&

Monte Carlo Integration

Philiop Slusallek Karol Myszkowski
Gurprit Singh

T



A la Carte

e og-algebra and measure

e Random Variables

 Probability distribution functions (PDFs and PMFs)
e Conditional and Marginal PDFs

e Expected value and Variance of a random variable

e Monte Carlo Integration
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Motivation: Ray Tracing
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Ray Tracing
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Ray Tracing
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Path Tracing




Path Tracing
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Path Tracing
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Path Tracing
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How can we analyze the noise
present in the images ?
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Probability Theory
and/or
Number Theory
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Probability Theory
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e Discrete Probability Space

e Continuous Probability Space

DES
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Rolling a fair dice @

0 =1{1,2,3,4,5,6}
 Finite outcomes: discrete random experiment

e (Can ask the outcome is a number: 1 or 6

e Can ask the outcome is a subset, e.g. all prime numbers:
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Rolling a fair dice @

0 ={1,2,3,4,5,6)

e R1: Apart from elementary values, the focus lies on subsets of ()

e R2: A probabillity assigns each element or each subset of a
positive real value

The first requirement leads to the concept of o-algebra

The second to the mathematical construct of a measure

T



Random number in [0,1]

—O0—0O0O0-O0—C0O0——»
2 0 1

 Uncountably infinite outcomes: continuous random experiment

e Does not make sense to ask for one number as output, e.g. 0.245

e We need to ask for the probability of a region, e.g. [0.2,0.4] or [0.36,0.89]
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Random number in [0,1]

—O0—0O0O0-O0—C0O0——»
2 0 1

e R1: As in discrete case, focus lies on subsets of {2, also called events

e R2: A probability assigns each subset of a positive real value.

The first requirement leads to the concept of Borel o-algebra

The second to the mathematical construct of a Lebesgue measure

21
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o-Algebra

e Mathematical construct used in probability and measure theory
1. Take on the role of system of events in probability theory

e Simply spoken: Collection of subsets of a given set

A. A non-empty collection of subsets C nat is closed under the set
theoretical operations of: countable unions, countable intersections,
and complement
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o-Algebra

e For discrete set () :

1. The sigma-algebra corresponds to the power set of omega (set of all
subsets)
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o-Algebra

e For discrete set () :

1. The sigma-algebra corresponds to the power set of omega (set of all
subsets)

2 ={0,1}
% ={{¢},{0},{1},{0,1}}
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o-Algebra

e For discrete set () :

1. The sigma-algebra corresponds to the power set of omega (set of all
subsets)

0= {0,1) Q= {a,b,c,d)
% ={{¢},{0},{1},{0,1}} % ={{¢},{a,b},{c,d},{a,b,c,d}}
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o-Algebra

e For continuous set ():

A. The associated sigma algebras are the Borel sets ove l.e., the collection
of all open sets over omega that can be generated via countable unions,
countable intersections, and complement of open sets

UNIVERSITAT
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o-Algebra

e For continuous set ():

A. The associated sigma algebras are the Borel sets over (), i.e., the collection
of all open sets over omega that can be generated via countable unions,
countable intersections, and complement of open sets

I =1{p,q),p,q € R Fixed half-interval
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o-Algebra

e For continuous set ():

A. The associated sigma algebras are the Borel sets over (), i.e., the collection
of all open sets over omega that can be generated via countable unions,
countable intersections, and complement of open sets

I =1{p,q),p,q € R Fixed half-interval

T =la,8) C [p,q) Collection of all half-intervals
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o-Algebra

e For continuous set ():

A. The associated sigma algebras are the Borel sets over (), i.e., the collection
of all open sets over omega that can be generated via countable unions,
countable intersections, and complement of open sets

I =1{p,q),p,q € R Fixed half-interval

T =la,8) C [p,q) Collection of all half-intervals

Here, I is not a o-algebra because, generally speaking, neither the union
nor the difference of two half-intervals is a half-interval.
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o-Algebra

It Is the mathematical construct that allows defining a measure
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Measure

e |n probability theory, it plays the role of a probability distribution

e A real-valued set function defined on a sigma-algebra that assigns each
subset of a sigma-algebra a non-negative real number.

e A sigma-additive set function: i.e., the measure of the union of disjoint
sets is equal to the sum of the measures of the individual sets
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Lebesgue Measure

e Standard way of assigning measure to subsets of n-dimensional
Euclidean space.

e Forn=1,2 or 3, it coincides with the standard measure of length, area or
volume, respectively.

Length Area Volume

DES
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Random Variable

e Central concept in probability theory

e Enables to construct a simpler probability space from a rather complex
one

e Correspond to a measurable function defined on a jebra that
assigns each element to a real number
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Random Variable

e A random variable X is a value chosen by some random process

e Random variables are always drawn from a domain: discrete (e.g., a fixed
set of probabilities) or continuous (e.g., real numbers)

e Applying a func random var ults in a new random
variable

T




Discrete Probability Space

T



Discrete Random Variable

e Random variable (RV):
X:Q— F Q=A{x1,29, ... ,Tn}

e Probabilities:

{p17p27 R 7pn}

N
>
1=1
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Discrete Random Variable

e Example: Rolling a Die
L1 = 1,.’,132 — 2,373 — 3,564 — 4,%5 — 5,.’,176 =3

e Probability of each event:

pi=1/6 ftori=1,...,6 p(X:i):l

T



Discrete Random Variable

P2< X <4)=)» P(X =i

4

1
2

1
6

1=2
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Probability mass function

e PMF is a function that gives the probability that a discrete
RV is exactly equal to some value.

e PMF is different from PDF (probability density function)
which is for continuous RVSs.
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Probability mass function

Constant PMF Non-uniform PMF

0.4
0.3

I 1 1 1 1 1
6 6 6 6 6 O
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Continuous Probability Space
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Continuous Random Variable

* |n rendering, discrete random variables are less common than continuous
random variables

e Continuous random variables take on values that ranges of continuous
domains (e.g. real numbers or directions on the unit sphere)

e A particularly important random variable is the canonical uniform random
variable, which we write as &
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Continuous Random Variable

£ €|0,1)
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Continuous Random Variable

—O0—0-O0-0—C0-O0—»
0 1

e We can take a continuous, uniformly distributed random variable £ € [0, 1)
and map to a discrete random variable, choosing X, If:
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Continuous Random Variable

0 1

e We can take a continuous, uniformly distributed random variable £ € [0, 1)
and map to a discrete random variable, choosing X, If:

1—1 ()
> pi<E<D p
=1 j=1

&

X; ={1,2,3,4,5,6)

T









Continuous Random Variable

e For lighting application, we might want to define probability of sampling
ilumination from each light source in the scene based on its power P,

Here, the probabillity is relative to the total power
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Probability Density Functions

T



Probability density function

—0—00-0—C0-0—

0 7 2

* Consider a continuous RV that ranges over real numbers: |0, 2), where
the probability of taking on any particular value x is proportional to the

value 2 — x

e |tis twice as likely for this random variable to take on a value around O as
it IS to take around 1, and so forth.
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Probability density function

e The probability density function (PDF) formalizes this idea: it describes
the relative probability of a RV taking on a particular value.

e Unlike PMF, the values of the PDFs are not the probabilities as such: a
PDF must be integrated over an interval to yield a probability

T



Probability density function

For uniform random variables: For non-uniform random variables:
1 z€]0,1) |
p(x) = | p(x) could be any function
0 otherwise
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Probability density function

Uniform distribution Non-uniform distribution

constant pdf
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Probability density function

Uniform distribution Non-uniform distribution

constant pdf
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Probability density function

Some properties of PDFs: p(x) >0
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Probability density function

b
/ p(z)dr =1 x € |a,b)

constant pdf
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Probability density function

b
/ p(z)dr =1 x € |a,b)

constant pdf

b
/ Cdr=1
p(z) =C a
b
C/ dr =1
: ° Cb—a)=1
1
(O —

b— a
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Probability density function

b
/ p(z)dr =1 x € |a,b)

constant pdf

b
/ Cdr=1
p(z) =C a
’ 1
C’/a der =1 p(x):b_a
2 ° Cb—a)=1
1
O —

b— a
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Cumulative distribution function

e The PDF p(x) is the derivative of the random variable's CDF:

T



Cumulative distribution function

e The PDF p(x) is the derivative of the random variable's CDF:

_ dP(x)

p(x) -

P(x) : cumulative distribution function (CDF) ,
also called cumulative density function
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Cumulative distribution function

e The PDF p(x) is the derivative of the random variable's CDF:

_ dP(x)

p(x) - .

P(x) : cumulative distribution function (CDF) ,
also called cumulative density function
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Cumulative distribution function

p(x) = {1 v €10, 1) Pa)= [ s

0 otherwise

constant pdf

T



Cumulative distribution function

p(z) Pe)= [  pla)de

Non-constant pdf

T






Probability: Integral of PDF

e Given the arbitrary interval |a, b| in the domain, integrating the PDF gives
the probabillity that a RV lies inside that interval:

P(x € |a,bl) :/ p(x)dx

T



Examples: Sampling PDFs
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Constant Sampling PDFs

1 Random 2D 1 Jitterea 2D
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Constant Sampling PDFs

Random 1D
— (e OO === O
0 1
£el0,1)

Sampling a unit domain with uniform random samples
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Constant Sampling PDFs

Random 1D
—O—0-0-0—00-0———»
0 1

£el0,1)

Sampling a unit domain with uniform random samples
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Constant Sampling PDFs

Random 1D

0 otherwise

o(z) = {C r e |0,1)

£€|0,1)

Sampling a unit domain with uniform random samples
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Constant Sampling PDFs

Jittered 1D

Sampling each stratum with uniform random samples
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Constant Sampling PDFs

Jittered 1D

Sampling each stratum with uniform random samples
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Constant Sampling PDFs

Jittered 1D - | |
Probability density of generating a sample
; in an ¢-th stratum is given by:
| 1 plxz;) =777
> A\ = —
N

Sampling each stratum with uniform random samples

73

T



Constant Sampling PDFs

Jittered 1D - | |
Probability density of generating a sample
; in an ¢-th stratum is given by:
N ze€|4,5h)
1 1 p(z;) = .
LA = 0 otherwise
N

Sampling each stratum with uniform random samples

74
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Jittered 1D

Joint PDFs

First, we divide the domain into equal strata.
Second, we sample the domain.

This implies that two samples are correlated to each other.

T
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Joint PDFs

Jittered 1D
— ] ‘ First, we divide the domain into equal strata.
Qe Qe O Qe O Qe O =
A 1 1 Second, we sample the domain.
TN

This implies that two samples are correlated to each other.

For two different strata ¢ and 7, what is the joint PDF for jittered sampling ?

p(xi,xj) =777

T



Conditional and Marginal PDFs

T



Joint PDF

For two random variables X; and X5, the joint PDF p(x1, x5) is given by:

T



Joint PDF

For two random variables X; and X5, the joint PDF p(x1, x5) is given by:

p(x1,z2) = p(w2|z1)p(21)

T



Joint PDF

For two random variables X; and X5, the joint PDF p(x1, x5) is given by:

p(x1,z2) = p(w2|z1)p(21)

X = x4 p($2\$1) . conditional density function

Xy = 2 p(x1) :marginal density function

T




Joint PDF

For two random variables X; and X5, the joint PDF p(x1, x5) is given by:

p(x1,z2) = p(w2|z1)p(21)

X = x4 p($2\$1) . conditional density function

Xy = 2 p(x1) : marginal density function
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Joint PDF

For two random variables X; and X5, the joint PDF p(x1, x5) is given by:

p(z1,z2) = p(z1|22)p(22)

X = x4 p(x1|x2) : conditional density function

Xy = 2 p(x2)| : marginal density function

T




Marginal PDF

p(z) = /R o (21, 22)das

p(rs) = /Rp(azl,:z;g)dxl

We integrate out one of the variable.

T



Conditional PDF

| __ p(il?17372)
P2 = =y

P __ p($17$2)
P2lo) = )

The conditional density function is the density function for ; given that
some particular x ; has been chosen.

T



Conditional PDF

If both 1 and o are independent then:

p(r1|re) = p(T1)

p(r2|r1) = p(T2)

T



Conditional PDF

If both 1 and o are independent then:

p(r1|re) = p(T1)

p(r2|r1) = p(T2)

That gives:

p(z1,22) = p(x1)p(22)

T



Joint PDF of
Jittered 1D Sampling

J (/

o—0—00—000—
0 1

For two different strata ¢ and 7, what is the joint PDF for jittered sampling ?

p(xi,xj) =777

T



Joint PDF of
Jittered 1D Sampling

J (/

o—0—00—000—
0 1

p(z1,z2) = p(z1|22)p(22)

T



Joint PDF of

Jittered 1D Sampling
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Joint PDF of
Jittered 1D Sampling

/ (

H-..‘-...-.-’
: 1

p(zi, Tj) = {p(mi)p(%) L7 ]

U otherwise

Il )ii



Joint PDF of
Jittered 1D Sampling

/ (

H-..‘-...-.-’
: 1

p(zi, Tj) = {p(xi)p(%) L7 ]

0 otherwise
N2 i

p(xs, z5) = , Since, p(x;) = N
0 otherwaise

Il )ii
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Expected Value
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Expected value

e Expected value: average value of the variable

N
E[X] — Z LiPq
i=1

e example: rolling a die

F[X] =

T
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Expected value

e Expected value: average value of the variable

N
E[X] — Z LiPq
i=1

e example: rolling a die

1 1
BIX]=1-2+2 - +3

1+4 1+5
6 6

1
6

+6 -

1
6

= 3.0

T



Expected value

 Properties:

E[X +Y] = E[X]|+ E[Y]

DES
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Expected value

 Properties:

EX+Y

EX +c

B

T



Expected value

 Properties:

EX+Y|=FEX|+ FE|Y]
ElX +c=FX|+c
FElcX| =cE[X]

O o



Estimating expected values

e To estimate the expected value of a variable
e choose a set of random values based on the probability

e average their results

1 N
1=1

e example: rolling a die

* roll3times: {3, 1,6} — E[X]=

T



Estimating expected values

e To estimate the expected value of a variable
e choose a set of random values based on the probability

e average their results

1 N
1=1

e example: rolling a die

* roll3times: {3,1,6} — E[x]=3+1+6)/3=23.33

100
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Estimating expected values

e To estimate the expected value of a variable
e choose a set of random values based on the probability

e average their results

1 N
1=1

e example: rolling a die

* roll3times: {3,1,6} — E[x]=3+1+6)/3=23.33

101
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Estimating expected values

e To estimate the expected value of a variable
e choose a set of random values based on the probability

e average their results

1 N
1=1

e example: rolling a die
* roll3times: {3,1,6} — E[x]=3+1+6)/3=23.33
* roll9times: {3,1,6,2,5,3,4,6,2} — E[X]~

102
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Estimating expected values

e To estimate the expected value of a variable
e choose a set of random values based on the probability

e average their results

1 N
1=1

e example: rolling a die
* roll3times: {3,1,6} — E[x]=3+1+6)/3=23.33
* roll9times: {3,1,6,2,5,3,4,6,2} — E[X]~
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Estimating expected values

e To estimate the expected value of a variable
e choose a set of random values based on the probability

e average their results

1 N
1=1

e example: rolling a die
* roll3times: {3,1,6} — E[x]=3+1+6)/3=23.33
* roll9times: {3,1,6,2,5,3,4,6,2} — E[x]=3.51]

104
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Law of large numbers

e By taking infinitely many samples, the error between the estimate
and the expected value is statistically zero

e the estimate will converge to the right value

1 N
probability | E|z| = A}im ~ E ;| =1

105

T



Variance

100
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Variance

e VVariance: how much different from the average

o*[X] = E[(X — E[X])

107
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Variance

e VVariance: how much different from the average

o*[X] = E[(X - E[X])?]
= F[X* + E[X]? - 2X F[X]]

108
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Variance

e VVariance: how much different from the average

o”[X] = E[(X - B[X])]
= E[X? + E[X]* — 2X E[X]]
= E[X?] + E[E[X]?] - 2E[X|E[E[X]]]

109
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Variance

e VVariance: how much different from the average

o°[X] = E[(X — E[X])]
= !YQ E[X]* -2X PXH
= E[X?] + E[E[X]’] - 2E[X]E[E[X]]
= F[X?] + E[X]* — 2E[X]°

110
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Variance

e VVariance: how much different from the average

(X — E[X])7

= F[X* + E[X]? - 2X F[X]]

= F[X? + E[E[X]?] - 2E[X]|E[E[X]]]
= E[X?| + E[X])? - 2E[X)?

= FE[X?] — E[X]?

111
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Variance

e VVariance: how much different from the average

o’[X] = E[(X - E[X])’]
= E[X* + E[X]® — 2X E[X]]
= E[X°| + E[E[X]?] - 2E[X]E[E[X]]]
= E[X?] + E[X]? - 2E[X]?

112
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Variance

e example: Rolling a die

e variance:

OQ[X] — —

113
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Variance

e example: Rolling a die

e variance:

114

T



Variance

e example: Rolling a die

e variance:

115
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Monte Carlo Integration

Slide after Wojciech Jarosz

T



Questions ?




Numerical Integration

/a b f(x)da

e Analytic evaluation: accurate and fast

118
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Numerical Integration

/a ' fla)da

e Numerical evaluations:

e Provide only approximate solutions,

e Rate of convergence is important
S S O O S S

e Often involves evaluations only at selected locations

119
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Numerical Integration

/a b f(x)da

e Numerical quadrature: designed for 1D integrals

e Cubature/Quadratures: for higher dimensions

120
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Numerical Integration

e Hybrid methods: First transform the integral analytically for simpler numerical handling

121
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Numerical Integration

e A number of solutions are developed for the numeric solution of integrals

e Most prominent are the Quadrature rules, where the weights w; and the sample
positions x; are determined in advance

122
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Quadrature rules

e Newton-Cots formula:

e Midpoint rule (1 sample), Trapezoid rule (2 samples), Simpson rule (3 samples)...

Image courtesy

=
g
S G
S
=

=
-
&?15\
Sy

SH

]

&%
w '

Midpoint formula Composite midpoint Trapezoidal formula Cavalieri-Simpson
formula formula

123
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https://link.springer.com/content/pdf/10.1007/978-3-540-49809-4_9.pdf

Quadrature rules

e Newton-Cots formula:
e Midpoint rule (1 sample), Trapezoid rule (2 samples), Simpson rule (3 samples)...
e Samples are nesting (for powers of 2)

e Approximates the integral as sum of weighted, equidistant samples

124
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Quadrature rules

e (Gauss quadratures:

e An n-point Gauss quadrature is
constructed to yield exact results for
polynomials of degree 2n-1 or less.

e Extends freedom by allowing choice of
sample locations

e |t doesn't nest (but nesting alternatives
do exist)

125
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Quadrature rules

4

e (Gauss quadratures:
2 |
e An n-point Gauss quadrature is
constructed to yield exact results for OF
polynomials of degree 2n-1 or less. |
e Extends freedom by allowing choice of .4}
sample locations
-6 F
e |t doesn't nest (but nesting alternatives

do exist)

-8

-10

0 1 1

1 1
3 3
Image from Wikipedia

T
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https://en.wikipedia.org/wiki/Gaussian_quadrature

Quadrature rules

Newton-Cots formula®

Gauss quadratures”

Both approaches achieve convergence of the order O(N "), given N samples and a
smooth integrand that has r-continuous derivatives

*Interested students may refer to this link for more details.

127
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https://link.springer.com/content/pdf/10.1007/978-3-540-49809-4_9.pdf

Numerical Integration: sD case

N N
/ / f L1, ... dﬂ?l dﬂ?s = Z Z wil...wrgsf(ajiu '“733%)

11=1 1s=1

» Curse of dimensionality: requires N° samples for s-dimensional integral
e Convergence drops to O(N~"/#)

e Rules must be adapted to non-square domains (typical in rendering)

128
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Monte Carlo Integration

e |ndependent of the dimensions
e |Independent of the underlying topology of the domain

e Variance converges atO(N _1) irrespective of the dimensions (N is the sample count)

129
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Integral as Expected Value

/Q (@) () = /[) )i = /[) ! gip(x)das

p(x) :is an arbitrary probability density function over the domain

130
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Integral as Expected Value

r)dr = f(z) x)dx
/[0,1)8 fla)d /[0,1)8 P@)p( )d

p(x) :is an arbitrary probability density function over the domain

131

T



Integral as Expected Value

r)dr = f(z) x)dx
/[0,1)8 fla)d /[0,1)8 p(ﬁ)p( )d

p(x) :is an arbitrary probability density function over the domain
— / (f($)>p($)dx
0,1)% p(z)

:E_
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Integral as Expected Value

/[0,1)8 flayds =B p(2) -

We are interested in the numerical computation of this expected value, leading to
the highly important concept of Monte Carlo Estimator

133
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Monte Carlo Estimator

in 1D

1
I = / f(z)dx
O ‘
p(x): is the probability density function from which |. A A A A

samples are drawn

134
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Monte Carlo Estimator

in 2D
‘@09
®
¢ .
1 N %
I < flz)
I = / f(x)dr =~ —

0 N ; p(@:) »

®

» @
®
® ®
p(x): is the probability density function from which

samples are drawn @ ¢

135

T

AAAAAAAAAA



Monte Carlo Estimator

in 2D
‘@09
®
¢ .
1 N %
1 f ;)
I = / f(x)dr =~ —

0 N ; p(@:) ®

®

» @
®
® ®
p(x): is the probability density function from which

samples are drawn @ ¢
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Monte Carlo Estimator

RNPAC)
Secondary Estimator: 1y = — :
¥ & e

1 N
IN:NEJ§
1=1

f(CIZ'Z) @ B

Primary Estimator: I} = #
p(xi)

p(x): is the probability density function from which
samples are drawn @

137

{il| oes
AAAAAAAAAA

T



Monte Carlo Estimator

T



Monte Carlo Estimator
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Monte Carlo Estimator

Primary Estimator: Ii —
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Monte Carlo Estimator

Primary Estimator: T} = ié?;
1 o f(z)
W=y ; p(w:)
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Monte Carlo Estimator

Due to the Strong law of large numbers, the arithmetic mean will converge
to the expected value with probability 1 given enough samples:

| _iN flz:) _f(w)_: N b
Pmb{ lim In _N;p(xi) E_p(x)_ /Qf( )d } 1

N — 00
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Rendering Equation

Scattering equation:

Lo 00) = [ £ 000 @) Li(p. @) cos 6 do
S

Image from PBRT 2016
INnpni




Global lllumination: One Light Source




Global lllumination: Multiple Light Source
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Error In Monte Carlo Estimation

.9 :
Error = Bias® + Variance

T



Error In Monte Carlo Estimation

¥s” + Varlance

e Monte Carlo estimation is unbiased due to it's "purely” stochastic nature

e We are left with variance, which is visible as stochastic unstructured noise in the
rendered images
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Error In Monte Carlo Estimation

Error = Bias? + Variance

e For biased techniqgues, It Is Important to have a consistent solution
e This implies, the bias goes to zero with increase in sample count

e Examples: Progressive photon mapping

149
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Unbiased: Monte Carlo Estimator

Error =15 — 1

Error = Iy — / f(x)dx
Q
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Unbiased: Monte Carlo Estimator

Error = Iy — / f(x)dx
@

Bias by definition is the expected error:

Bias = E|Error| = E _IN — f(x)dx_
- Q -
Bias = E|[IN| — f(x)dx
- - - Q —
Bias = E _IN_ — | f(x)dx
- @

T



Unbiased: Monte Carlo Estimator

T



Unbiased: Monte Carlo Estimator

Bias = E_IN_ —/ f(x)dx
- @

E:IN: :/Qf(x)dm

Bias =0
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Variance: Monte Carlo Estimator

For the variance of secondary Monte Carlo Estimator, the following holds:

Var(In) = N3 ZVar (T})

1564
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Variance: Monte Carlo Estimator

Var(In) = N2 Eiz‘varﬁfl

Var(l) = Var (N 2 oo ) Var(aX) = o Var(X)
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Variance: Monte Carlo Estimator

Var(In) = N2 Eiz‘varﬁfl

v = (W 2 e ) BCAGE ( — pla, ) Var(aX) = " Var(X)

= —= Va
Ve 2 Vor gy | | independentsamples |
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Convergence rate: MC Estimator

Var(In) = NG ZVar (I9)

Error = o(Iy) = \/lej\/\far(lii)

- o(X) = +/Var(X)
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Convergence rate: MC Estimator

Variance
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Convergence rate: MC Estimator

Variance

Increasing Samples
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Sampling Methods

T



Sampling Methods

 |nversion methods
e Acceptance-rejection methods
e Metropolis sampling (later)

e [ransforming distributions
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Inversion Method

e Compute the CDF P(x) :/ p(z)dz
0
 Compute the inverse CDF P~ ! (z)

e Obtain a uniformly distributed random number £ € |0, 1)

e Compute X; = P+ (¢)

162
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Rendering participating media




Inversion Method

p(z) x e / ce iy = & = 1]
p(m) — ce” %t : Jo a

P(x) = / ce”dr=1—e """ =¢
0

P~ (z) il —¢) P~ (x) =

T



Rejection Sampling Method
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Rejection Sampling Method




Rejection Sampling Method

? ‘  Many samples are wasted

e \ery costly

e Not possible for arbitrary
domains
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Transformation Method

e (General question: which distributions results when we transform
samples from an arbitrary distributions to some other distribution
with a function f .

Xz’ pr(m)
Y; = y(Xi)

What is the distribution of Y; ?
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Transformation Method

e The function y(x) must be a one-to-one transformation

e |t's derivative must either be strictly > 0 or strictly < O

prob{Y < y(x)} = prob{X < x}
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Transformation Method

prob{Y < y(x)} = prob{X < x}

P,(y) = Py(y(z)) = Py(x)

This relationship between CDFs directly leads to the relationship between their PDFs:

T



Transformation Method

py(y) = (%) Pz ()

In general, the derivative is strictly positive or negative, and the relationship between the densities is:
—1

W pela)

py(y) — I

171
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Transformation Method

—1

dy
pw) = || pel@
How can we use this formula ?
pe(x)=2x x€|0,1]
Y =sin X
dy P () 2 2 arcsin y
— = COSZ _Py(y):: — —
dr jcosz| cosx /1 —y?

T
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Transformation Method

e Usually we have some PDF that we want to sample from, not a
given transformation

e For example, we might have given: X ~ p, (x)and we would
like to compute Y ~ p,(y)

e This is a generalization of the inversion method.
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Transformation in Multiple dimensions

e Suppose we have an s-dimensional X with density function px

 Now letY = T'(X) where T is a bijection.

py(y) = py(T'(z)) = |§;((a;))|
9T, /dx; --- OT;/dx,

Jr(r) = . . .
9T, /x; --- OT,/dx,
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Polar Coordinates

T = rcosf

y = rsinf
Suppose we draw samples from some density p(r, (9)

What is the corresponding density p(z,y)?

J g_if 3—’5 - (cos@ —rsinéb p(x,y) = p(r,0)/Jr
I — g_y g_z ~ \'sinf rcos@
r

p(z,y) = p(r,0)/r
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Spherical Coordinates

X =71 s 6 cos @
y =r sin 6 sin ¢

Z =171 Cosb,

2

|Jr| =r-sin6

p(r,0,¢)=r’sin6 p(x, y, z)
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Spherical Coordinates

Spherical coordinates
X =71 s 6 cos @

y =r sin 6 sin ¢

Z =171 Cosb,

2

|Jr| =r-sin6 dw = sin 6 d6 d¢

Pr {a)EQ} =/ p(w) dw

p(r,0,¢)=r"sinf p(x,y, z) .

p©, ¢) dod¢ = p(w) dw
p0, @) =smb p(w)
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Uniformly sampling a hemisphere

Here, the task is to choose a direction on the hemisphere uniformly w.r.t. solid angle.
Using the fact that, PDF must integrate to one over its domain:

T2 H2 27T
p0, ¢) = Sin 0/(2m)
o 27 sin 6
Marginal density function: p(0) = / p0, ¢) dop = / > d¢ = sin O

0 0 T
0, 1

Conditional density function: p(@|0) = P, 9) = —
p@)  2n
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Uniformly sampling a hemisphere

v
P(6) =/ sin @’ d8’ =1 — cos
Corresponding CDFs: 0

¢
P(@10) =/O Lag =2

27T 27T

Inverting these functions is straightforward, and here we can safely write:

X = sin 6 cos ¢ = cos (Zﬂﬁz) \/1_512

v =cos_1§1
b— 27, y = sin 6 sin ¢ = sin (27&,) /1 — &

z =cos 0 =¢.
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Uniformly sampling a disk

r==¢&,60 =2né Correct PDF ?7?7?
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Uniformly sampling a disk

p(x> y)zl/TL'
p(r,0)=r/m
27T
Marginal density function: r) = r,0)do =2r
arginal density function p(r) /0 p(r,0) . \/é_l
p(l",@) o 1 9:27'[&2

Conditional density function: p(0|r) = —.
p(r)  2m
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Variance Reduction Techniques
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Variance Reduction Techniques

e Importance Sampling
e Multiple Importance Sampling
e Control Variates

e Stratified Sampling
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Variance reduction: Importance sampling

)

T
I =
N = 77 )

e Importance Sampling doesn't always reduce variance.

e The pdf p(Z) must be carefully chosen to gain improvements
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Variance reduction: Importance sampling

o L@
N p(z;) e
p(f) X f(f) \ — 1
p(Z) = cf(Z) o
cf(Z)dx =1
R /_OO
|2 f(@)

this seems like a no-op since the PDF computation requires the integral of the function
that we are interested Iin estimating.
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Variance reduction: Importance sampling

L7
NN pla)
S J@

M@

Iy = _OO £(2)dz

e However, this Is a very special case that we are encountering here.

e This is referred to as Perfect Importance Sampling, for which the variance is zero.

DES
AAAAAAAAAA

T



Variance reduction: Importance sampling

Examples of perfect importance sampling for which the variance is zero
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Variance reduction: Importance sampling

(L)
%03 o otle W
% 9% %%% % Yo
o ® H [ J .. )
KP0 b :.:':‘:::

“
T
38e0 o
-“ (] .‘ ‘ A
o o 0%® o 0g0 0@
o ” .J“"..
.““.‘:. :“. .‘

ol

W °20e°°% ‘e %o g
» oy &°30

f(x g(xr

Examples of perfect importance sampling for which the variance is zero
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Variance reduction: Importance sampling

Scattering equation: o

L, (p> wo) = [ F P @0 ) Li(p, @) lcos 6] do
S

Image from PBRT 2016
INnpni




Variance reduction: Importance sampling

Scattering equation:

L, (p> wo) = /S F P @0 @) Li(p, @) lcos 6] do

f(P> Do > 6()]) Li(p> 6()]) ‘COS 9]‘

1 N
N ]Z::I P(w]’)

p(w) o cos @

Cosine weighted spherical/hemispherical sampling
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance samplin
= 1024 spp N =4 spp N =4 spp
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling
N = 1024 spp N =4 spp N =4 spp

BSDF sampling is better in some regions
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling
N = 1024 spp N =4 spp N =4 spp

Light sampling is better in other regions
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance samplin

Can we combine the benefits of different PDFs ? Yes!
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Variance reduction: Importance sampling

BSDF importance sampling Light importance sampling Multiple Importance Sampling

Can we combine the benefits of different PDFs ? Yes!
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To be continued ... in the next lecture.
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