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Personnel
• Instructors:

– Philipp Slusallek

• http://graphics.cg.uni-saarland.de/slusallek/

– Karol Myszkowski

• http://www.mpi-inf.mpg.de/~karol/

– Gurprit Singh

• http://people.mpi-inf.mpg.de/~gsingh/

• Teaching Assistant:

– Pascal Grittmann

• https://graphics.cg.uni-saarland.de/people/grittmann.html

• Secretary:

– Sabine Nermerich

• https://graphics.cg.uni-saarland.de/people/nermerich.html
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Administrative Information
• Type

– Special lecture

– Applied computer science (Praktische Informatik)

• ECTS
– 9 credit points

• Prerequisites
– Interest in mathematics, physics, some programming experience in C++

• Language
– All lectures will be given in English

• Time and Location
– Monday & Thursday, 10-12h, online via Zoom (maybe later also HS 03, E1.3)

• Web-Page
– http://graphics.cg.uni-saarland.de/courses/ris-2020/

– Schedule, slides as PDF, link to videos to watch again later

– Literature, assignments, other information

• Mailing list
– Up-to-date information, exercise updates, etc…

– Sign up for the course on the Web page (if not done yet)

• Please also do not forget to sign up on LSF for the course

Realistic Image Synthesis 3

http://graphics.cg.uni-saarland.de/courses/ris-2020/


Grading
• Weekly assignments

– Average of at least 50% of all assignments in the semester

– Required for admission to final exam

– Demonstrate your solution in exercise groups

– Can be done in groups of up to two

• Practical assignments

– Longer-term projects

– Gradually building your own physically-based renderer

– Can be done in groups of up to two

• Final grade

– Assignments: 50%

– Final oral exam: 50%
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Textbooks
• Pharr & Humphreys, Physically-Based Rendering: From Theory to 

Implementation, Morgan Kaufmann, 3nd Edition (Dec 2016), now freely 
available at http://www.pbr-book.org/), also as e-book in CS library

• Dutre, Bekaert, Bala, Advanced Global Illumination, A.K. Peters, 2006, 
2nd Edition.

• Jensen, Realistic Image Synthesis Using Photon Mapping, A.K.  
Peters, 2005, 2nd Edition, also see http://graphics.ucsd.edu/~henrik/papers/book

• Shirley & Morley, Realistic Ray Tracing, A.K. Peters, 2003, 2nd Ed.

• Reinhard, Ward, Pattanaik, Debevec, Heidrich, Myszkowski, High 
Dynamic Range Imaging, Morgan Kaufmann Publish.,2010, 2nd Ed.

• Cohen & Wallace, Radiosity and Realistic Image Synthesis, Academic 
Press, 1993.

• Apodaca & Gritz, Advanced Renderman: Creating CGI for the Motion 
Pictures, Morgan Kaufmann, 1999.

• Glassner, Principles of Digital Image Synthesis, 2 volumes, Morgan 
Kaufman, 1995.

• Iliyan Georgiev, Path Sampling Techniques for Efficient Light 
Transport Simulation, PhD Thesis, Saarland University, 2015
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Ingredients for Realistic Images
• Shape (Geometry)

– Objects in our scene: surfaces, volumes, points, ...

• Material of surfaces & volumes
– Places of interaction of light with matter

• Reflection, refraction, scattering, absorption, ...

– Applied to shapes (“shaders”)

• Light sources
– Sources of light

• Positions, color, directional characteristics, …

– Applied to shapes or independent (“light shaders”)

• Camera
– Sensor that captures the light from the scene

• Lenses, shutter & film; also surfaces can be sensors: e.g. light maps

• Simulation of Light Propagation
– Computing the distribution of light at the sensor (and thus in scene)

Realistic Image Synthesis 6



Motivation
• Goal: Create images on the computer that are

– Indistinguishable from reality typically for a human (but also for sensors!)

• “(Photo-)Realistic rendering” or “Predictive rendering”

• Must understand human perception (or sensor characteristics)

– That convey specific information

• “Visualization” or “non-photorealistic rendering (NPR)”

• Applications
– Industrial design

– Movies and games

– Architecture and 3D geospatial data

– Cultural heritage

• Holy Grail: “Digital Reality”
– Provide simulated reality that feels “real” – for humans & machines

– All optical (acoustic, haptic, …) features one would perceive in reality

– Truly convincing real-time simulated reality (aka “Holo-Deck”)

– Simulation of these models can be used to train computers (AI) to 
understand and act in the world around us
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Applications
• Entertainment Industry: Special effects for motion pictures

•

[© Industrial Light & Magic]

[© Rhythm & Hues]

[© Sony Pictures Imageworks]

[© Weta Digital]



• Entertainment Industry: Animated films

•

Applications

[© Disney / Pixar]

[© PDI DreamWorks]

[© Blue Sky Studios]

[© Sony Pictures Imageworks]



• Entertainment Industry: Video games

Applications

[© Crytek]

[© Bungie]

[© Blizzard Entertainment]

[© Valve]



• Simulation & Augmented Reality

•

Applications

[© ENIB]

[© Renault]

[© NASA]

[© University of North Carolina]



• Industrial Design & Engineering: Automotive / Aerospatial

•

[© EADS]

[© Boeing]

Applications

[© Volkswagen][© Daimler]



• Architectural / Interior Design

• Landscape / Urban Planning

• Archeological Reconstruction

•

Applications

[© Radiance] [© University of Bristol]

[© Saarland University]

[© PBRT]



Digital Reality
• Training and Validation in Reality

– E.g. driving millions of miles to gather data

– Difficult, costly, and non-scalable

– Even millions of miles does not get you a reliable AI system

• Issue of long-tail distributions (critical scenarios)

Reality

Car



Digital Reality
• Training and Validation in the Digital Reality

– Arbitrarily scalable (given the right platform)

– But: Where to get the models and the training data from?
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Syllabus
• Rendering Equation

• Finite Elements/Radiosity

• Perception, HDR Imaging, Tone Mapping

• Perception-based Rendering & Display Limitations

• Probability Theory & Monte-Carlo (MC) Integration

• BRDF & Path Tracing

• Density Estimation, Photon Mapping, Merge with MC

• Spatio-Temporal Sampling, Temporal Filtering

• Sampling & Reconstruction

• BiDir Tracing & MCMC

• Volume Techniques

• Interactive GI & HW-Support for Rendering and Lighting
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Research From Saarbrücken
• Some examples
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Reflection & Refraction
• Visualization of a car headlight

– It reflects and refracts light almost entirely from the environment. Up 

to 50 rays per path are needed to render this image faithfully (800k 

triangles).
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Instant Global Illumination
• Real-time simulation of indirect lighting (“many-light method”)
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Real-Time Photon Mapping
• Real-time performance with procedural textures and density 

estimation. Interleaved sampling allows to reduce 

computation by a factor of 10.
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Photon Mapping
• Car headlight used as a light source

– Photons are emitted and traced until they hit a wall. Density estimation is 

used to reconstruct the illumination. The results run at 3 FPS with 250k 

photons on a cluster of 25 cores (in 2004). Visualization without running the 

simulation achieves even 11 FPS (lower center) and compare well to a real 

photograph (lower right).
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Advanced Materials
• Application to a real car using spline surfaces, realistic paint 

shaders, BTF shaders in the interior, and realistic 

environment lighting.
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Advanced Materials
• The use of BTF for realistic materials with optical effects on 

the meso-scale (e.g. shadows in bumps and creases).
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Light Transport Simulation
• Volkswagen’s large Corporate Visualization Center in 

Wolfsburg using using ray tracing technology developed in 

Saarbrücken (Spin-off “inTrace”).
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Massive Models
• The original CAD model of a Boeing 777 consisting of 365 

million polygons (30 GB). Ray tracing was the first method 

to allow real-time visualization of such models.
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Massive Models
• Visualization of large outdoor scenes (300x300m2) with 

365k plants and several billion triangles.
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Massive Models
• Much larger outdoor scene (80x80 km²) with realistic lighting 

and full vegetation (90*1012 triangles)
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Volume Rendering
• Global illumination of iso-surfaces.
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Multiple Iso-Surfaces
• Ray tracing allows easy integration of multiple modalities 

into a single rendering framework.
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High-Performance Simulation
• Advanced rendering techniques in games
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Importance Caching
• Iliyan Georgiev, et al. [Eurographics 2012]

– Reuse samples based on probability



Relative efficiencyBidirectional path tracing (BDPT) Progressive photon mapping (PM)Result

Monte-Carlo vs Density Estimation
• Vertex Connection & Merging, Ilijan Georgiev [SiggraphAsia´12]

– Formulating Density Estimation algorithms as a Monte-Carlo (MC) techniques

– Allows for direct combination with other MC techniques via MIS



Monte-Carlo vs Density Estimation
Reference

BDPT BDPT+VM PPM BDPT BDPT+VM PPM



Order of Convergence

PT BDPT PPM BDPT+VM

Reference



Joint Path Sampling
• Iliyan Georgiev, et al. [SiggraphAsia 2013]

– Joint sampling of set of next events



Emission Guiding
• Pascal Grittmann [EGSR´18]
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Emission Guiding
• Using Photon Mapping only where it is useful
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Optimal MIS
• Pascal Grittmann, et al. [Siggraph´19]

– Multiple Importance Sampling (MIS) should optimally combine 

multiple estimators (i.e. sampling strategies) via suitable weights

– Unfortunately, original technique made too specific assumptions

• Finally fixed (24 years later!!) – but quite costly
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Variance-Aware MIS
• Pascal Grittmann et al. [Siggraph Asia´20]

– MIS should provide better estimator than individual estimators

• This is not always true :-(

• E.g. the effects of stratification are not taken into account

– Solved by injecting variance estimates for each individual technique

– Essentially cost-free !!!
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Optimal Target Densities for Guiding

• Alexander Rath, PascalGrittmann, et al. [Siggraph´20]

– Need better estimate where to trace photons to

– Assume that decisions are not perfect and take BRDF into account

– Derive theoretically optimal target densities for local path guiding

Realistic Image Synthesis 46



Ultimate Goal
• Reality check

– Can we render real-time video of such scenes ?
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Lecture Related Research at MPII
• High Dynamic Range Imaging

– Tone mapping, image quality metrics

• Apparent display quality improvement

– Cornsweet effect, glare simulation, resolution enhancement

• Rendering for modern displays

– Multi-focal plane displays, deformable beam splitters

– Light-fields, focal stacks

• Foveated rendering

– Latency reduction - saccade landing point prediction

– Image-content aware foveation

• Advanced rendering

– Intelligent sample point selection

– Machine learning solutions for denoising and rendering
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High Dynamic Range (HDR) Imaging

luminance range [cd/m2]

Typical image and video 

formats (JPEG, MPEG)

human vision
simultaneously

adapted

LDR

HDR



HDR Imaging Pipeline
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Tone Mapping
Naïve

non-linear compression

Advanced 

contrast perception model
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MPI HDR Software

PFStmo
tone mapping operators

GPL License

http://www.mpii.mpg.de/resources/tmo/

http://pfstools.sourceforge.net/

http://www.mpii.mpg.de/resources/hdr/calibration/pfs.html

http://www.mpi-sb.mpg.de/resources/hdr/vdp/index.html



• Enhancing apparent (perceived) quality rather than improving 

technical aspects

• Take advantage of the visual system properties

120 Hz

sharpen blur blur

Overcoming Display Limitations



Cornsweet Illusion



Glowing Effect

[Zavagno and Caputo 2001]



increased apparent resolution

Apparent Resolution Enhancement

low res

high res



Optimization Result

time

Display

integration

Predicted image on the retina



3D Image Retargeting
Input devices

Produce different depth ranges
Output devices

Reproduce different depth ranges
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Visible Difference Metric (VDP)

• Can the human eye see the differences 
between two images?

Metric



Dataset of Visible Distortions
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Peter Panning Z-fighting

Shadow acne Shadowmap downsampling

[Piórkowski et al. 2017]



Dataset of Visible Distortions
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[Piórkowski et al. 2017]

Aliasing IBR

[Adhikarla et al. 2017]

Perception patterns

[Čadík et al. 2013]

Deghosting

[Karađuzović-Hadžiabdić et al. 2017]



Dataset of Visible Distortions
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Label Creation

22



Label Creation
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Neural Network Architecture
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Multi-material Printing

25

Stratasys J750 (poly-jetting printer)

Vero Opaque materials

(not actually opaque!)

Cyan

Magenta

Yellow

blacK

White
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3D Appearance Printing

Goal: Visually Reducing Light Diffusion in the 3D Printed Material



Without correction (MC simulation)

Target texture

With correction (MC simulation)

27

3D Appearance Printing
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3D Appearance Printing

Volumetric MC global illumination simulation
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∆

despite the non-linearity of the appearance, it changes monotonically

→ simple residual energy minimization

3D Appearance Printing



3D Appearance Printing
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Target Standard print Our print

520 px (≈5 cm)

550 px



Varifocal Displays

Membrane AR – Dunn et al.



Deformable Beamsplitter

Dynamic focal depth: objects at any depth

Wide field of view

Optics are simple

Membrane AR – Dunn et al.



Membrane AR – Dunn et al.

Deformable Beamsplitter



Multi-focal Plane Display

15cpd, 40 deg, 1200x1200 pixels
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Temporal coherency

Multi-focal Plane Display



Saccade in Foveated Rendering

Saccade Landing Position Prediction for Gaze-Contingent Rendering

36

Estimated gaze location

by the eye tracker

Actual gaze location



Saccade Landing Position Prediction for Gaze-Contingent Rendering
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Saccade in Foveated Rendering



Saccade Landing Position Prediction for Gaze-Contingent Rendering
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Target

Anchor point

First Prediction

Eye tracker’s 

sample point
Confidence Interval 

Eye Tracking: Saccade Landing Prediction



Saccade Landing Position Prediction for Gaze-Contingent Rendering
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Target

Latest Prediction

Eye tracker’s 

sample pointAnchor point

Eye Tracking: Saccade Landing Prediction



Saccade Landing Position Prediction for Gaze-Contingent Rendering
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Target

Eye tracker’s 

sample point

Latest Prediction

Anchor point

Eye Tracking: Saccade Landing Prediction



Saccade Landing Position Prediction for Gaze-Contingent Rendering
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Target

Eye tracker’s 

sample point

Latest Prediction

Anchor point

Eye Tracking: Saccade Landing Prediction



Saccade Landing Position Prediction for Gaze-Contingent Rendering
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Target

Eye tracker’s 

sample point

Anchor point

Eye Tracking: Saccade Landing Prediction



Saccade Landing Position Prediction for Gaze-Contingent Rendering
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Eye Tracking: Saccade Landing Prediction



Eye Tracking: Saccade Landing Prediction



Luminance-Contrast-Aware Foveated Rendering



Luminance-Contrast-Aware Foveated Rendering



Sampling Patterns



How error in MC integration is affected by different 

sampling patterns?

Spatial domain statistics: Pair Correlation Function / 

Discrepancy

Fourier domain statistics

Define Error in terms of Spatial and Fourier domain 

statistics

Advanced Sampling



Learn to Render: Path to Neural Networks

Bako et al.[2017]



Our Focus: Learn to Render

• ML/NN algorithms for 

denoising

• CNNs/GANs 

(unstructured)

• Learning Light Transport 

the Reinforced Way

• Learning to Importance 

Sample
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