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Denoising Algorithms: 
Path to Neural Networks II
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Image courtesy Vogel et al. [2018]
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Recap
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Hachisuka et al. [2008]
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Hachisuka et al. [2008]



Depth of field
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Slide from Jakko Lehtinen



1 scanline 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Slide from Jakko Lehtinen
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Slide from Jakko Lehtinen



The trajectories of  
samples originating 
from a single 
apparent surface 
never intersect.  

Visibility: SameSurface
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Slide from Jakko Lehtinen
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Bilateral Filtering
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Bilateral Filtering of Features
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For cross Bilateral filters:
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Filter weights

Pixel screen coordinates

Mean sample color value

Scene features
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Results
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Basics of Neural Networks

All components of the network must be differentiable.

Differentiability is essential for back-propagation of error.

Each network has a forward pass and a backward (back-propagation) pass.
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Kernel Predicting  
DenoisingIntroduction to CNNs Sample-based  

MC Denoising
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Zero Padding and Strides

Stride 1 Stride 2

zero padding 

1D image to illustrate the strides and zero padding
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Strides

Stride 1 Stride 2

zero padding zero padding 

1D image to illustrate the strides and zero padding
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Max Pooling / Down Sampling



Overview on Convolutional Neural Networks
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Image Courtesy: Mathworks (online tutorial)
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Multi-layer Perceptron vs. CNNs
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Multi-layer perceptron CNNs

All nodes are fully connected in all layers Weights are shared across layers

In theory, should be able to achieve good quality 

results in small number of layers.

Requires significant number of layers to capture 

all the features (e.g. Deep CNNs)

Number of weights to be learnt are very high Relatively small number of weights required

Multi-layer Perceptron vs. CNNs
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Kernel-Predicting  
DenoisingIntroduction to CNNs
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Kernel-Predicting Networks for Denoising  
Monte-Carlo Renderings

Bako et al. [2017]
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Limitations of MLP based Denoiser

Kernel was pre-selected to be joint bilateral filter

- Unable to explicitly capture all details

Fixed 
- can cause unstable weights causing bright ringing and color artifacts

- lacked flexibility to handle wide range of MC noise in production scenes

Too many parameters to optimize
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Requirements

The function must be flexible to capture complex relationship between 

input data and reference colors over wide range of scenarios.

Choice of loss function is crucial. Should capture perceptual aspects of the scene.

To avoid overfitting, large dataset required
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Using a Vanilla CNN

Denoising a raw, noisy color buffer causes overblurring

- difficulty in distinguishing scene details and MC noise

High dynamic range

- can cause unstable weights causing bright ringing and color artifacts
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Vanilla CNN
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Denoising Model

Denoised function with parameters

Reference image

Denoised value Loss function
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Computational Model

Neighborhood

Final denoised value

Denoised value

Kernel weights
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Direct Prediction Network

Direct prediction convolution network: outputs denoised image
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Direct Prediction Network

Direct prediction convolution network: outputs denoised image

Issues:

The constrained nature and complexity of the problem makes optimization difficult.

The magnitude and variance of stochastic gradients computed during training can be large, 

which slows convergence of training loss.
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Kernel Prediction Network

Kernel prediction convolution network: outputs learned kernel weights

Softmax activation to enforce 

weights within range

Denoised color values:
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Kernel Prediction Network

Final color estimate always lies within the convex hull of the respective 

neighborhood (avoid color shifts).

Ensures well-behaved gradients of the error w.r.t the kernel weights
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Proposed Architecture
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Diffuse/Specular components

Diffuse components are well-behaved and typically has small ranges

Specular components are challenging due to high dynamic ranges: uses logarithmic transform

- albedo is factored out to allow large range kernels

Each component is denoised separately
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Training Dataset: 600 frames
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Training

8-hidden layers used with 100 kernels of 5x5 in each layer for each network

For KPCN (kernel-predicting network), output kernel size used = 21

Weights for 128 app and 32 spp networks were initialized using Xavier method 

Diffuse and specular components were independently trained with L1 loss metric
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Learning rate of DPCN vs. KPCN

On Cars 3 dataset, KPCN converges 5-6x faster
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Results
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Results
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Results
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Results

Also works on Piper short movie frames
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Interactive Reconstruction of Monte Carlo Sequences
Chaitanya et al. [2017]
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Motivation: Interactive Reconstruction

!53

Limited to a few rays per pixel @ 1080p @ 30Hz

Never enough to reconstruct an image

Deep learning approach for interactive graphics
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Motivation: Interactive Reconstruction
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Limited to a few rays per pixel @ 1080p @ 30Hz

Never enough to reconstruct an image

Deep learning approach for interactive graphics
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Problem Statement

!55

Handle generic effects:

- Soft shadows

- Diffuse and specular reflections

- Global illumination (one-bounce)

- No Motion blur or depth of field



System setup: Path tracing



System setup: Path tracing



System setup: Path tracing

Rasterize primary hits in G-buffers

Path-tracing from the primary paths

- 1 ray for direct shadows

- 2 rays for indirect (sample + connect)

1 direct + 1 indirect path (spp)



Train auto encoders to reconstruct image from 1spp

Denoising Autoencoder (DAE)



Realistic Image Synthesis SS2018

Recurrent Autoencoder 
[Chaitanya et al. 2017]
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Recurrent Neural Networks

!61

Encoder and decoder stages for dimensionality reduction

Encoder Decoder
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Recurrent Neural Networks
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Encoder and decoder stages for dimensionality reduction

Skip connections  to reintroduce lost information

Encoder Decoder
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Auxillary Features
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Untextured color View space normals Linearize depth
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Training Features
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1spp approx. 70 ms
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DAE 1spp  
approx. 70 ms + approx. 60 ms
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Reference 1024 spp 
approx. 240 ms
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DAE Results
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Recurrent Denoising Autoencoder
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Encoder Decoder

Feedback loops to retain important information after every encoding stage 

RCNN
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Recurrent Neural Networks  
vs. Simple Feed-Forward NN
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Source link

https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5
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Recurrent Neural Networks

!71

Source link

https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912
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Recurrent Neural Networks
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Source link

Conv

Conv

Conv

Conv

Conv

Conv

h-1 h h+1

l-1 l
Fully convolutional blocks to support arbitrary 


image resolution

6 RNN blocks, one per pool layer 

in the encoder

Design:

- 1 conv layer (3x3) for current features

- 2 conv layers (3x3) for previous features

https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912
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Recurrent Neural Networks
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Recurrent Neural Networks
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CNNs, 

fixed input, 

fixed output
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Recurrent Neural Networks
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CNNs, 

fixed input, 

fixed output

 Sequence output

e.g., image captioning takes an image as input and 

outputs a sentence of words
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Recurrent Neural Networks
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CNNs, 

fixed input, 

fixed output

 Sequence output

 Sequence input

e.g., to know the sentiments of a sentence 
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Recurrent Neural Networks
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CNNs, 

fixed input, 

fixed output

 Sequence output

 Sequence input

 Sequence input,

Sequence output.


e.g. Machine translation
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Recurrent Neural Networks
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CNNs, 

fixed input, 

fixed output

 Sequence output

 Sequence input

 Sequence input,

Sequence output.


e.g. Machine translation

Synced sequence 

Input & output
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Training
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Input is a sequence of 7 frames

128x128 random image crop per sequence

Play the sequence forward/backward

Each frame advance the camera or random seed
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Loss Functions
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Spatial Loss to emphasize more 

the dark regions
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Loss Functions
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Spatial Loss to emphasize more 

the dark regions

Temporal loss
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Loss Functions
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Spatial Loss to emphasize more 

the dark regions

Temporal loss High frequency error norm loss

for stable edges
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Loss Functions
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Spatial Loss to emphasize more 

the dark regions

Temporal loss

Final Loss is a weighted averaged of above losses

High frequency error norm loss

for stable edges
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Training Loss depends on 
Auxiliary Features
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Untextured + normal + depth
Untextured + normal
Untextured + depth

Color only

100 101 102 103Epochs

Auxiliary Features
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Temporal Stability
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Kernel Predicting  
DenoisingIntroduction to CNNs Sample-based  

MC Denoising

(next lecture)
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