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A la Carte
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• Numerical Integration


• Monte Carlo Integration


• Quasi Monte Carlo Integration
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Numerical Integration
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Numerical Integration
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• Analytic evaluation: accurate and fast
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Numerical Integration
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Z b

a
f(x)dx

• Numerical evaluations: 


• Provide only approximate solutions, 


• Rate of convergence is important


• Often involves evaluations only at selected locations
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Numerical Integration
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• Numerical quadrature: designed for 1D integrals


• Cubature/Quadratures: for higher dimensions

Z b

a
f(x)dx
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Numerical Integration
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• Hybrid methods: First transform the integral analytically for simpler numerical handling
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Numerical Integration
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• A number of solutions are developed for the numeric solution of integrals


• Most prominent are the Quadrature rules, where the weights      and the sample 
positions     are determined in advance

Z b

a
f(x)dx =

NX

i=1

wif(xi)

wi
xi
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Quadrature rules
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• Newton-Cots formula:


• Midpoint rule (1 sample), Trapezoid rule (2 samples), Simpson rule (3 samples)...


Midpoint formula Composite midpoint 

formula

Trapezoidal formula Cavalieri-Simpson 

formula

Im
ag

e 
co

ur
te

sy

https://link.springer.com/content/pdf/10.1007/978-3-540-49809-4_9.pdf


Realistic Image Synthesis SS2018

Quadrature rules
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• Newton-Cots formula:


• Midpoint rule (1 sample), Trapezoid rule (2 samples), Simpson rule (3 samples)...


• Samples are nesting (for powers of 2)


• Approximates the integral as sum of weighted, equidistant samples
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Quadrature rules
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• Gauss quadratures: 


• An n-point Gauss quadrature is 
constructed to yield exact results for 
polynomials of degree 2n-1 or less.


• Extends freedom by allowing choice of 
sample locations


• It doesn't nest (but nesting alternatives 
do exist)
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Quadrature rules
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• Gauss quadratures: 


• An n-point Gauss quadrature is 
constructed to yield exact results for 
polynomials of degree 2n-1 or less.


• Extends freedom by allowing choice of 
sample locations


• It doesn't nest (but nesting alternatives 
do exist)

Image from Wikipedia

https://en.wikipedia.org/wiki/Gaussian_quadrature
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Newton-Cots formula* 


Gauss quadratures*


Both approaches achieve convergence of the order               , given     samples and a 
smooth integrand that has    continuous derivatives

Quadrature rules

!13

O(N�r)
r-

N

*Interested students may refer to this link for more details.

https://link.springer.com/content/pdf/10.1007/978-3-540-49809-4_9.pdf
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Numerical Integration: sD case
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Z b

a
...

Z b

a
f(x1, ..., xs)dx1...dxs =

NX

i1=1

...
NX

is=1

wi1 ...wisf(xi1 , ..., xis)

• Curse of dimensionality: requires       samples for s-dimensional integral


• Convergence drops to 


• Rules must be adapted to non-square domains (typical in rendering)

Ns

O(N�r/s)
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Monte Carlo Integration

• Independent of the dimensions


• Independent of the underlying topology of the domain


• Variance converges at               irrespective of the dimensions (N is the sample count)
O(N�1)

!15
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Integral as Expected Value
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Z

Qs

f(x)dµs(x) =

Z

[0,1)s
f(x)dx =

Z

[0,1)s

f(x)

p(x)
p(x)dx

: is an arbitrary probability density function over the domainp(x)
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Integral as Expected Value
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Z

[0,1)s
f(x)dx =

Z

[0,1)s

f(x)

p(x)
p(x)dx

: is an arbitrary probability density function over the domainp(x)
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Integral as Expected Value
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Z

[0,1)s

f(x)

p(x)
p(x)dx

=

Z

[0,1)s

⇣f(x)
p(x)

⌘
p(x)dx

= E
hf(x)
p(x)

i E[g(x)] =

Z

Q
g(x)p(x)dx

Z

[0,1)s
f(x)dx =

: is an arbitrary probability density function over the domainp(x)
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Integral as Expected Value
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= E
hf(x)
p(x)

iZ

[0,1)s
f(x)dx =

We are interested in the numerical computation of this expected value, leading to 

the highly important concept of Monte Carlo Estimator
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Monte Carlo Estimator
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Z 1

0
f(x)dx ⇡ 1

N

NX

i=1

f(xi)

p(xi)
I =

: is the probability density function from which 

samples are drawn

p(x)

in 1D
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Monte Carlo Estimator
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Z 1

0
f(x)dx ⇡ 1

N

NX

i=1

f(xi)

p(xi)
I =

: is the probability density function from which 

samples are drawn

p(x)

in 2D
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Monte Carlo Estimator
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Z 1

0
f(x)dx ⇡ 1

N

NX

i=1

f(xi)

p(xi)
I =

1

N

NX

i=1

f(xi)

p(xi)

: is the probability density function from which 

samples are drawn

p(x)

in 2D
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Monte Carlo Estimator
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IN =
1

N

NX

i=1

f(xi)

p(xi)

: is the probability density function from which 

samples are drawn

p(x)

IN =
1

N

NX

i=1

Ii1

Ii1 =
f(xi)

p(xi)
Primary Estimator:

Secondary Estimator:
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Monte Carlo Estimator
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f(xj)

p(xj)

Ii1 =
f(xi)

p(xi)
Primary Estimator:

f(xl)

p(xl)

f(xi)

p(xi)

f(x2)

p(x2)
f(x1)

p(x1)
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Monte Carlo Estimator
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f(xj)

p(xj)

Ii1 =
f(xi)

p(xi)
Primary Estimator:

f(xl)

p(xl)

f(xi)

p(xi)

f(x2)

p(x2)
f(x1)

p(x1)

f(xj)

p(xj)
f(xl)

p(xl)

f(xi)

p(xi)

f(x2)

p(x2)
f(x1)

p(x1)
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Monte Carlo Estimator
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Ii1 =
f(xi)

p(xi)
Primary Estimator:

f(xj)

p(xj)

f(xl)

p(xl)

f(xi)

p(xi)

f(x2)

p(x2)

f(x1)

p(x1)
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Monte Carlo Estimator
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Ii1 =
f(xi)

p(xi)
Primary Estimator:

f(xi)

p(xi)

1

N

NX

i=1

IN =
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Monte Carlo Estimator
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f(xi)

p(xi)

1

N

NX

i=1

IN =

Due to the Strong law of large numbers, the arithmetic mean will converge 

to the expected value with probability 1 given enough samples:

prob

(
lim

N!1
= E

"
f(x)

p(x)

#
=

Z

Q
f(x)dx

)
= 1
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Rendering Equation

Image from PBRT 2016

Scattering equation:



Global Illumination: One Light Source



Global Illumination: Multiple Light Source
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Error in Monte Carlo Estimation

Error = Bias2 +Variance
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Error in Monte Carlo Estimation

Error = Bias2 +Variance

• Monte Carlo estimation is unbiased due to it's "purely" stochastic nature


• We are left with variance, which is visible as stochastic unstructured noise in the 
rendered images
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Error in Monte Carlo Estimation

Error = Bias2 +Variance

• For biased techniques, it is important to have a consistent solution


• This implies, the bias goes to zero with increase in sample count 


• Examples: Progressive photon mapping
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Unbiased: Monte Carlo Estimator
Error = IN � I

Error = IN �
Z

Q
f(x)dx
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Unbiased: Monte Carlo Estimator
Error = IN �

Z

Q
f(x)dx

Bias = E[Error] = E
h
IN �

Z

Q
f(x)dx

i

Bias = E
h
IN

i
�
h Z

Q
f(x)dx

i

E
h
IN

i
�
Z

Q
f(x)dxBias =

Bias by definition is the expected error:
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Unbiased: Monte Carlo Estimator

E
h
IN

i
�
Z

Q
f(x)dxBias =

=
1

N

NX

i=1

Z

Q

f(x)

p(x)
p(x)dxE

h
IN

i
= E

h 1

N

NX

i=1

f(xi)

p(xi)

i
=

1

N

NX

i=1

E
hf(xi)

p(xi)

i

=
1

N

NX

i=1

Z

Q
f(x)dx

=

Z

Q
f(x)dx

E
h
IN

i
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Bias =
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Unbiased: Monte Carlo Estimator

E
h
IN

i
�
Z

Q
f(x)dxBias =

=

Z

Q
f(x)dxE

h
IN

i

0
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Variance: Monte Carlo Estimator

For the variance of secondary Monte Carlo Estimator, the following holds:

Var(IN) =
1

N2

NX

i=1

Var(Ii1)
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Variance: Monte Carlo Estimator

Var(IN) = Var

 
1

N

NX

i=1

f(xi)

p(xi)

!
=

1

N2
Var

 
NX

I=1

f(xi)

p(xi)

!

Var(aX) = a2Var(X)

Var(IN) =
1

N2

NX

i=1

Var(Ii1)
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Variance: Monte Carlo Estimator

Var(IN) = Var

 
1

N

NX

i=1

f(xi)

p(xi)

!
=

1

N2
Var

 
NX

I=1

f(xi)

p(xi)

!

=
1

N2

NX

I=1

Var

 
f(xi)

p(xi)

!

Var(aX) = a2Var(X)

Independent samples

=
1

N2

NX

i=1

Var(Ii1)

Var(IN) =
1

N2

NX

i=1

Var(Ii1)
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Convergence rate: MC Estimator

Error = �(IN ) =
1p
N2

q
Var(Ii1)

�(X) =
p
Var(X)

Var(IN) =
1

N2

NX

i=1

Var(Ii1)

=
1

N
�(Ii1)
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Convergence rate: MC Estimator
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…Va
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Increasing Samples
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Convergence rate: MC Estimator

 45

…Va
ria

nc
e

O(N�1)

Increasing Samples



Realistic Image Synthesis SS2018

Sampling Methods
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Sampling Methods

• Inversion methods


• Acceptance-rejection methods


• Metropolis sampling (later)


• Transforming distributions



Realistic Image Synthesis SS2018

!48

Inversion Method
• Compute the CDF 


• Compute the inverse CDF


• Obtain a uniformly distributed random number


• Compute 


P (x) =

Z x

0
p(z)dz

P�1(x)

⇠ 2 [0, 1)

Xi = P�1(⇠)



Rendering participating media
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Inversion Method
p(x) / e�ax

p(x) = ce�ax

P (x) =

Z x

0
ce�axdx = 1� e�ax = ⇠

P�1(x) =
ln(1� ⇠)

a

P�1(x) =
ln(⇠)

a

Z 1

0
ce�axdx =

c

a
= 1

P�1(x) =
ln(1� x)

a
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Rejection Sampling Method
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Rejection Sampling Method
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Rejection Sampling Method

• Many samples are wasted


• Very costly


• Not possible for arbitrary 
domains 
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Transformation Method

• General question: which distributions results when we transform 
samples from an arbitrary distributions to some other distribution 
with a function   .


Xi ⇠ px(x)

Yi = y(Xi)

YiWhat is the distribution of     ? 

f
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Transformation Method

• The function         must be a one-to-one transformation


• It's derivative must either be strictly > 0 or strictly < 0

y(x)

prob{Y  y(x)} = prob{X  x}
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Transformation Method
prob{Y  y(x)} = prob{X  x}

Py(y) = Py(y(x)) = Px(x)

py(y)
dy

dx
= px(x)

py(y) =

 
dy

dx

!�1

px(x)

This relationship between CDFs directly leads to the relationship between their PDFs:
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Transformation Method

py(y) =

 
dy

dx

!�1

px(x)

py(y) =

�����
dy

dx

�����

�1

px(x)

In general, the derivative is strictly positive or negative, and the relationship between the densities is:
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Transformation Method

How can we use this formula ?

py(y) =

�����
dy

dx

�����

�1

px(x)

dy

dx
= cosx py(y) =

px(x)

| cosx| =
2x

cosx
=

2arcsin yp
1� y2

px(x) = 2x

Y = sinX

x 2 [0, 1]
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Transformation Method
• Usually we have some PDF that we want to sample from, not a 

given transformation


• For example, we might have given:                  and we would 
like to compute 


• This is a generalization of the inversion method.

X ⇠ px(x)
Y ⇠ py(y)

Py(y) = Px(x) y(x) = P�1
y (Px(x))



Realistic Image Synthesis SS2018

!60

Transformation in Multiple dimensions
• Suppose we have an s-dimensional     with density function   


• Now let                    where     is a bijection. 

X

TY = T (X)

pX

py(y) = py(T (x)) =
px(x)

|JT (x)|

JT (x) =
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Polar Coordinates

x = r cos ✓

y = r sin ✓

p(x, y) = p(r, ✓)/JT

p(x, y) = p(r, ✓)/r

p(r, ✓)Suppose we draw samples from some density

p(x, y)What is the corresponding density  ?
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Spherical Coordinates



Realistic Image Synthesis SS2018

!63

Spherical coordinates

Spherical Coordinates
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Uniformly sampling a hemisphere

Marginal density function:

Conditional density function:

Here, the task is to choose a direction on the hemisphere uniformly w.r.t. solid angle. 

Using the fact that, PDF must integrate to one over its domain: 
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Uniformly sampling a hemisphere
Corresponding CDFs:

Inverting these functions is straightforward, and here we can safely write:



Realistic Image Synthesis SS2018

!66

Uniformly sampling a disk

Correct PDF ???
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Uniformly sampling a disk

Marginal density function:

Conditional density function:
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Variance Reduction Techniques
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Variance Reduction Techniques

!69

• Importance Sampling


• Multiple Importance Sampling


• Control Variates


• Stratified Sampling
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Variance reduction: Importance sampling

IN =
1

N

f(~xi)

p(~xi)

• Importance Sampling doesn't always reduce variance.


• The pdf          must be carefully chosen to gain improvementsp(~x)
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Variance reduction: Importance sampling

IN =
1

N

f(~xi)

p(~xi)

p(~x) / f(~x)

p(~x) = cf(~x)
Z 1

�1
cf(~x)d~x = 1

c =
1R1

�1 f(~x)
d~x

Z 1

�1
p(~x)d~x = 1

this seems like a no-op since the PDF computation requires the integral of the function 

that we are interested in estimating.
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Variance reduction: Importance sampling

IN =
1

N

f(~xi)

p(~xi)

• However, this is a very special case that we are encountering here.


• This is referred to as Perfect Importance Sampling, for which the variance is zero.

p(~x) =
f(~x)R1

�1 f(~x)
d~x

IN =

Z 1

�1
f(~x)d~x
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Variance reduction: Importance sampling

f(~x)

Examples of perfect importance sampling for which the variance is zero
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Variance reduction: Importance sampling

f(~x) g(~x)

Examples of perfect importance sampling for which the variance is zero
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Variance reduction: Importance sampling

Image from PBRT 2016

Scattering equation:
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Variance reduction: Importance sampling

Scattering equation:

p(!) / cos ✓

Cosine weighted spherical/hemispherical sampling
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling
N = 4 sppN = 1024 spp N = 4 spp
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling

BSDF sampling is better in some regions
N = 4 sppN = 1024 spp N = 4 spp
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling

Light sampling is better in other regions
N = 4 sppN = 1024 spp N = 4 spp
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Variance reduction: Importance sampling

Reference image BSDF importance sampling Light importance sampling

Can we combine the benefits of different PDFs ? Yes!
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Variance reduction: Importance sampling

Multiple Importance SamplingBSDF importance sampling Light importance sampling

Can we combine the benefits of different PDFs ? Yes!
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Variance reduction: Multiple Importance sampling

Multiple Importance Sampling

IN =
1

N

NX

i=1

f(x)g(x)

p(x)

p(x) / ???

IN =
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Variance reduction: Multiple Importance sampling

Multiple Importance Sampling

IN =

Balance heuristic:

Power heuristic:
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Variance reduction: Control Variate
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Variance reduction: Control Variate

• To reduce variance, an easily evaluated approximation to the 
integrand is sought


• Instead sampling all points independently, control variates 
make use of correlated points in the sampling


• The mathematical basis of control variates is the linearity 
property of the Lebesgue integral, i.e., one try to find an 
analytically Lebesgue-integrable function g that is similar to the 
integral under study.
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Variance reduction: Control Variate

Z

Q
f(x)dx =

Z

Q
g(x)dx+

Z

Q
(f(x)� g(x))dx

=

Z

Q
g(x)dx+

Z

Q

(f(x)� g(x))

p(x)
p(x)dx

=

Z

Q
g(x)dx+E

"
(f(x)� g(x))

p(x)

#

Z

Q
f(x)dx =
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Variance reduction: Control Variate

=

Z

Q
g(x)dx+E

"
(f(x)� g(x))

p(x)

#Z

Q
f(x)dx =

=

Z

Q
g(x)dx+

1

N

NX

i=1

"
(f(xi)� g(xi))

p(xi)

#

ICV
N

Since we don't know the analytic integral solution of  

the corresponding estimator can be written as: 

f(x)
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Variance reduction: Control Variate

=

Z

Q
g(x)dx+

1

N

NX

i=1

"
(f(xi)� g(xi))

p(xi)

#

ICV
N

=
1

N2

NX

i=1

Var

 
(f(xi)� g(xi))

p(xi)

!

Var(ICV
N )

Var

 
(f(xi)� g(xi))

p(xi)

!
< Var

 
f(xi)

p(xi)

!

The integral on the right hand side can be evaluated exactly, 

where as the variance of the estimator is given by: 

Variance can be reduced if:
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Variance reduction: Stratified Sampling
Jittered Sampling

Latin Hypercube Sampling
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Random 2D

0 1

1 Jittered 2D

0 1

1

Variance reduction: Stratified Sampling
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Random 2D

0 1

1 Jittered 2D

0 1

1

Variance reduction: Stratified Sampling
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Variance reduction: Stratified sampling
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Random Samples
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Random Samples Jittered Samples

!93

Variance reduction: Stratified sampling

Stratified sampling suffers from the curse of dimensionality
N = 64 spp
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Variance reduction: Stratified Sampling
Jittered Sampling

Latin Hypercube Sampling
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Latin Hypercube Sampler (N-rooks)
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Initialize

Latin Hypercube Sampler (N-rooks)
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Shuffle rows

Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Shuffle columns

Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Latin Hypercube Sampler (N-rooks)
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Variants of stratified sampling

!102
Slide from Philipp Slusallek
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Quasi-Monte Carlo Integration

!103
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• Monte Carlo integration suffers, apart from the slow convergence rate, from the 
disadvantages that only probabilistic statements on convergence and error boundaries 
are possible


•  The success of any Monte Carlo procedure stands or falls with the quality of these 
random samples


• If the distribution of the sample points is not uniform then there are large regions where 
there are no samples at all, which can increases the error  


• Closely related to this is the fact that a smooth function is evaluated at unnecessary 
many locations if samples are clumped  

!104

Quasi-Monte Carlo Integration
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• Deterministic generation of samples, while making sure uniform distributions


• Based on number-theoretic approaches


• Samples with good uniform properties can be generated in very high dimensions.


• Sample generation is pretty fast: (almost) no pre-processing 

!105

Quasi-Monte Carlo Integration
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Quasi-Monte Carlo Integration

!106

• Low discrepancy sequences


• Halton and Hammerslay sequences


• Scrambled sequences


• Discrepancy


• Koksma-Hlawka Inequality (later)
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Discrepancy: Basic idea 

!107

• The concept of discrepancy can be viewed as a quantitative 
measure for the deviation of a given point set from a uniform 
distribution
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• The concept of discrepancy can be viewed as a quantitative 
measure for the deviation of a given point set from a uniform 
distribution

(0, 0)

(1, 1)

(0, 0.3)

(0.3, 0)

Area of the blue box: 

Discrepancy: 

0.09

Area associated to each sample: 0.25

0.25 0.09- = 0.16

Discrepancy: Basic idea 
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Radical Inverse
Techniques based on a construction called as radical inverse

n =
1X

i=1

dib
i�1

Any integer can be represented in the form: 1 1

2 01

3 11

4 001

5 101

n Binary �b(n)



Realistic Image Synthesis SS2018

!110

Techniques based on a construction called as radical inverse

n =
1X

i=1

dib
i�1

Any integer can be represented in the form: 1 1 0.1

2 01 0.01

3 11 0.11

4 001 0.001

5 101 0.101

n Binary �b(n)

�b(n) = 0.d1d2...dm

Radical inverse:

Radical Inverse
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Techniques based on a construction called as radical inverse

�b(n) = 0.d1d2...dm 1 1 0.1 = 1/2

2 01 0.01 = 1/4

3 11 0.11 = 3/4

4 001 0.001 = 1/8

5 101 0.101 = 5/8

n Binary �b(n)Radical inverse:

1

2

1

4

3

4

1

8

5

8
0 1

Radical Inverse
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Techniques based on a construction called as radical inverse

�b(n) = 0.d1d2...dmRadical inverse:

Halton and Hammerslay Sequence

Halton Sequence: For n-dimensional sequence, we use different base b for each dimension
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Halton and Hammerslay Sequence
Techniques based on a construction called as radical inverse

�b(n) = 0.d1d2...dmRadical inverse:

Halton Sequence: For n-dimensional sequence, we use different base b for each dimension

Hammerslay Sequence: All except the first dimension has co-prime bases 
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Techniques based on a construction called as radical inverse

�b(n) = 0.d1d2...dmRadical inverse:

Halton Sequence: Hammerslay Sequence:

Hammerslay has slightly lower discrepancy than Halton 

Halton and Hammerslay Sequence
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Low discrepancy samplersHalton 4spp
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Low discrepancy samplersHalton 8spp



Realistic Image Synthesis SS2018

!117

Low discrepancy samplersSobol 4spp
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Low discrepancy samplersSobol 8spp
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Low discrepancy samplersRandom 8spp
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Slide from Philipp Slusallek

Visualizing samples
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Visualizing samples
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Halton Sequence

Projection: (9,10) Projection: (19,20) Projection: (29,30)

Slide from Philipp Slusallek

Visualizing samples
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Faure's permutation
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Quasi-Monte Carlo Integration
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• Low discrepancy sequences


• Van der Corpus, Sobol sequences


• (t,m,s)-nets & (t-s)-sequences
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Discrepancy
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Discrepancy
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Fourier Analysis: Samples Quality Measure
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Advance Sampling Strategies: May 21, 2019


