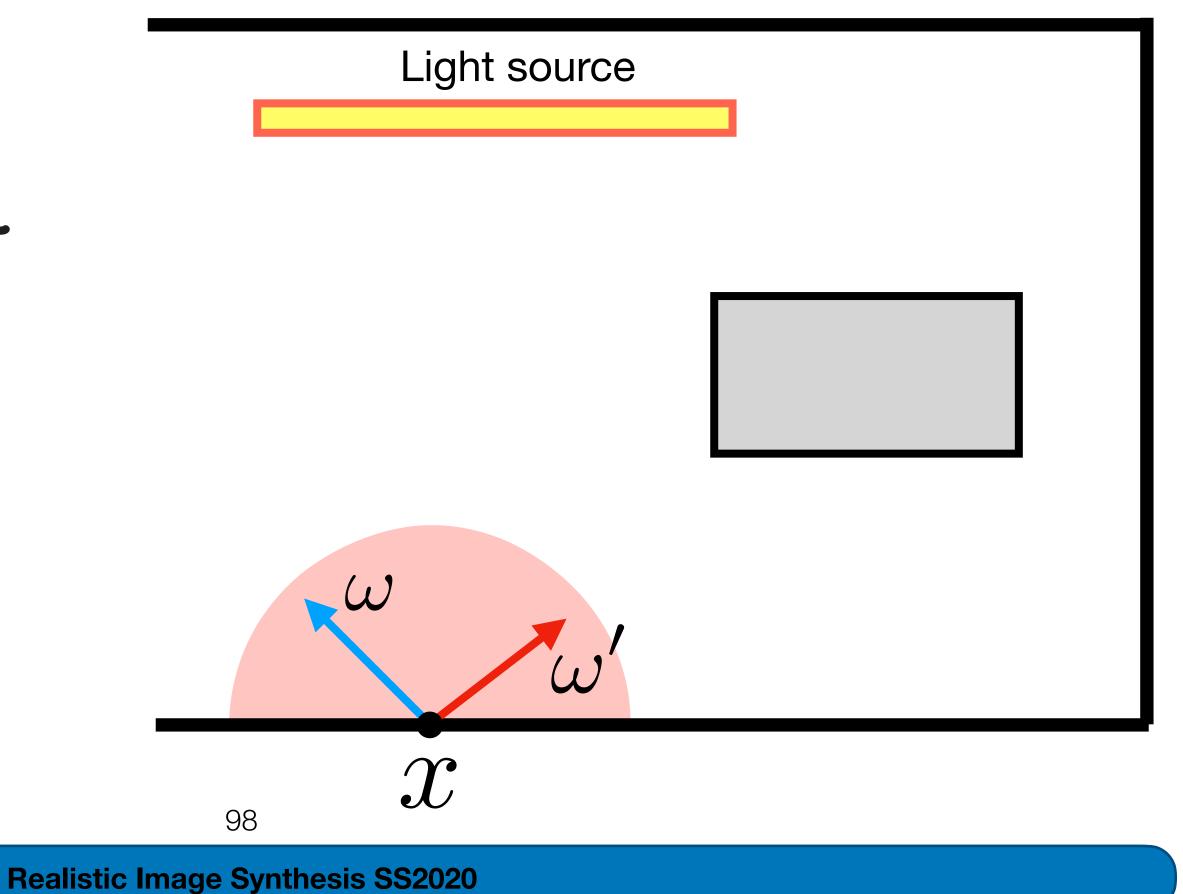
$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta'| d\vec{\omega}'$$



 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

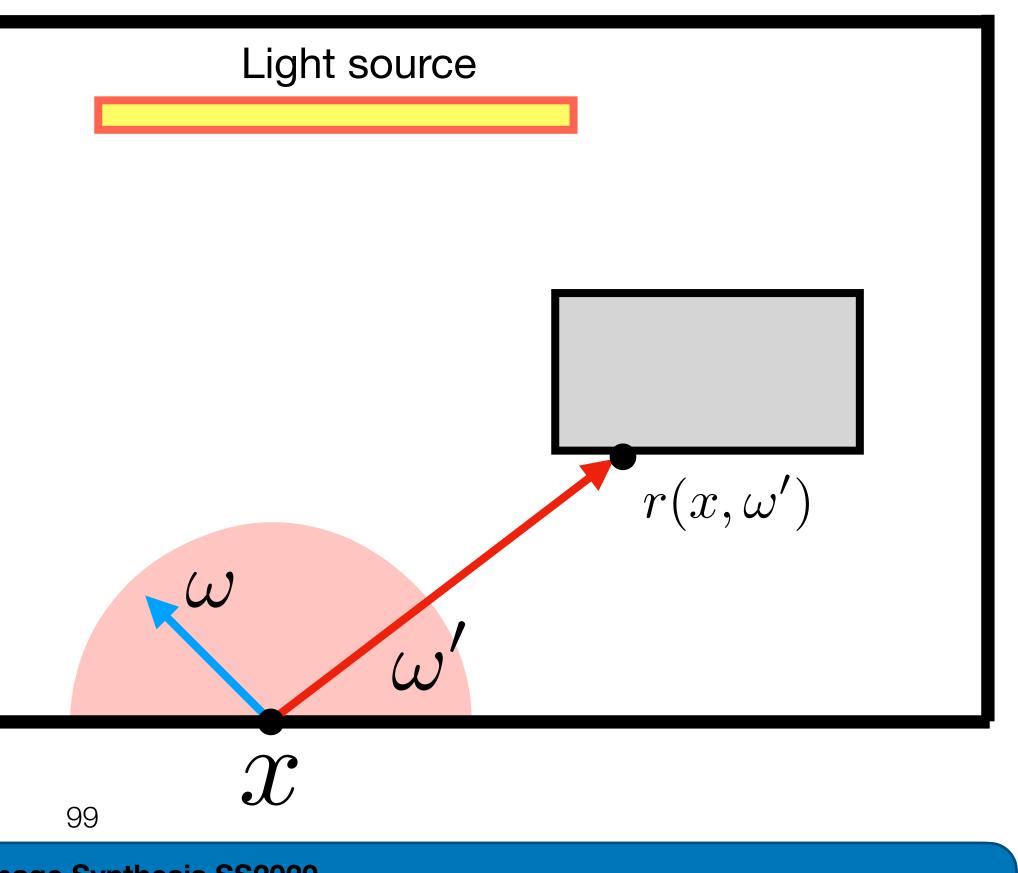


 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$



 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

Realistic Image Synthesis SS2020

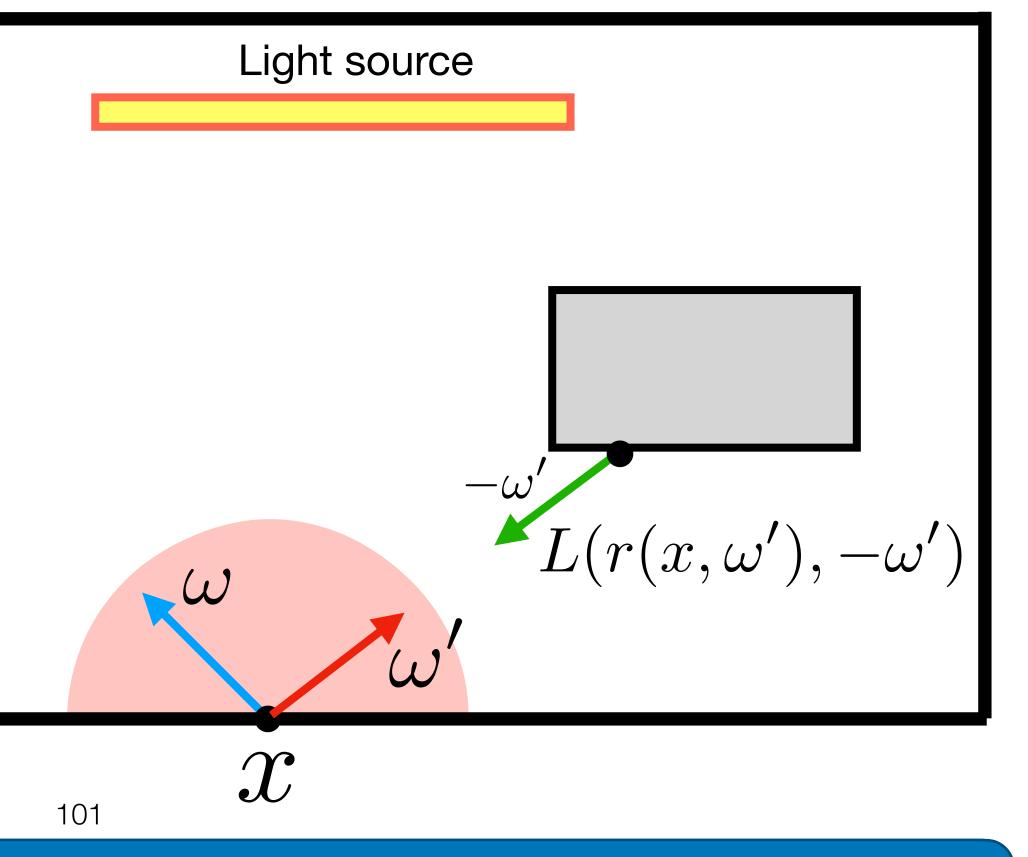


 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$



 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}',\vec{\omega}) L(r(x,\vec{\omega}'),-\vec{\omega}') |\cos\theta'| d\vec{\omega}'$

Realistic Image Synthesis SS2020

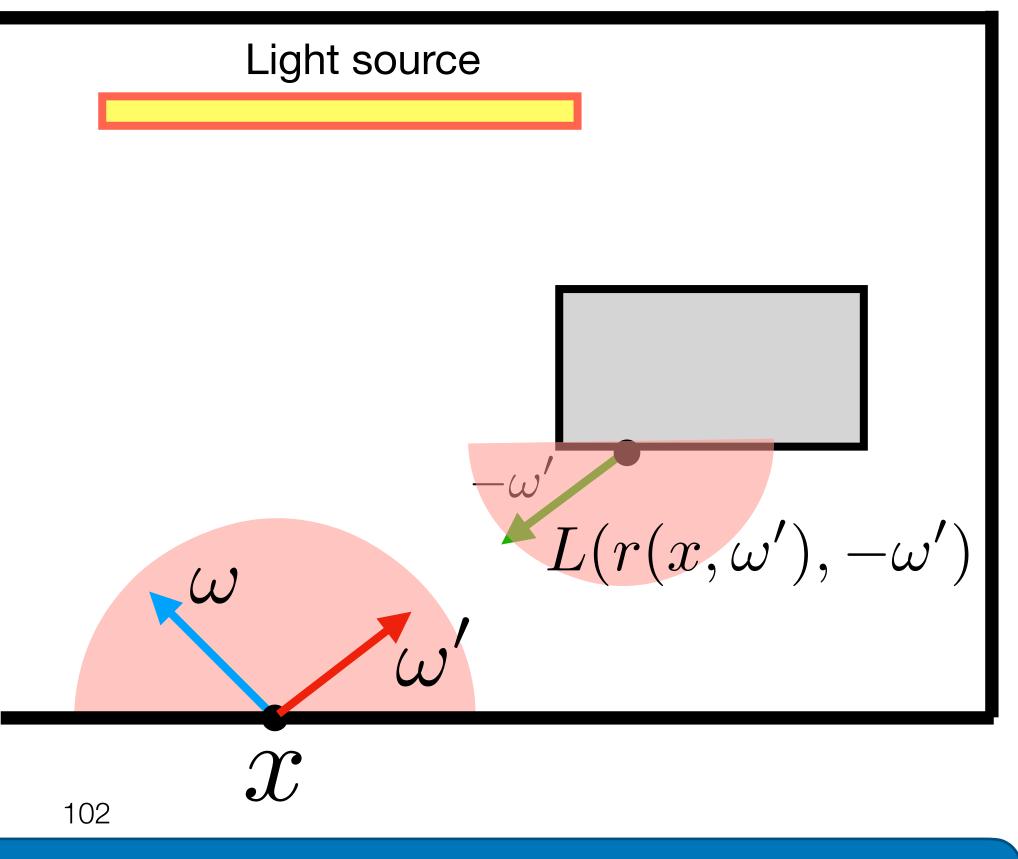


 $L(x,\vec{\omega}) = L_e(x,\vec{\omega}) + \int_{\mathcal{H}^2} f(x,\vec{\omega}) dx$

Realistic Image Synthesis SS2020

$$(\vec{\omega}, \vec{\omega}) L(r(x, \vec{\omega}'), -\vec{\omega}') |\cos \theta'| d\vec{\omega}'$$

recursion



(Me)

Gr

Me

Tr

Questions?

Gs

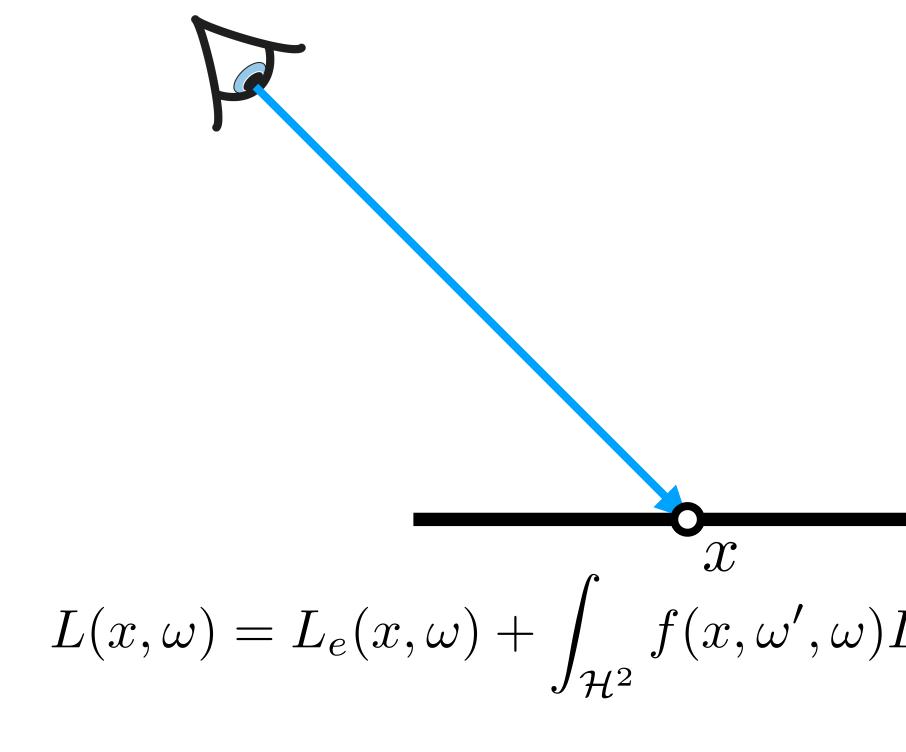
Gr

Me

Gaussian Material Synthesis by Zsolnai-Feher, Wonka, Wimmer [SIGGRAPH 2018]

Realistic Image Synthesis SS2020

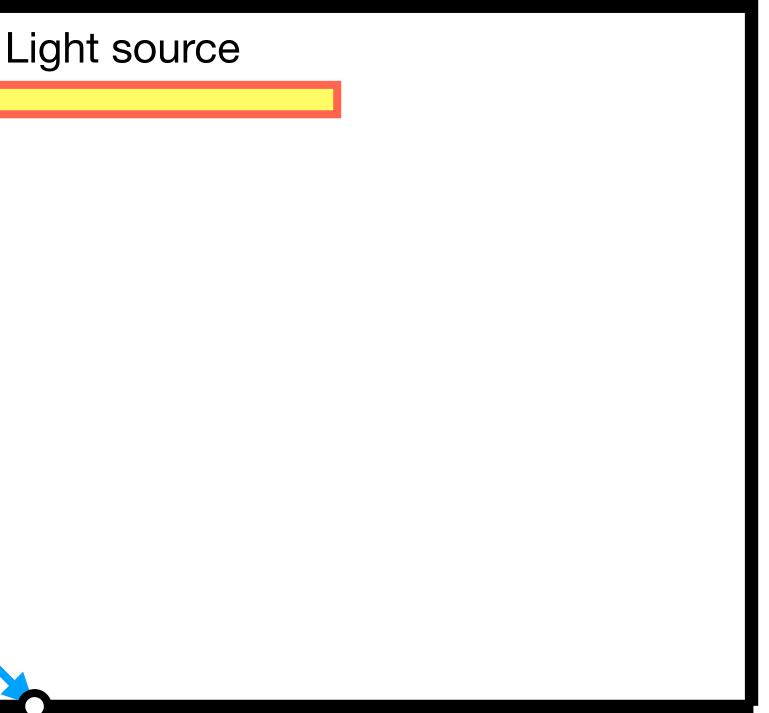
Path Tracing

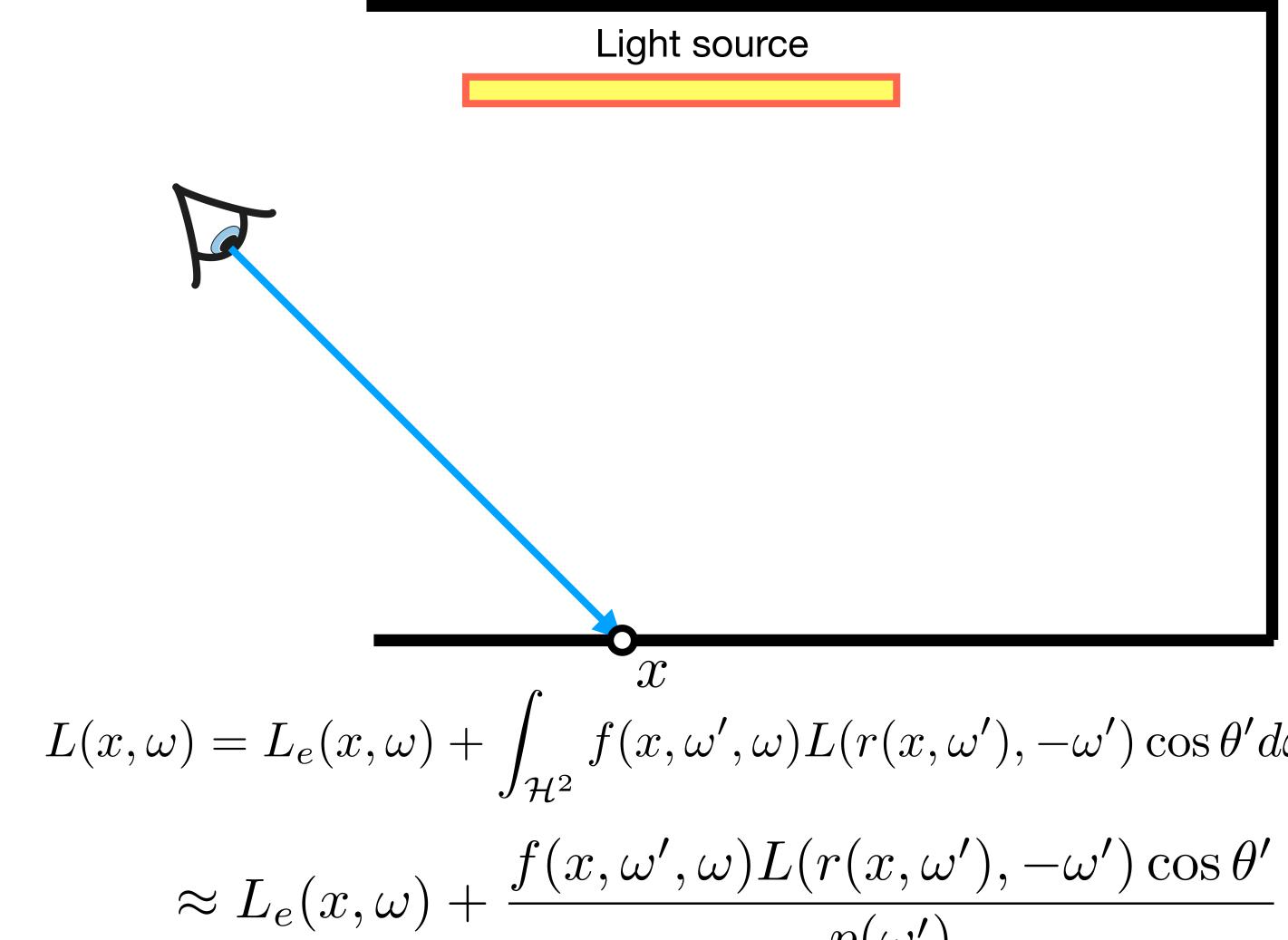


Path Tracing

ce		

$$(x, \omega'), -\omega') \cos \theta' d\omega'$$

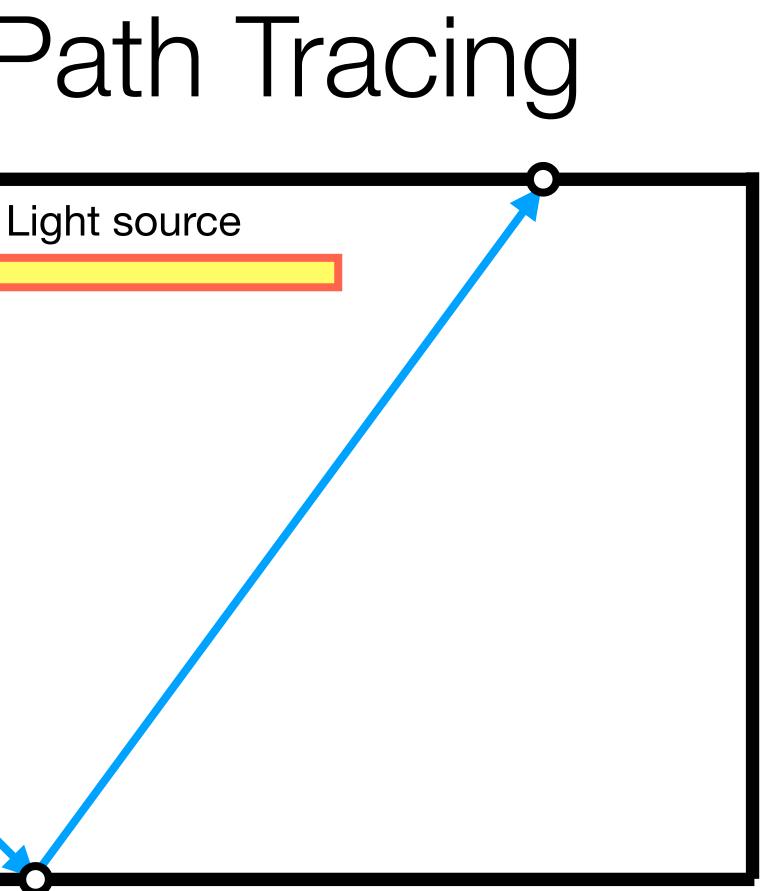


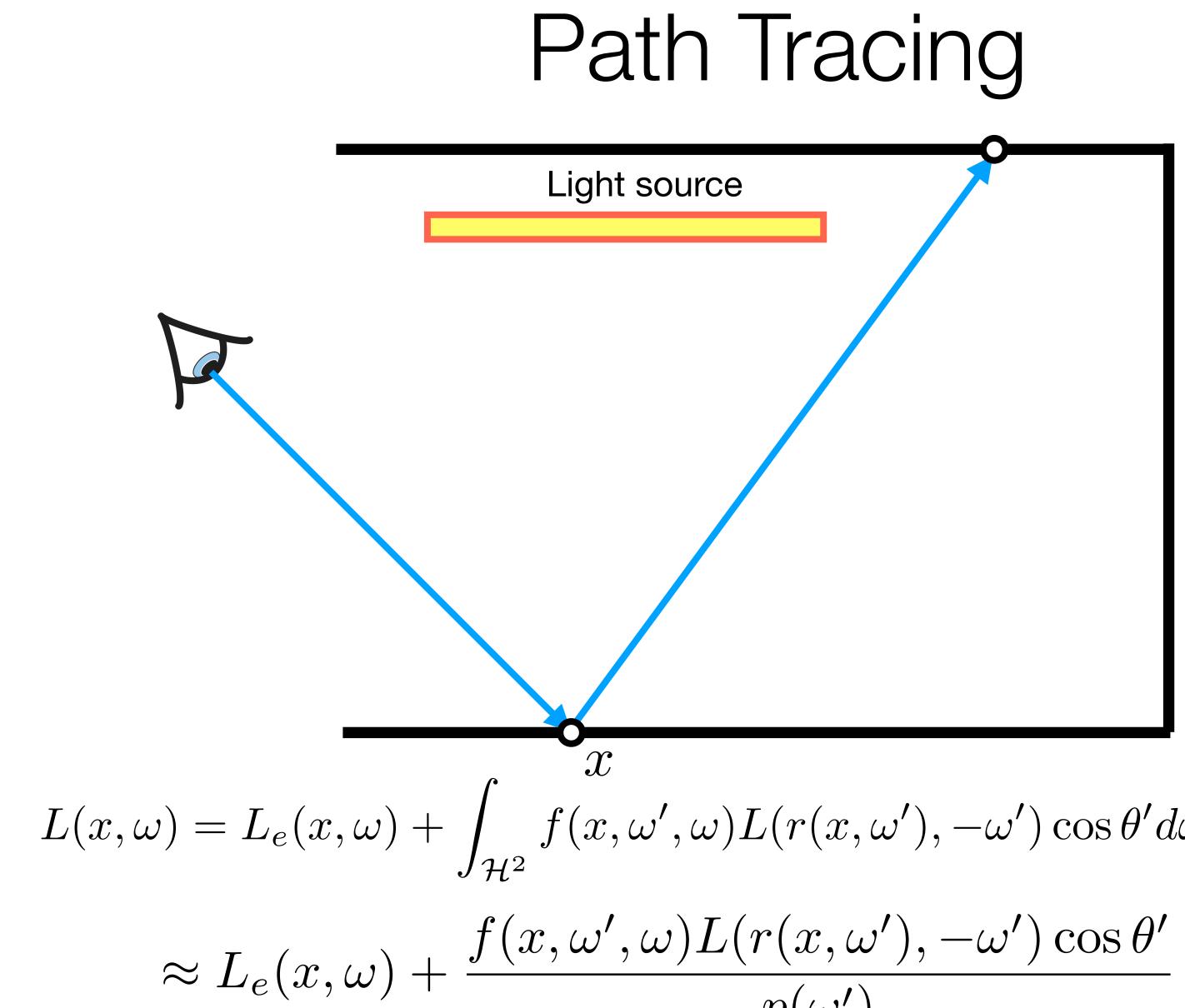


Path Tracing

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

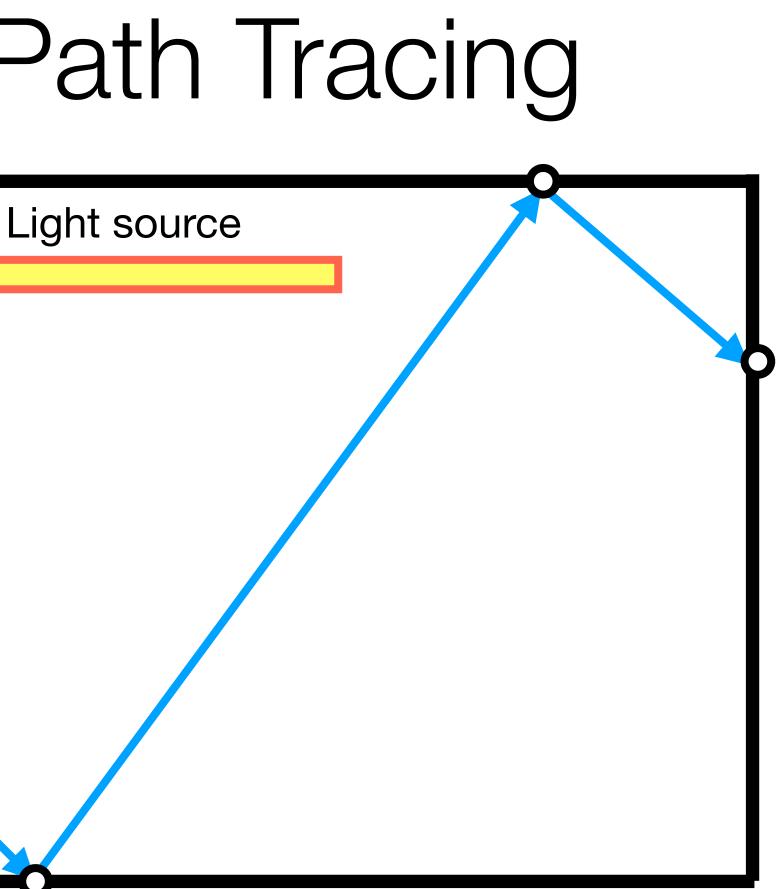
$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

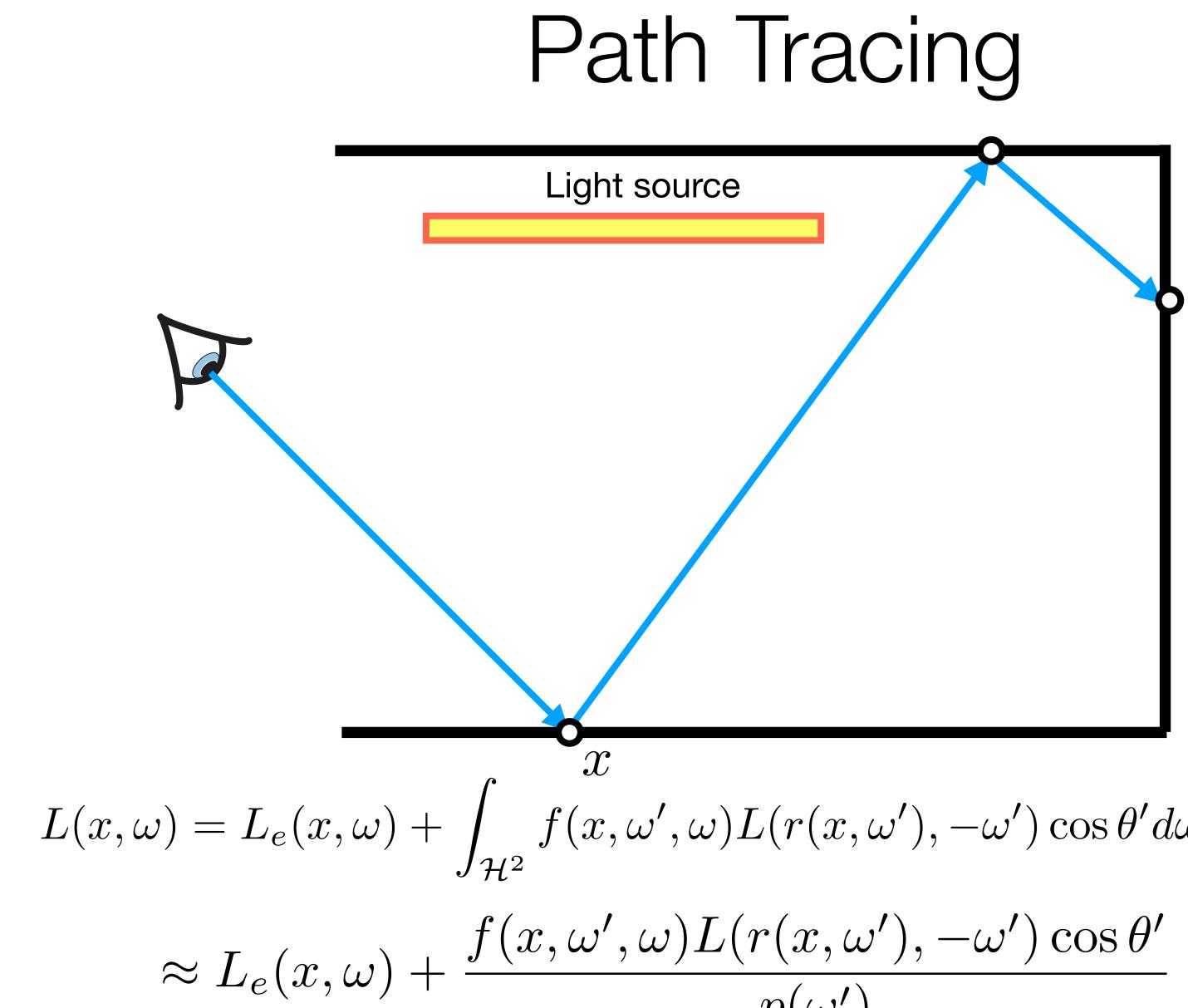




$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

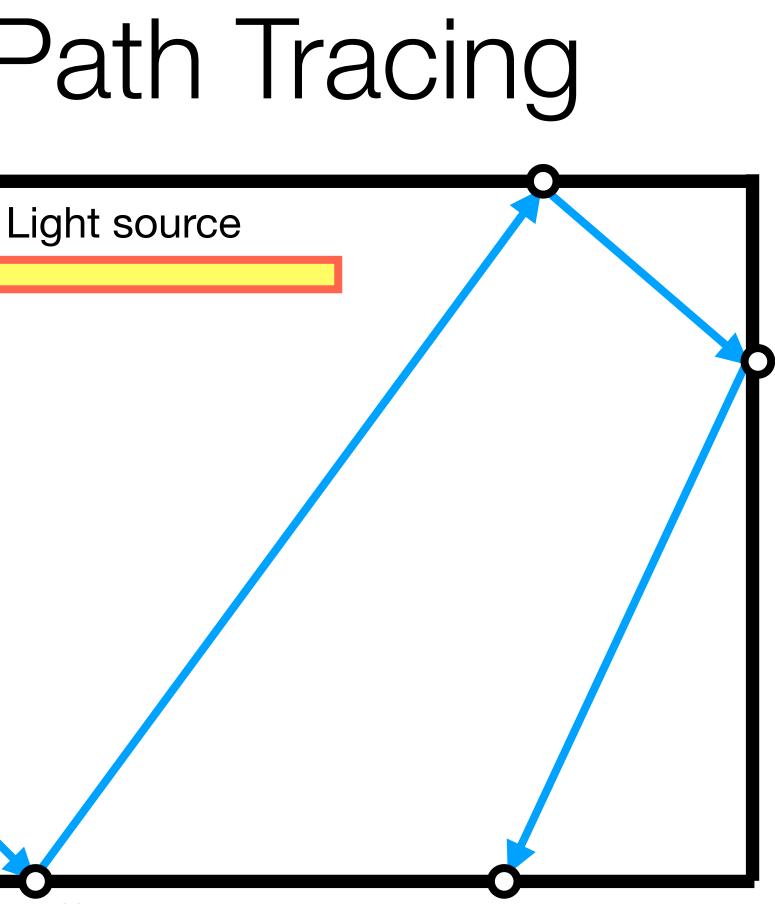
$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

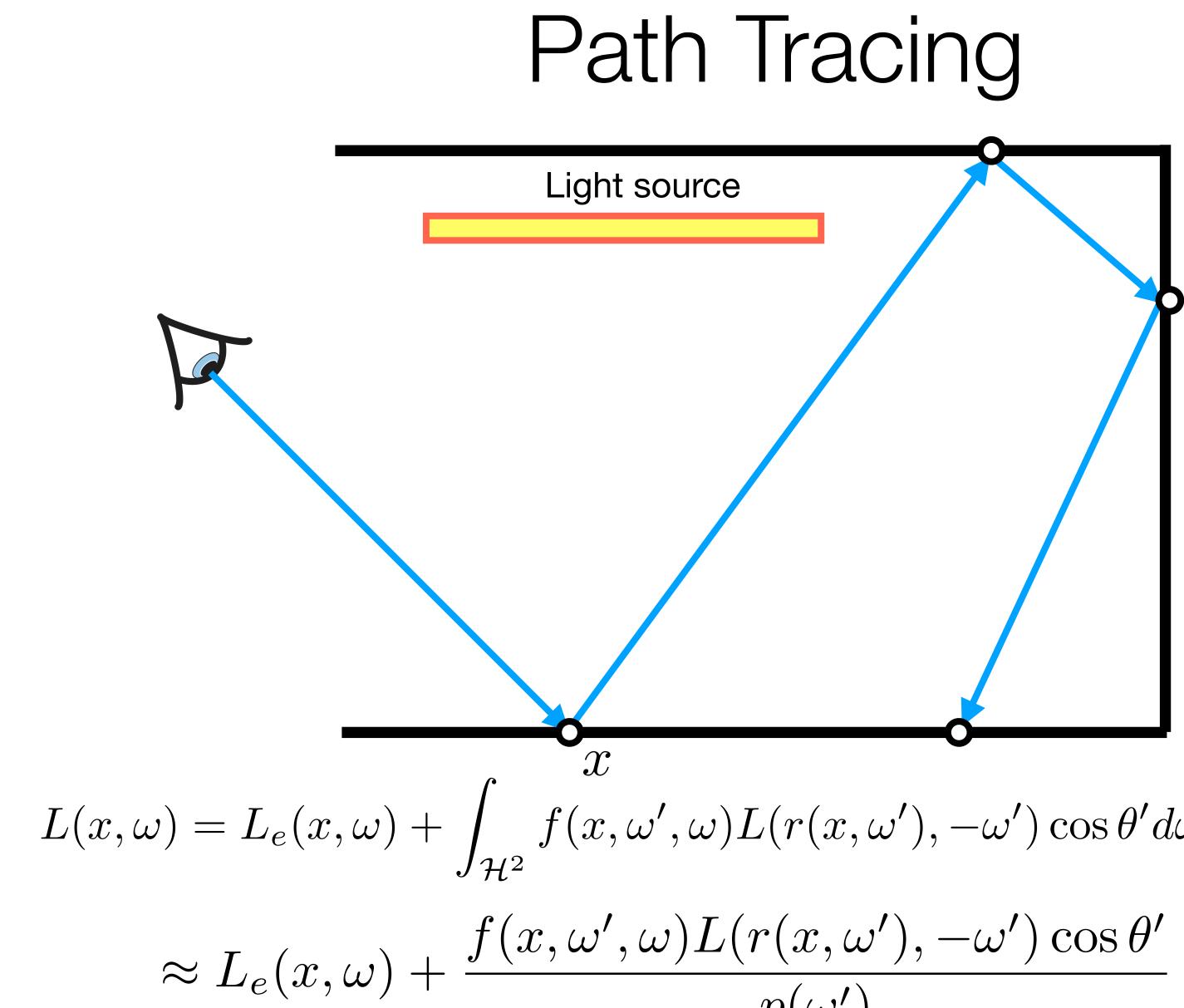




$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

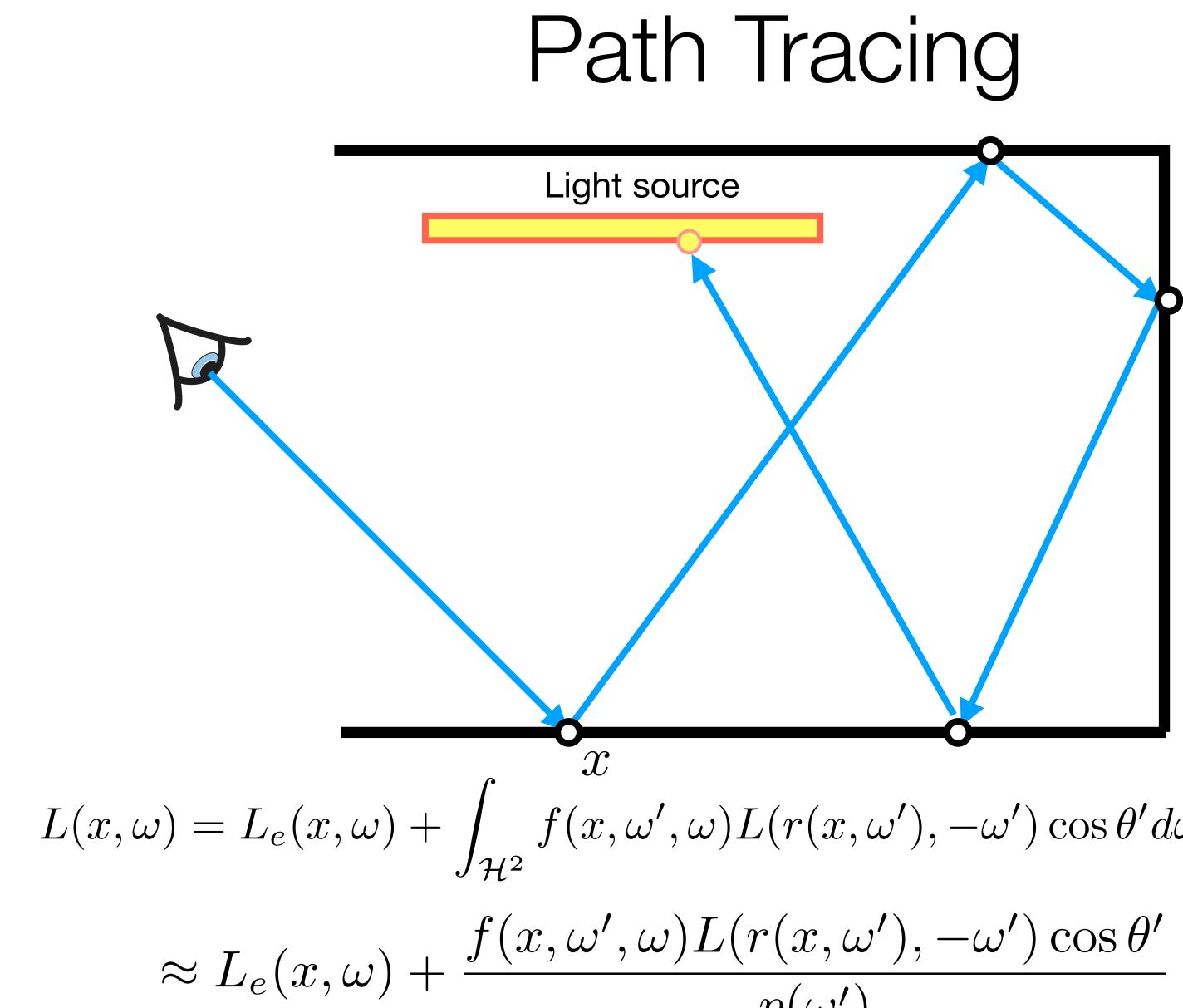
$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$





$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$



$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

Path Tracing Algorithm

Color color(**Point x, Direction** ω , int moreBounces):

if not moreBounces: return $L_e(\mathbf{x}, -\boldsymbol{\omega})$

// sample recursive integral $\boldsymbol{\omega}$ ' = sample from BRDF

 $L_o(x,\omega_o) = L_e(x,\omega_o) + L_r(x,\omega_o)$

return $L_e(x,-\omega)$ + BRDF * color(trace(x, ω '), moreBounces-1) * dot(n, ω ') / pdf(ω ')

111

Realistic Image Synthesis SS2020

Direct Illumination: sometimes emissive surfaces

Realistic Image Synthesis SS2020

Direct Illumination: sometimes better estimated by sampling the

Direct Illumination: sometimes better estimated by sampling the emissive surfaces

Let's estimate direct illumination separately from indirect illumination, then add the two

Direct Illumination: sometimes better estimated by sampling the emissive surfaces

Let's estimate direct illumination separately from indirect illumination, then add the two

- i.e., shoot shadow rays (direct) and gather rays (indirect)

- be careful not to double count!

Direct Illumination: sometimes better estimated by sampling the emissive surfaces

Let's estimate direct illumination separately from indirect illumination, then add the two

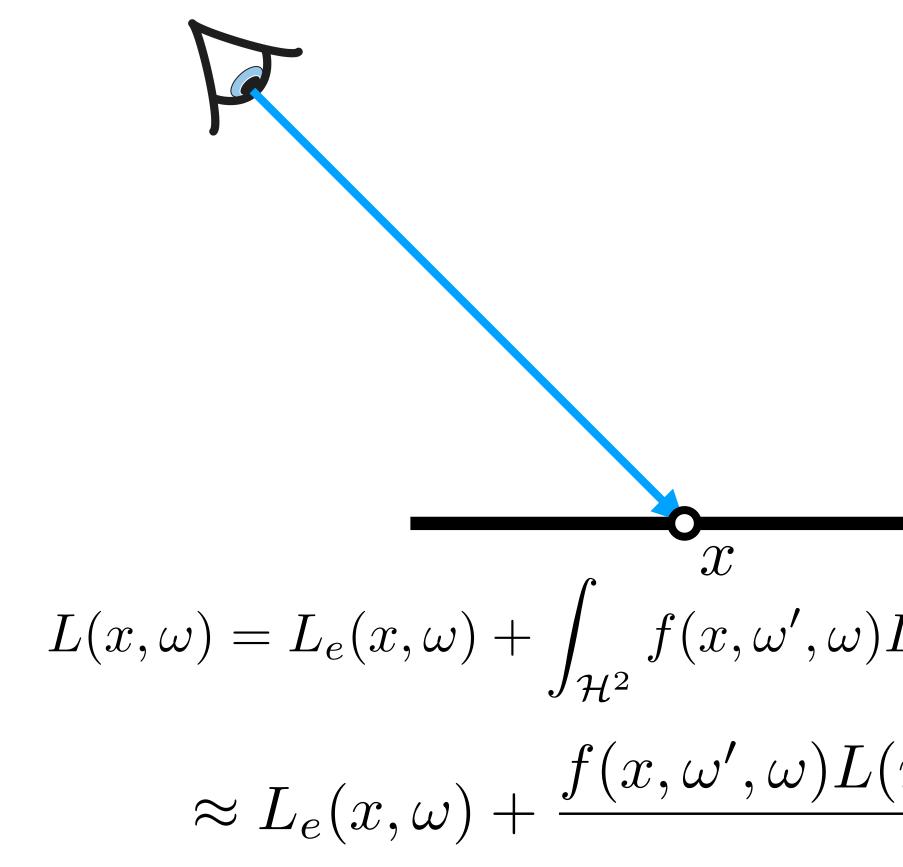
- i.e., shoot shadow rays (direct) and gather rays (indirect)

- be careful not to double count!

Also known as Next Event Estimation (NEE)

115

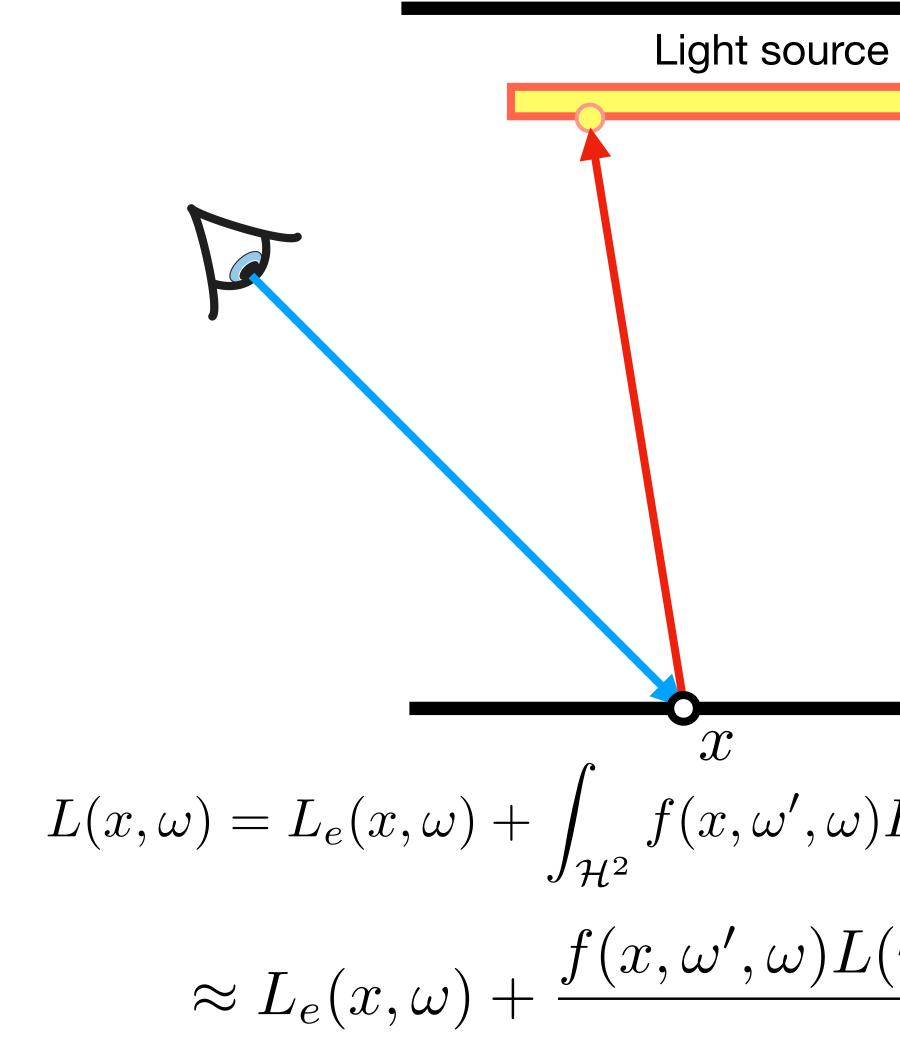
Light source



се		

$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

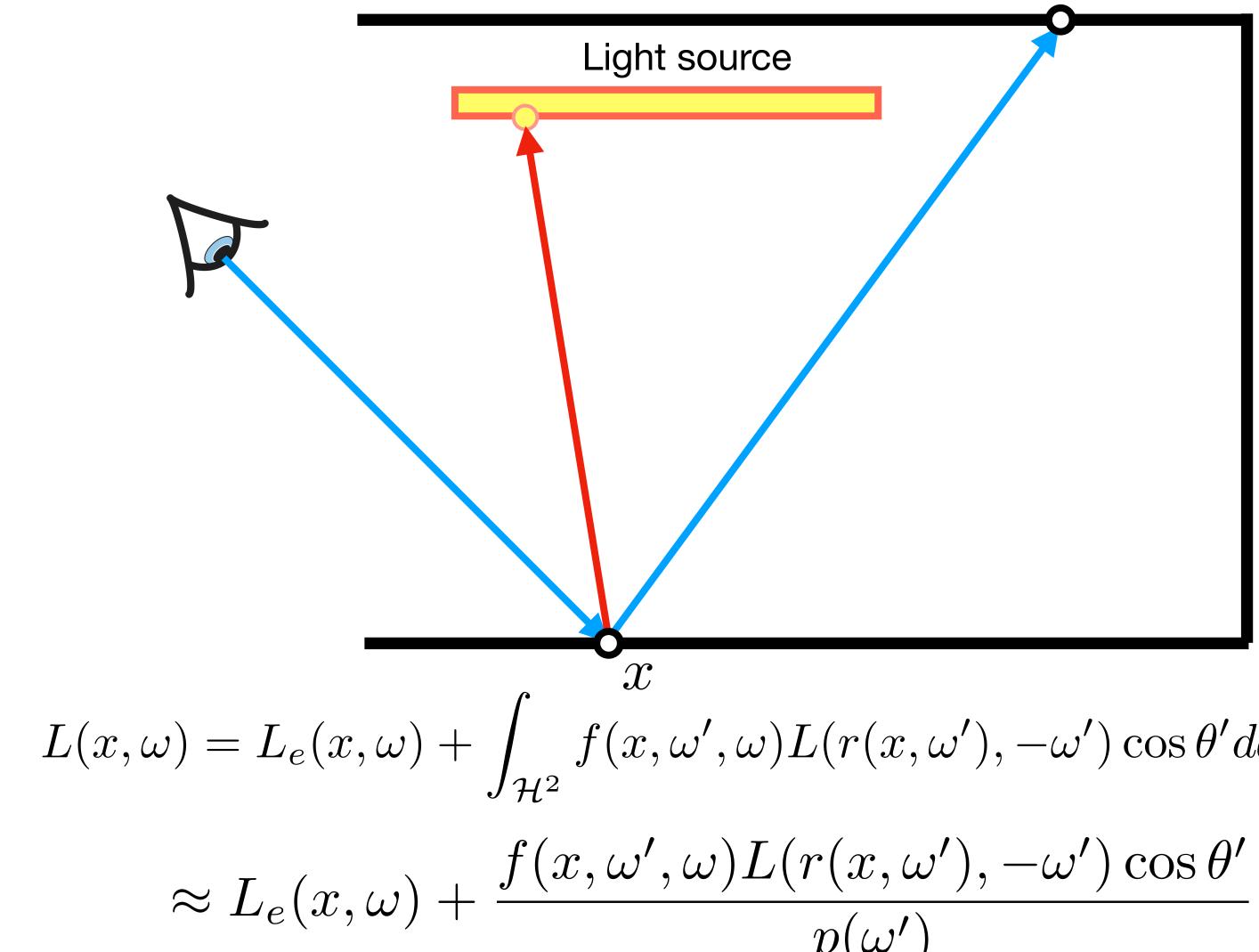
$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$



се		

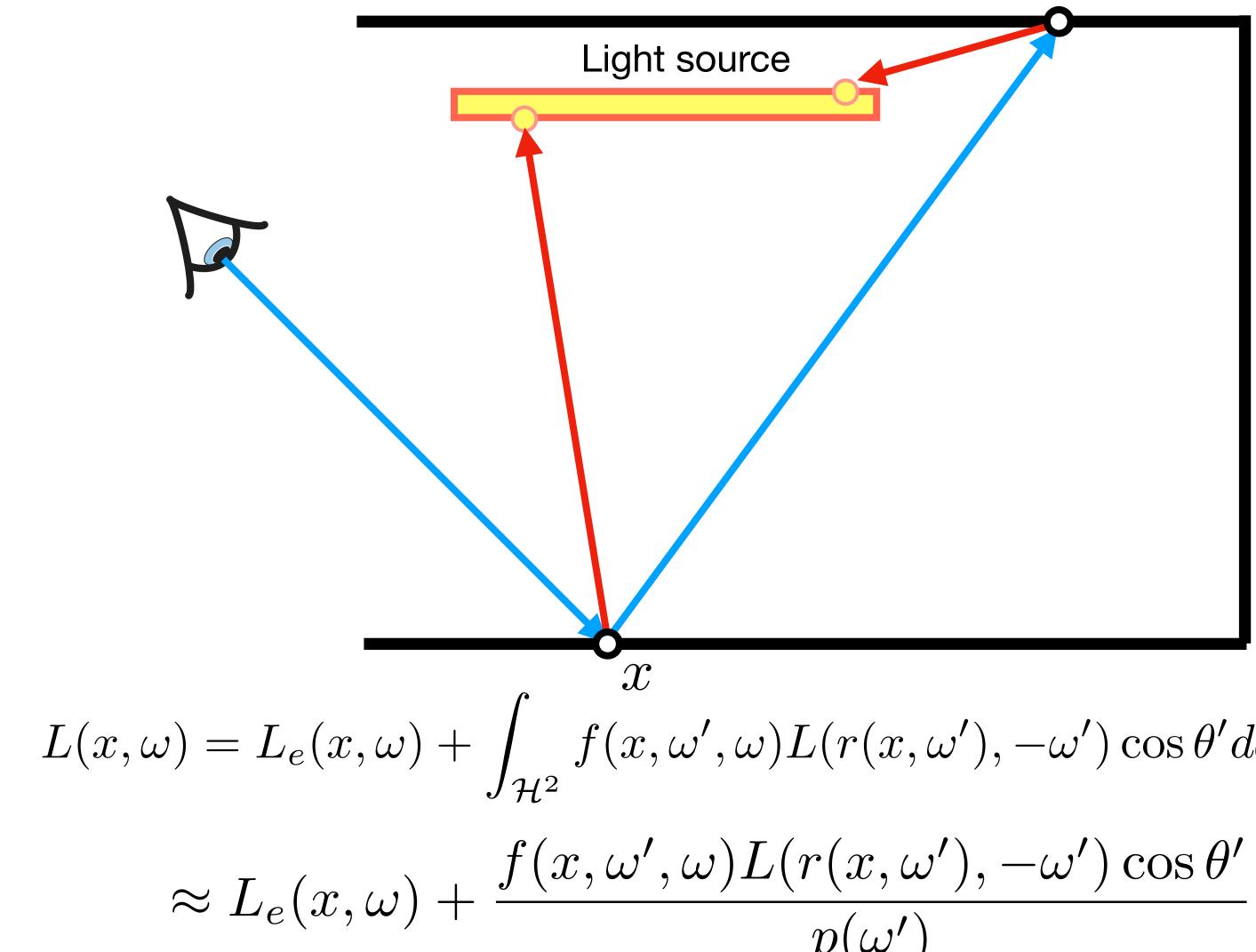
$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$



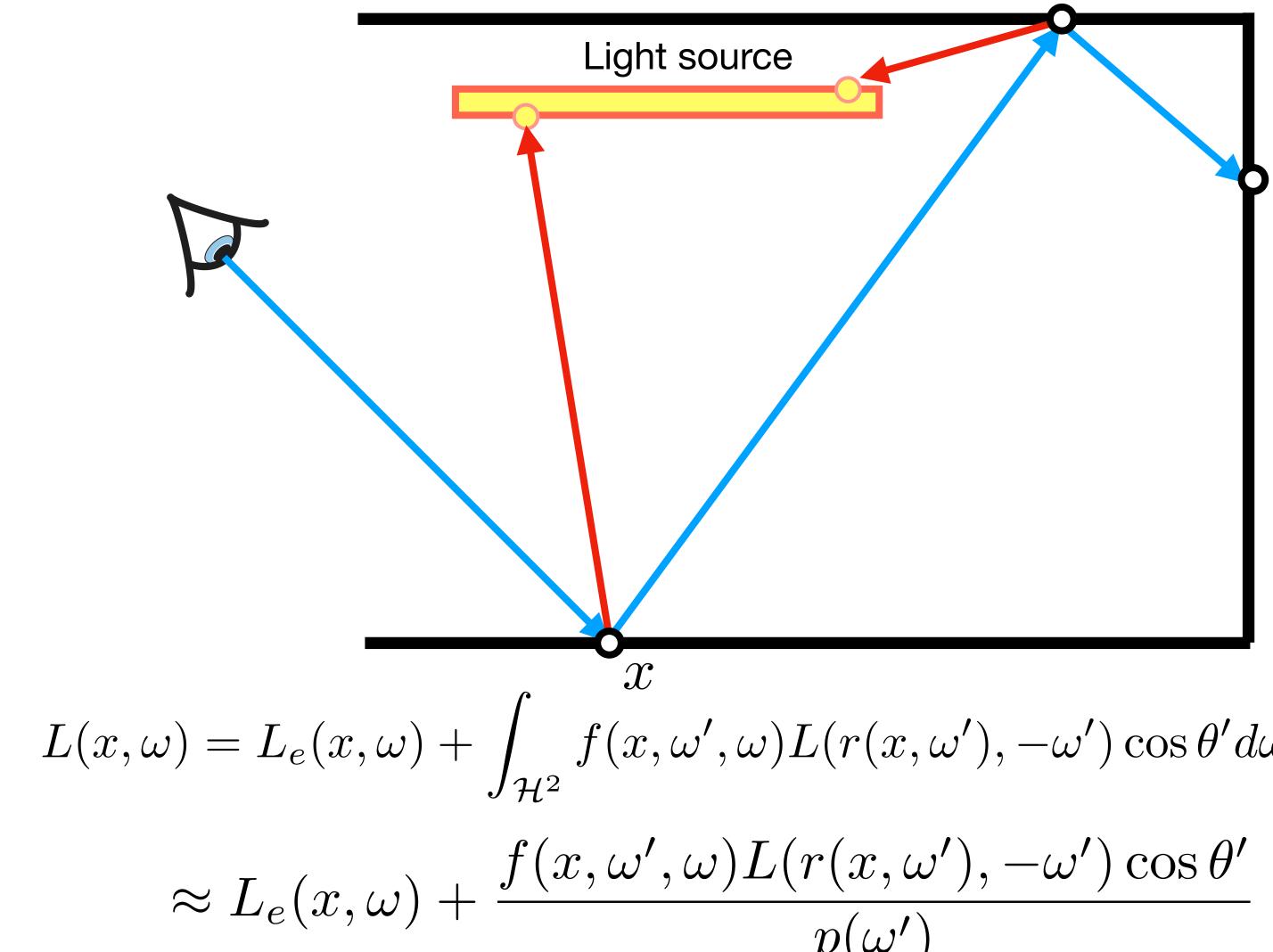
$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$



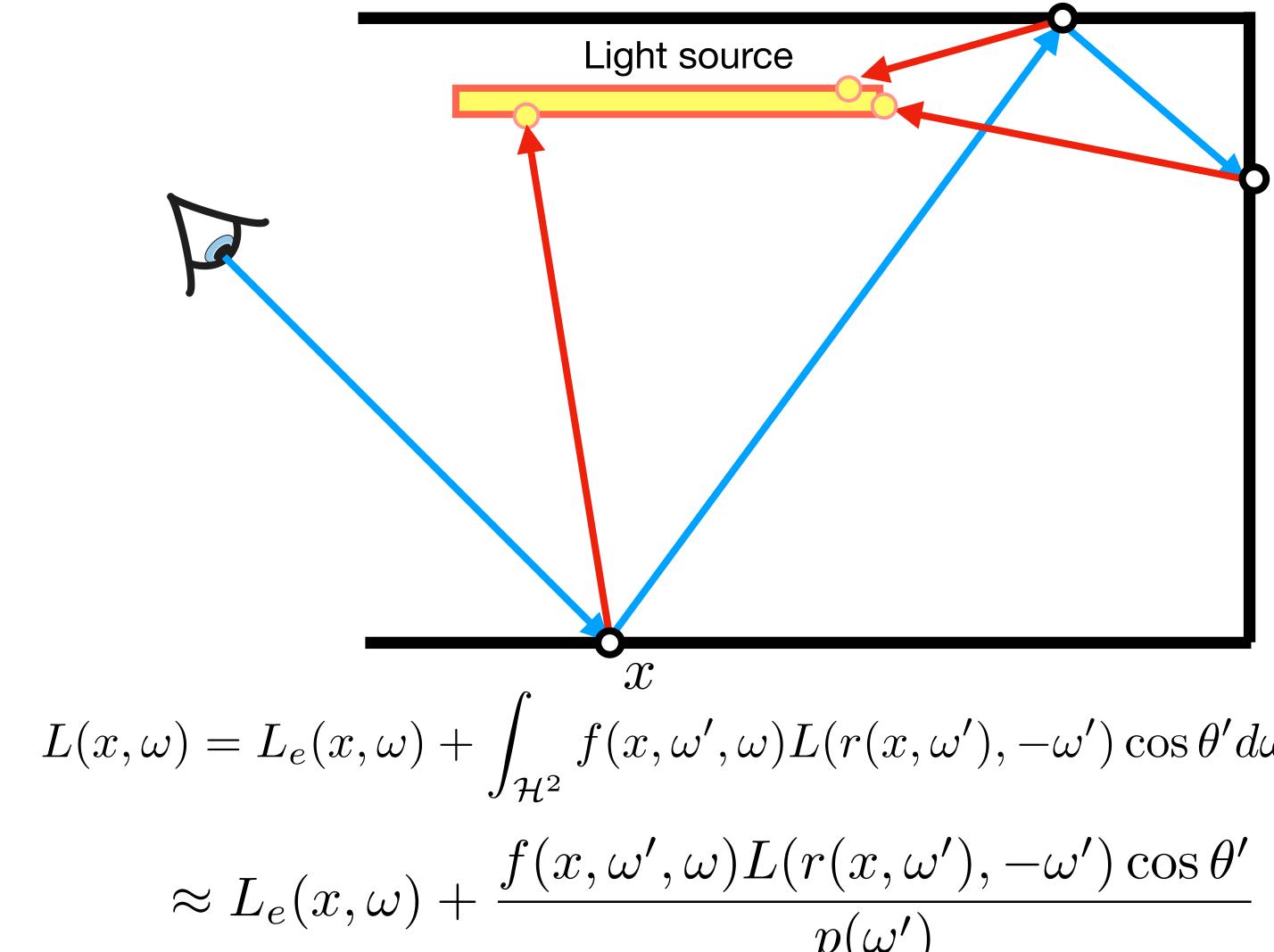
$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$



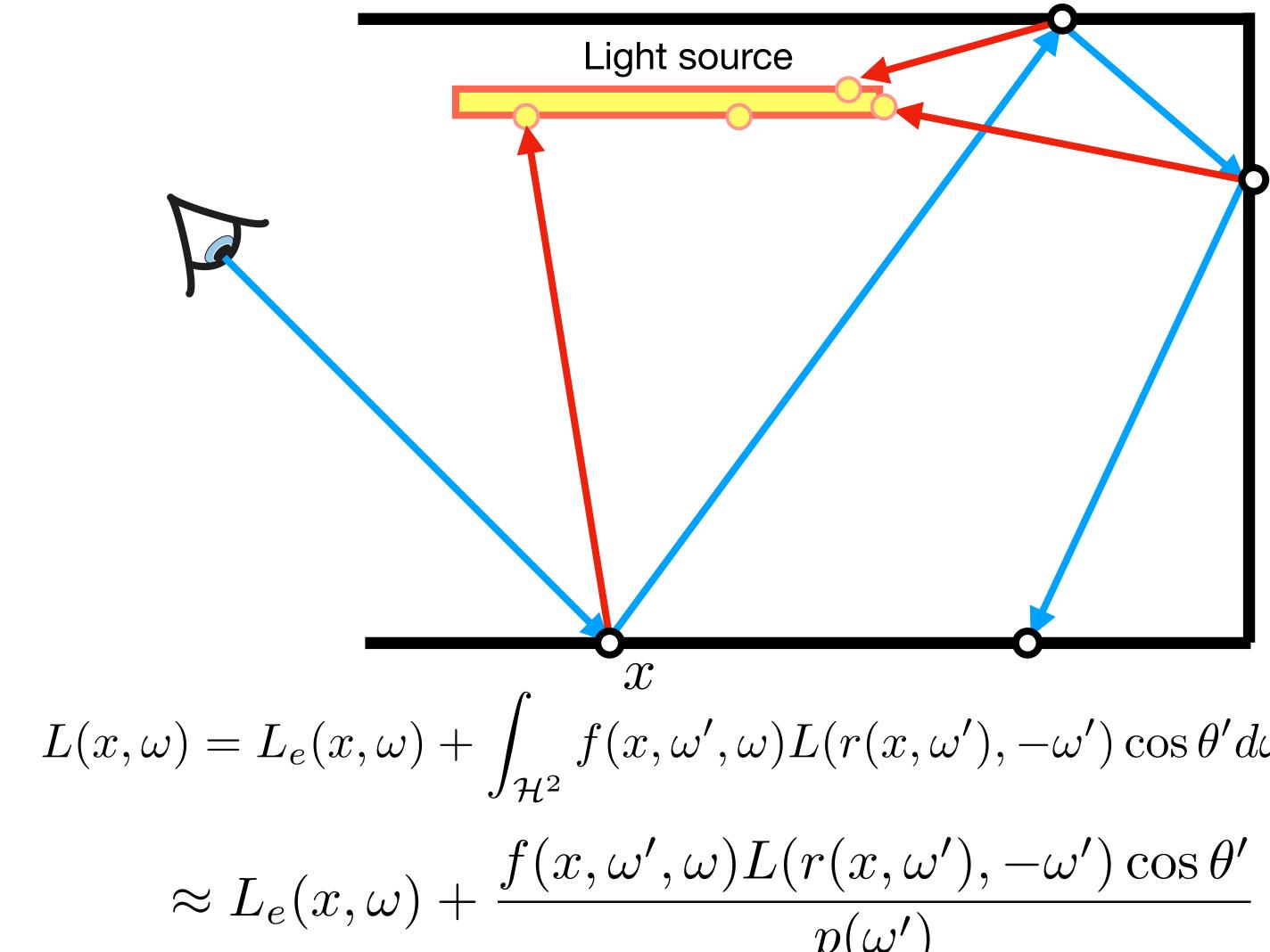
$$(r(x,\omega'),-\omega')\cos\theta'd\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$



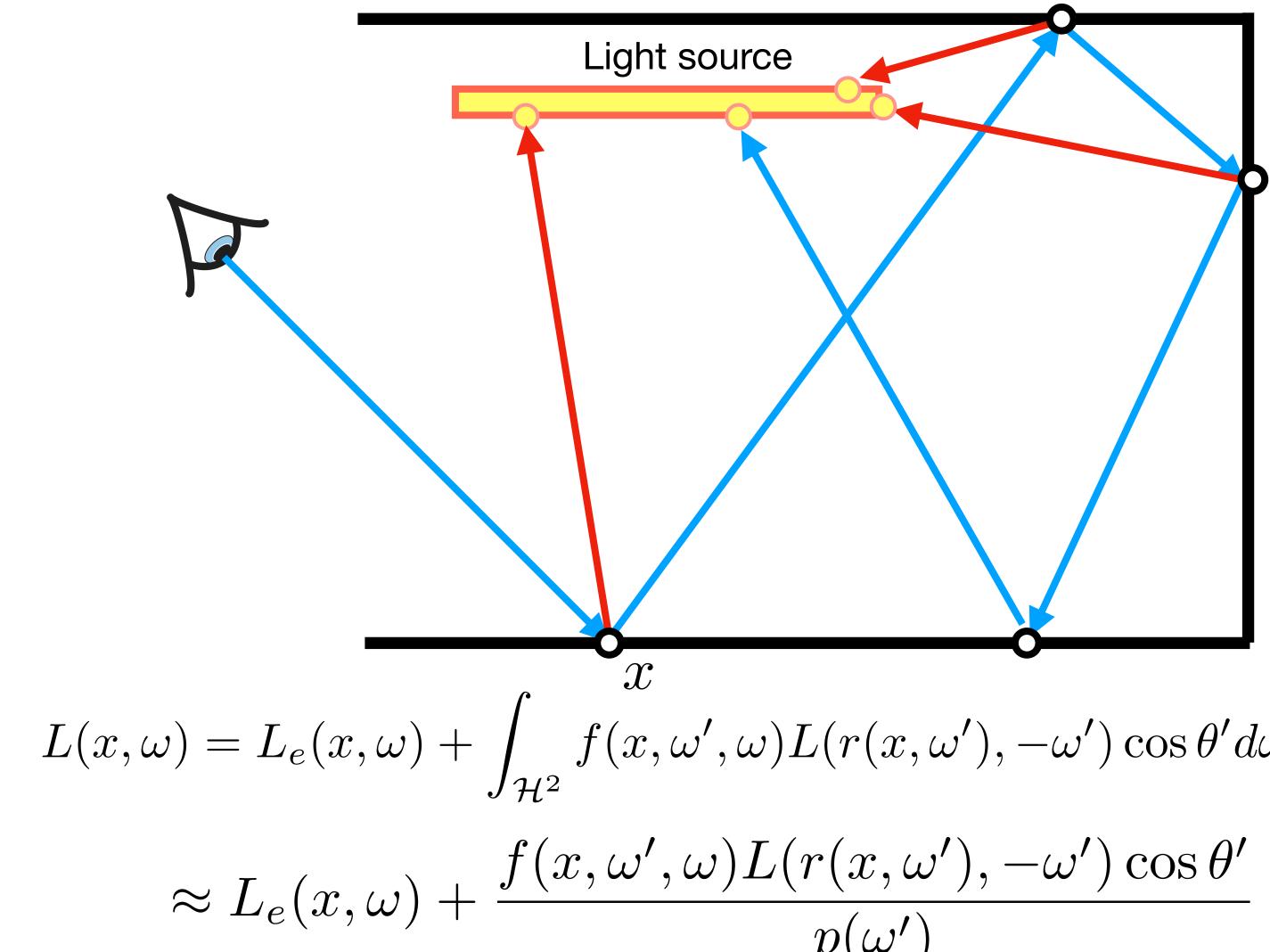
$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$



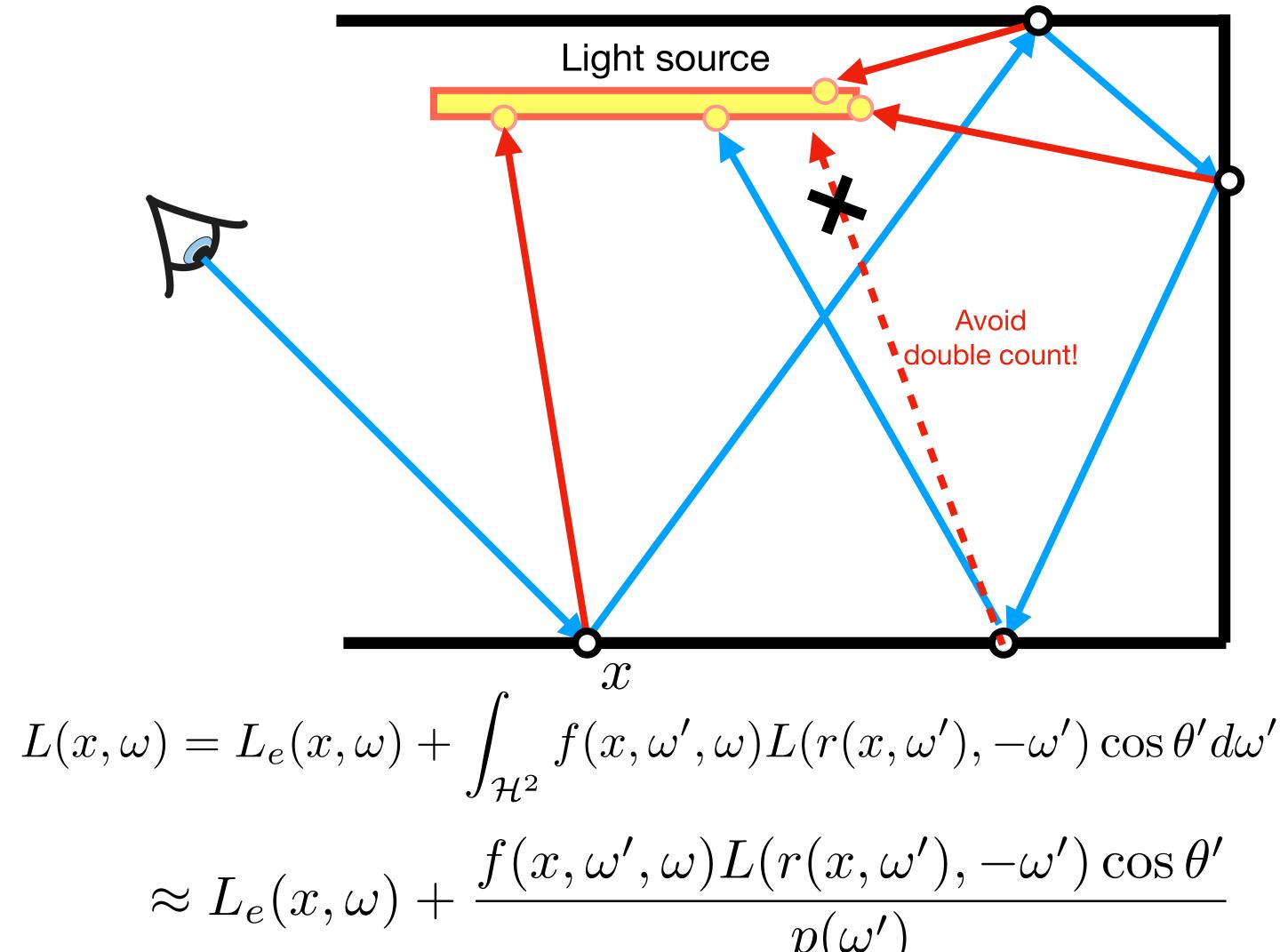
$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$



$$(r(x, \omega'), -\omega') \cos \theta' d\omega')$$

$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$



$$\frac{L(r(x,\omega'),-\omega')\cos\theta'}{p(\omega')}$$

 $L(x,\omega) = L_e(x,\omega) + L_{dir}(x,\omega) + L_{ind}(x,\omega)$

Color color(**Point** x, **Direction** ω , **int** moreBounces):

if not moreBounces: return L_e;

// next-event estimation: compute Ldir by sampling the light $\boldsymbol{\omega}_1$ = sample from light $L_{dir} = BRDF * color(trace(x, \omega_1), 0) * dot(n, \omega_1) / pdf(\omega_1)$ // compute Lind by sampling the BSDF $\boldsymbol{\omega}_2$ = sample from BSDF; $L_{ind} = BSDF * color(trace(x, \omega_2), moreBounces-1) * dot(n, \omega_2) / pdf(\omega_2)$

return L_e + L_{dir} + L_{ind}

Realistic Image Synthesis SS2020

 $L(x,\omega) = L_e(x,\omega) + L_{dir}(x,\omega) + L_{ind}(x,\omega)$

Color color(**Point** x, **Direction** ω , **int** moreBounces):

if not moreBounces: return L_e ;

// next-event estimation: compute L_{dir} by sampling the light $\boldsymbol{\omega}_1$ = sample from light $L_{dir} = BRDF * color(trace(x, \omega_1), 0) * dot(n, \omega_1) / pdf(\omega_1)$ // compute Lind by sampling the BSDF $\boldsymbol{\omega}_2$ = sample from BSDF; $L_{ind} = BSDF * color(trace(x, \omega_2), moreBounces-1) * dot(n, \omega_2) / pdf(\omega_2)$ return L_e + L_{dir} + L_{ind}

double counting!

Color color(**Point** x, **Direction** ω , **int** moreBounces):

if not moreBounces: return L_e;

// next-event estimation: compute L_{dir} by sampling the light $\boldsymbol{\omega}_1$ = sample from light $L_{dir} = BRDF * color(trace(x, \omega_1), 0) * dot(n, \omega_1) / pdf(\omega_1)$ // compute Lind by sampling the BSDF $\boldsymbol{\omega}_2$ = sample from BSDF; $L_{ind} = BSDF * color(trace(x, \omega_2), moreBounces-1) * dot(n, \omega_2) / pdf(\omega_2)$

return L_e + L_{dir} + L_{ind}

 $L(x,\omega) = L_e(x,\omega) + L_{dir}(x,\omega) + L_{ind}(x,\omega)$

Realistic Image Synthesis SS2020

 $L(x,\omega) = L_e(x,\omega) + L_{dir}(x,\omega) + L_{ind}(x,\omega)$

Color color(**Point x, Direction** ω , int moreBounces, bool includeL_e):

 $L_e = include L_e ? L_e(x, -\omega) : black$

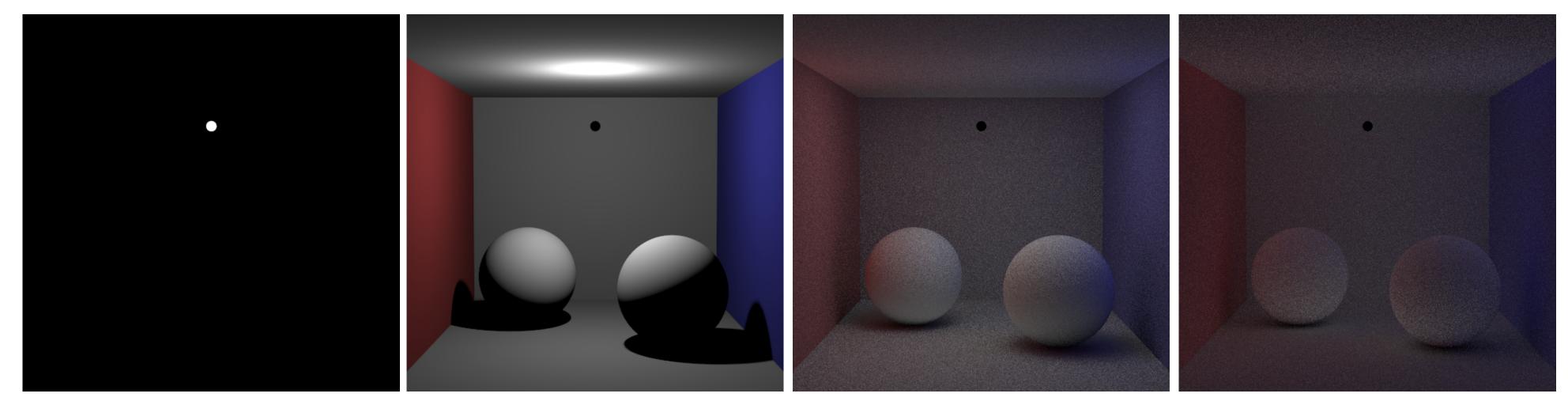
if not moreBounces: return L_e

// next-event estimation: compute L_{dir} by sampling the light $\boldsymbol{\omega}_1$ = sample from light $L_{dir} = BRDF * color(trace(x, \omega_1), 0, true) * dot(n, \omega_1) / pdf(\omega_1)$

```
// compute Lind by sampling the BSDF
\boldsymbol{\omega}_2 = sample from BSDF
L_{ind} = BSDF * color(trace(x, \omega_2), moreBounces-1, false) * dot(n, \omega_2) / pdf(\omega_2)
```

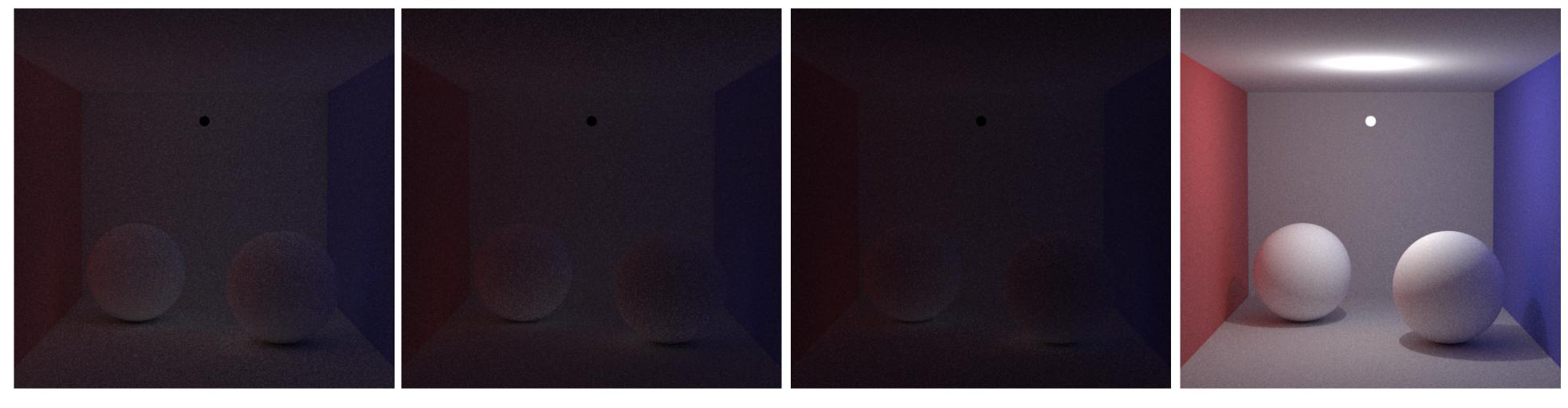
```
return L<sub>e</sub> + L<sub>dir</sub> + L<sub>ind</sub>
```


Path-wise Visualization



Path: 0

Path: 1



Path: 5

Realistic Image Synthesis SS2020

All Paths added

Truncating at some fixed depth introducing **bias**

Solution: Russian roulette

Realistic Image Synthesis SS2020

When we do stop recursion?

Russian Roulette

Probabilisticaly terminate the recursion

New estimator: evaluate original estimator X with

$$X_{rr} = \begin{cases} \frac{X}{P} & \xi \\ 0 & 0 \end{cases}$$

- probability P (but reweighted), otherwise return zero:
 - $\xi < P$
 - otherwise

Russian Roulette

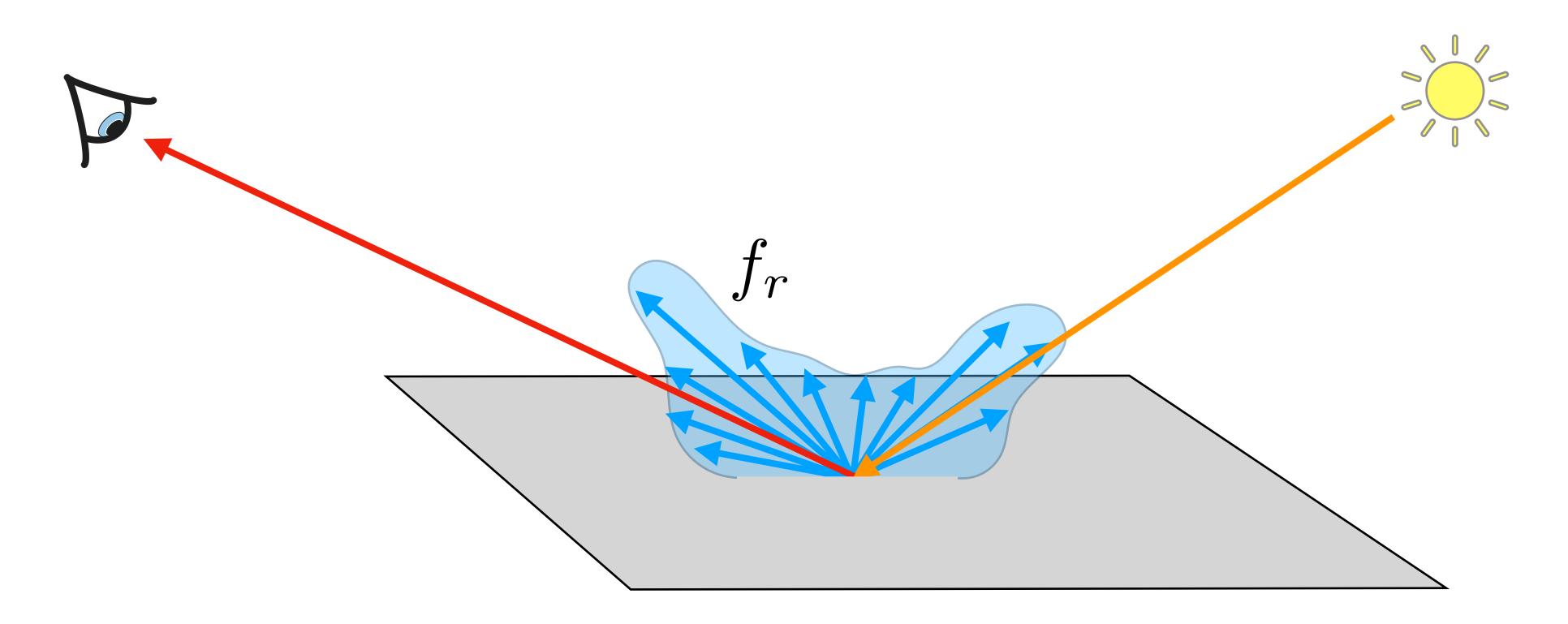
This will increase variance!

- but it will improve efficiency if P is chosen so that the samples that are expensive, but are likely to make small contribution, are skipped

Microfacet BSDFs

133

Bidirectional Reflectance Distribution Function



BRDF

Real/Physically plausible BRDFs obey:

- Energy conservation:

BRDF Properties

 $\int_{\mathcal{H}^{\in}} f_r(\mathbf{X}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_i d\vec{\omega}_i \leq 1, \quad \forall \ \vec{\omega}_r$

Realistic Image Synthesis SS2020

Real/Physically plausible BRDFs obey:

- Energy conservation:

- Helmholtz reciprocity:

BRDF Properties

 $\int_{\mathcal{H}\in} f_r(\mathbf{X}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_i d\vec{\omega}_i \leq 1, \quad \forall \ \vec{\omega}_r$

 $f_r(\mathbf{X}, \vec{\omega}_i, \vec{\omega}_r) = f_r(\mathbf{X}, \vec{\omega}_r, \vec{\omega}_i)$ $f_r(\mathbf{X}, \vec{\omega}_i \leftrightarrow \vec{\omega}_r)$

Conductors vs. Dielectrics

Copper

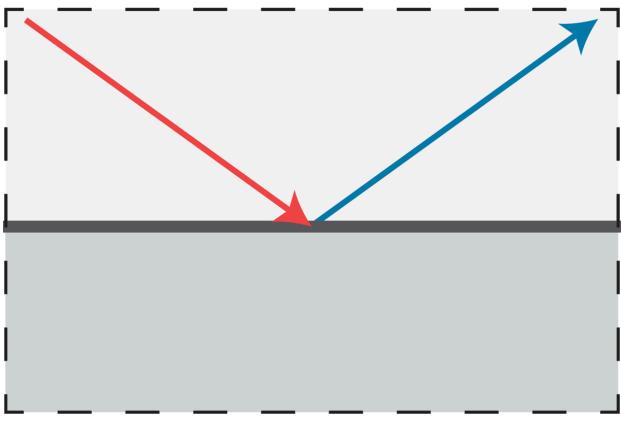
Iron

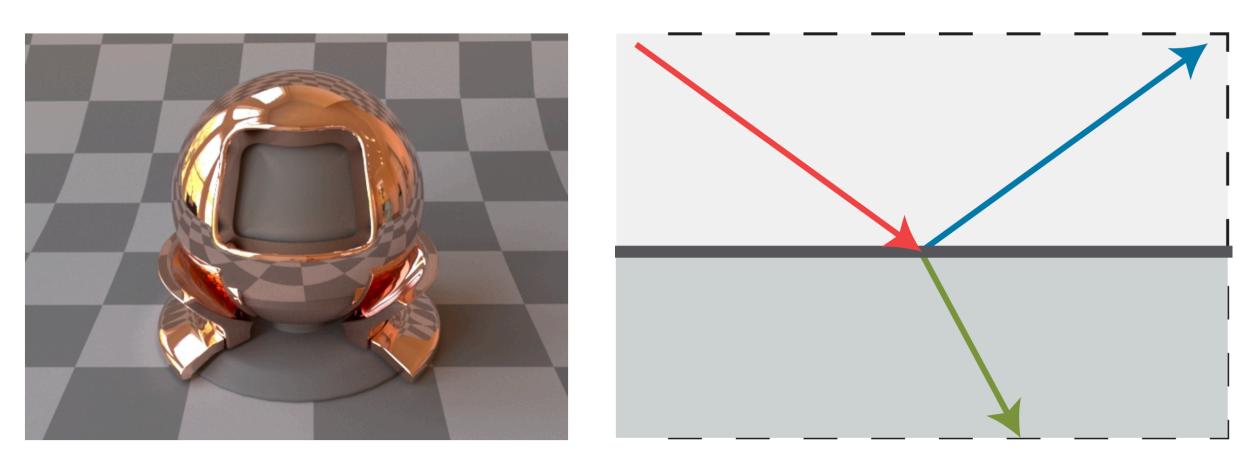
Mercury

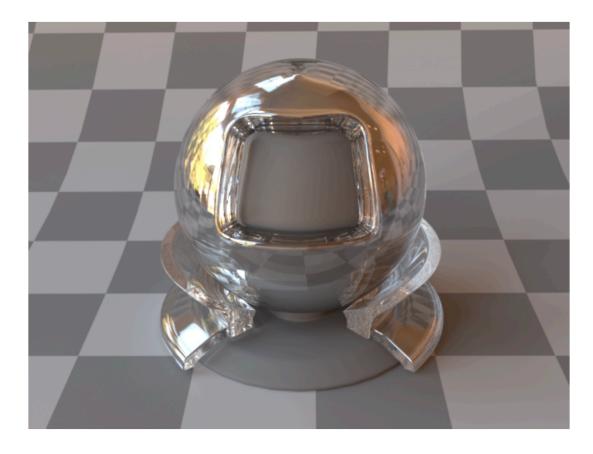
Clouds

137

Conductors vs. Dielectrics



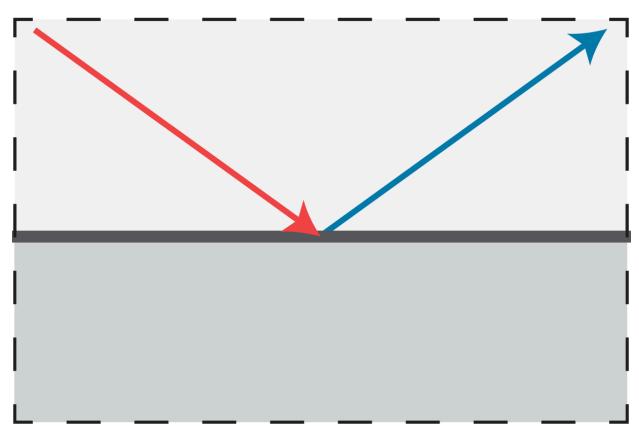




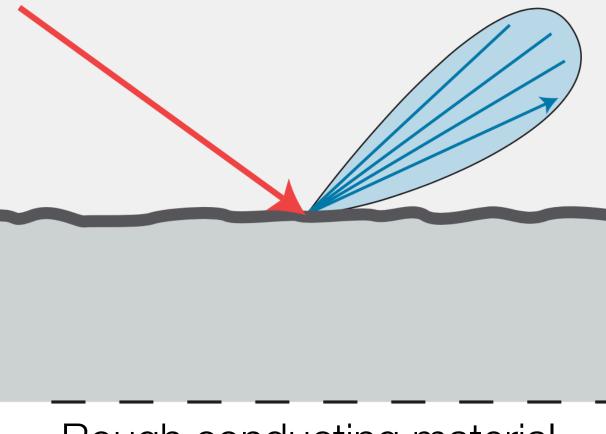
Smooth dielectric material

138

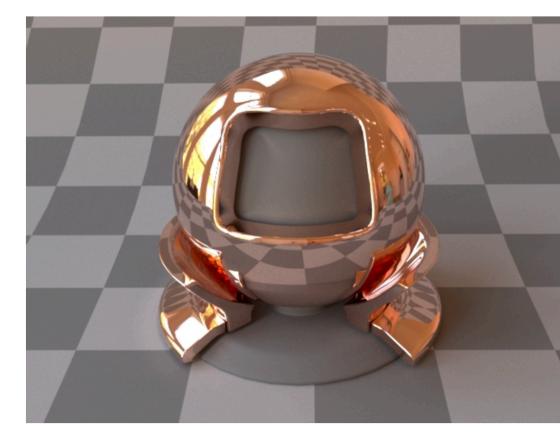
Conductors vs. Dielectrics

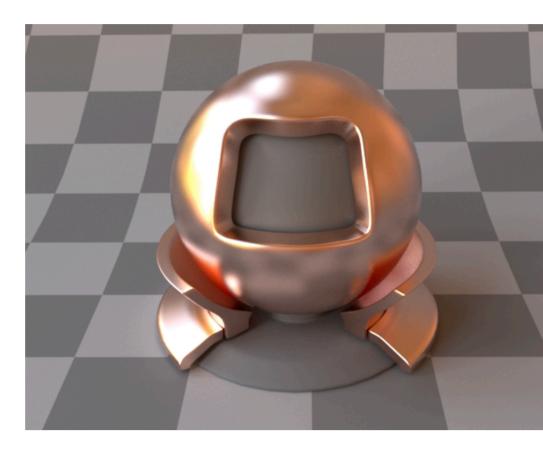


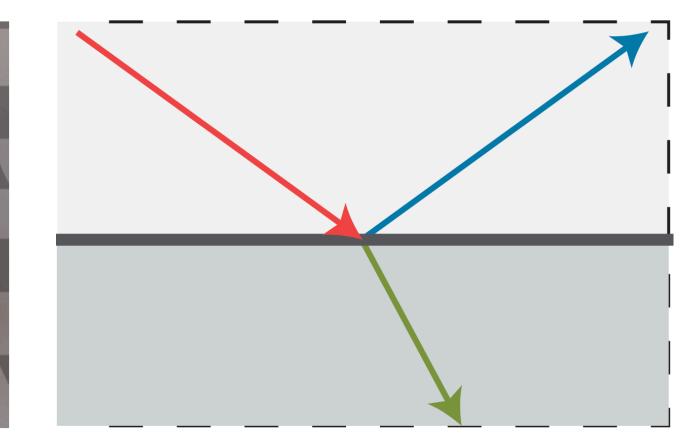
Smooth conducting material

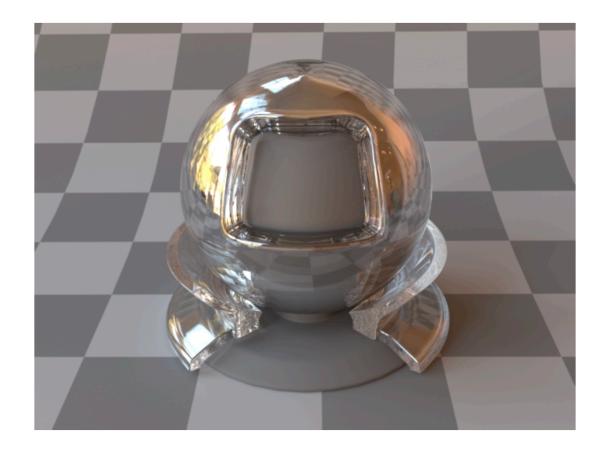


Rough conducting material

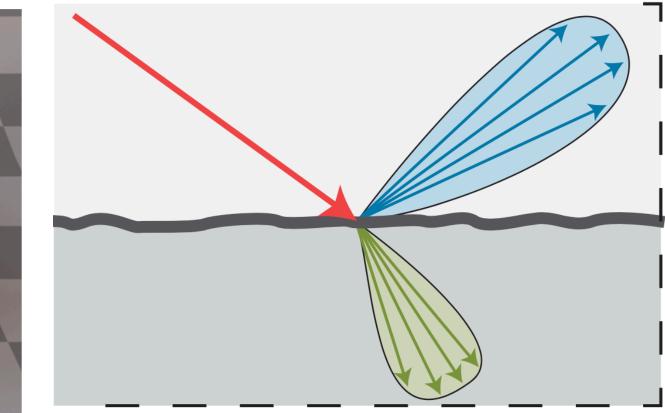




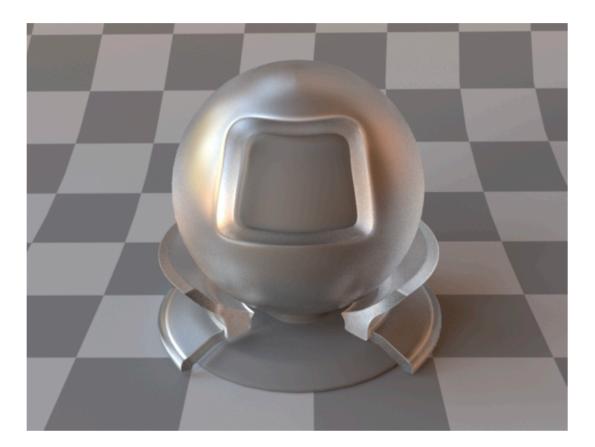




Smooth dielectric material



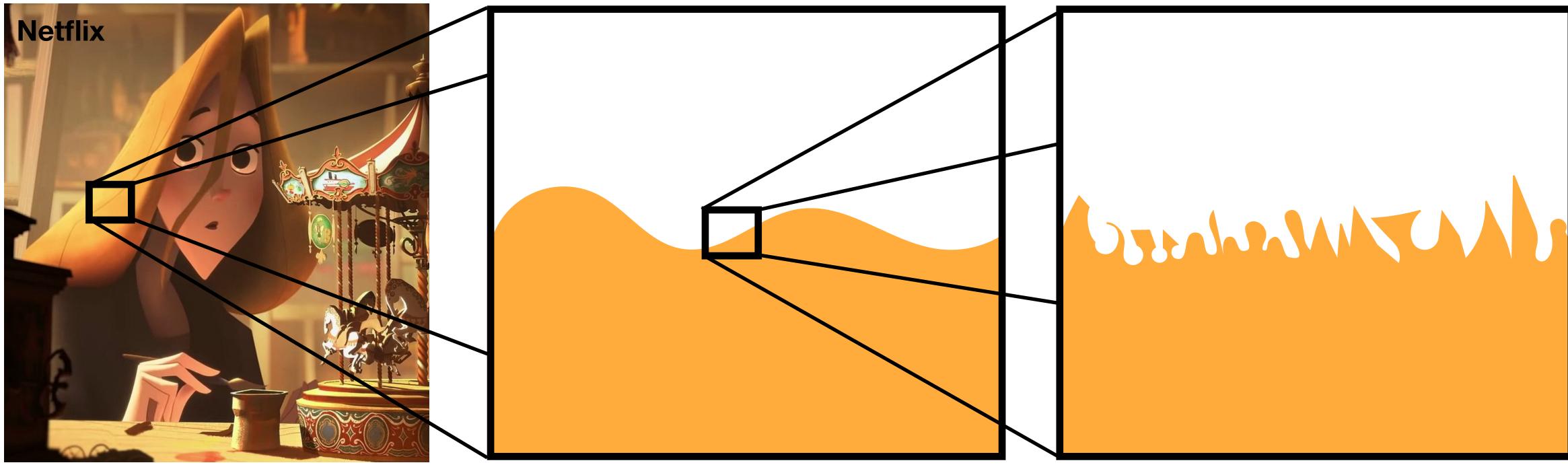
Rough dielectric material



139

Three Levels of Detail

Key Idea: transition from individual interactions to statistical averages



Macro Scale

Meso Scale

Scene geometry

Detail at intermediate scale

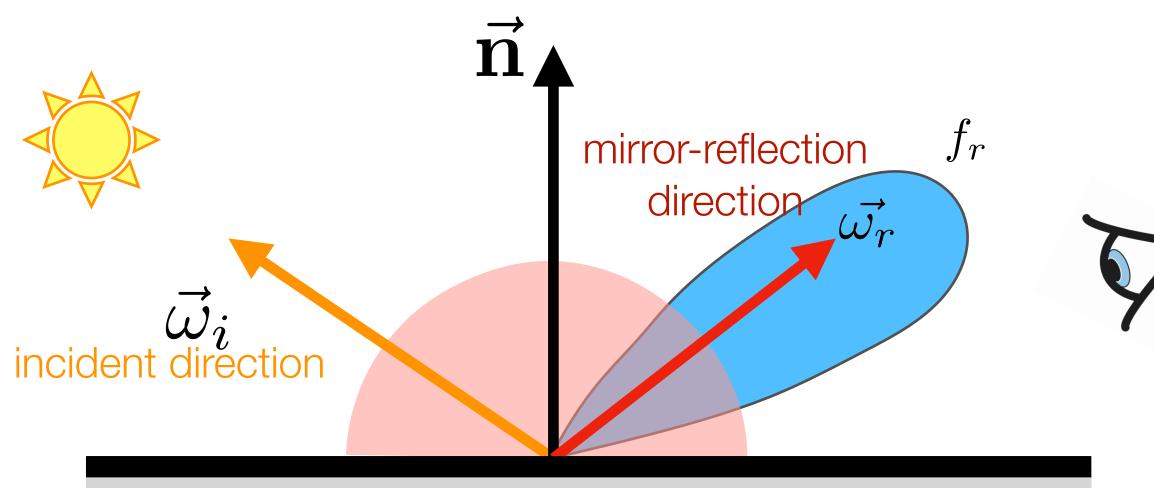
Realistic Image Synthesis SS2020

Micro Scale Roughness

140

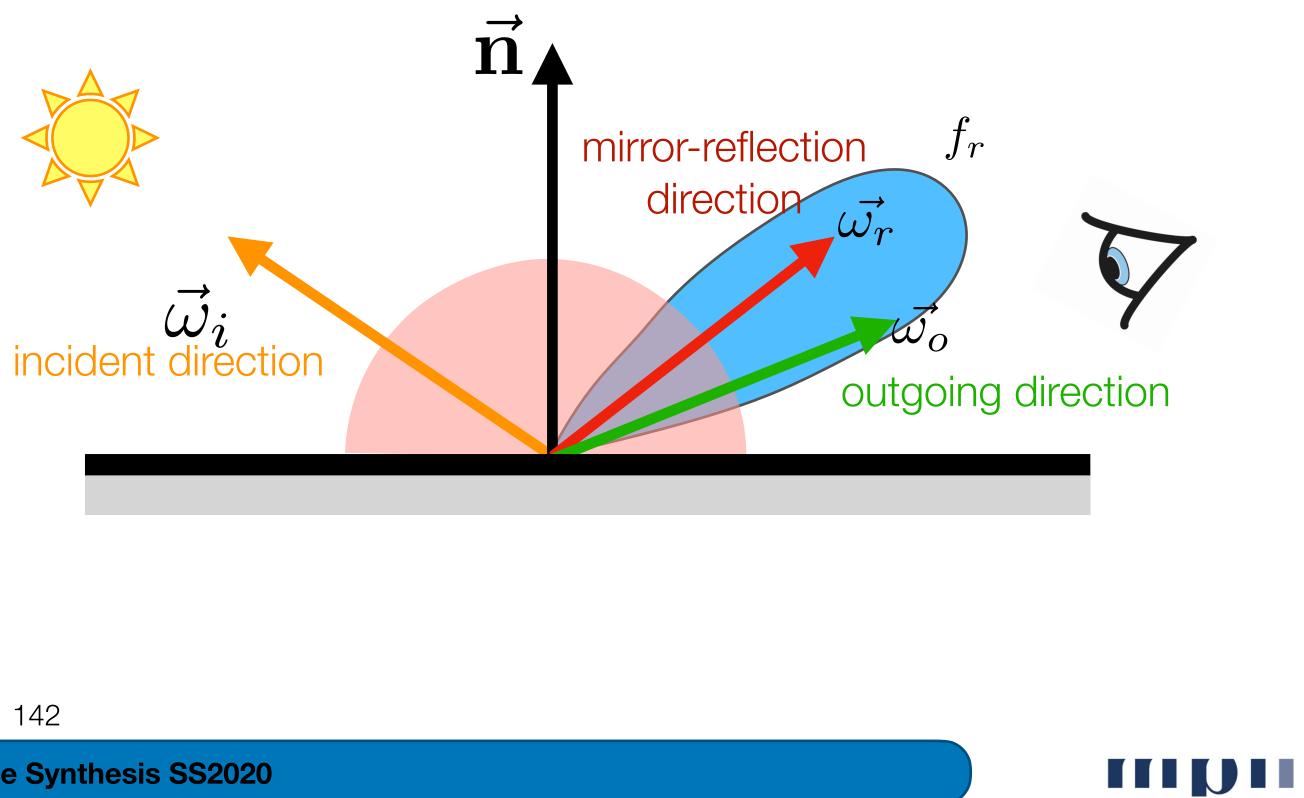
Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:



Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

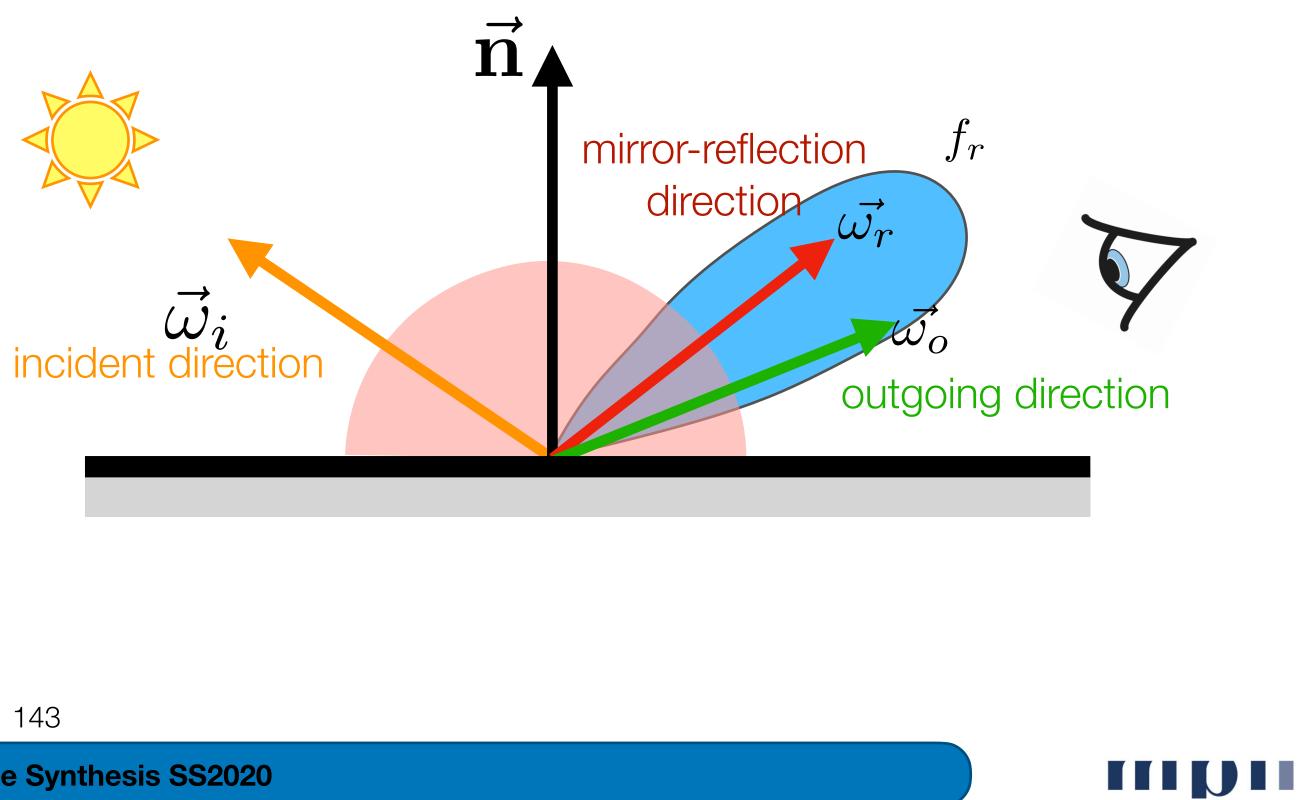


Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

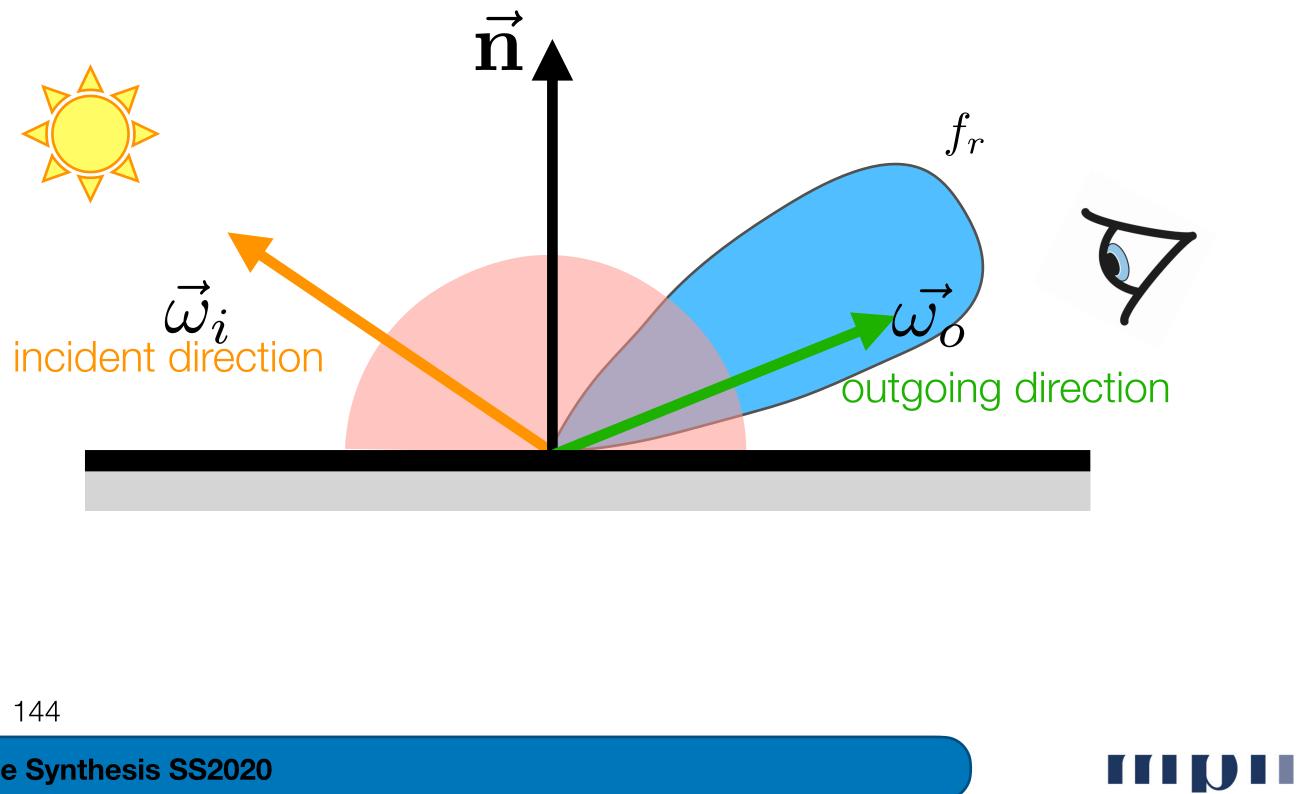
$$f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{e+2}{2\pi} (\vec{\omega}_r \cdot \vec{\omega}_o)^e$$

 $\vec{\omega_r} = (2\vec{\mathbf{n}}(\vec{\mathbf{n}}\cdot\vec{\omega_i}) - \vec{\omega_i})$



Blinn-Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

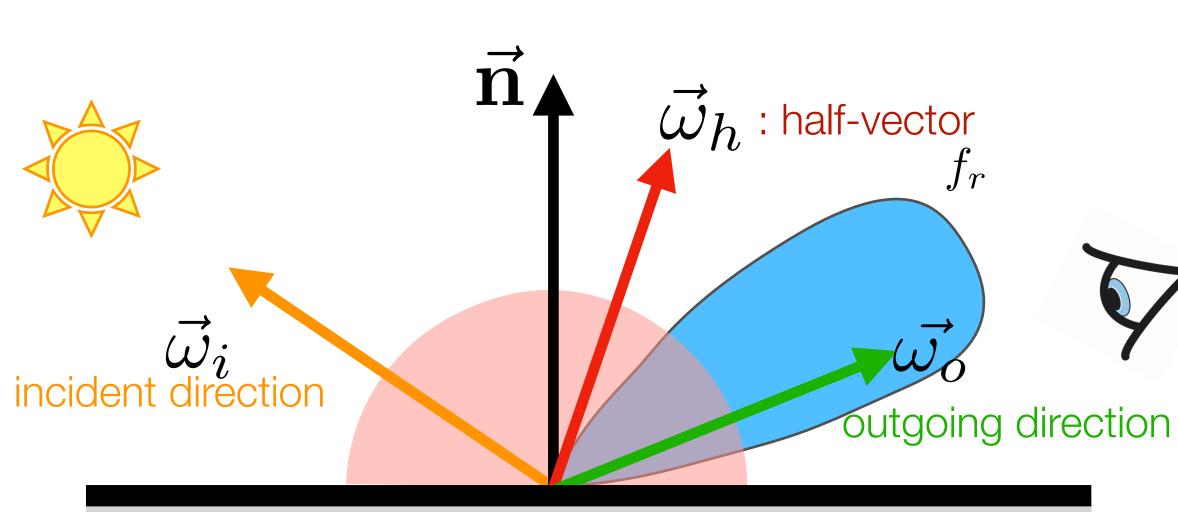


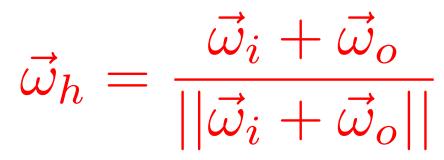
Blinn-Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

$$f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{e+2}{2\pi} (\vec{\omega}_h \cdot \vec{\mathbf{n}})^e$$

 $\vec{\omega_r} = (2\vec{\mathbf{n}}(\vec{\mathbf{n}}\cdot\vec{\omega_i}) - \vec{\omega_i})$





Rough Surfaces

Empirical glossy models have limitations:

- not physically-based
- (often) not reciprocal

146

Rough Surfaces

Empirical glossy models have limitations:

- not physically-based
- (often) not reciprocal

literature

- (often) no Fresnel effects
- cannot accurately model appearance of many glossy surfaces

- not energy-preserving (can be normalized): many conflicting normalizations in the

Rough Surfaces

Empirical glossy models have limitations:

- not physically-based
- (often) not reciprocal

literature

- (often) no Fresnel effects
- cannot accurately model appearance of many glossy surfaces Blinn-Phong was first step in the right direction Can do Better

- not energy-preserving (can be normalized): many conflicting normalizations in the

Microfacet Theory

Realistic Image Synthesis SS2020

Microfacet Theory

In geometric-optics-based approaches, rough surfaces can be modeled as a collection of small microfacets.

Surfaces comprised of microfacets are often modeled as heightfields, where the distribution of facet orientations is described statistically

Microfacet Theory

Assume surface consists of tiny facets

Assume that the differential area being viewed/illuminated is relatively large compared to the size of microfacets

A facet can be perfectly specular or diffuse

151

Torrance-Sparrow Model

Developed by Torrance & Sparrow in 1967

Originally used in the physics community

152

Torrance-Sparrow Model

- Developed by Torrance & Sparrow in 1967
- Originally used in the physics community
- Adapted by Cook & Torrance and Blinn for graphics
 - added ambient and diffuse terms

Torrance-Sparrow Model

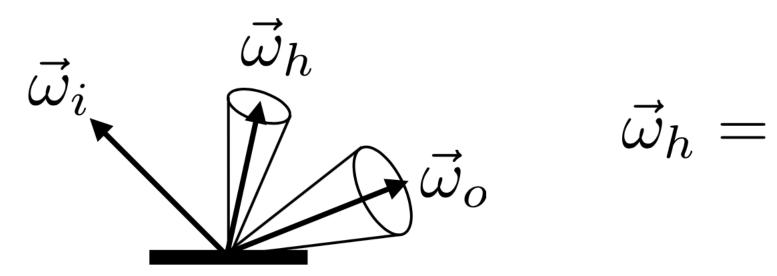
- Developed by Torrance & Sparrow in 1967
- Originally used in the physics community
- Adapted by Cook & Torrance and Blinn for graphics
 - added ambient and diffuse terms
- Explain off-specular peaks

Assumes surface is composed of many micro-grooves, each of which is a perfect mirror

Copper-colored plastic

(1981)

 $f(\vec{\omega}_i, \vec{\omega}_o) = \frac{F(\vec{\omega}_h, \vec{\omega}_o) \cdot D(\vec{\omega}_h) \cdot G(\vec{\omega}_i, \vec{\omega}_o)}{4|(\vec{\omega}_i \cdot \vec{\mathbf{n}})(\vec{\omega}_o \cdot \vec{\mathbf{n}})|}$



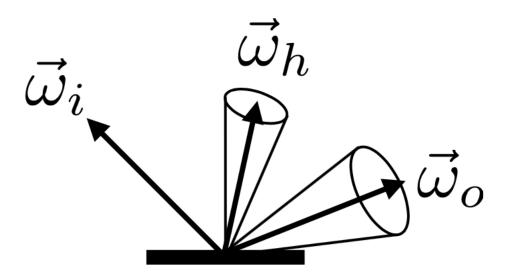
Realistic Image Synthesis SS2020

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

156

Fresnel coefficient 、

 $f(\vec{\omega}_i, \vec{\omega}_o) = \frac{F(\vec{\omega}_h, \vec{\omega}_o)}{F(\vec{\omega}_i, \vec{\omega}_o)}$



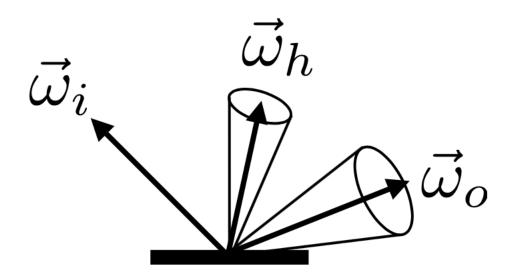
$$\frac{\vec{\omega}_{o}}{4|(\vec{\omega}_{i}\cdot\vec{\mathbf{n}})(\vec{\omega}_{o}\cdot\vec{\mathbf{n}})|}$$

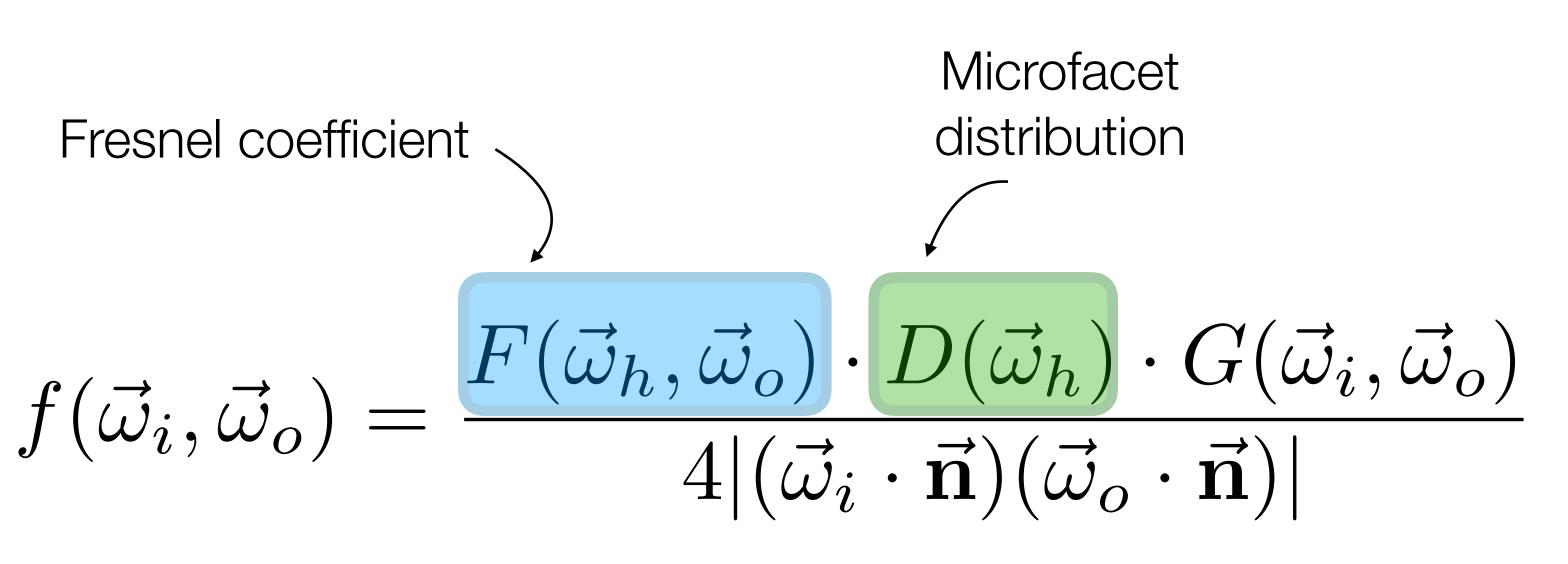
$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

157

Realistic Image Synthesis SS2020

Fresnel coefficient



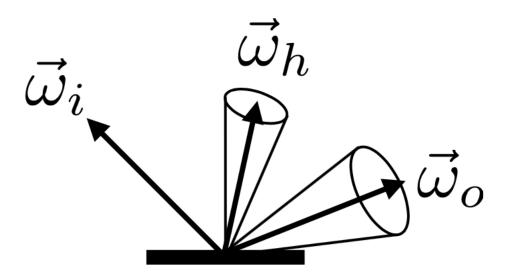


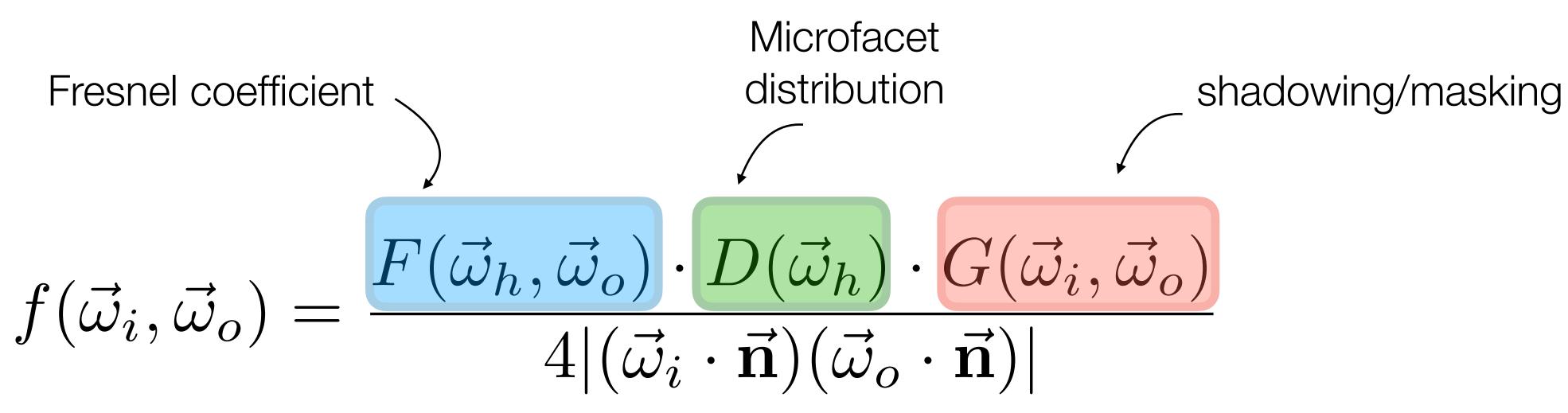
$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

158

Realistic Image Synthesis SS2020

Fresnel coefficient





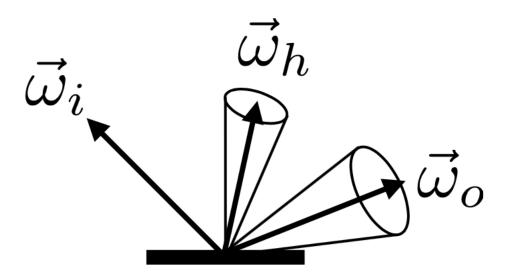
$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

159

Realistic Image Synthesis SS2020

Fresnel coefficient 、

 $f(\vec{\omega}_i, \vec{\omega}_o) = \frac{F(\vec{\omega}_h, \vec{\omega}_o)}{F(\vec{\omega}_i, \vec{\omega}_o)}$



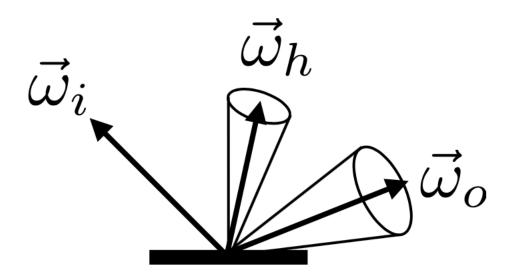
$$\frac{\vec{\omega}_o)}{4|(\vec{\omega}_i \cdot \vec{\mathbf{n}})(\vec{\omega}_o \cdot \vec{\mathbf{n}})|}$$

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

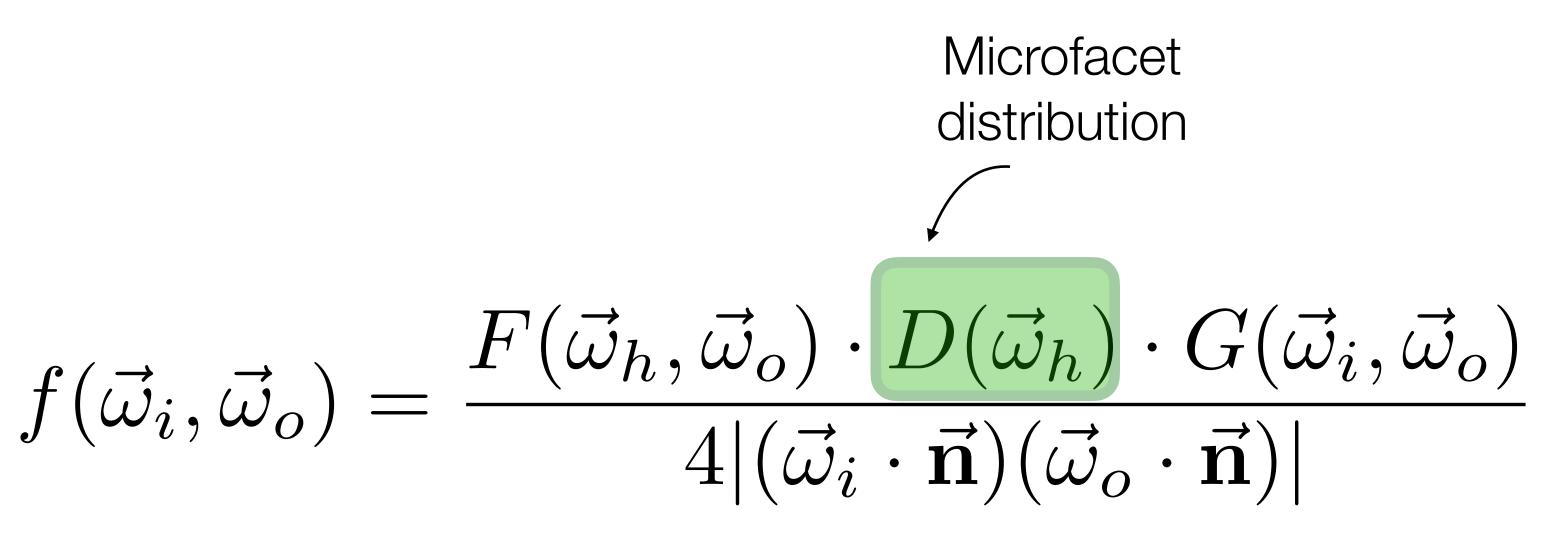
160

Realistic Image Synthesis SS2020

Fresnel Term

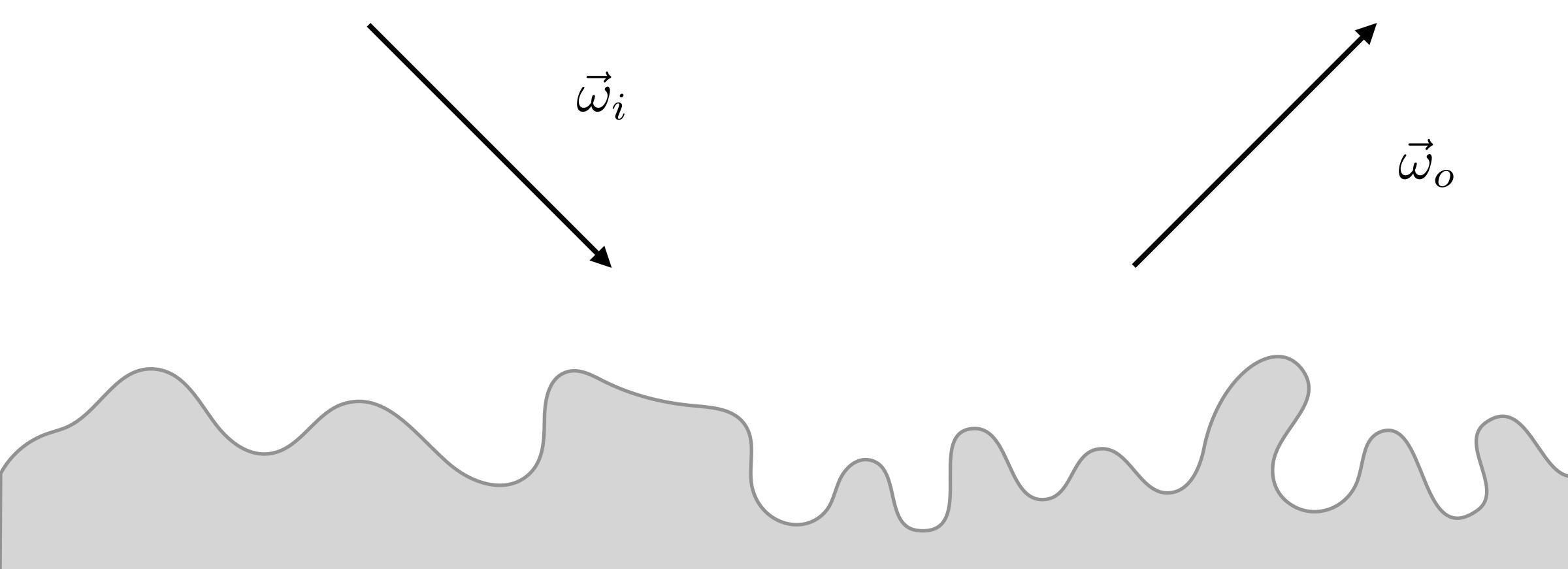


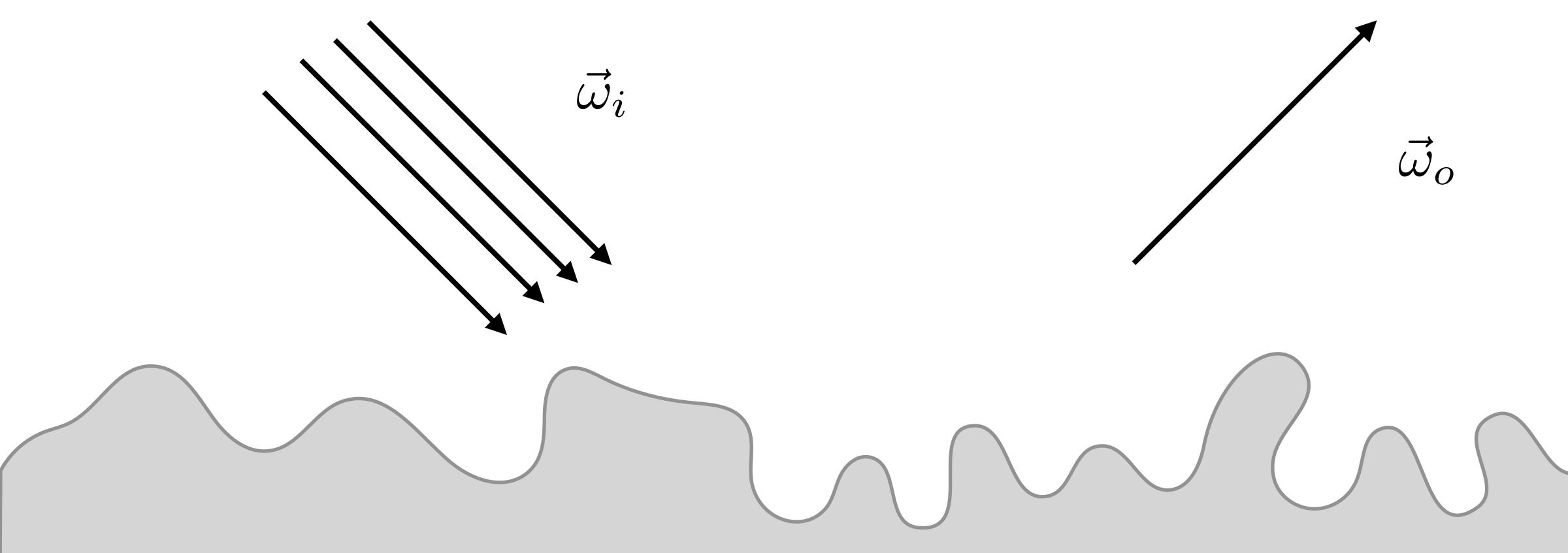
Realistic Image Synthesis SS2020

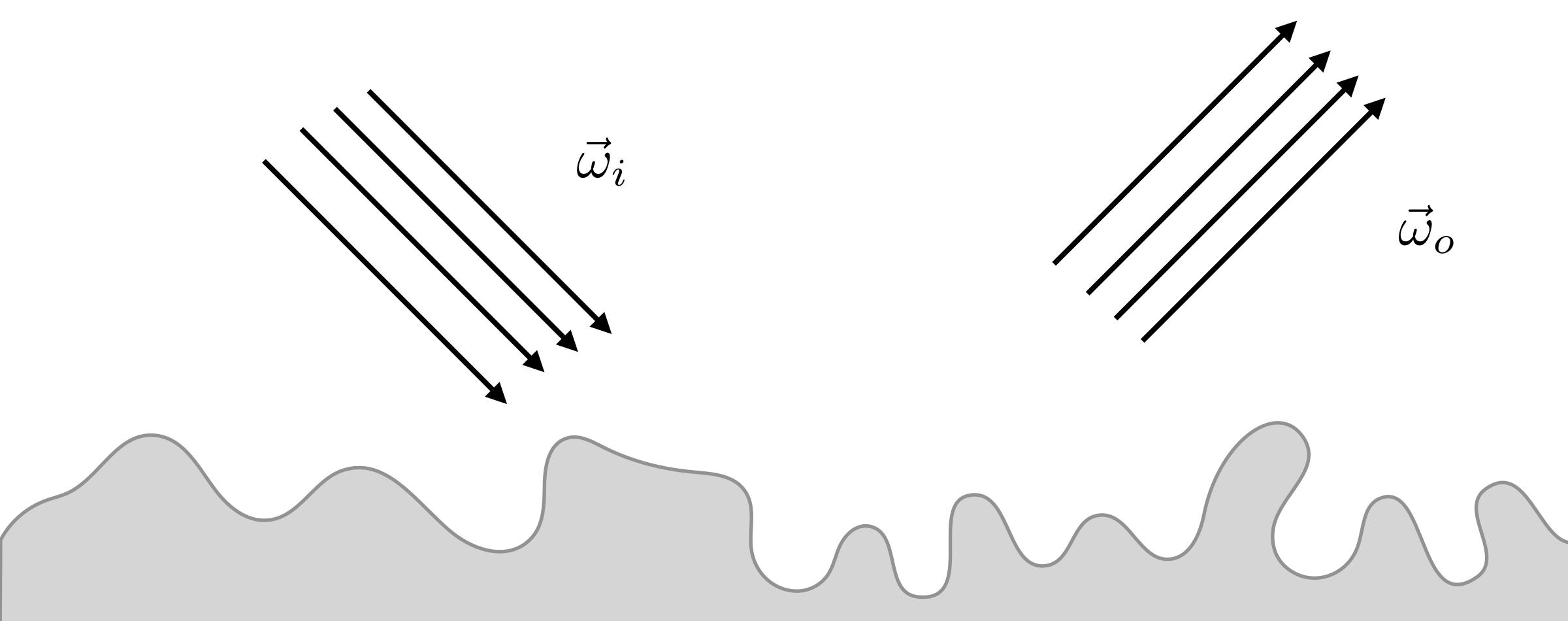


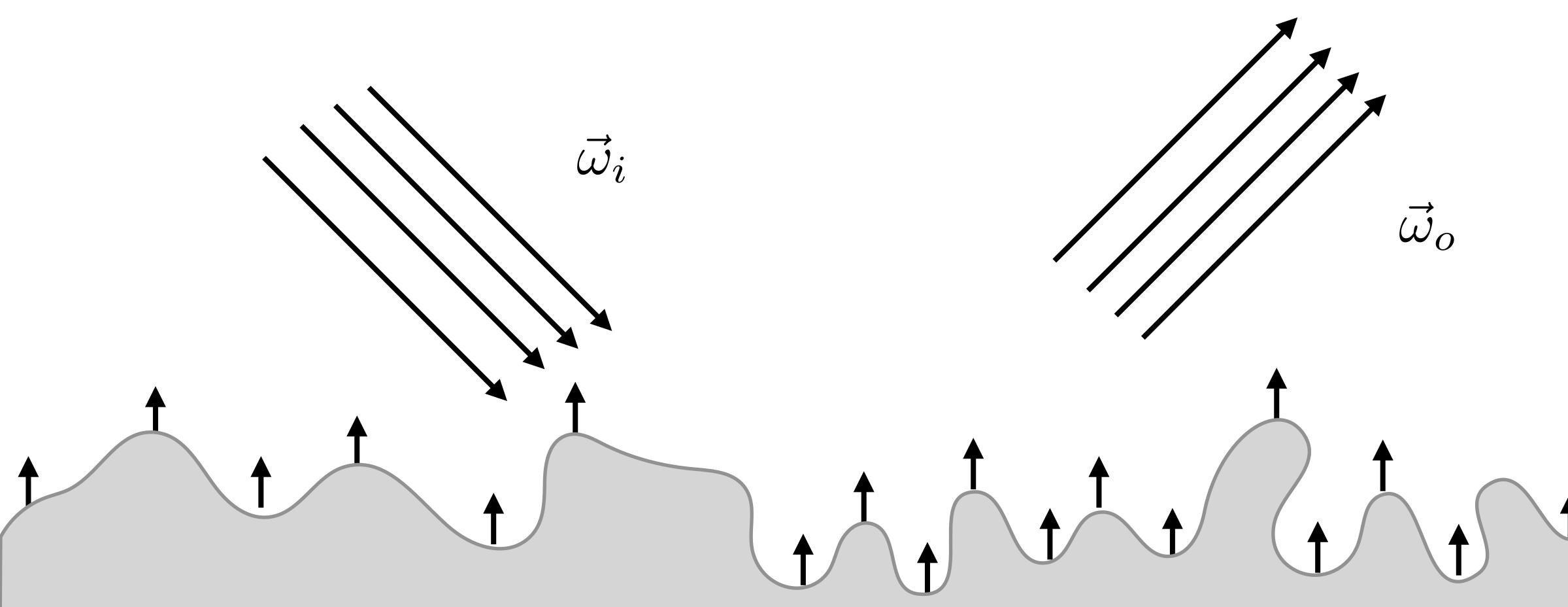
$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

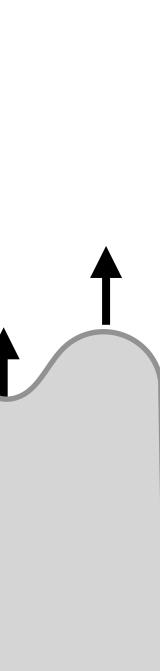
162

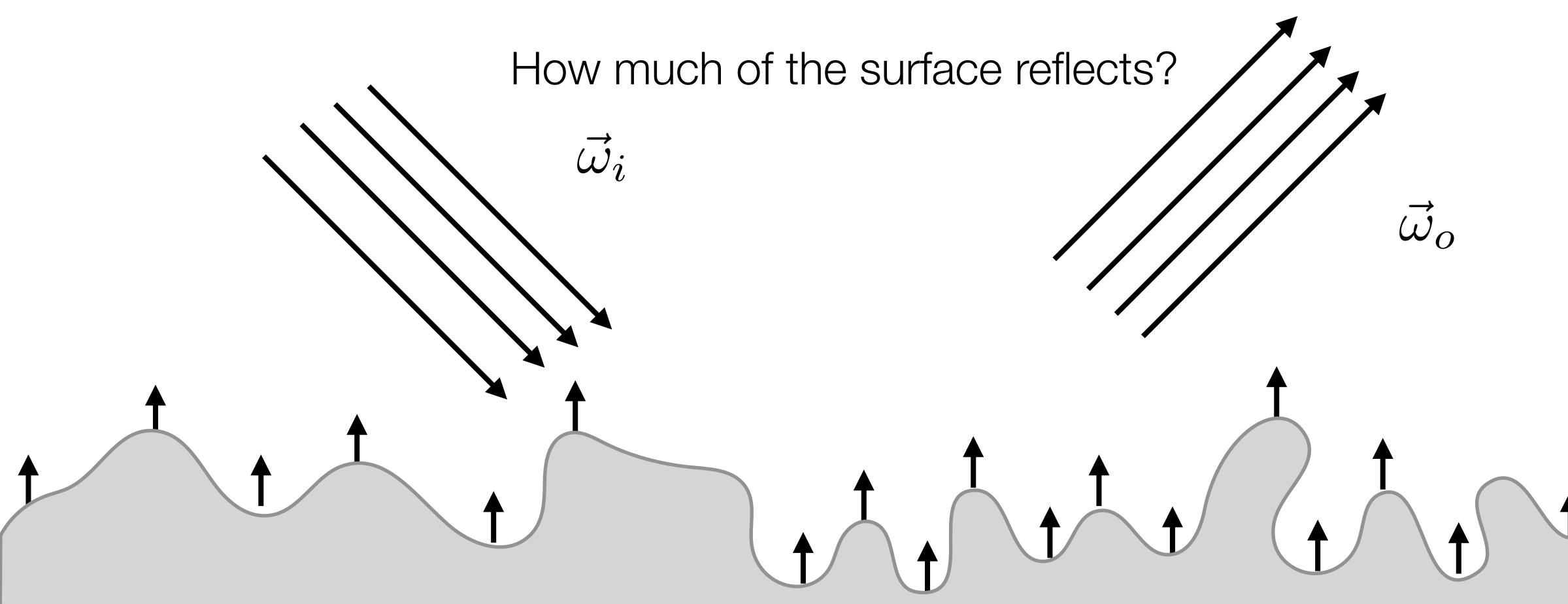


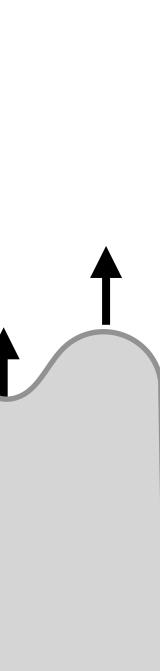












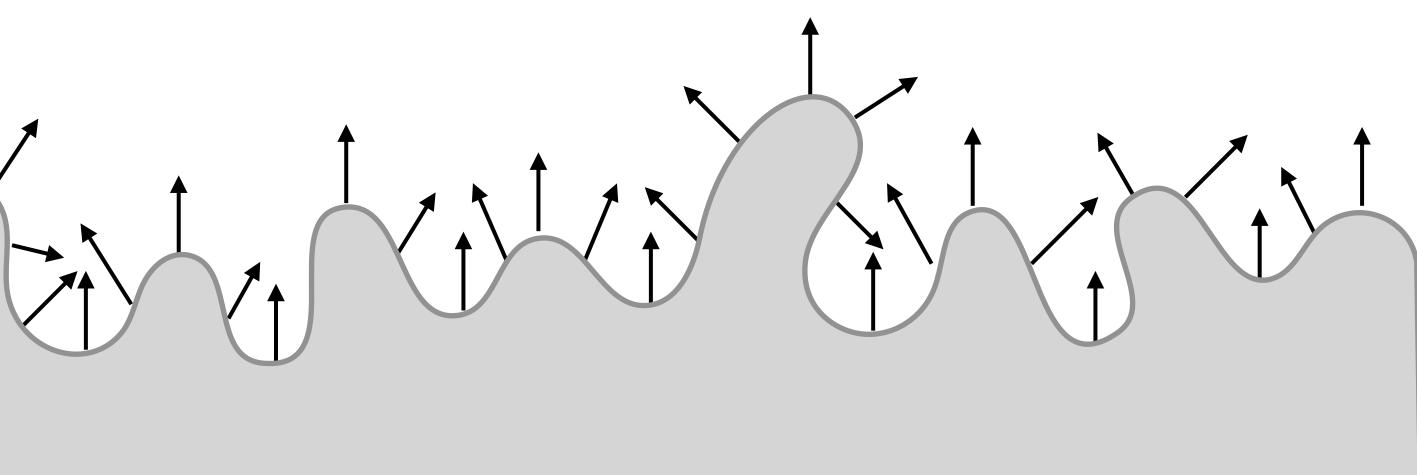
What fraction of the surface participates in the reflection?

2) Solve using principles of statistical physics

there are many bumps?

- 1) difficult to say (need an actual micro surface to compute this, tedious..)

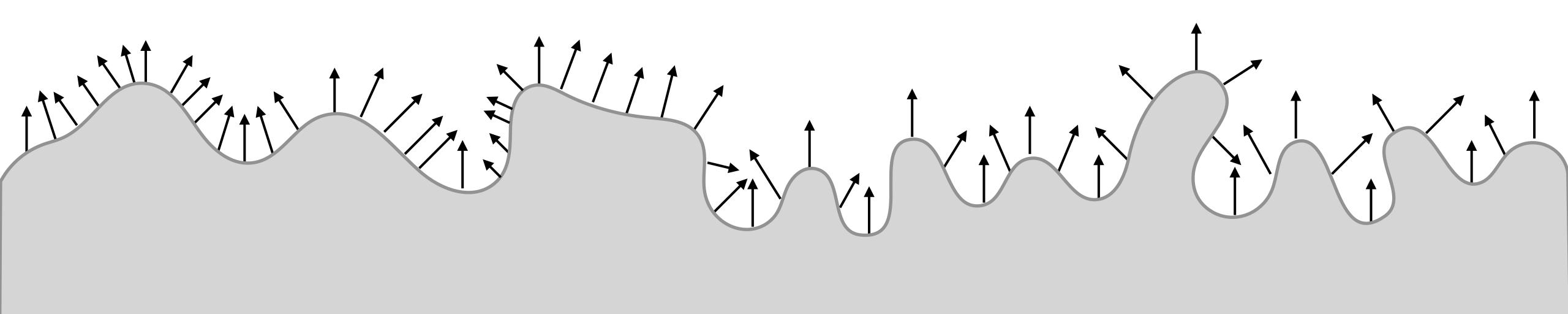
 - Is there anything general we can say about the surface when



Fraction of facets facing each direction

Probability density function over projected solid angle (must be normalized):

 $D(\vec{\omega}_h)$

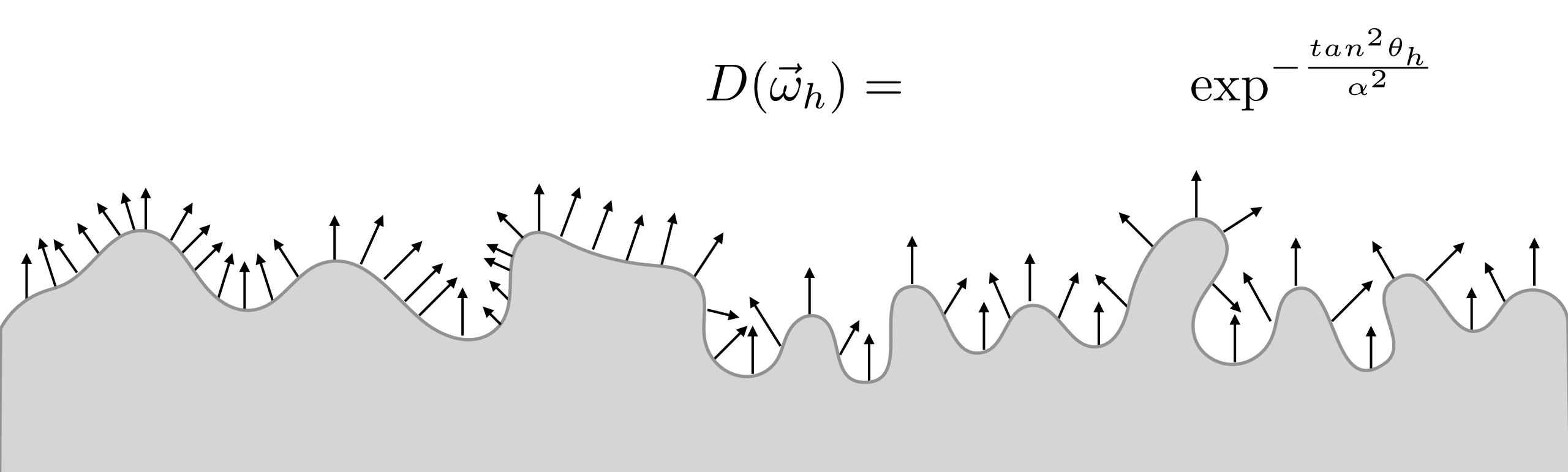


$$\cos \theta_h d\vec{\omega}_h = 1$$

Beckmann-Spizzichino Model

The slopes follow a Gaussian distribution

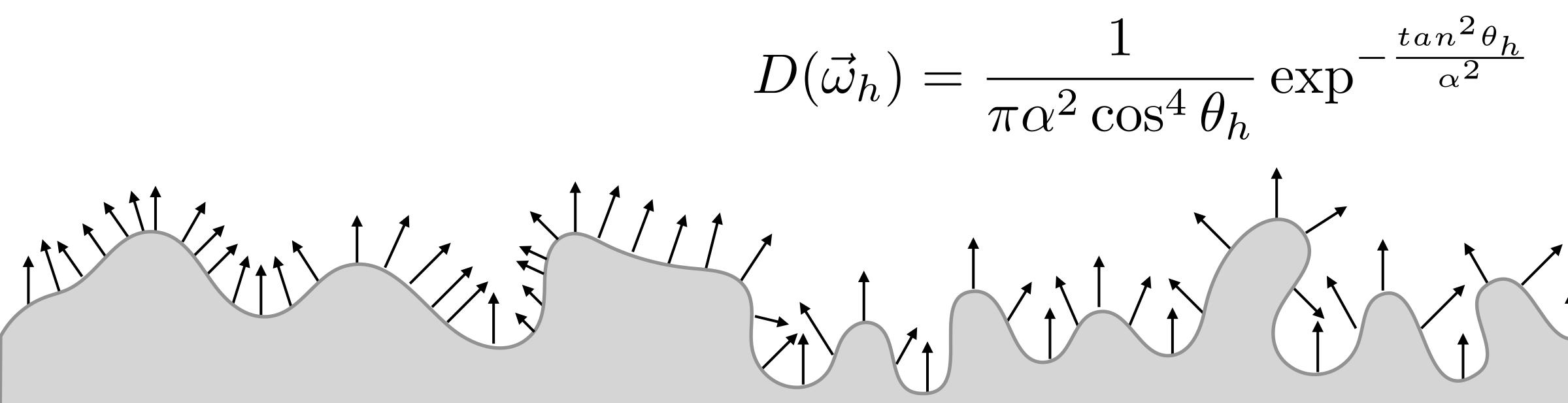
Let's express slope distribution w.r.t. directions

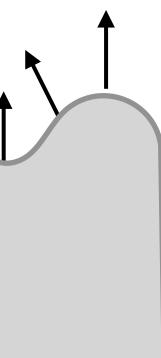


Beckmann-Spizzichino Model

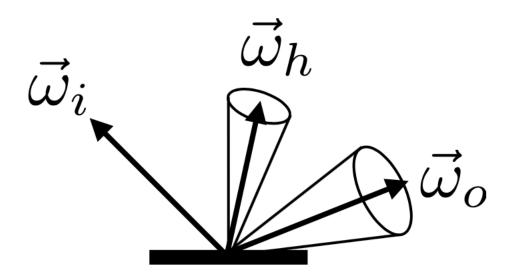
The slopes follow a Gaussian distribution

Let's express slope distribution w.r.t. directions





General Microfacet Model shadowing/masking $f(\vec{\omega}_i, \vec{\omega}_o) = \frac{F(\vec{\omega}_h, \vec{\omega}_o) \cdot D(\vec{\omega}_h) \cdot G(\vec{\omega}_i, \vec{\omega}_o)}{4|(\vec{\omega}_i \cdot \vec{\mathbf{n}})(\vec{\omega}_o \cdot \vec{\mathbf{n}})|}$

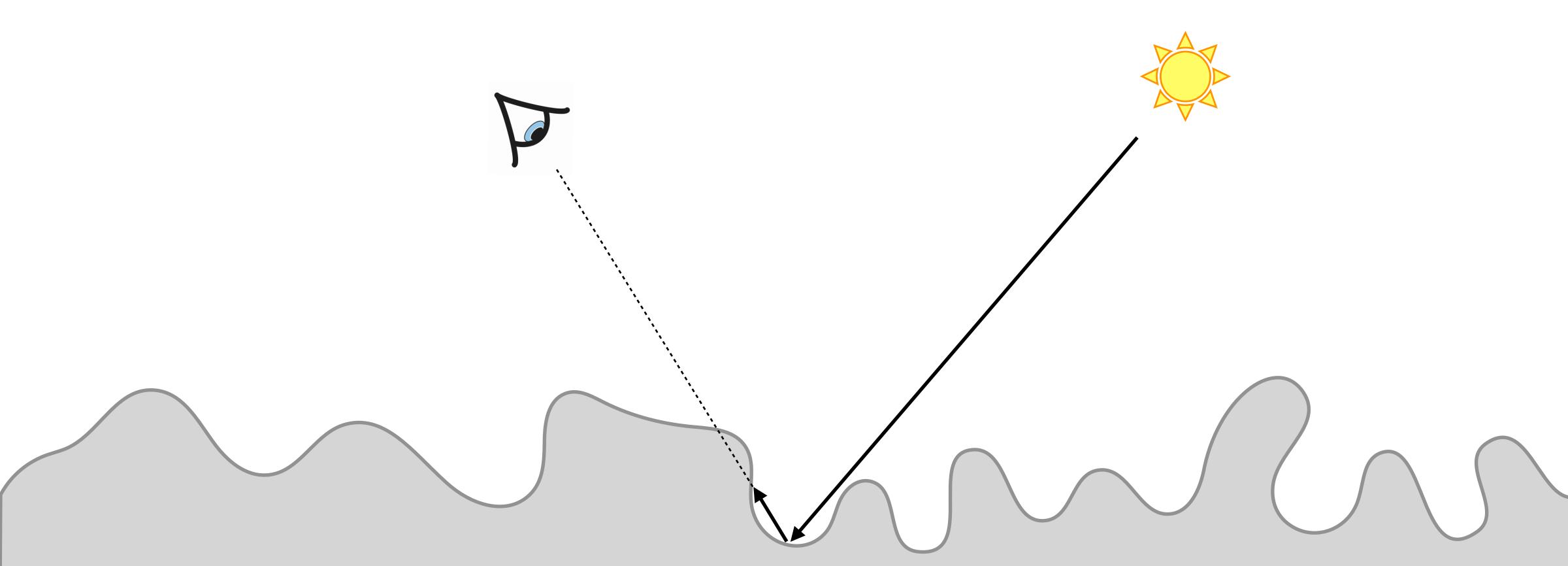


Realistic Image Synthesis SS2020

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

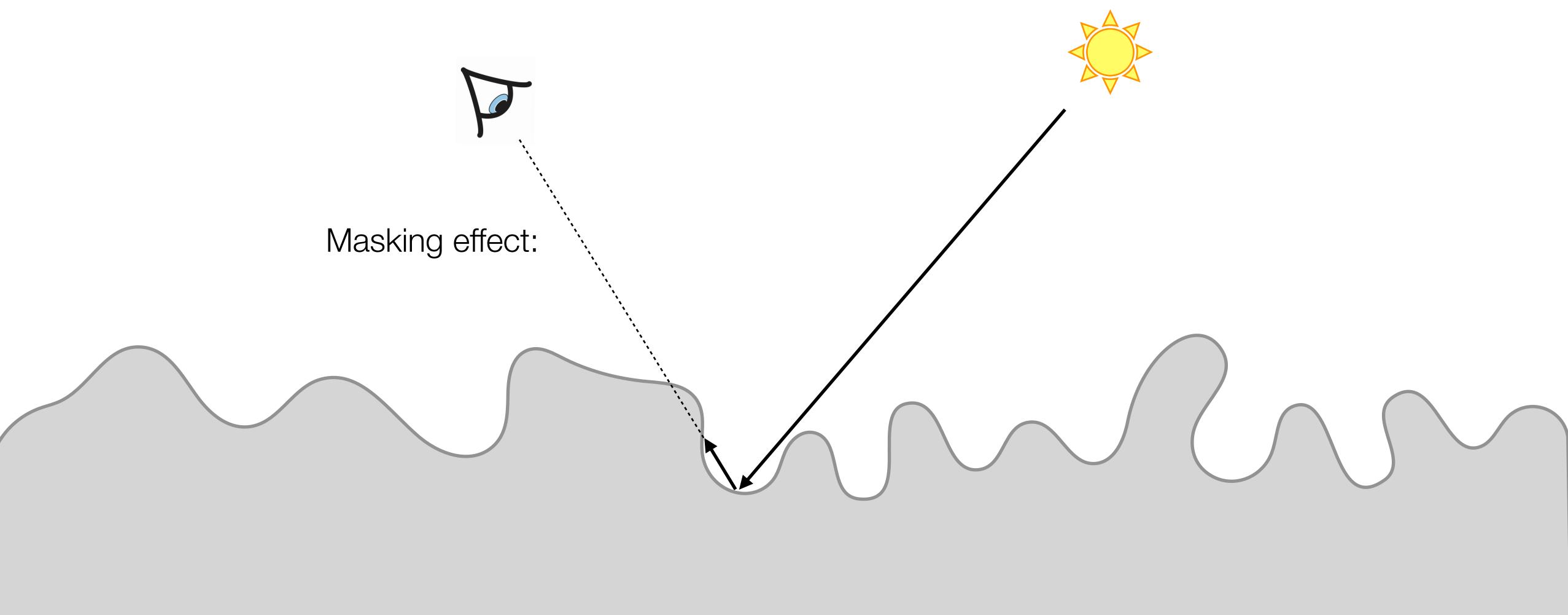
172

Microfacet Distribution: Masking effect



Microfacet Distribution: Masking effect

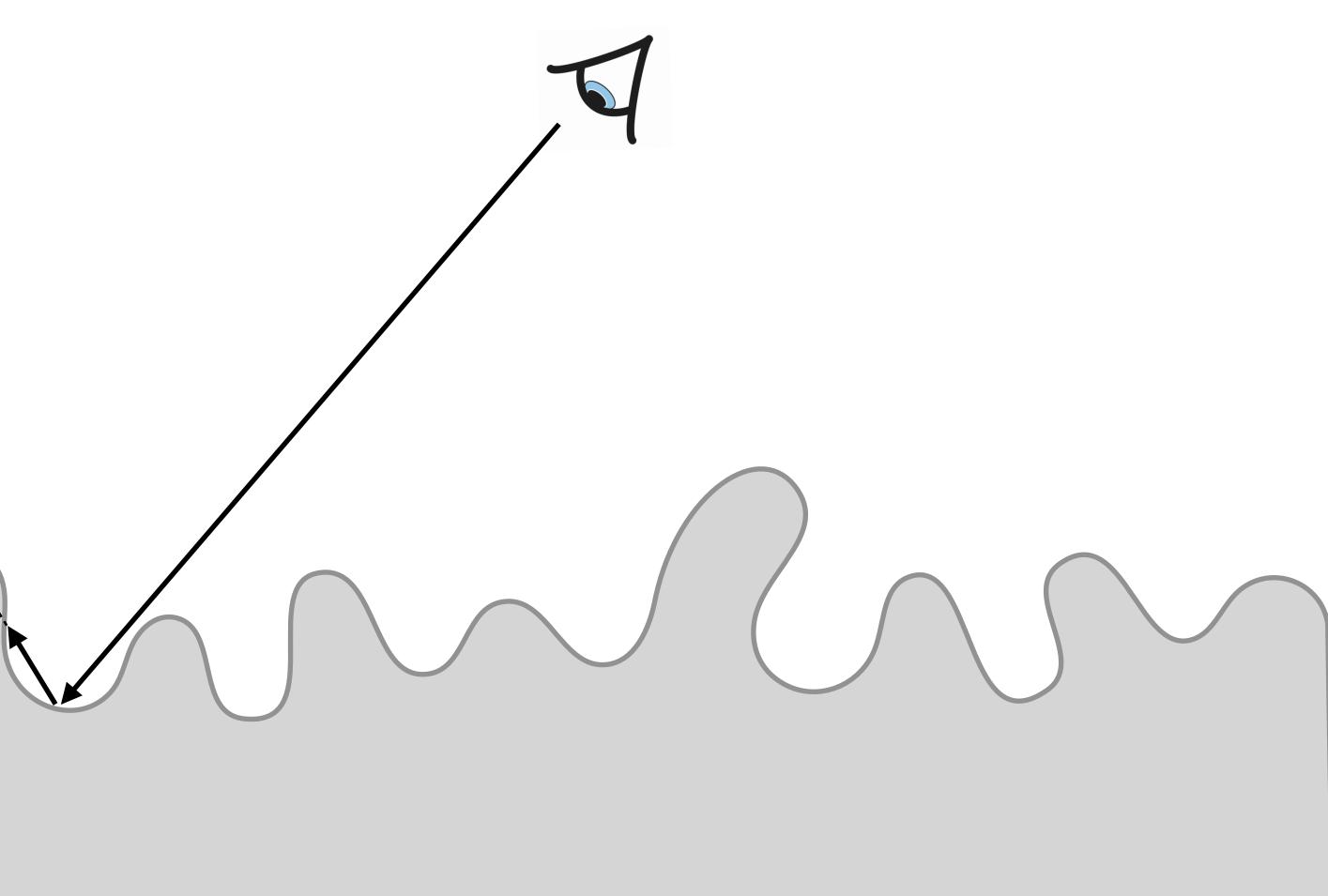
The microfacet of interest not visible to the viewer due to occlusions



Microfacet Distribution: Shadowing effect

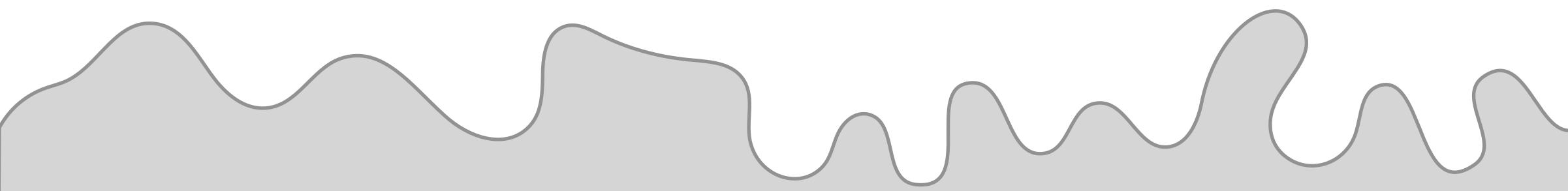
Shadowing effect:

Light does not reach the microfacet



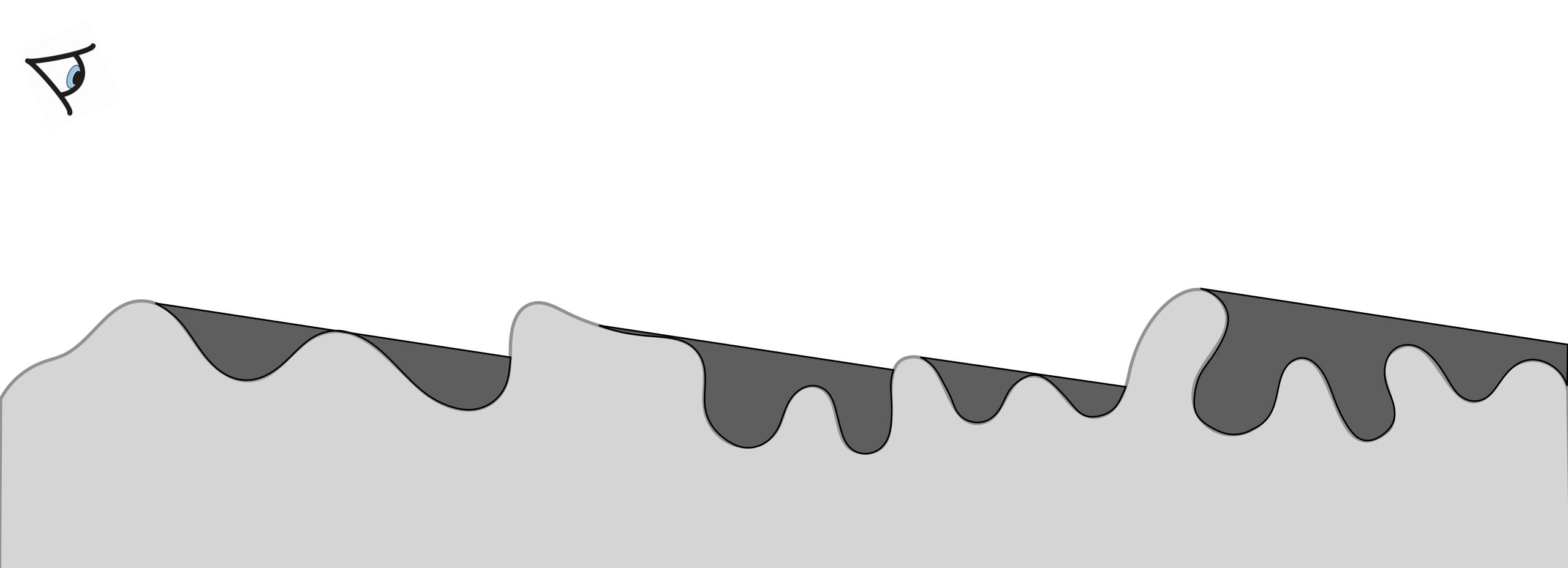
Microfacet Distribution: Shadowing/Masking

Light bounces among the facets before reaching the viewer



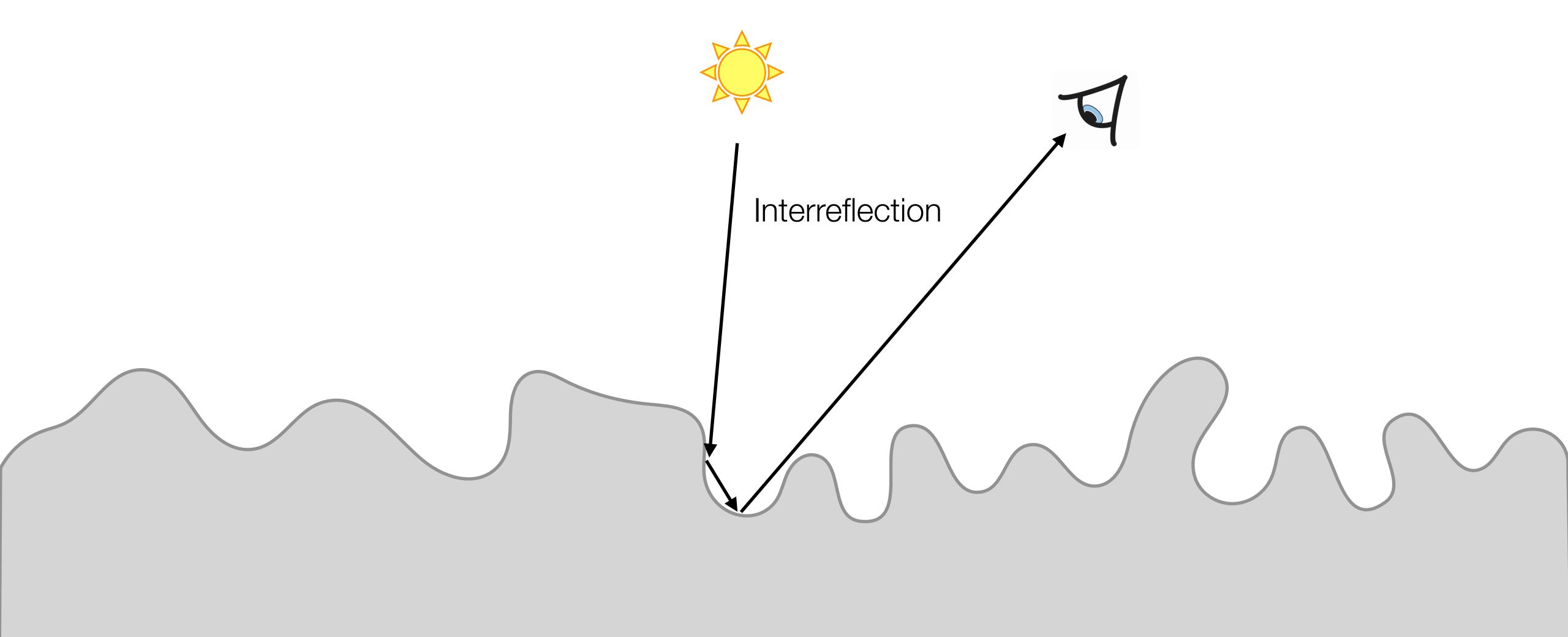
Microfacet Distribution: Shadowing/Masking

Light bounces among the facets before reaching the viewer



Microfacet Distribution: Interreflection

Light bounces among the facets before reaching the viewer



Reading

- PBRT Section 8.4
- GGX Distribution, <u>Walter et al. (EGSR 2007)</u>
- Isotropic and anisotropic microfacet distributions
- Ashikhmin-Shirley model, allowing for anisotropic surface

 Oren–Nayar model, a "directed-diffuse" microfacet model, with perfectly diffuse (rather than specular) microfacets.

reflectance, along with a diffuse substrate under a specular

Isotropic microfacet distribution

Anisotropic microfacet distribution

Acknowledgements

Slides material borrowed from multiple resources.

lectures available online

Realistic Image Synthesis SS2020

Special thanks to Wojciech Jarosz for making his rendering

