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Independent Random Sampling

�4

✔Trivially extends to higher dimensions

✔Trivially progressive and memory-less

✘ Big gaps

✘ Clumping

for (int k = 0; k < num; k++)
{

samples(k).x = randf();
samples(k).y = randf();

}
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Ŝ(~!) =

Z

D
S(~x) e�2⇡ ı (~!·~x) d~x
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Ŝ(~!) =
1

N

NX

k=1

e�2⇡ ı (~!·~xk)E

2

4
�����
1

N

NX

k=1

e�2⇡ ı (~!·~xk)

�����

2
3

5



24 Chapter 5. Popular sampling patterns

Samples Power spectrum Radial mean
R

an
do

m

0 1 2 3 4

Frequency

0

1

2

P
o
w
e
r

Ji
tte

r

0 1 2 3 4

Frequency

0

1

2

P
o
w
e
r

M
ul

ti-
jit

te
r

0 1 2 3 4

Frequency

0

1

2

P
o
w
e
r

N
-r

oo
ks

0 1 2 3 4

Frequency

0

1

2

P
o
w
e
r

Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
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5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
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number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
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Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
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Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
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number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
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5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

Jittered Sampling
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Samples Expected power spectrum Radial mean



Independent Random Sampling
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Monte Carlo (16 random samples)
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Monte Carlo (16 jittered samples)
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Stratifying in Higher Dimensions
Stratification requires O(Nd) samples
- e.g. pixel (2D) + lens (2D) + time (1D) = 5D
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Stratifying in Higher Dimensions
Stratification requires O(Nd) samples
- e.g. pixel (2D) + lens (2D) + time (1D) = 5D

• splitting 2 times in 5D = 25 = 32 samples

• splitting 3 times in 5D = 35 = 243 samples!
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Stratifying in Higher Dimensions
Stratification requires O(Nd) samples
- e.g. pixel (2D) + lens (2D) + time (1D) = 5D

• splitting 2 times in 5D = 25 = 32 samples

• splitting 3 times in 5D = 35 = 243 samples!

Inconvenient for large d
- cannot select sample count with fine granularity
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Uncorrelated Jitter [Cook et al. 84]
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Compute stratified samples in sub-dimensions

Uncorrelated Jitter [Cook et al. 84]
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Compute stratified samples in sub-dimensions
- 2D jittered (x,y) for pixel

Uncorrelated Jitter [Cook et al. 84]
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Compute stratified samples in sub-dimensions
- 2D jittered (x,y) for pixel

- 2D jittered (u,v) for lens

Uncorrelated Jitter [Cook et al. 84]
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Compute stratified samples in sub-dimensions
- 2D jittered (x,y) for pixel

- 2D jittered (u,v) for lens

- 1D jittered (t) for time

Uncorrelated Jitter [Cook et al. 84]
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Compute stratified samples in sub-dimensions
- 2D jittered (x,y) for pixel

- 2D jittered (u,v) for lens

- 1D jittered (t) for time

- combine dimensions 
in random order

Uncorrelated Jitter [Cook et al. 84]
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Depth of Field (4D)
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Reference Random Sampling Uncorrelated Jitter

Image source: PBRTe2 [Pharr & Humphreys 2010]



Stratify samples in each dimension separately

Uncorrelated Jitter ➔ Latin Hypercube
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Stratify samples in each dimension separately
- for 5D: 5 separate 1D jittered point sets

Uncorrelated Jitter ➔ Latin Hypercube

�19

x1 x2 x3 x4
x

y1 y2 y3 y4
y

u1 u2 u3 u4
u

v1 v2 v3 v4
v

t1 t2 t3 t4
t

Realistic Image Synthesis SS2018



Stratify samples in each dimension separately
- for 5D: 5 separate 1D jittered point sets

- combine dimensions 
in random order

Uncorrelated Jitter ➔ Latin Hypercube
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Stratify samples in each dimension separately 
- for 5D: 5 separate 1D jittered point sets 

- combine dimensions 
in random order

Uncorrelated Jitter ➔ Latin Hypercube
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Stratify samples in each dimension separately 
- for 2D: 2 separate 1D jittered point sets 

- combine dimensions 
in random order

N-Rooks = 2D Latin Hypercube [Shirley 91]
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Latin Hypercube (N-Rooks) Sampling
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Realistic Image Synthesis SS2018 Image source: Michael Maggs, CC BY-SA 2.5

[Shirley 91]

https://commons.wikimedia.org/w/index.php?curid=3318748
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// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling
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// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling

�23Initialize
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// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling

�23
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Latin Hypercube (N-Rooks) Sampling

�24Shuffle rows

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));
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Latin Hypercube (N-Rooks) Sampling

�24Shuffle rows

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));
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// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling

�25Shuffle rows
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// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling

�25
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Latin Hypercube (N-Rooks) Sampling

�26Shuffle columns

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));
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Latin Hypercube (N-Rooks) Sampling

�26Shuffle columns

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));
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Latin Hypercube (N-Rooks) Sampling

�27

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));
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Latin Hypercube (N-Rooks) Sampling
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Latin Hypercube (N-Rooks) Sampling
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Latin Hypercube (N-Rooks) Sampling
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Evenly distributed in each 
individual dimension



Latin Hypercube (N-Rooks) Sampling
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Evenly distributed in each 
individual dimension

Unevenly distributed 
in n-dimensions
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

N-Rooks Sampling
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Multi-Jittered Sampling
Kenneth Chiu, Peter Shirley, and Changyaw Wang. 
“Multi-jittered sampling.” In Graphics Gems IV, pp. 
370–374. Academic Press, May 1994. 

– combine N-Rooks and Jittered stratification constraints
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Multi-Jittered Sampling
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Multi-Jittered Sampling
// initialize
float cellSize = 1.0 / (resX*resY);
for (uint i = 0; i < resX; i++)

for (uint j = 0; j < resY; j++)
{

samples(i,j).x = i/resX + (j+randf()) / (resX*resY);
samples(i,j).y = j/resY + (i+randf()) / (resX*resY);

}

// shuffle x coordinates within each column of cells
for (uint i = 0; i < resX; i++)

for (uint j = resY-1; j >= 1; j--)
swap(samples(i, j).x, samples(i, randi(0, j)).x);

// shuffle y coordinates within each row of cells
for (unsigned j = 0; j < resY; j++)

for (unsigned i = resX-1; i >= 1; i--)
swap(samples(i, j).y, samples(randi(0, i), j).y);
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Multi-Jittered Sampling
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Multi-Jittered Sampling
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Shuffle x-coords



Multi-Jittered Sampling
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Shuffle x-coords



Multi-Jittered Sampling
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Shuffle x-coords



Multi-Jittered Sampling
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Shuffle x-coords



Multi-Jittered Sampling
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Shuffle x-coords



Multi-Jittered Sampling
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Multi-Jittered Sampling
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Shuffle y-coords



Multi-Jittered Sampling
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Shuffle y-coords



Multi-Jittered Sampling
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Shuffle y-coords



Multi-Jittered Sampling
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Shuffle y-coords



Multi-Jittered Sampling
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Shuffle y-coords



Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Evenly distributed in each 
individual dimension



Multi-Jittered Sampling (Projections)
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Evenly distributed in each 
individual dimension

Evenly distributed in 2D!
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

Multi-Jittered Sampling
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

N-Rooks Sampling
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

Jittered Sampling
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Poisson-Disk/Blue-Noise Sampling
Enforce a minimum distance between points 
Poisson-Disk Sampling: 
- Mark A. Z. Dippé and Erling Henry Wold. “Antialiasing through 

stochastic sampling.” ACM SIGGRAPH, 1985. 

- Robert L. Cook. “Stochastic sampling in computer graphics.” 
ACM Transactions on Graphics, 1986. 

- Ares Lagae and Philip Dutré. “A comparison of methods for 
generating Poisson disk distributions.” Computer Graphics 
Forum, 2008.
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Random Dart Throwing
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Random Dart Throwing
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Random Dart Throwing
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Random Dart Throwing
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5.4 Interpreting and exploiting knowledge of the sampling spectra 27
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods
There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

�
N�1� which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms
Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.

Poisson Disk Sampling
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Blue-Noise Sampling (Relaxation-based)
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Blue-Noise Sampling (Relaxation-based)
1. Initialize sample positions (e.g. random)

�56
Realistic Image Synthesis SS2018



Blue-Noise Sampling (Relaxation-based)
1. Initialize sample positions (e.g. random)
2. Use an iterative relaxation to move samples away 

from each other.
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5.4 Interpreting and exploiting knowledge of the sampling spectra 27
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods
There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

�
N�1� which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms
Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.

CCVT Sampling [Balzer et al. 2009]
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods
There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

�
N�1� which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms
Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.

Poisson Disk Sampling
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Low-Discrepancy Sampling
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Entire field of study called Quasi-Monte Carlo (QMC)
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Halton: Radical inverse with different base for each dimension:
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Halton: Radical inverse with different base for each dimension:

- The bases should all be relatively prime.

- Incremental/progressive generation of samples

Hammersley: Same as Halton, but first dimension is k/N:

- Not incremental, need to know sample count, N, in advance

~xk = (�2(k),�3(k),�5(k), . . . ,�pn(k))

~xk = (k/N,�2(k),�3(k),�5(k), . . . ,�pn(k))

Halton and Hammersley Points
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Monte Carlo (16 jittered samples)
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Scrambled Low-Discrepancy Sampling
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More info on QMC in Rendering
S. Premoze, A. Keller, and M. Raab. 
Advanced (Quasi-) Monte Carlo Methods for Image Synthesis. 
In SIGGRAPH 2012 courses. 
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How can we predict error from these?

�72
Realistic Image Synthesis SS2018



Realistic Image Synthesis SS2018

Samples’ Radial Spectrum

Integrand Radial Spectrum
Po

w
er

Frequency

Part 2: Formal Treatment of  
MSE, Bias and Variance



Realistic Image Synthesis SS2018

 Convergence rate for  
Random Samples

 74
Increasing Samples

Va
ria

nc
e



Realistic Image Synthesis SS2018

 Convergence rate for  
Random Samples

 74
Increasing Samples

Va
ria

nc
e



Realistic Image Synthesis SS2018

 Convergence rate for  
Random Samples

 74

…

Increasing Samples

Va
ria

nc
e



Realistic Image Synthesis SS2018

 Convergence rate for  
Random Samples

 74

…

Increasing Samples

Va
ria

nc
e



Realistic Image Synthesis SS2018

 Convergence rate for  
Random Samples

 74

…

Increasing Samples

Va
ria

nc
e



Realistic Image Synthesis SS2018

 75

…

Increasing Samples

Va
ria

nc
e

 Convergence rate for  
Random Samples



Realistic Image Synthesis SS2018

 75

…

Increasing Samples

Va
ria

nc
e

 Convergence rate for  
Random Samples

O(N�1)



Realistic Image Synthesis SS2018

 76

…

Increasing Samples

Va
ria

nc
e

 Convergence rate for  
Jittered Samples

O(N�1)



Realistic Image Synthesis SS2018

 76

…

Increasing Samples

Va
ria

nc
e

 Convergence rate for  
Jittered Samples

O(N�1)

O(N�1.5)



Realistic Image Synthesis SS2018

 77

…

Increasing Samples

Va
ria

nc
e
 Convergence rate  

Jittered vs Poisson Disk

O(N�1.5)

O(N�1)



Realistic Image Synthesis SS2018

 77

…

Increasing Samples

Va
ria

nc
e
 Convergence rate  

Jittered vs Poisson Disk

O(N�1.5)

O(N�1)



Realistic Image Synthesis SS2018

 77

…

Increasing Samples

Va
ria

nc
e
 Convergence rate  

Jittered vs Poisson Disk

O(N�1.5)

O(N�1)



Realistic Image Synthesis SS2018

 78

…

Increasing Samples

Va
ria

nc
e
 Convergence rate  

Jittered vs Poisson Disk

O(N�1)

O(N�1.5)



Realistic Image Synthesis SS2018

Samples and function in  
Fourier Domain

 79

Spatial Domain Fourier Domain



Realistic Image Synthesis SS2018

Samples and function in  
Fourier Domain

 79

Spatial Domain Fourier Domain



Realistic Image Synthesis SS2018

Samples and function in  
Fourier Domain

 79

Spatial Domain Fourier Domain

0 w-w

Ŝ(!)



Realistic Image Synthesis SS2018

Samples and function in  
Fourier Domain

 79

Spatial Domain Fourier Domain

f(x)
0 w-w
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f̂⇤(!)Ŝ(!)d!I = f̂(0)



Realistic Image Synthesis SS2018

Error in Spatial Domain

 94

I � µ̃N =

Z

D
f(x)dx�

Z

D
f(x)S(x)dx

µ̃N =

Z

⌦
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f̂⇤(!)Ŝ(!)d!

Fredo Durand [2011]

µ̃N =

Z

⌦
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Pauly et al. [2000]
Ramamoorthi et al. [2012]

For a given frequency       !



Realistic Image Synthesis SS2018

 109

Real

Imag

Phase change due to  
Random Shift
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Random Shift

hŜ(!)i = 0 8! 6= 0
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Error = Bias2 +Variance

• Homogenization allows representation of error only 
in terms of variance 

• We can take any sampling pattern and homogenize 
it to make the Monte Carlo estimator unbiased.
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⌘
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⌦
f̂⇤(!) Ŝ(!)d!

◆

where,
Pf (!) = |f̂⇤(!)|2 Power Spectrum 
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Var(µ̃N ) =

Z

⌦
Pf (!)Var

⇣
Ŝ(!)

⌘
d!

Subr and Kautz [2013]

This is a general form, both for homogenised as well as  
non-homogenised sampling patterns
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For purely random samples:

Var(µ̃N ) =

Z

⌦
Pf (!)Var

⇣
Ŝ(!)

⌘
d!

Variance in the Fourier domain
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For purely random samples:

where,
PS(!) = |Ŝ(!)|2

Var(µ̃N ) =

Z

⌦
Pf (!)Var

⇣
Ŝ(!)

⌘
d!

Var(µ̃N ) =

Z

⌦
Pf (!) hPS(!)i d!

Fredo Durand [2011]

Variance in the Fourier domain
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For purely random samples:

where,
PS(!) = |Ŝ(!)|2

Var(µ̃N ) =

Z

⌦
Pf (!)Var

⇣
Ŝ(!)

⌘
d!

Var(µ̃N ) =

Z

⌦
Pf (!) hPS(!)i d!

Fredo Durand [2011]

hŜ(!)i = 0

Variance in the Fourier domain



Realistic Image Synthesis SS2018

 121

Variance using  
Homogenized Samples

Homogenizing any sampling pattern makeshŜ(!)i = 0
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Variance using  
Homogenized Samples

Homogenizing any sampling pattern makes

Pilleboue et al. [2015]

where,
PS(!) = |Ŝ(!)|2

Var(µ̃N ) =

Z

⌦
Pf (!) hPS(!)i d!

hŜ(!)i = 0
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Variance in the Polar 
Coordinates

In polar coordinates:

V ar[µ̃N ] = M(Sd�1)

Z 1

0

Z

Sd�1

Pf (⇢n) hPS(⇢n)i dn d⇢

Var(µ̃N ) =

Z

⌦
Pf (!) hPS(!)i d!
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Coordinates
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Variance for Low Sample Count
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…

Increasing Samples
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96 Secondary Rays

MSE: 8.56 x 10e-4MSE: 4.74 x 10e-3
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CCVT vs. Poisson Disk
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96 Secondary Rays

MSE: 4.24 x 10e-4 MSE: 6.95 x 10e-4
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Jittered vs Poisson Disk
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Variance
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What are the benefits of this 
analysis ? 

 150

• For offline rendering, analysis tells which samplers 
would converge faster.

• For real time rendering, blue noise samples are 
more effective in reducing variance for a given 
number of samples


