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A la Carte
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•      algebra and measure


• Random Variables


• Probability distribution functions (PDFs and PMFs)


• Conditional and Marginal PDFs 


• Expected value and Variance of a random variable


• Monte Carlo Integration

�-
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Motivation: Ray Tracing
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Direct Illumination 4 spp

Image rendered using PBRT
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Direct Illumination 256 spp

Image rendered using PBRT
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Direct and Indirect Illumination 4096 spp

Image rendered using PBRT
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Path Tracing
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Path Tracing
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Path Tracing
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Path Tracing
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4 sppDirect and Indirect Illumination

Image rendered using PBRT
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How can we analyze the noise 
present in the images ?
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Probability Theory  
and/or 

Number Theory
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Probability Theory 
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• Discrete Probability Space


• Continuous Probability Space

17
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Rolling a fair dice
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⌦ = {1, 2, 3, 4, 5, 6}

• Finite outcomes: discrete random experiment


• Can ask the outcome is a number: 1 or 6


• Can ask the outcome is a subset, e.g. all prime numbers: {2, 3, 5}



Realistic Image Synthesis SS2020

Rolling a fair dice
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⌦ = {1, 2, 3, 4, 5, 6}

• R1: Apart from elementary values, the focus lies on subsets of 


• R2: 	A probability assigns each element or each subset of     a 
positive real value  

⌦

⌦

The first requirement leads to the concept of    -algebra�

The second to the mathematical construct of a measure
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Random number in [0,1]
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0 1

• Uncountably infinite outcomes: continuous random experiment


• Does not make sense to ask for one number as output, e.g. 0.245


• We need to ask for the probability of a region, e.g. [0.2,0.4] or [0.36,0.89]

⌦
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Random number in [0,1]
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• R1: As in discrete case, focus lies on subsets of    , also called events


• R2: A probability assigns each subset of    a positive real value.

⌦

⌦

The first requirement leads to the concept of Borel   -algebra�

The second to the mathematical construct of a Lebesgue measure

⌦ 0 1
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-Algebra
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• Mathematical construct used in probability and measure theory


1. Take on the role of system of events in probability theory


• Simply spoken: Collection of subsets of a given set 


A. A non-empty collection of subsets of     that is closed under the set 
theoretical operations of: countable unions, countable intersections, 
and complement

�

⌦

⌦
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-Algebra
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• For discrete set     :


1. The sigma-algebra corresponds to the power set of omega (set of all 
subsets)

�

⌦
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-Algebra
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• For discrete set     :


1. The sigma-algebra corresponds to the power set of omega (set of all 
subsets)

�

⌦

⌃ = {{�}, {0}, {1}, {0, 1}}

⌦ = {0, 1}
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-Algebra
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• For discrete set     :


1. The sigma-algebra corresponds to the power set of omega (set of all 
subsets)

�

⌦

⌦ = {a, b, c, d}

⌃ = {{�}, {0}, {1}, {0, 1}}

⌦ = {0, 1}

⌃ = {{�}, {a, b}, {c, d}, {a, b, c, d}}
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-Algebra
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�

⌦• For continuous set     : 


A. The associated sigma algebras are the Borel sets over     , i.e., the collection 
of all open sets over omega that can be generated via countable unions, 
countable intersections, and complement of open sets

⌦
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-Algebra
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�

⌦• For continuous set     : 


A. The associated sigma algebras are the Borel sets over     , i.e., the collection 
of all open sets over omega that can be generated via countable unions, 
countable intersections, and complement of open sets
I = [p, q), p, q 2 R Fixed half-interval

⌦
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-Algebra
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�

⌦• For continuous set     : 


A. The associated sigma algebras are the Borel sets over     , i.e., the collection 
of all open sets over omega that can be generated via countable unions, 
countable intersections, and complement of open sets
I = [p, q), p, q 2 R
T = [↵,�) ✓ [p, q)

Fixed half-interval

Collection of all half-intervals

⌦
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-Algebra

29

�

⌦• For continuous set     : 


A. The associated sigma algebras are the Borel sets over     , i.e., the collection 
of all open sets over omega that can be generated via countable unions, 
countable intersections, and complement of open sets
I = [p, q), p, q 2 R
T = [↵,�) ✓ [p, q)

Fixed half-interval

Collection of all half-intervals

Here,    is not a   -algebra because, generally speaking, neither the union 
nor the difference of two half-intervals is a half-interval.

T �

⌦
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-Algebra
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�

It is the mathematical construct that allows defining a measure



Realistic Image Synthesis SS2020

Measure
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• In probability theory, it plays the role of a probability distribution


• A real-valued set function defined on a sigma-algebra that assigns each 
subset of a sigma-algebra a non-negative real number.


• A sigma-additive set function: i.e., the measure of the union of disjoint 
sets is equal to the sum of the measures of the individual sets



Realistic Image Synthesis SS2020

Lebesgue Measure

32

• Standard way of assigning measure to subsets of n-dimensional 
Euclidean space.


• For n = 1,2 or 3, it coincides with the standard measure of length, area or 
volume, respectively.

Length Area Volume
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Random Variable
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• Central concept in probability theory


• Enables to construct a simpler probability space from a rather complex 
one


• Correspond to a measurable function defined on a    -algebra that 
assigns each element to a real number

�
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Random Variable

34

• A random variable     is a value chosen by some random process    


• Random variables are always drawn from a domain: discrete (e.g., a fixed 
set of probabilities) or continuous (e.g., real numbers)


• Applying a function    to a random variable     results in a new random 
variable

Xf

X

Y = f(X)
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Discrete Probability Space

35



Realistic Image Synthesis SS2020

Discrete Random Variable

36

• Random variable (RV):  

• Probabilities:  

{p1, p2, . . . , pn}
NX

i=1

pi = 1

X : ⌦ ! E ⌦ = {x1, x2, . . . , xn}
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Discrete Random Variable

37

• Example: Rolling a Die 

• Probability of each event: 

pi = 1/6    for  i = 1, …, 6 

x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 6

P (X = i) =
1

6
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Discrete Random Variable

38

P (2  X  4) =
4X

i=2

P (X = i)

=
4X

i=2

1

6
=

1

2
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Probability mass function

• PMF is a function that gives the probability that a discrete 
RV is exactly equal to some value.


• PMF is different from PDF (probability density function) 
which is for continuous RVs.

39
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Probability mass function

40

1

6

1

6

1

6

1

6

1

6

1

6

0.4

0.15

0.3

0.05
0.1

Constant PMF Non-uniform PMF
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Continuous Probability Space
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Continuous Random Variable

42

• In rendering, discrete random variables are less common than continuous 
random variables


• Continuous random variables take on values that ranges of continuous 
domains (e.g. real numbers or directions on the unit sphere)


• A particularly important random variable is the canonical uniform random 
variable, which we write as ⇠
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Continuous Random Variable

43

0 1

⇠ 2 [0, 1)
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• We can take a continuous, uniformly distributed random variable                 
and map to a discrete random variable, choosing      if:   

⇠ 2 [0, 1)
Xi

Continuous Random Variable

0 1
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• We can take a continuous, uniformly distributed random variable                 
and map to a discrete random variable, choosing      if:   

⇠ 2 [0, 1)
Xi

i�1X

j=1

pj < ⇠ 
iX

j=1

pj

Xi = {1, 2, 3, 4, 5, 6}

Continuous Random Variable

0 1
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Continuous Random Variable

Image rendered using PBRT

Visual Break



Realistic Image Synthesis SS2020

Continuous Random Variable

Image rendered using PBRT

Visual Break
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Continuous Random Variable

pi =
�iP
j �j

�i

• For lighting application, we might want to define probability of sampling 
illumination from each light source in the scene based on its power

Here, the probability is relative to the total power

48
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Probability Density Functions
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Probability density function

• Consider a continuous RV that ranges over real numbers:         , where 
the probability of taking on any particular value    is proportional to the 
value 

0 2

[0, 2)
x

2� x

• It is twice as likely for this random variable to take on a value around 0 as 
it is to take around 1, and so forth.

50

x
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Probability density function

• The probability density function (PDF) formalizes this idea: it describes 
the relative probability of a RV taking on a particular value.


• Unlike PMF, the values of the PDFs are not the probabilities as such: a 
PDF must be integrated over an interval to yield a probability

51
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p(x) =

(
1 x 2 [0, 1)

0 otherwise

For uniform random variables: For non-uniform random variables:

p(x) could be any function

Probability density function



Realistic Image Synthesis SS2020

53

constant pdf

Uniform distribution Non-uniform distribution

Probability density function
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constant pdf

Uniform distribution Non-uniform distribution

Probability density function
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p(x) > 0

Z 1

�1
p(x)dx = 1

Some properties of PDFs:

Probability density function
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Z b

a
p(x)dx = 1 x 2 [a, b)

constant pdf

ba

Probability density function
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Z b

a
p(x)dx = 1 x 2 [a, b)

constant pdf

ba

Z b

a
C dx = 1

C

Z b

a
dx = 1

C(b� a) = 1

p(x) = C
C

C =
1

b� a

Probability density function
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x 2 [a, b)

constant pdf

ba

Z b

a
p(x)dx = 1

Z b

a
C dx = 1

C

Z b

a
dx = 1

C(b� a) = 1

p(x) =
1

b� a

p(x) = C
C

Probability density function

C =
1

b� a
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Cumulative distribution function

• The PDF         is the derivative of the random variable's CDF:p(x)
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Cumulative distribution function

• The PDF         is the derivative of the random variable's CDF:p(x)

p(x) =
dP (x)

dx

: cumulative distribution function (CDF) , 

also called cumulative density function

P (x)
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Cumulative distribution function

• The PDF         is the derivative of the random variable's CDF:p(x)

p(x) =
dP (x)

dx

P (x)

P (x) =

Z x

�1
p(x)dx

: cumulative distribution function (CDF) , 

also called cumulative density function
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1

Cumulative distribution function

P (x) =

Z x

�1
p(x)dxp(x) =

(
1 x 2 [0, 1)

0 otherwise

constant pdf
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Non-constant pdf

1

Cumulative distribution function

p(x) P (x) =

Z x

�1
p(x)dx
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Image rendered using PBRT

Visual Break
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Probability: Integral of PDF

P (x 2 [a, b]) =

Z b

a
p(x)dx

• Given the arbitrary interval         in the domain, integrating the PDF gives 
the probability that a RV lies inside that interval:

[a, b]

p(x)

a b
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Examples: Sampling PDFs

66
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Constant Sampling PDFs

67

Random 2D

0 1

1 Jittered 2D

0 1

1
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Sampling a unit domain with uniform random samples

0 1

⇠ 2 [0, 1)

Random 1D

Constant Sampling PDFs
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Sampling a unit domain with uniform random samples

Random 1D

Constant Sampling PDFs

0 1

⇠ 2 [0, 1)

Random 1D
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Sampling a unit domain with uniform random samples

p(x) =

(
C x 2 [0, 1)

0 otherwise0 1

⇠ 2 [0, 1)

Random 1D

Constant Sampling PDFs
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Sampling each stratum with uniform random samples

0 1

Jittered 1D

Constant Sampling PDFs
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Sampling each stratum with uniform random samples

0 1

Jittered 1D

� =
1

N

�

Constant Sampling PDFs
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Sampling each stratum with uniform random samples

0 1

Jittered 1D

� =
1

N

� i

Constant Sampling PDFs

p(xi) = ???

Probability density of generating a sample 

in an   -th stratum is given by:i
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Constant Sampling PDFs

0 1

Jittered 1D

� =
1

N

�

Probability density of generating a sample 

in an   -th stratum is given by:i i

Sampling each stratum with uniform random samples

p(xi) =

(
N x 2 [ i

N , i+1
N )

0 otherwise
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0 1

Jittered 1D

� =
1

N

� i

Joint PDFs

First, we divide the domain into equal strata.


Second, we sample the domain.


This implies that two samples are correlated to each other.
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0 1

Jittered 1D

� =
1

N

� i

Joint PDFs

p(xi, xj) = ???

what is the joint PDF for jittered sampling ?i jFor two different strata   and    ,

First, we divide the domain into equal strata.


Second, we sample the domain.


This implies that two samples are correlated to each other.
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Conditional and Marginal PDFs

77
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Joint PDF

For two random variables      and      , the joint PDF                is given by: 


78

X1 X2 p(x1, x2)
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Joint PDF

For two random variables      and      , the joint PDF                is given by: 


79

X1 X2 p(x1, x2)

p(x1, x2) = p(x2|x1)p(x1)
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Joint PDF

For two random variables      and      , the joint PDF                is given by: 


80

X1 X2

X1 = x1

X2 = x2

p(x1, x2)

p(x1, x2) = p(x2|x1)p(x1)

where,
p(x2|x1)

p(x1)

: conditional density function 

: marginal density function
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Joint PDF

For two random variables      and      , the joint PDF                is given by: 


81

X1 X2

X1 = x1

X2 = x2

p(x1, x2)

p(x1, x2) = p(x2|x1)p(x1)

where,
p(x2|x1)

p(x1)

: conditional density function 

: marginal density function
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Joint PDF

For two random variables      and      , the joint PDF                is given by: 


82

X1 X2

X1 = x1

X2 = x2

p(x1, x2)

p(x1, x2) = p(x1|x2)p(x2)

where,
p(x1|x2)

p(x2)

: conditional density function 

: marginal density function
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Marginal PDF

83

p(x1) =

Z

R
p(x1, x2)dx2

p(x2) =

Z

R
p(x1, x2)dx1

We integrate out one of the variable.
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Conditional PDF

84

p(x1|x2) =
p(x1, x2)

p(x2)

p(x2|x1) =
p(x1, x2)

p(x1)

The conditional density function is the density function for      given that 

some particular      has been chosen.

xi
xj
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Conditional PDF

85

If both      and       are independent then:

p(x1|x2) = p(x1)

p(x2|x1) = p(x2)

x1 x2
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Conditional PDF

86

If both      and       are independent then:

p(x1|x2) = p(x1)

p(x2|x1) = p(x2)

x1 x2

p(x1, x2) = p(x1)p(x2)
That gives:
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0 1

Joint PDF of  
Jittered 1D Sampling

p(xi, xj) = ???

what is the joint PDF for jittered sampling ?i jFor two different strata   and    ,

ij
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0 1

Joint PDF of  
Jittered 1D Sampling

p(x1, x2) = p(x1|x2)p(x2)

ij
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0 1

Joint PDF of  
Jittered 1D Sampling

p(x1, x2) = p(x1|x2)p(x2)

p(x1, x2) = p(x1)p(x2)

ij
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0 1

Joint PDF of  
Jittered 1D Sampling

p(xi, xj) =

(
p(xi)p(xj) i 6= j

0 otherwise

ij
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0 1

Joint PDF of  
Jittered 1D Sampling

p(xi, xj) =

(
p(xi)p(xj) i 6= j

0 otherwise

p(xi, xj) =

(
N2 i 6= j

0 otherwise
p(xi) = NSince,

ij
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92 Image rendered using PBRT

Visual Break
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Expected Value

93
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Expected value

94

• Expected value: average value of the variable 

• example: rolling a die 

E[X] = 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5

E[X] =
NX

i=1

xipi
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Expected value

95

• Expected value: average value of the variable 

• example: rolling a die 

E[X] = 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5

E[X] =
NX

i=1

xipi
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Expected value

96

• Properties:  

E[X + Y ] = E[X] + E[Y ]

E[X + c] = E[X] + c

E[cX] = cE[X]
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Expected value

97

• Properties:  

E[X + Y ] = E[X] + E[Y ]

E[X + c] = E[X] + c

E[cX] = cE[X]
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Expected value

98

• Properties:  

E[X + Y ] = E[X] + E[Y ]

E[X + c] = E[X] + c

E[cX] = cE[X]
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Estimating expected values

• To estimate the expected value of a variable 

• choose a set of random values based on the probability 

• average their results

• example: rolling a die 

• roll 3 times: {3, 1, 6} → E[x] ≈ (3 + 1 + 6)/3 = 3.33 
• roll 9 times: {3, 1, 6, 2, 5, 3, 4, 6, 2} → E[x] ≈ 3.51

99

E[X] ⇡ 1

N

NX

i=1

xi
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Estimating expected values

• To estimate the expected value of a variable 

• choose a set of random values based on the probability 

• average their results

• example: rolling a die 

• roll 3 times: {3, 1, 6} → E[x] ≈ (3 + 1 + 6)/3 = 3.33 
• roll 9 times: {3, 1, 6, 2, 5, 3, 4, 6, 2} → E[x] ≈ 3.51

100

E[X] ⇡ 1

N

NX

i=1

xi



Realistic Image Synthesis SS2020

Estimating expected values

• To estimate the expected value of a variable 

• choose a set of random values based on the probability 

• average their results

• example: rolling a die 

• roll 3 times: {3, 1, 6} → E[x] ≈ (3 + 1 + 6)/3 = 3.33 
• roll 9 times: {3, 1, 6, 2, 5, 3, 4, 6, 2} → E[x] ≈ 3.51

101

E[X] ⇡ 1

N

NX

i=1

xi
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Estimating expected values

• To estimate the expected value of a variable 

• choose a set of random values based on the probability 

• average their results

• example: rolling a die 

• roll 3 times: {3, 1, 6} → E[x] ≈ (3 + 1 + 6)/3 = 3.33 
• roll 9 times: {3, 1, 6, 2, 5, 3, 4, 6, 2} → E[x] ≈ 3.51

102

E[X] ⇡ 1

N

NX

i=1

xi
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Estimating expected values

• To estimate the expected value of a variable 

• choose a set of random values based on the probability 

• average their results

• example: rolling a die 

• roll 3 times: {3, 1, 6} → E[x] ≈ (3 + 1 + 6)/3 = 3.33 
• roll 9 times: {3, 1, 6, 2, 5, 3, 4, 6, 2} → E[x] ≈ 3.51
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E[X] ⇡ 1

N

NX

i=1

xi
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Estimating expected values

• To estimate the expected value of a variable 

• choose a set of random values based on the probability 

• average their results

• example: rolling a die 

• roll 3 times: {3, 1, 6} → E[x] ≈ (3 + 1 + 6)/3 = 3.33 
• roll 9 times: {3, 1, 6, 2, 5, 3, 4, 6, 2} → E[x] ≈ 3.51

104

E[X] ⇡ 1

N

NX

i=1

xi
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Law of large numbers

• By taking infinitely many samples, the error between the estimate 

and the expected value is statistically zero 

• the estimate will converge to the right value

105
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Variance

106
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Variance

107

• Variance: how much different from the average 

�2[X] = E[(X � E[X])2]

= E[X2 + E[X]2 � 2XE[X]]

= E[X2] + E[E[X]2]� 2E[X]E[E[X]]]

= E[X2] + E[X]2 � 2E[X]2

= E[X2]� E[X]2
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Variance

108

• Variance: how much different from the average 

�2[X] = E[(X � E[X])2]

= E[X2 + E[X]2 � 2XE[X]]

= E[X2] + E[E[X]2]� 2E[X]E[E[X]]]

= E[X2] + E[X]2 � 2E[X]2

= E[X2]� E[X]2
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Variance
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• Variance: how much different from the average 

�2[X] = E[(X � E[X])2]

= E[X2 + E[X]2 � 2XE[X]]

= E[X2] + E[E[X]2]� 2E[X]E[E[X]]]

= E[X2] + E[X]2 � 2E[X]2

= E[X2]� E[X]2
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Variance

110

• Variance: how much different from the average 

�2[X] = E[(X � E[X])2]

= E[X2 + E[X]2 � 2XE[X]]

= E[X2] + E[E[X]2]� 2E[X]E[E[X]]]

= E[X2] + E[X]2 � 2E[X]2

= E[X2]� E[X]2
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Variance
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• Variance: how much different from the average 

�2[X] = E[(X � E[X])2]

= E[X2 + E[X]2 � 2XE[X]]

= E[X2] + E[E[X]2]� 2E[X]E[E[X]]]

= E[X2] + E[X]2 � 2E[X]2

= E[X2]� E[X]2
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Variance
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• Variance: how much different from the average 

�2[X] = E[(X � E[X])2]

= E[X2 + E[X]2 � 2XE[X]]

= E[X2] + E[E[X]2]� 2E[X]E[E[X]]]

= E[X2] + E[X]2 � 2E[X]2

= E[X2]� E[X]2

�2[X] = E[X2]� E[X]2
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Variance
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• example: Rolling a die 

• variance:

�2[X] = . . . = 2.917

�2[X] = E[X2]� E[X]2

E[X] = 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5
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Variance

114

• example: Rolling a die 

• variance:

�2[X] = . . . = 2.917

�2[X] = E[X2]� E[X]2

E[X] = 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5
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• example: Rolling a die 

• variance:

�2[X] = . . . = 2.917

�2[X] = E[X2]� E[X]2
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Monte Carlo Integration
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I =

Z

D
f(x) dx

⇡
Z

D
f(x)S(x) dx

Slide after Wojciech Jarosz



Image rendered using PBRT

Questions ?
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Numerical Integration
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Z b

a
f(x)dx

• Analytic evaluation: accurate and fast
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Numerical Integration
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Z b

a
f(x)dx

• Numerical evaluations: 


• Provide only approximate solutions, 


• Rate of convergence is important


• Often involves evaluations only at selected locations
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Numerical Integration
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• Numerical quadrature: designed for 1D integrals


• Cubature/Quadratures: for higher dimensions

Z b

a
f(x)dx
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Numerical Integration
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• Hybrid methods: First transform the integral analytically for simpler numerical handling
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Numerical Integration

122

• A number of solutions are developed for the numeric solution of integrals


• Most prominent are the Quadrature rules, where the weights      and the sample 
positions     are determined in advance

Z b

a
f(x)dx =

NX

i=1

wif(xi)

wi
xi
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Quadrature rules
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• Newton-Cots formula:


• Midpoint rule (1 sample), Trapezoid rule (2 samples), Simpson rule (3 samples)...


Midpoint formula Composite midpoint 

formula

Trapezoidal formula Cavalieri-Simpson 

formula

Im
ag

e 
co

ur
te

sy

https://link.springer.com/content/pdf/10.1007/978-3-540-49809-4_9.pdf
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Quadrature rules
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• Newton-Cots formula:


• Midpoint rule (1 sample), Trapezoid rule (2 samples), Simpson rule (3 samples)...


• Samples are nesting (for powers of 2)


• Approximates the integral as sum of weighted, equidistant samples




Realistic Image Synthesis SS2020

Quadrature rules

125

• Gauss quadratures: 


• An n-point Gauss quadrature is 
constructed to yield exact results for 
polynomials of degree 2n-1 or less.


• Extends freedom by allowing choice of 
sample locations


• It doesn't nest (but nesting alternatives 
do exist)
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Quadrature rules
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• Gauss quadratures: 


• An n-point Gauss quadrature is 
constructed to yield exact results for 
polynomials of degree 2n-1 or less.


• Extends freedom by allowing choice of 
sample locations


• It doesn't nest (but nesting alternatives 
do exist)

Image from Wikipedia

https://en.wikipedia.org/wiki/Gaussian_quadrature
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Newton-Cots formula* 


Gauss quadratures*


Both approaches achieve convergence of the order               , given     samples and a 
smooth integrand that has    continuous derivatives

Quadrature rules

127

O(N�r)
r-

N

*Interested students may refer to this link for more details.

https://link.springer.com/content/pdf/10.1007/978-3-540-49809-4_9.pdf
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Numerical Integration: sD case
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Z b

a
...

Z b

a
f(x1, ..., xs)dx1...dxs =

NX

i1=1

...
NX

is=1

wi1 ...wisf(xi1 , ..., xis)

• Curse of dimensionality: requires       samples for s-dimensional integral


• Convergence drops to 


• Rules must be adapted to non-square domains (typical in rendering)

Ns

O(N�r/s)
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Monte Carlo Integration

• Independent of the dimensions


• Independent of the underlying topology of the domain


• Variance converges at               irrespective of the dimensions (N is the sample count)
O(N�1)

129
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Integral as Expected Value
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Z

Qs

f(x)dµs(x) =

Z

[0,1)s
f(x)dx =

Z

[0,1)s

f(x)

p(x)
p(x)dx

: is an arbitrary probability density function over the domainp(x)
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Integral as Expected Value
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Z

[0,1)s
f(x)dx =

Z

[0,1)s

f(x)

p(x)
p(x)dx

: is an arbitrary probability density function over the domainp(x)
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Integral as Expected Value

132

Z

[0,1)s

f(x)

p(x)
p(x)dx

=

Z

[0,1)s

⇣f(x)
p(x)

⌘
p(x)dx

= E
hf(x)
p(x)

i E[g(x)] =

Z

Q
g(x)p(x)dx

Z

[0,1)s
f(x)dx =

: is an arbitrary probability density function over the domainp(x)
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Integral as Expected Value
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= E
hf(x)
p(x)

iZ

[0,1)s
f(x)dx =

We are interested in the numerical computation of this expected value, leading to 

the highly important concept of Monte Carlo Estimator
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Monte Carlo Estimator
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Z 1

0
f(x)dx ⇡ 1

N

NX

i=1

f(xi)

p(xi)
I =

: is the probability density function from which 

samples are drawn

p(x)

in 1D
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Monte Carlo Estimator
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Z 1

0
f(x)dx ⇡ 1

N

NX

i=1

f(xi)

p(xi)
I =

: is the probability density function from which 

samples are drawn

p(x)

in 2D
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Monte Carlo Estimator
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Z 1

0
f(x)dx ⇡ 1

N

NX

i=1

f(xi)

p(xi)
I =

1

N

NX

i=1

f(xi)

p(xi)

: is the probability density function from which 

samples are drawn

p(x)

in 2D
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Monte Carlo Estimator
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IN =
1

N

NX

i=1

f(xi)

p(xi)

: is the probability density function from which 

samples are drawn

p(x)

IN =
1

N

NX

i=1

Ii1

Ii1 =
f(xi)

p(xi)
Primary Estimator:

Secondary Estimator:
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Monte Carlo Estimator
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f(xj)

p(xj)

Ii1 =
f(xi)

p(xi)
Primary Estimator:

f(xl)

p(xl)

f(xi)

p(xi)

f(x2)

p(x2)
f(x1)

p(x1)
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Monte Carlo Estimator
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f(xj)

p(xj)

Ii1 =
f(xi)

p(xi)
Primary Estimator:

f(xl)

p(xl)

f(xi)

p(xi)

f(x2)

p(x2)
f(x1)

p(x1)

f(xj)

p(xj)
f(xl)

p(xl)

f(xi)

p(xi)

f(x2)

p(x2)
f(x1)

p(x1)
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Monte Carlo Estimator
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Ii1 =
f(xi)

p(xi)
Primary Estimator:

f(xj)

p(xj)

f(xl)

p(xl)

f(xi)

p(xi)

f(x2)

p(x2)

f(x1)

p(x1)



Realistic Image Synthesis SS2020

Monte Carlo Estimator
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Ii1 =
f(xi)

p(xi)
Primary Estimator:

f(xi)

p(xi)

1

N

NX

i=1

IN =
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Monte Carlo Estimator
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f(xi)

p(xi)

1

N

NX

i=1

IN =

Due to the Strong law of large numbers, the arithmetic mean will converge 

to the expected value with probability 1 given enough samples:

prob

(
lim

N!1
= E

"
f(x)

p(x)

#
=

Z

Q
f(x)dx

)
= 1
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Rendering Equation

Image from PBRT 2016

Scattering equation:



Global Illumination: One Light Source



Global Illumination: Multiple Light Source
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Error in Monte Carlo Estimation

Error = Bias2 +Variance



Realistic Image Synthesis SS2020

148

Error in Monte Carlo Estimation

Error = Bias2 +Variance

• Monte Carlo estimation is unbiased due to it's "purely" stochastic nature


• We are left with variance, which is visible as stochastic unstructured noise in the 
rendered images




Realistic Image Synthesis SS2020

149

Error in Monte Carlo Estimation

Error = Bias2 +Variance

• For biased techniques, it is important to have a consistent solution


• This implies, the bias goes to zero with increase in sample count 


• Examples: Progressive photon mapping
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Unbiased: Monte Carlo Estimator
Error = IN � I

Error = IN �
Z

Q
f(x)dx
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Unbiased: Monte Carlo Estimator
Error = IN �

Z

Q
f(x)dx

Bias = E[Error] = E
h
IN �

Z

Q
f(x)dx

i

Bias = E
h
IN

i
�
h Z

Q
f(x)dx

i

E
h
IN

i
�
Z

Q
f(x)dxBias =

Bias by definition is the expected error:
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Unbiased: Monte Carlo Estimator

E
h
IN

i
�
Z

Q
f(x)dxBias =

=
1

N

NX

i=1

Z

Q

f(x)

p(x)
p(x)dxE

h
IN

i
= E

h 1

N

NX

i=1

f(xi)

p(xi)

i
=

1

N

NX

i=1

E
hf(xi)

p(xi)

i

=
1

N

NX

i=1

Z

Q
f(x)dx

=

Z

Q
f(x)dx

E
h
IN

i
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Bias =
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Unbiased: Monte Carlo Estimator

E
h
IN

i
�
Z

Q
f(x)dxBias =

=

Z

Q
f(x)dxE

h
IN

i

0
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Variance: Monte Carlo Estimator

For the variance of secondary Monte Carlo Estimator, the following holds:

Var(IN) =
1

N2

NX

i=1

Var(Ii1)
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Variance: Monte Carlo Estimator

Var(IN) = Var

 
1

N

NX

i=1

f(xi)

p(xi)

!
=

1

N2
Var

 
NX

I=1

f(xi)

p(xi)

!

Var(aX) = a2Var(X)

Var(IN) =
1

N2

NX

i=1

Var(Ii1)
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Variance: Monte Carlo Estimator

Var(IN) = Var

 
1

N

NX

i=1

f(xi)

p(xi)

!
=

1

N2
Var

 
NX

I=1

f(xi)

p(xi)

!

=
1

N2

NX

I=1

Var

 
f(xi)

p(xi)

!

Var(aX) = a2Var(X)

Independent samples

=
1

N2

NX

i=1

Var(Ii1)

Var(IN) =
1

N2

NX

i=1

Var(Ii1)
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Convergence rate: MC Estimator

Error = �(IN ) =
1p
N2

q
Var(Ii1)

�(X) =
p
Var(X)

Var(IN) =
1

N2

NX

i=1

Var(Ii1)

=
1

N
�(Ii1)
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Convergence rate: MC Estimator

158

…Va
ria

nc
e

Increasing Samples
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Convergence rate: MC Estimator
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…Va
ria

nc
e

O(N�1)

Increasing Samples
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Sampling Methods
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Sampling Methods

• Inversion methods


• Acceptance-rejection methods


• Metropolis sampling (later)


• Transforming distributions
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Inversion Method
• Compute the CDF 


• Compute the inverse CDF


• Obtain a uniformly distributed random number


• Compute 


P (x) =

Z x

0
p(z)dz

P�1(x)

⇠ 2 [0, 1)

Xi = P�1(⇠)



Rendering participating media
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Inversion Method
p(x) / e�ax

p(x) = ce�ax

P (x) =

Z x

0
ce�axdx = 1� e�ax = ⇠

P�1(x) =
ln(1� ⇠)

a

P�1(x) =
ln(⇠)

a

Z 1

0
ce�axdx =

c

a
= 1

P�1(x) =
ln(1� x)

a
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Rejection Sampling Method
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Rejection Sampling Method
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Rejection Sampling Method

• Many samples are wasted


• Very costly


• Not possible for arbitrary 
domains 
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Transformation Method

• General question: which distributions results when we transform 
samples from an arbitrary distributions to some other distribution 
with a function   .


Xi ⇠ px(x)

Yi = y(Xi)

YiWhat is the distribution of     ? 

f
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Transformation Method

• The function         must be a one-to-one transformation


• It's derivative must either be strictly > 0 or strictly < 0

y(x)

prob{Y  y(x)} = prob{X  x}
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Transformation Method
prob{Y  y(x)} = prob{X  x}

Py(y) = Py(y(x)) = Px(x)

py(y)
dy

dx
= px(x)

py(y) =

 
dy

dx

!�1

px(x)

This relationship between CDFs directly leads to the relationship between their PDFs:
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Transformation Method

py(y) =

 
dy

dx

!�1

px(x)

py(y) =

�����
dy

dx

�����

�1

px(x)

In general, the derivative is strictly positive or negative, and the relationship between the densities is:
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Transformation Method

How can we use this formula ?

py(y) =

�����
dy

dx

�����

�1

px(x)

dy

dx
= cosx py(y) =

px(x)

| cosx| =
2x

cosx
=

2arcsin yp
1� y2

px(x) = 2x

Y = sinX

x 2 [0, 1]
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Transformation Method
• Usually we have some PDF that we want to sample from, not a 

given transformation


• For example, we might have given:                  and we would 
like to compute 


• This is a generalization of the inversion method.

X ⇠ px(x)
Y ⇠ py(y)

Py(y) = Px(x) y(x) = P�1
y (Px(x))
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Transformation in Multiple dimensions
• Suppose we have an s-dimensional     with density function   


• Now let                    where     is a bijection. 

X

TY = T (X)

pX

py(y) = py(T (x)) =
px(x)

|JT (x)|

JT (x) =
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Polar Coordinates

x = r cos ✓

y = r sin ✓

p(x, y) = p(r, ✓)/JT

p(x, y) = p(r, ✓)/r

p(r, ✓)Suppose we draw samples from some density

p(x, y)What is the corresponding density  ?
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Spherical Coordinates
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Spherical coordinates

Spherical Coordinates
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Uniformly sampling a hemisphere

Marginal density function:

Conditional density function:

Here, the task is to choose a direction on the hemisphere uniformly w.r.t. solid angle. 

Using the fact that, PDF must integrate to one over its domain: 
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Uniformly sampling a hemisphere
Corresponding CDFs:

Inverting these functions is straightforward, and here we can safely write:
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Uniformly sampling a disk

Correct PDF ???
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Uniformly sampling a disk

Marginal density function:

Conditional density function:
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Variance Reduction Techniques
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Variance Reduction Techniques
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• Importance Sampling


• Multiple Importance Sampling


• Control Variates


• Stratified Sampling
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Variance reduction: Importance sampling

IN =
1

N

f(~xi)

p(~xi)

• Importance Sampling doesn't always reduce variance.


• The pdf          must be carefully chosen to gain improvementsp(~x)
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Variance reduction: Importance sampling

IN =
1

N

f(~xi)

p(~xi)

p(~x) / f(~x)

p(~x) = cf(~x)
Z 1

�1
cf(~x)d~x = 1

c =
1R1

�1 f(~x)
d~x

Z 1

�1
p(~x)d~x = 1

this seems like a no-op since the PDF computation requires the integral of the function 

that we are interested in estimating.
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Variance reduction: Importance sampling

IN =
1

N

f(~xi)

p(~xi)

• However, this is a very special case that we are encountering here.


• This is referred to as Perfect Importance Sampling, for which the variance is zero.

p(~x) =
f(~x)R1

�1 f(~x)
d~x

IN =

Z 1

�1
f(~x)d~x
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Variance reduction: Importance sampling

f(~x)

Examples of perfect importance sampling for which the variance is zero
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Variance reduction: Importance sampling

f(~x) g(~x)

Examples of perfect importance sampling for which the variance is zero
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Variance reduction: Importance sampling

Image from PBRT 2016

Scattering equation:
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Variance reduction: Importance sampling

Scattering equation:

p(!) / cos ✓

Cosine weighted spherical/hemispherical sampling
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling
N = 4 sppN = 1024 spp N = 4 spp
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling

BSDF sampling is better in some regions
N = 4 sppN = 1024 spp N = 4 spp
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling

Light sampling is better in other regions
N = 4 sppN = 1024 spp N = 4 spp
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling

Can we combine the benefits of different PDFs ? Yes!
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Variance reduction: Importance sampling

Multiple Importance SamplingBSDF importance sampling Light importance sampling

Can we combine the benefits of different PDFs ? Yes!
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To be continued ... in the next lecture.
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